Pitch Rate CAS Design Project


 Felix Kennedy
 1 years ago
 Views:
Transcription
1 Pitch Rate CAS Design Project Washington University in St. Louis MAE 433 Control Systems Bob Rowe 4.4.7
2 Design Project Part 2 This is the second part of an ongoing project to design a control and stability system for pitch control of an aircraft. This second part of the design project will cover the following areas: 4. Establishing the system configuration and identifying the actuator 5. Obtaining a model of the process, the actuator, and the sensor 6. Describing a controller and selecting parameters to meet the performance specifications 7. Optimizing the parameters and analyzing the performance 8. Repeating these steps if the performance is unacceptable In part three, the last part of the design project, a prototype will be built and tested from the results of parts one and two. Design Goals As a refresher, it is fitting to go over our design goals and a few of the key variables associated with our problem (see Figure 1a). A summary of the control goals follows: 1. Dead beat pitch response to precision tracking with t r 1. 5s 2. Steady state error of less than 5% 3. Phugoid damping Short Period damping. 35 We will consider an aircraft flying at an altitude of 4, ft at a velocity of 774 ft/s. The aircraft will be modeled during constant, steady flight. The aircraft will be examined mostly in the xz plane where moments are about the y axis. This can be done assuming that the mass distributions around the x and z axes are symmetric. Figure 1a: Key variables in describing control of aircraft
3 System Configuration, Actuator, Sensor, and Process Model The results from part one of the design project have shown a need to improve the phugoid and short period responses. Let us see how employing pitch rate feed back to our system will improve the response. Pitch rate feed back should give us more control of the phugoid and short period responses and help us meet our design goals. To provide feed back and control of our system we will need a sensor and an actuator. For the sensor we will use is a gyroscopic pitch rate sensor which can be modeled with a transfer function equal to one. For the actuator we will use a hydraulic elevator as commonly used in aircraft. We will model the elevator as a lag transfer function with a time constant of 1/2 seconds. Thus our plant transfer function becomes the following: G P G actuator G aircraft e q u e e To account for the fact that a negative moment is created for a positive elevator deflection it is necessary to apply a phase reversal by multiply the actuator state variable by negative one. This yields the following relation: e x a The state equation and output equation for our new state variable X a, the actuator state variable, are as follows: 1 x a x y x e a a 1 u e We can now add this new state equation to our existing state equations by augmenting the state matrices. From this we will attain the following newly formed matrices. vt x q x a
4 3.e e 5 F 2.1e e e e e e e e e 2 2 G 2 ue H 18 / e J As in part one of the design project the previous matrices belong to our matrix state equations that are expressed as follows: x F x Gu y H x Ju Uncompensated Control System  G c = K p With the current model of our system we are not meeting the design goals. This fact can be seen by examining the root locus and the response to a step input. Let s take a look at the unit step response of our system in figures 1 and 2.
5 Figure 1: Unit step response of uncompensated system Figure 2: Unit step response of uncompensated system (note: larger time scale)
6 In figure 1 we can see that the response to a unit step input reaches amplitude of one and then starts to decrease in amplitude. In figure 2, where we are viewing the response on a much larger time scale, we can see that the amplitude quickly drops from an amplitude of one and begins to oscillate around zero. The amplitude continues to oscillate until the response settles at zero. The system at this point yields unsatisfactory results. The response does not meet our design goals because it is not dead beat, does not have the right final output, and thus does not meet our goal of steady state error being less than five percent! The root locus, Figure 3, doubles as a polezero plot because we can identify the location of all of the system s poles and zeros. Examining and manipulating the root locus proved futile in fully meeting our design goals. We need to find a way to make our system have a dead beat response, assume a steady state error of less than 5%, and make the damping fall within design constraints. Let us try to do this by adding a PI compensator to our system. Figure 3: Root locus of uncompensated system PI Compensated System G c = K p (S+Z)/S By adding a PI compensator we are effectively adding another pole and zero to our system. The form of a PI compensator is as follows: K p S Z S
7 The value of K p (the gain) and Z (zero location) are to be chosen. These values can be manipulated in such a fashion to design the system response to meet the specified design goals. The PI compensator was designed by manipulating the root locus using SISO tool in Matlab. When values of K p and Z were chosen the step response was examined to see if it met the design goals. Figures 4 and 5 show the results of adding the PI compensator to our system. Figure 4: PI compensated root locus plot (left) Figure 4 shows the root locus plot of the PI compensated system. The zero added can be seen slightly to the left of the imaginary axis and the pole added lies at the origin. Manipulating this root locus plot resulted in choosing a gain value K p = 6.5 and a zero location value Z = These values resulted in the following PI compensator. S S The unit step response to our system while utilizing the above compensator results in a better response than what we had without a compensator. The PI compensated unit step response can be seen in Figure 4.
