Physics 210: Worksheet 26 Name:

Size: px
Start display at page:

Download "Physics 210: Worksheet 26 Name:"

Transcription

1 (1) A all is floating in. If the density of the all is 0.95x10 kg/m, what percentage of the all is aove the? (2) An with a density of 19.x10 kg/m and a mass m50 kg is placed into a cylinder which contains a fluid. (a) If the fluid is, how much does the weigh when it is in the? () Suppose the fluid has a density of 1x10 kg/m. What is the apparent weight in this fluid? () An floats with 50% of its volume in fluid 1 while it floats with 75% of its volume in fluid 2. If fluid 1 is, what is the density of fluid 2? (4) The density of air is 1.29 kg/m. Gold has a density of 1x10 kg/m. Suppose you have a piece of gold which weighs 1 kg. What is the radius of a sphere which could e made from gold which would float in air? (5) Suppose helium has a density of 1.79x10-1 kg/m. A alloon with a volume 0.5m has a mass m50g. When the alloon is filled with helium, how much additional weight will the alloon e capale of lifting? (6) A cylindrical ody of volume v A :( a+ + c) and density 250 kg/m is floating in an oil- mixture as shown with a rod to stailize the cylinder. The oil layer has a thickness given y:η : 0 η 1. If the densities of the fluids are 1000 kg/m and oil 800 kg/m, what are the ratios a and c?

2 (1) A all is floating in. If the density of the all is 0.95x10 kg/m, what percentage of the all is aove the? Solution: The principle involved here is Archimedes principle which states that the uoyant force is equal to the weight of the fluid displaced. The will float if the uoyant force is equal to the weight of the. Thus: F wt. of fluid displaced g The second part is this: the floats if the uoyant force is equal to the weight of the.. Thus: Wt. of g And since it is floating, we must then have: g g We can thus find the fraction of the : We are, however, asked for the percentage of the aove the. This is given from: + Thus, The density of is find: not not not 1 1 kg 1 10 (you should rememer this value). Thus we m not. 95x x10 This is the fraction of the all which is aove the. In order to determine the percentage of the all aove the, we multiply y 100 which gives 5% aove the.

3 (2) An with a density of 19.x10 kg/m and a mass m50 kg is placed into a cylinder which contains a fluid. (a) If the fluid is, how much does the weigh when it is in the? () Suppose the fluid has a density of 1x10 kg/m. What is the apparent weight in this fluid? Solution: (a) Since the has a density higher than that of, the will not float in. Thus it sinks. When it sinks, it will still displace and there will e a uoyant force on the which decreases its weight elow the weight that the has in air. The change in weight is given y the uoyant force. Thus: ( weight) F We can find out the volume of the fluid displaced if we know the volume of the. This is given y: m 50kg m. x m 19. x10 kg/m The change in weight is given y: F g 1x10 x 9. 8 x 2. 59x N fluid ( ) ( ) ( ) The weight of the is given y mg. Thus: weight mg 50 x N ( ) ( ) The apparent weight of the in is then 490N-25.4N465N. () This fluid is most likely something like mercury. We can repeat the calculation for this new fluid. The will still sink in this fluid since the density of the is greater than that of the fluid. The uoyant force is now given y: F g 1x10 x 9. 8 x 2. 59x10 0 N fluid ( ) ( ) ( ) which is the change in apparent weight of the. Thus the apparent weight of the in this new fluid will e 490N-0N160N. The has the same density as gold.

4 () An floats with 50% of its volume in fluid 1 while it floats with 75% of its volume in fluid 2. If fluid 1 is, what is the density of fluid 2? Solution: As in previous prolems, the principle involved here is Archimedes principle. Thus:, for fluid 1: The floats with F g Thus, we can find the uoyant force at this point as: F 0. 5 g Now since the is floating, this is also equal to the weight of the, which is given y: We then have: weight g 0. 5 g g 0. 5 Now that we know the density of the, we ll e ale to find the density of fluid 2. We have that in fluid 2: Thus, the uoyant force at this point is given y: F fluid 2g And since the is floating, this will e equal to the weight of the. But the weight of the is given y Equating the two, we then find: weight g 0. 5 g g 0. 5 g kg fluid2 fluid m