8 Figure 5: PI compensated unit step response As can be seen in Figure 5 adding a PI compensator dramatically improves the system s response. The response s final value is now somewhere around one. Even when viewing a larger time scale the response s amplitude settles close to one. However, due to the zero the PI compensator did add a substantial amount of overshoot to our system. It can be seen in Figure 5 that the amplitude within the first second reaches a max value around 1.3. The rise time in the response looks ideal because we attain our peak value in under 1 second. This easily meets the design goal of the rise time being less than 1.5 seconds. To meet all of our design goals we should have a dead beat response and no overshoot. We also need to verify our damping and rise time to ensure that it is within our design goals. The system is closing in on what we desire but is still unsatisfactory. PI compensator with a minor loop and closing the loop How then shall we go about changing our response to eliminate the overshoot? We need to change something to create a dead beat response after which we will verify the rest of our design goals. Let us add a minor loop into our system to eliminate the overshoot effect of the zero. Figure 6 shows our current system block diagram with the PI compensator.
9 1/S Z K p G p Figure 6: PI compensated block diagram This configuration causes our system to have overshoot, yet if we use block diagram algebra we can manipulate our system to a new form. This form is shown in Figure 6 and has the same closed loop poles as does the configuration in Figure 6. 1/S Z K p G p K p Figure 7: PI compensated block diagram with minor loop closed loop Figure 7 shows our PI compensated system with a minor loop. This new configuration will rid our response of overshoot and therefore cause a dead beat response. It is important to note that the closed loop poles in both Figure 6 and Figure 7 are equivalent. This can be seen by looking at single loops in both figures. As you can see, in both instances, there is one loop with a loop gain of G p K p and another with a closed loop gain equal to ZKG P /S. Because both have the same loop gains their poles and zeros are also equivalent. Once the configuration in Figure 7 is attained we have closed the loop. Theory behind closing the loop brings us to the configuration shown in Figure 8.
10 G 1/S H F Figure 8: Closed loop block diagram For the closed loop system in Figure 8 it can be seen that, u r y also, x Fx G r x y F GHx Gr Also, for the forward path gain K, G goes to K*G x F KGHx KGr And for the feedback path gain K, we let u = r Ky and thus, x F x G r ky x F KGHx Gr y H x Verification of closed loop design G c = K p Z/S Once we have added a minor loop and closed the loop it is time to check and see if our system meets the specified design goals. From the PI compensator root locus we were able to choose values for K p and Z, we will use those values as a starting point in our analysis of the new system. Let us begin by looking at our new system s response to a unit step input. This is shown in Figure 9.
11 Figure 9: Closed loop response The response seems to be within our design goals. As you can see in Figure 9, the amplitude at 1.5 seconds is.955. This fact meets the design goal of wanting a rise time that is less than 1.5 seconds. Also, the steady state amplitude of the system was right around.97, meeting the design goal that the steady state error must be less than 5%. To make sure that the steady state error was less than 5% the response was plotted on a very large time scale. The amplitude flattened out as expected and never dropped below.95. (I tried to have Matlab place the true rise time and steady state amplitude on the plot but it was buggy and would not do it. Thus, I have shown that the rise time is less than 1.5 seconds and the steady state error is less than 5% in a slightly roundabout way.) Now let us take a look the root locus which can be seen in Figure 1.