5 (4) The density of air is 1.29 kg/m. Gold has a density of 19x10 kg/m. Suppose you have a piece of gold which weighs 1 kg. What is the radius of a sphere which could e made from this gold which would float in air? Solution: Although this prolem may e technically impractical, let s see if it is. The type of sphere which would need to e made from the gold is one which weighs 1 kg, ut is hollow and evacuated inside. Essentially, the average density of the sphere would have to e less than that of air. (This is the same idea that allows aircraft carriers to float on ). The density of the spherical would thus need to e the same as that of air. The mass is given then y: m We can thus find: Now, the volume of a sphere is given y air m 1kg air 1. 29kg/ m m π The interior of the sphere needs to e a vacuum. 4 (. ) sphere R R π π. m The rest of this prolem is for your interest only. We can get an idea of how thin the gold shell would e for this sphere. The equation we need involves sutracting the volume of two spheres and equating this difference to the volume of gold involved. It s proaly easier to see the math here than to interpret the words. The volume of our gold is given y: mgold 1kg 5 gold gold x kg/ m x m This volume of gold needs to e squished into a spherical shell of outer radius R 1 and inner radius R 2 where R 1 we ve already found to e 0.57m. Thus: 4 π R R We ll solve this for R 2 : ( 1 2) gold R R x m π gold 4π A more precise value for R 1 is: m The thickness of the gold film would e: x10-5 m. This film would need to hold ack the enormous pressure of the Earth s atmosphere. Gold won t stand up to this type of pressure at this thickness so the sphere proaly could not e made of gold. In fact, I am not aware of any material which would work here.

6 (5) Suppose helium has a density of He 1 kg A alloon with a volume m 0. 5m has a mass m50g. When the alloon is filled with helium, how much additional weight will the alloon e capale of lifting? Solution: The uoyant force is given y the weight of the fluid displaced. In this prolem, the displaced fluid is air with a density of 1.29 kg/m. The alloon has a mass of 50g or 0.05 kg. 0.5 m of helium has a mass of 1 kg m 1. 79x m kg ( )( ) helium helium alloon m The uoyant force is given y: kg m ( )( )( 2) F g m N air alloon m s The weight of the alloon and helium is then: w + h ( ) N The alloon can thus lift an additional weight of lift 6. 2N 1. 7N N This is aout ½ kg. The value is proaly larger than what will actually happen ecause helium in the alloon may not e pure. You might, however, want to do the same prolem with hydrogen (8.99x10-2 kg/m ) and think aout the Hindenurg. In any event, this does seem like quite a it of lift.

7 (6) A cylindrical ody of volume v A :( a+ + c) and density 250 kg/m is floating in an oil- mixture as shown with a rod to stailize the cylinder. The oil layer has a thickness given y:η : 0 η 1. If the densities of the fluids are 1000 kg/m and oil 800 kg/m, what are the ratios a and c? Solution: According to Archimedes principle the weight of the fluid displaced is equal to the uoyant force. et s assume the cylinder has a constant cross sectional area A. Then the uoyant force is given y: F aa g+ A g A a + g [ ] oil oil Since the is floating, the uoyant force is equal to the weight of the. Thus: F Ag The two forces are equal. Thus: A a + g Ag a + [ ] [ ] oil oil Now we know how this is related to the thickness of the oil layer (look at the wording of the prolem to see this). Thus: [ a ] {} + oil η It is now easy to solve this for a/: a oil a {} oil oil η η η η oil η It is also easy now to solve for c y replacing a in this expressing y --c: c c c oil c oil 1 1 η η 1 +η 1 It s reasonale to check these answers against: a + + c 1. a c oil oil + + η +η+ 1 +η 1 1 For the particular prolem at hand, we then have: a η η : η oil a c As a limiting cases: suppose η : Notice that there is a certain point at which this formulation of the prolem will not work ecause I have assumed that the displaces an amount of oil equal in volume to: ηa. The smallest value of a for which this prolem will work is then given y: a oil oil 250 η η η. oil After this point, the floats completely in the oil regardless of how much deeper the oil layer goes. In fact, this is exactly the ratio / that would e otained if the floated only in oil. c

The Mean Version One way to write the One True Regression Line is: Equation 1 - The One True Line

The Mean Version One way to write the One True Regression Line is: Equation 1 - The One True Line Chapter 27: Inferences for Regression And so, there is one more thing which might vary one more thing aout which we might want to make some inference: the slope of the least squares regression line. The

More information

we make slices perpendicular to the x-axis. If the slices are thin enough, they resemble x cylinders or discs. The formula for the x

we make slices perpendicular to the x-axis. If the slices are thin enough, they resemble x cylinders or discs. The formula for the x Math Learning Centre Solids of Revolution When we rotate a curve around a defined ais, the -D shape created is called a solid of revolution. In the same wa that we can find the area under a curve calculating

More information

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant Forces-Archimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation

More information

Physics 2001 Problem Set 9 Solutions

Physics 2001 Problem Set 9 Solutions Physics 2001 Problem Set 9 Solutions Jeff Kissel December 4, 2006 1. A cube of concrete has a side of length l = 0.150 m. Within the volume of the cube, there are two spherical cavities, each with radius

More information

TALLER DE HIDROSTÁTICA

TALLER DE HIDROSTÁTICA TALLER DE HIDROSTÁTICA 1) Substance A has a density of 3 g/cm 3 and substance B has a density of 4 g/cm 3. In order to obtain equal masses of these two substances, what must be the ratio of the volume