12 Figure 1: Closed Loop Root locus From the root locus in Figure 1 we can verify that the phugoid damping is greater than.4 with an actual value of.553 and that the short period damping is greater than.35 with an actual value of 1.. Conclusion The design goals have been met using a K P = 6.5 and a Z = If our design goals were not met we would have chosen different values for the gain and zero to see how our system would change. In this way the design process of control systems can be somewhat iterative. In our case, the gain and zero location we chose worked and we successfully designed a type zero system (characterized by the system s finite error to a step input) that met our specified design goals.
13 Appendix Matlab mfile % Bob Rowe % Controls Pitch Rate CAS Design Project_part2 clc clear all %Xdot=Fx+Gu %Augmented F matrix F=[.3,3.186,32.2,, ; ,.319,,1,.4589;,,,1,;.21, ,,.429,.2246;,,,,2] %Augmented G matrix G=[; ; ; ; 2] %y=hx+ju %H matrix H=[,,,(18/pi),] %J matrix J=[] %Set up SISO sys=ss(f,g,h,j) sisotool(sys) %Set up minorloop using values from SISO kp=6.5 z=3.62 sysgainloop=tf(kp,1) sysminor=feedback(sys,sysgainloop) %Set up PI Compensator using values from SISO num=kp*[1, z] den=[1, ] syscompensator=tf(num,den) %Close the loop sysfp=series(syscompensator,sysminor) syscl=feedback(sysfp,1) %Verify Design requirements figure(1) t=(:.1:5) step(syscl,t) figure(2) rlocus(syscl)
7.4 STEP BY STEP PROCEDURE TO DRAW THE ROOT LOCUS DIAGRAM
ROOT LOCUS TECHNIQUE. Values of on the root loci The value of at any point s on the root loci is determined from the following equation G( s) H( s) Product of lengths of vectors from poles of G( s)h( s)
More information(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationFeedback Control of Linear SISO systems. Process Dynamics and Control
Feedback Control of Linear SISO systems Process Dynamics and Control 1 OpenLoop Process The study of dynamics was limited to openloop systems Observe process behavior as a result of specific input signals
More informationDesign via Root Locus
Design via Root Locus I 9 Chapter Learning Outcomes J After completing this chapter the student will be able to: Use the root locus to design cascade compensators to improve the steadystate error (Sections
More informationa. Closedloop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a
Root Locus Simple definition Locus of points on the s plane that represents the poles of a system as one or more parameter vary. RL and its relation to poles of a closed loop system RL and its relation
More informationRoot Locus Design Example #4
Root Locus Design Example #4 A. Introduction The plant model represents a linearization of the heading dynamics of a 25, ton tanker ship under empty load conditions. The reference input signal R(s) is
More informationRoot Locus Design Example #3
Root Locus Design Example #3 A. Introduction The system represents a linear model for vertical motion of an underwater vehicle at zero forward speed. The vehicle is assumed to have zero pitch and roll
More informationExample on Root Locus Sketching and Control Design
Example on Root Locus Sketching and Control Design MCE44  Spring 5 Dr. Richter April 25, 25 The following figure represents the system used for controlling the robotic manipulator of a Mars Rover. We
More informationHomework 7  Solutions
Homework 7  Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
More informationEECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8 am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total
More informationControl System Design
ELEC4410 Control System Design Lecture 19: Feedback from Estimated States and DiscreteTime Control Design Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science
More informationRoot Locus. Motivation Sketching Root Locus Examples. School of Mechanical Engineering Purdue University. ME375 Root Locus  1
Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus  1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: D 0.09 Position
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More informationLongitudinal Automatic landing System  Design for CHARLIE Aircraft by RootLocus
International Journal of Scientific and Research Publications, Volume 3, Issue 7, July 2013 1 Longitudinal Automatic landing System  Design for CHARLIE Aircraft by RootLocus Gaber ElSaady, ElNobi A.Ibrahim,