More information

P = ρ{ g a } + µ 2 V II. FLUID STATICS

P = ρ{ g a } + µ 2 V II. FLUID STATICS II. FLUID STATICS From a force analysis on a triangular fluid element at rest, the following three concepts are easily developed: For a continuous, hydrostatic, shear free fluid: 1. Pressure is constant

More information

hapter 13 Archimedes Up-thrust

hapter 13 Archimedes Up-thrust hapter 13 Archimedes Up-thrust In science, buoyancy is an upward force exerted by a fluid that opposes the weight of an immersed object. The buoyant force is also called Archimedes Up-thrust force. Proof

More information

Module 9: Further Numbers and Equations. Numbers and Indices. The aim of this lesson is to enable you to: work with rational and irrational numbers

Module 9: Further Numbers and Equations. Numbers and Indices. The aim of this lesson is to enable you to: work with rational and irrational numbers Module 9: Further Numers and Equations Lesson Aims The aim of this lesson is to enale you to: wor with rational and irrational numers wor with surds to rationalise the denominator when calculating interest,

More information

Chapter 2 Hydrostatics Buoyancy, Floatation and Stability

Chapter 2 Hydrostatics Buoyancy, Floatation and Stability Chapter 2 Hydrostatics uoyancy, Floatation and Stability Zerihun Alemayehu Rm. E119 AAiT Force of buoyancy an upward force exerted by a fluid pressure on fully or partially floating body Gravity Archimedes

More information

Physics 202 Homework 2

Physics 202 Homework 2 Physics 202 Homework 2 Apr 10, 2013 1. An airplane wing is designed so that the speed of the air across the top of the 192 kn wing is 251 m/s when the speed of the air below the wing is 225 m/s. The density

More information

Section 8.5. z(t) = be ix(t). (8.5.1) Figure A pendulum. ż = ibẋe ix (8.5.2) (8.5.3) = ( bẋ 2 cos(x) bẍ sin(x)) + i( bẋ 2 sin(x) + bẍ cos(x)).

Section 8.5. z(t) = be ix(t). (8.5.1) Figure A pendulum. ż = ibẋe ix (8.5.2) (8.5.3) = ( bẋ 2 cos(x) bẍ sin(x)) + i( bẋ 2 sin(x) + bẍ cos(x)). Difference Equations to Differential Equations Section 8.5 Applications: Pendulums Mass-Spring Systems In this section we will investigate two applications of our work in Section 8.4. First, we will consider

More information

PHYSICS HYDROSTATICS FORM 5

PHYSICS HYDROSTATICS FORM 5 Pressure Pressure is defined as force per unit area. Pressure = Force Area Pressure = Newton (metre) 2 1 Pa = 1N/m 2 Which of the following exerts a greater pressure? A woman of mass 70kg stepping on your

More information

Unit 4 Mass, Weight, and Density

Unit 4 Mass, Weight, and Density Unit 4 Mass, Weight, and Density Lesson Objectives State that mass is a measure of the amount of substance in a body State that the mass of a body resists a change in the state of rest or motion of the

More information

Nicholas J. Giordano. Chapter 10 Fluids

Nicholas J. Giordano.  Chapter 10 Fluids Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according

More information

Physics 114 Exam 1 Fall 2016

Physics 114 Exam 1 Fall 2016 Physics 114 Exam 1 Fall 2016 Name: For grading purposes (do not write here): Question 1. 1. 2. 2. 3. 3. Problem Answer each of the following questions and each of the problems. Points for each question

More information

CHAPTER 10- GRAVITATION

CHAPTER 10- GRAVITATION CHAPTER 10- GRAVITATION KEY CONCEPTS [ *rating as per the significance of concept] 1 Gravitation *** 2 Universal Law Of Gravitation **** 3 Free Fall ** 4 To Calculate The Value Of G **** 5 Mass & Weight

More information

Float or Sink Density Demonstration

Float or Sink Density Demonstration SPI 0807.9.7 Density Tennessee SPI Objective: Apply an equation to determine the density of an object based on its mass and volume. Check for Understanding Calculate the density of various objects. Essential

More information

PHYSICS 220 Lecture 16 Fluids Textbook Sections

PHYSICS 220 Lecture 16 Fluids Textbook Sections PHYSICS 220 Lecture 16 Fluids Textbook Sections 10.1-10.4 Lecture 16 Purdue University, Physics 220 1 States of Matter Fluids Solid Hold Volume Hold Shape Liquid Hold Volume Adapt Shape Gas Adapt Volume

More information

PH1011 Tut 4: Forces, Momentum and Impulse

PH1011 Tut 4: Forces, Momentum and Impulse PH1011 Tut 4: Forces, Momentum and Impulse 1) [ A J86/II/8] When a body moves through a fluid, a retarding force due to turbulence may be experienced. In the case of a sphere of radius r moving with speed

More information

Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2

Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2 Lecture 24: Archimedes Principle and Bernoulli s Law 1 Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law Example 15.1 The hydraulic lift A hydraulic lift consists of a small diameter piston of radius

More information

Ch. 11: Some problems on density, pressure, etc.