More information1 Steady State Error (30 pts)
Professor Fearing EECS C28/ME C34 Problem Set Fall 2 Steady State Error (3 pts) Given the following continuous time (CT) system ] ẋ = A x + B u = x + 2 7 ] u(t), y = ] x () a) Given error e(t) = r(t) y(t)
More information1 Chapter 9: Design via Root Locus
1 Figure 9.1 a. Sample root locus, showing possible design point via gain adjustment (A) and desired design point that cannot be met via simple gain adjustment (B); b. responses from poles at A and B 2
More informationLaboratory 11 Control Systems Laboratory ECE3557. State Feedback Controller for Position Control of a Flexible Joint
Laboratory 11 State Feedback Controller for Position Control of a Flexible Joint 11.1 Objective The objective of this laboratory is to design a full state feedback controller for endpoint position control
More informationPower System Operations and Control Prof. S.N. Singh Department of Electrical Engineering Indian Institute of Technology, Kanpur. Module 3 Lecture 8
Power System Operations and Control Prof. S.N. Singh Department of Electrical Engineering Indian Institute of Technology, Kanpur Module 3 Lecture 8 Welcome to lecture number 8 of module 3. In the previous
More informationEssence of the Root Locus Technique
Essence of the Root Locus Technique In this chapter we study a method for finding locations of system poles. The method is presented for a very general setup, namely for the case when the closedloop
More informationH inf. Loop Shaping Robust Control vs. Classical PI(D) Control: A case study on the Longitudinal Dynamics of Hezarfen UAV
Proceedings of the 2nd WSEAS International Conference on Dynamical Systems and Control, Bucharest, Romania, October 1617, 2006 105 H inf. Loop Shaping Robust Control vs. Classical PI(D) Control: A case
More informationAutonomous Mobile Robot Design
Autonomous Mobile Robot Design Topic: Guidance and Control Introduction and PID Loops Dr. Kostas Alexis (CSE) Autonomous Robot Challenges How do I control where to go? Autonomous Mobile Robot Design Topic:
More informationSeparation Principle & FullOrder Observer Design
Separation Principle & FullOrder Observer Design Suppose you want to design a feedback controller. Using fullstate feedback you can place the poles of the closedloop system at will. U Plant Kx If the
More informationEEL2216 Control Theory CT1: PID Controller Design
EEL6 Control Theory CT: PID Controller Design. Objectives (i) To design proportionalintegralderivative (PID) controller for closed loop control. (ii) To evaluate the performance of different controllers
More information9/9/2011 Classical Control 1
MM11 Root Locus Design Method Reading material: FC pp.270328 9/9/2011 Classical Control 1 What have we talked in lecture (MM10)? Lead and lag compensators D(s)=(s+z)/(s+p) with z < p or z > p D(s)=K(Ts+1)/(Ts+1),
More informationCHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System
CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages
More information6.302 Feedback Systems Recitation 16: Compensation Prof. Joel L. Dawson
Bode Obstacle Course is one technique for doing compensation, or designing a feedback system to make the closedloop behavior what we want it to be. To review:  G c (s) G(s) H(s) you are here! plant For
More informationIntroduction to Feedback Control
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More informationThe requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot  in time domain
Compensators To improve the performance of a given plant or system G f(s) it may be necessary to use a compensator or controller G c(s). Compensator Plant G c (s) G f (s) The requirements of a plant may
More informationFirstOrder LowPass Filter!
Filters, Cost Functions, and Controller Structures! Robert Stengel! Optimal Control and Estimation MAE 546! Princeton University, 217!! Dynamic systems as lowpass filters!! Frequency response of dynamic
More informationAlireza Mousavi Brunel University
Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 OpenLoop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched
More informationQuanser NIELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual
Quanser NIELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control DC Motor Control Trainer (DCMCT) Student Manual Table of Contents 1 Laboratory Objectives1 2 References1 3 DCMCT Plant
More informationControl Systems. State Estimation.
State Estimation chibum@seoultech.ac.kr Outline Dominant pole design Symmetric root locus State estimation We are able to place the CLPs arbitrarily by feeding back all the states: u = Kx. But these may
More information10/8/2015. Control Design. Poleplacement by statespace methods. Process to be controlled. State controller
Poleplacement by statespace methods Control Design To be considered in controller design * Compensate the effect of load disturbances * Reduce the effect of measurement noise * Setpoint following (target
More informationProject Lab Report. Michael Hall. Hao Zhu. Neil Nevgi. Station 6. Ta: Yan Cui
Project Lab Report Michael Hall Hao Zhu Neil Nevgi Station 6 Ta: Yan Cui Nov. 12 th 2012 Table of Contents: Executive Summary 3 Modeling Report.47 System Identification 711 Control Design..1115 Simulation
More informationExample: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and OpenLoop Response
Page 1 of 5 Example: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and OpenLoop Response Physical Setup A common actuator in control systems is the
More informationCourse Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10)
Amme 35 : System Dynamics Control State Space Design Course Outline Week Date Content Assignment Notes 1 1 Mar Introduction 2 8 Mar Frequency Domain Modelling 3 15 Mar Transient Performance and the splane
More informationTransient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n
Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2
More informationApplication Note #3413
Application Note #3413 Manual Tuning Methods Tuning the controller seems to be a difficult task to some users; however, after getting familiar with the theories and tricks behind it, one might find the
More informationTheory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati
Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Module  2 Simpul Rotors Lecture  2 Jeffcott Rotor Model In the
More informationControl System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #24 Wednesday, March 10, 2004 Dr. Ian C. Bruce Room: CRL229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Remedies We next turn to the question
More informationTeaching State Variable Feedback to Technology Students Using MATLAB and SIMULINK
Teaching State Variable Feedback to Technology Students Using MATLAB and SIMULINK Kathleen A.K. Ossman, Ph.D. University of Cincinnati Session 448 I. Introduction This paper describes a course and laboratory
More informationImplementation of a Communication Satellite Orbit Controller Design Using State Space Techniques
ASEAN J Sci Technol Dev, 29(), 29 49 Implementation of a Communication Satellite Orbit Controller Design Using State Space Techniques M T Hla *, Y M Lae 2, S L Kyaw 3 and M N Zaw 4 Department of Electronic
More informationSimulation Study on Pressure Control using Nonlinear Input/Output Linearization Method and Classical PID Approach
Simulation Study on Pressure Control using Nonlinear Input/Output Linearization Method and Classical PID Approach Ufuk Bakirdogen*, Matthias Liermann** *Institute for Fluid Power Drives and Controls (IFAS),
More informationLab # 4 Time Response Analysis
Islamic University of Gaza Faculty of Engineering Computer Engineering Dep. Feedback Control Systems Lab Eng. Tareq Abu Aisha Lab # 4 Lab # 4 Time Response Analysis What is the Time Response? It is an
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Dynamics and Control II Fall 7 Problem Set #7 Solution Posted: Friday, Nov., 7. Nise problem 5 from chapter 8, page 76. Answer:
More information12.7 Steady State Error
Lecture Notes on Control Systems/D. Ghose/01 106 1.7 Steady State Error For first order systems we have noticed an overall improvement in performance in terms of rise time and settling time. But there
More informationProportional, Integral & Derivative Control Design. Raktim Bhattacharya
AERO 422: Active Controls for Aerospace Vehicles Proportional, ntegral & Derivative Control Design Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University
More informationRoot Locus Methods. The root locus procedure
Root Locus Methods Design of a position control system using the root locus method Design of a phase lag compensator using the root locus method The root locus procedure To determine the value of the gain
More information6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski. Solutions to Problem Set 1 1. Massachusetts Institute of Technology
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Solutions to Problem Set 1 1 Problem 1.1T Consider the
More informationFEEDBACK CONTROL SYSTEMS
FEEDBAC CONTROL SYSTEMS. Control System Design. Open and ClosedLoop Control Systems 3. Why ClosedLoop Control? 4. Case Study  Speed Control of a DC Motor 5. SteadyState Errors in Unity Feedback Control
More informationControl Systems! Copyright 2017 by Robert Stengel. All rights reserved. For educational use only.