Ch. 11: Some problems on density, pressure, etc. Q3 A pirate in a movie is carrying a chest (0.30 m 0.30 m 0.20 m) that is supposed to be filled with gold. To see how ridiculous this is, determine the mass (in kg) of the gold. Q15 A solid concrete block

More information

Density of Matter Version 6.3

Density of Matter Version 6.3 Density of Matter Version 6.3 Michael J. Vitarelli Jr. Department of Chemistry and Chemical Biology Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 I. INTRODUCTION Physical properties of matter

More information

Physics 107 HOMEWORK ASSIGNMENT #9

Physics 107 HOMEWORK ASSIGNMENT #9 Physics 07 HOMEORK ASSIGNMENT #9 Cutnell & Johnson, 7 th edition Chapter : Problems 6, 8, 33, 40, 44 *6 A 58-kg skier is going down a slope oriented 35 above the horizontal. The area of each ski in contact

More information

Short Solutions to Review Material for Test #2 MATH 3200

Short Solutions to Review Material for Test #2 MATH 3200 Short Solutions to Review Material for Test # MATH 300 Kawai # Newtonian mechanics. Air resistance. a A projectile is launched vertically. Its height is y t, and y 0 = 0 and v 0 = v 0 > 0. The acceleration

More information

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior

More information

Chapter 10. Solids & Liquids

Chapter 10. Solids & Liquids Chapter 10 Solids & Liquids Next 6 chapters use all the concepts developed in the first 9 chapters, recasting them into a form ready to apply to specific physical systems. 10.1 Phases of Matter, Mass Density

More information

AP Physics C. Gauss s Law. Free Response Problems

AP Physics C. Gauss s Law. Free Response Problems AP Physics Gauss s Law Free Response Problems 1. A flat sheet of glass of area 0.4 m 2 is placed in a uniform electric field E = 500 N/. The normal line to the sheet makes an angle θ = 60 ẘith the electric

More information

After you read this section, you should be able to answer these questions:

After you read this section, you should be able to answer these questions: CHAPTER 3 12 SECTION Properties of Matter Physical Properties California Science Standards 8.7.c, 8.8.a, 8.8.b, 8.8.d BEFORE YOU READ After you read this section, you should be able to answer these questions:

More information

measuring matters mass volume density

measuring matters mass volume density All About measuring matters mass volume density Volume is the amount of space an object takes up. volume The base unit of volume in the metric system in the liter and is represented by L or l. Metric Units

More information

Mass Mass is the amount of matter in an object. SI unit: kilogram (kg) 1 kg = 1000 g 1 g = 1000 mg. An adult brain: 1.3 ~1.4 kg

Mass Mass is the amount of matter in an object. SI unit: kilogram (kg) 1 kg = 1000 g 1 g = 1000 mg. An adult brain: 1.3 ~1.4 kg Mass Mass is the amount of matter in an object. SI unit: kilogram (kg) 1 kg = 1000 g 1 g = 1000 mg An adult brain: 1.3 ~1.4 kg Beam Balance and Electronic Balance Beam balance and electronic balance are

More information

Stevens High School AP Physics II Work for Not-school

Stevens High School AP Physics II Work for Not-school 1. (AP SAMPLE QUESTION) An ideal fluid is flowing with a speed of 12 cm/s through a pipe of diameter 5 cm. The pipe splits into three smaller pipes, each with a diameter of 2 cm. What is the speed of the

More information

Completing the Square

Completing the Square 3.5 Completing the Square Essential Question How can you complete the square for a quadratic epression? Using Algera Tiles to Complete the Square Work with a partner. Use algera tiles to complete the square

More information

LECTURE 26 GRAVITY. Instructor: Kazumi Tolich

LECTURE 26 GRAVITY. Instructor: Kazumi Tolich LECTURE 26 GRAVITY Instructor: Kazumi Tolich Lecture 26 2 Reading chapter 12-1 to 12-2 Newton s law of universal gravitation Gravitational attraction of spherical bodies Newton s universal law of gravitation

More information

Physical Property. Critical Thinking

Physical Property. Critical Thinking CHAPTER 1 2 Physical Properties SECTION The Properties of Matter BEFORE YOU READ After you read this section, you should be able to answer these questions: What are physical properties of matter? What

More information

Q1. A) 46 m/s B) 21 m/s C) 17 m/s D) 52 m/s E) 82 m/s. Ans: v = ( ( 9 8) ( 98)