Control Systems Robert Stengel Robotics and Intelligent Systems MAE 345, Princeton University, 2017 Analog vs. digital systems Continuous and Discretetime Dynamic Models Frequency Response Transfer Functions
More informationSchool of Mechanical Engineering Purdue University. ME375 Feedback Control  1
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More informationSRV02Series Rotary Experiment # 7. Rotary Inverted Pendulum. Student Handout
SRV02Series Rotary Experiment # 7 Rotary Inverted Pendulum Student Handout SRV02Series Rotary Experiment # 7 Rotary Inverted Pendulum Student Handout 1. Objectives The objective in this experiment is
More informationCHAPTER 7 STEADYSTATE RESPONSE ANALYSES
CHAPTER 7 STEADYSTATE RESPONSE ANALYSES 1. Introduction The steady state error is a measure of system accuracy. These errors arise from the nature of the inputs, system type and from nonlinearities of
More informationB11. Closedloop control. Chapter 1. Fundamentals of closedloop control technology. Festo Didactic Process Control System
B11 Chapter 1 Fundamentals of closedloop control technology B12 This chapter outlines the differences between closedloop and openloop control and gives an introduction to closedloop control technology.
More informationThe output voltage is given by,
71 The output voltage is given by, = (3.1) The inductor and capacitor values of the Boost converter are derived by having the same assumption as that of the Buck converter. Now the critical value of the
More informationAnalysis and Design of Control Systems in the Time Domain
Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.
More informationPD, PI, PID Compensation. M. Sami Fadali Professor of Electrical Engineering University of Nevada
PD, PI, PID Compensation M. Sami Fadali Professor of Electrical Engineering University of Nevada 1 Outline PD compensation. PI compensation. PID compensation. 2 PD Control L= loop gain s cl = desired closedloop
More informationLow Pass Filters, Sinusoidal Input, and Steady State Output
Low Pass Filters, Sinusoidal Input, and Steady State Output Jaimie Stephens and Michael Bruce 524 Abstract Discussion of applications and behaviors of low pass filters when presented with a steadystate
More informationChapter 12. Feedback Control Characteristics of Feedback Systems
Chapter 1 Feedbac Control Feedbac control allows a system dynamic response to be modified without changing any system components. Below, we show an openloop system (a system without feedbac) and a closedloop
More informationLearn2Control Laboratory
Learn2Control Laboratory Version 3.2 Summer Term 2014 1 This Script is for use in the scope of the Process Control lab. It is in no way claimed to be in any scientific way complete or unique. Errors should
More informationStatistical methods. Mean value and standard deviations Standard statistical distributions Linear systems Matrix algebra
Statistical methods Mean value and standard deviations Standard statistical distributions Linear systems Matrix algebra Statistical methods Generating random numbers MATLAB has many builtin functions
More informationHomework Assignment 3
ECE382/ME482 Fall 2008 Homework 3 Solution October 20, 2008 1 Homework Assignment 3 Assigned September 30, 2008. Due in lecture October 7, 2008. Note that you must include all of your work to obtain full
More informationPerformance of Feedback Control Systems
Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steadystate Error and Type 0, Type
More information16.30/31, Fall 2010 Recitation # 2
16.30/31, Fall 2010 Recitation # 2 September 22, 2010 In this recitation, we will consider two problems from Chapter 8 of the Van de Vegte book. R +  E G c (s) G(s) C Figure 1: The standard block diagram
More informationLaplace Transform Analysis of Signals and Systems
Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.