Q1. A) 46 m/s B) 21 m/s C) 17 m/s D) 52 m/s E) 82 m/s. Ans: v = ( ( 9 8) ( 98) Coordinator: Dr. Kunwar S. Wednesday, May 24, 207 Page: Q. A hot-air balloon is ascending (going up) at the rate of 4 m/s and when the balloon is 98 m above the ground a package is dropped from it, vertically

More information

Chapter 15. m. The symbolic equation for mass density is: ρ= m V. Table of Densities

Chapter 15. m. The symbolic equation for mass density is: ρ= m V. Table of Densities Chapter 15 Density Often you will hear that fiberglass is used for racecars because it is lighter than steel. This is only true if we build two identical bodies, one made with steel and one with fiberglass.

More information

1.0 Abstract. In addition

1.0 Abstract. In addition 1.0 Abstract In The Ultimate Answer to Life, the Universe, and Everything is an Entangled 4, (1) we found that the smallest realm in the universe was spheres packed in a cuboctahedron of 3 layers. In the

More information

Non-Linear Regression Samuel L. Baker

Non-Linear Regression Samuel L. Baker NON-LINEAR REGRESSION 1 Non-Linear Regression 2006-2008 Samuel L. Baker The linear least squares method that you have een using fits a straight line or a flat plane to a unch of data points. Sometimes

More information

Liquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...

Liquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions... CHAPTER 13 FLUIDS FLUIDS Liquids Gases Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes

More information

Physics 101: Lecture 17 Fluids

Physics 101: Lecture 17 Fluids Exam III Physics 101: Lecture 17 Fluids Exam 2 is Mon Nov. 4, 7pm Extra office hours on Fri. (see webpage!) Physics 101: Lecture 17, Pg 1 Homework 9 Help A block of mass M 1 = 3 kg rests on a table with

More information

The ability of a substance to be rolled. into wire The physical form of matter (solid, liquid, or gas)

The ability of a substance to be rolled. into wire The physical form of matter (solid, liquid, or gas) CHAPTER 2 2 Physical Properties SECTION The Properties of Matter BEFORE YOU READ After you read this section, you should be able to answer these questions: What are physical properties of matter? What

More information

Physics 220: Classical Mechanics

Physics 220: Classical Mechanics Lecture 10 1/34 Phys 220 Physics 220: Classical Mechanics Lecture: MWF 8:40 am 9:40 am (Phys 114) Michael Meier mdmeier@purdue.edu Office: Phys Room 381 Help Room: Phys Room 11 schedule on course webpage

More information

Mass per unit volume Mass of 1 m 3. Units of density = kg m 3 Density is a scalar. mass volume. density = m V. rho. 1m x 1m x 1m

Mass per unit volume Mass of 1 m 3. Units of density = kg m 3 Density is a scalar. mass volume. density = m V. rho. 1m x 1m x 1m 1 Mass per unit volume Mass of 1 m 3 density = mass volume rho ρ = m V 1m x 1m x 1m Units of density = kg m 3 Density is a scalar 2 1000 kg 5100 kg 8900 kg Each has a volume of 1 m 3. Which has the greatest

More information

15-30 Chapter 15: Homework Problems

15-30 Chapter 15: Homework Problems 15-30 hapter 15: Homework Prolems 8.1 Let s start with a simple prolem. Determining the forces on the front and rear tires of car that weighs 2400 ls. You may assume that a = 2.15ft. and = 2.65ft.. What

More information

Hydrostatics. ENGR 5961 Fluid Mechanics I: Dr. Y.S. Muzychka

Hydrostatics. ENGR 5961 Fluid Mechanics I: Dr. Y.S. Muzychka 1 Hydrostatics 2 Introduction In Fluid Mechanics hydrostatics considers fluids at rest: typically fluid pressure on stationary bodies and surfaces, pressure measurements, buoyancy and flotation, and fluid

More information

Each element of this set is assigned a probability. There are three basic rules for probabilities:

Each element of this set is assigned a probability. There are three basic rules for probabilities: XIV. BASICS OF ROBABILITY Somewhere out there is a set of all possile event (or all possile sequences of events which I call Ω. This is called a sample space. Out of this we consider susets of events which

More information

CH 10: PRESSURE, GRAVITY AND MOMENTS

CH 10: PRESSURE, GRAVITY AND MOMENTS CH 10: PRESSURE, GRAVITY AND MOMENTS Exercise 10.1: Page 104 1. Convert each of the following to kg: (i) 200 g (ii) 4 g (iii) 2 x 10 5 g (iv) 24 mg 2. Convert each of the following to m 3 : (i) 1 cm 3

More information

Connexions module: m Density. OpenStax College

Connexions module: m Density. OpenStax College Connexions module: m42187 1 Density OpenStax College This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License Abstract Dene density. Calculate the mass

More information

CHAPTER 13. Liquids FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...