More informationInverted Pendulum. Objectives
Inverted Pendulum Objectives The objective of this lab is to experiment with the stabilization of an unstable system. The inverted pendulum problem is taken as an example and the animation program gives
More informationCHAPTER 5 : REDUCTION OF MULTIPLE SUBSYSTEMS
CHAPTER 5 : REDUCTION OF MULTIPLE SUBSYSTEMS Objectives Students should be able to: Reduce a block diagram of multiple subsystems to a single block representing the transfer function from input to output
More informationMethods for Solving Linear Systems Part 2
Methods for Solving Linear Systems Part 2 We have studied the properties of matrices and found out that there are more ways that we can solve Linear Systems. In Section 7.3, we learned that we can use
More informationStability and Control Analysis in TwinBoom Vertical Stabilizer Unmanned Aerial Vehicle (UAV)
International Journal of Scientific and Research Publications, Volume 4, Issue 2, February 2014 1 Stability and Control Analysis in TwinBoom Vertical Stabilizer Unmanned Aerial Vehicle UAV Lasantha Kurukularachchi*;
More informationANALYSIS OF AUTOPILOT SYSTEM BASED ON BANK ANGLE OF SMALL UAV
ANALYSIS OF AUTOPILOT SYSTEM BASED ON BANK ANGLE OF SMALL UAV MAY SAN HLAING, ZAW MIN NAING, 3 MAUNG MAUNG LATT, 4 HLA MYO TUN,4 Department of Electronic Engineering, Mandalay Technological University,
More informationFeedback Basics. David M. Auslander Mechanical Engineering University of California at Berkeley. copyright 1998, D.M. Auslander
Feedback Basics David M. Auslander Mechanical Engineering University of California at Berkeley copyright 1998, D.M. Auslander 1 I. Feedback Control Context 2 What is Feedback Control? Measure desired behavior
More informationDr. Ian R. Manchester
Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus
More informationFREQUENCYRESPONSE DESIGN
ECE45/55: Feedback Control Systems. 9 FREQUENCYRESPONSE DESIGN 9.: PD and lead compensation networks The frequencyresponse methods we have seen so far largely tell us about stability and stability margins
More informationAPPLICATIONS FOR ROBOTICS
Version: 1 CONTROL APPLICATIONS FOR ROBOTICS TEX d: Feb. 17, 214 PREVIEW We show that the transfer function and conditions of stability for linear systems can be studied using Laplace transforms. Table
More informationHomework 11 Solution  AME 30315, Spring 2015
1 Homework 11 Solution  AME 30315, Spring 2015 Problem 1 [10/10 pts] R +  K G(s) Y Gpsq Θpsq{Ipsq and we are interested in the closedloop pole locations as the parameter k is varied. Θpsq Ipsq k ωn
More informationAircraft Flight Dynamics!
Aircraft Flight Dynamics Robert Stengel MAE 331, Princeton University, 2016 Course Overview Introduction to Flight Dynamics Math Preliminaries Copyright 2016 by Robert Stengel. All rights reserved. For
More informationEE3CL4: Introduction to Linear Control Systems
1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We
More informationDistributed RealTime Control Systems
Distributed RealTime Control Systems Chapter 9 Discrete PID Control 1 Computer Control 2 Approximation of Continuous Time Controllers Design Strategy: Design a continuous time controller C c (s) and then
More informationD G 2 H + + D 2
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.302 Feedback Systems Final Exam May 21, 2007 180 minutes Johnson Ice Rink 1. This examination consists
More informationÜbersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3. 8. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid
More informationAN INTRODUCTION TO THE CONTROL THEORY
OpenLoop controller An OpenLoop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, nonlinear dynamics and parameter
More informationDigital Pendulum Control Experiments
EE341L CONTROL SYSTEMS LAB 2013 Digital Pendulum Control Experiments Ahmed Zia Sheikh 2010030 M. Salman Khalid 2010235 Suleman Belal Kazi 2010341 TABLE OF CONTENTS ABSTRACT...2 PENDULUM OVERVIEW...3 EXERCISE
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open
More informationSAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015
FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequencydomain analysis and control design (15 pt) Given is a
More informationPID Control. Objectives
PID Control Objectives The objective of this lab is to study basic design issues for proportionalintegralderivative control laws. Emphasis is placed on transient responses and steadystate errors. The
More informationUniversity of Utah Electrical & Computer Engineering Department ECE 3510 Lab 9 Inverted Pendulum
University of Utah Electrical & Computer Engineering Department ECE 3510 Lab 9 Inverted Pendulum p1 ECE 3510 Lab 9, Inverted Pendulum M. Bodson, A. Stolp, 4/2/13 rev, 4/9/13 Objectives The objective of
More informationControl System Design. Risk Assessment
Control System Design Risk Assessment Using Fuzzy Logic VPI  AOE  239 Dr. Mark R. Anderson Associate Professor Department of Aerospace and Ocean Engineering Virginia Polytechnic Institute and State University
More informationTransient Response of a SecondOrder System
Transient Response of a SecondOrder System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a wellbehaved closedloop
More informationDynamic Response. Assoc. Prof. Enver Tatlicioglu. Department of Electrical & Electronics Engineering Izmir Institute of Technology.
Dynamic Response Assoc. Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 3 Assoc. Prof. Enver Tatlicioglu (EEE@IYTE) EE362 Feedback Control
More informationLab Experiment 2: Performance of First order and second order systems
Lab Experiment 2: Performance of First order and second order systems Objective: The objective of this exercise will be to study the performance characteristics of first and second order systems using
More informationCM 3310 Process Control, Spring Lecture 21
CM 331 Process Control, Spring 217 Instructor: Dr. om Co Lecture 21 (Back to Process Control opics ) General Control Configurations and Schemes. a) Basic SingleInput/SingleOutput (SISO) Feedback Figure
More informationDesign of Decentralised PI Controller using Model Reference Adaptive Control for Quadruple Tank Process
Design of Decentralised PI Controller using Model Reference Adaptive Control for Quadruple Tank Process D.Angeline Vijula #, Dr.N.Devarajan * # Electronics and Instrumentation Engineering Sri Ramakrishna
More informationVehicle longitudinal speed control
Vehicle longitudinal speed control Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin February 10, 2015 1 Introduction 2 Control concepts Open vs. Closed Loop Control
More informationEE Control Systems LECTURE 14
Updated: Tueday, March 3, 999 EE 434  Control Sytem LECTURE 4 Copyright FL Lewi 999 All right reerved ROOT LOCUS DESIGN TECHNIQUE Suppoe the cloedloop tranfer function depend on a deign parameter k We
More informationCDS 110b: Lecture 21 Linear Quadratic Regulators
CDS 110b: Lecture 21 Linear Quadratic Regulators Richard M. Murray 11 January 2006 Goals: Derive the linear quadratic regulator and demonstrate its use Reading: Friedland, Chapter 9 (different derivation,
More informationGoodwin, Graebe, Salgado, Prentice Hall Chapter 11. Chapter 11. Dealing with Constraints
Chapter 11 Dealing with Constraints Topics to be covered An ubiquitous problem in control is that all real actuators have limited authority. This implies that they are constrained in amplitude and/or rate
More informationChap 8. State Feedback and State Estimators
Chap 8. State Feedback and State Estimators Outlines Introduction State feedback Regulation and tracking State estimator Feedback from estimated states State feedbackmultivariable case State estimatorsmultivariable
More informationELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques [] For the following system, Design a compensator such
More informationLecture 14  Using the MATLAB Control System Toolbox and Simulink Friday, February 8, 2013
Today s Objectives ENGR 105: Feedback Control Design Winter 2013 Lecture 14  Using the MATLAB Control System Toolbox and Simulink Friday, February 8, 2013 1. introduce the MATLAB Control System Toolbox
More information