CHAPTER 13. Liquids FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions... CHAPTER 13 FLUIDS Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes Principle! Upthrust!

More information

Lecture 23 Sound Beats Sound Solids and Fluids

Lecture 23 Sound Beats Sound Solids and Fluids Lecture 23 Sound Beats Sound Solids and Fluids To round out our discussion of interference and waves, we should talk about beats. When you combine two waves (sound is a good example), if the frequencies

More information

PHYSICS - CLUTCH 1E CH 12: TORQUE & ROTATIONAL DYNAMICS.

PHYSICS - CLUTCH 1E CH 12: TORQUE & ROTATIONAL DYNAMICS. !! www.clutchprep.com INTRO TO TORQUE TORQUE is a twist that a Force gives an object around an axis of rotation. - For example, when you push on a door, it rotates around its hinges. - When a Force acts

More information

PHYSICS - CLUTCH CH 12: TORQUE & ROTATIONAL DYNAMICS.

PHYSICS - CLUTCH CH 12: TORQUE & ROTATIONAL DYNAMICS. !! www.clutchprep.com TORQUE & ACCELERATION (ROTATIONAL DYNAMICS) When a Force causes rotation, it produces a Torque. Think of TORQUE as the equivalent of FORCE! FORCE (F) TORQUE (τ) - Causes linear acceleration

More information

E. not enough information given to decide

E. not enough information given to decide Q22.1 A spherical Gaussian surface (#1) encloses and is centered on a point charge +q. A second spherical Gaussian surface (#2) of the same size also encloses the charge but is not centered on it. Compared

More information

Recall Hypsometric Curve?

Recall Hypsometric Curve? Structure of the Earth (Why?) 1 Recall Hypsometric Curve? Continental lithosphere is very different from oceanic lithosphere. To understand this, we need to know more about the structure & composition

More information

Structure of the Earth (Why?)

Structure of the Earth (Why?) Structure of the Earth (Why?) 1 Recall Hypsometric Curve? Continental lithosphere is very different from oceanic lithosphere. To understand this, we need to know more about the structure & composition

More information

(You may need to make a sin / cos-type trigonometric substitution.) Solution.

(You may need to make a sin / cos-type trigonometric substitution.) Solution. MTHE 7 Problem Set Solutions. As a reminder, a torus with radii a and b is the surface of revolution of the circle (x b) + z = a in the xz-plane about the z-axis (a and b are positive real numbers, with

More information

8.4 Density and 8.5 Work Group Work Target Practice

8.4 Density and 8.5 Work Group Work Target Practice 8.4 Density and 8.5 Work Group Work Target Practice 1. The density of oil in a circular oil slick on the surface of the ocean at a distance meters from the center of the slick is given by δ(r) = 5 1+r

More information

Table 1. Densities of common substances in g/ml Mercury 13.6 Alcohol Lead 11.4 Ice Aluminum 2.70 Air

Table 1. Densities of common substances in g/ml Mercury 13.6 Alcohol Lead 11.4 Ice Aluminum 2.70 Air Worksheet I.4: Density Calculations Name: Date: Table 1. Densities of common substances in g/ml Mercury 13.6 Alcohol 0.789 Lead 11.4 Ice 0.917 Aluminum 2.70 Air 0.00120 Use the information above to answer

More information

MTH 65 WS 3 ( ) Radical Expressions

MTH 65 WS 3 ( ) Radical Expressions MTH 65 WS 3 (9.1-9.4) Radical Expressions Name: The next thing we need to develop is some new ways of talking aout the expression 3 2 = 9 or, more generally, 2 = a. We understand that 9 is 3 squared and

More information

SY 2018/ st Final Term Revision. Student s Name: Grade: 10A/B. Subject: Physics. Teachers Signature

SY 2018/ st Final Term Revision. Student s Name: Grade: 10A/B. Subject: Physics. Teachers Signature SY 2018/2019 1 st Final Term Revision Student s Name: Grade: 10A/B Subject: Physics Teachers Signature Question 1 : Choose the correct answer : 1 ) What is the density of Mercury. a ) 13.6x10 3 b) 14.6x10

More information

Solving Systems of Linear Equations Symbolically

Solving Systems of Linear Equations Symbolically " Solving Systems of Linear Equations Symolically Every day of the year, thousands of airline flights crisscross the United States to connect large and small cities. Each flight follows a plan filed with

More information

Exam 4--PHYS 101--Fall 2016

Exam 4--PHYS 101--Fall 2016 Name: Exam 4--PHYS 101--Fall 2016 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A bus contains a 2000 kg flywheel (a disk that has a 0.500 m radius)

More information

COURSE NOTES - PART 1

COURSE NOTES - PART 1 WEEK 2 ATOMS, THE PERIODIC TABLE, AND CHEMICAL BONDING COURSE NOTES - PART 1 Section 1: Atoms Atoms are like the Legos of all matter. All matter is built from atoms. Atoms have different types like the

More information

Exam 3--Fall 08--PHYS 101

Exam 3--Fall 08--PHYS 101 Name: Class: Date: Exam 3--Fall 08--PHYS 101 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An object at rest begins to rotate with a constant angular

More information

MECHANICAL PROPERTIES OF FLUIDS

MECHANICAL PROPERTIES OF FLUIDS CHAPTER-10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure

More information

Why does a hot air balloon rise up in the air? Record your ideas on the lines below. Why are gases less dense than liquids?

Why does a hot air balloon rise up in the air? Record your ideas on the lines below. Why are gases less dense than liquids? Fluids and Density Before You Read Why does a hot air balloon rise up in the air? Record your ideas on the lines below. What are fluids? A fluid is any form of matter that can flow. Liquids and gases are

More information

School/Team Name: Team #: Chemistry Lab

School/Team Name: Team #: Chemistry Lab School/Team Name: Team #: Student Names: Chemistry Lab University of Michigan Science Olympiad 2018 Tiebreakers: 7, 4c, lab, 9a Remarks: - You must have appropriate clothing, including goggles, lab aprons/lab

More information

HOMEWORK SOLUTIONS MATH 1910 Sections 6.4, 6.5, 7.1 Fall 2016

HOMEWORK SOLUTIONS MATH 1910 Sections 6.4, 6.5, 7.1 Fall 2016 HOMEWORK SOLUTIONS MATH 9 Sections 6.4, 6.5, 7. Fall 6 Problem 6.4. Sketch the region enclosed by x = 4 y +, x = 4y, and y =. Use the Shell Method to calculate the volume of rotation about the x-axis SOLUTION.

More information

Physics Exam 1 Formulas

Physics Exam 1 Formulas INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam is closed book, and you may have only pens/pencils and a calculator (no stored equations or programs and no graphing). Show

More information

Unit WorkBook 2 Level 4 ENG U3 Engineering Science LO2 Mechanical Engineering Systems 2018 UniCourse Ltd. All Rights Reserved.

Unit WorkBook 2 Level 4 ENG U3 Engineering Science LO2 Mechanical Engineering Systems 2018 UniCourse Ltd. All Rights Reserved. Pearson BTEC Levels 4 and 5 Higher Nationals in Engineering (RQF) Unit 3: Engineering Science (core) Unit Workbook 2 in a series of 4 for this unit Learning Outcome 2 Mechanical Engineering Systems Page

More information

2 Which of the following represents the electric field due to an infinite charged sheet with a uniform charge distribution σ.

2 Which of the following represents the electric field due to an infinite charged sheet with a uniform charge distribution σ. Slide 1 / 21 1 closed surface, in the shape of a cylinder of radius R and Length L, is placed in a region with a constant electric field of magnitude. The total electric flux through the cylindrical surface

More information

GATUNDU SOUTH KCSE REVISION MOCK EXAMS 2015

GATUNDU SOUTH KCSE REVISION MOCK EXAMS 2015 GATUNDU SOUTH KCSE REVISION MOCK EXAMS 2015 232/1 PHYSICS PAPER 1 JULY/AUGUST 2015 TIME: 2 HOURS SCHOOLS NET KENYA Osiligi House, Opposite KCB, Ground Floor Off Magadi Road, Ongata Rongai Tel: 0711 88

More information

3/22/2016. Chapter 27 Gauss s Law. Chapter 27 Preview. Chapter 27 Preview. Chapter Goal: To understand and apply Gauss s law. Slide 27-2.

3/22/2016. Chapter 27 Gauss s Law. Chapter 27 Preview. Chapter 27 Preview. Chapter Goal: To understand and apply Gauss s law. Slide 27-2. Chapter 27 Gauss s Law Chapter Goal: To understand and apply Gauss s law. Slide 27-2 Chapter 27 Preview Slide 27-3 Chapter 27 Preview Slide 27-4 1 Chapter 27 Preview Slide 27-5 Chapter 27 Preview Slide

More information

Throughout this chapter you will need: pencil ruler protractor. 7.1 Relationship Between Sides in Rightangled. 13 cm 10.5 cm

Throughout this chapter you will need: pencil ruler protractor. 7.1 Relationship Between Sides in Rightangled. 13 cm 10.5 cm 7. Trigonometry In this chapter you will learn aout: the relationship etween the ratio of the sides in a right-angled triangle solving prolems using the trigonometric ratios finding the lengths of unknown

More information

States of matter. Density high > high >> low (pressure dependent)

States of matter. Density high > high >> low (pressure dependent) Fluids States of matter Solids Fluids crystalline amorphous liquids gasses Inter-atomic forces strong > strong >> very weak Density high > high >> low (pressure dependent) Density is an important material

More information

Fluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012

Fluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012 Chapter 14 Fluid Mechanics PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_7_2012 Goals for Chapter 14 To study

More information

7.8 Improper Integrals

7.8 Improper Integrals CHAPTER 7. TECHNIQUES OF INTEGRATION 67 7.8 Improper Integrals Eample. Find Solution. Z e d. Z e d = = e e!! e = (e ) = Z Eample. Find d. Solution. We do this prolem twice: once the WRONG way, and once

More information

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.) MULTIPLE-CHOICE PROLEMS:(Two marks per answer) (Circle the Letter eside the Most Correct Answer in the Questions elow.) 1. The absolute viscosity µ of a fluid is primarily a function of: a. Density. b.

More information

Name: Date: MIDTERM 1. Physics 2306 Fall 2012 BEFORE YOU BEGIN:

Name: Date: MIDTERM 1. Physics 2306 Fall 2012 BEFORE YOU BEGIN: Name: Date: MIDTERM 1 Physics 2306 Fall 2012 FORM A BEFORE YOU BEGIN: 1. Fill in CORRECTLY your ID number in the Scantron, as well as which FORM of the test you have. 2. Write the course number (2306)

More information

Gauss s Law. 3.1 Quiz. Conference 3. Physics 102 Conference 3. Physics 102 General Physics II. Monday, February 10th, Problem 3.

Gauss s Law. 3.1 Quiz. Conference 3. Physics 102 Conference 3. Physics 102 General Physics II. Monday, February 10th, Problem 3. Physics 102 Conference 3 Gauss s Law Conference 3 Physics 102 General Physics II Monday, February 10th, 2014 3.1 Quiz Problem 3.1 A spherical shell of radius R has charge Q spread uniformly over its surface.

More information

Physics 110 Third Hour Exam

Physics 110 Third Hour Exam Physics 110 Third Hour Exam Name: Answer Key Part I Short answers: Answer all questions with only one response in the margin.(3 pts each for a total of 30 pts). Note: for partial credit write a clear phrase

More information

week 3 chapter 28 - Gauss s Law

week 3 chapter 28 - Gauss s Law week 3 chapter 28 - Gauss s Law Here is the central idea: recall field lines... + + q 2q q (a) (b) (c) q + + q q + +q q/2 + q (d) (e) (f) The number of electric field lines emerging from minus the number

More information

Welcome. to Electrostatics

Welcome. to Electrostatics Welcome to Electrostatics Outline 1. Coulomb s Law 2. The Electric Field - Examples 3. Gauss Law - Examples 4. Conductors in Electric Field Coulomb s Law Coulomb s law quantifies the magnitude of the electrostatic

More information

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m 1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

More information

SOLUTION According to Equation 11.3, pressure is defined as P= F/ A; therefore, the magnitude of the force on the lid due to the air pressure is

SOLUTION According to Equation 11.3, pressure is defined as P= F/ A; therefore, the magnitude of the force on the lid due to the air pressure is PHYS 3 Fall 07 Week Recitation: Chapter :, 7, 40, 44, 64, 69.. ssm An airtight box has a remoable lid of area.3 0 m and negligible weight. The box is taken up a mountain where the air pressure outside

More information

PHYS 1405 Conceptual Physics I Laboratory # 8 Density and Buoyancy. Investigation: How can we identify a substance by figuring out its density?

PHYS 1405 Conceptual Physics I Laboratory # 8 Density and Buoyancy. Investigation: How can we identify a substance by figuring out its density? PHYS 1405 Conceptual Physics I Laboratory # 8 Density and Buoyancy Investigation: How can we identify a substance by figuring out its density? What to measure: Volume, mass. Measuring devices: Calipers,

More information

Questions Chapter 23 Gauss' Law

Questions Chapter 23 Gauss' Law Questions Chapter 23 Gauss' Law 23-1 What is Physics? 23-2 Flux 23-3 Flux of an Electric Field 23-4 Gauss' Law 23-5 Gauss' Law and Coulomb's Law 23-6 A Charged Isolated Conductor 23-7 Applying Gauss' Law:

More information

CHAPTER 28 PRESSURE IN FLUIDS

CHAPTER 28 PRESSURE IN FLUIDS CHAPTER 8 PRESSURE IN FLUIDS EXERCISE 18, Page 81 1. A force of 80 N is applied to a piston of a hydraulic system of cross-sectional area 0.010 m. Determine the pressure produced by the piston in the hydraulic

More information

1Number ONLINE PAGE PROOFS. systems: real and complex. 1.1 Kick off with CAS

1Number ONLINE PAGE PROOFS. systems: real and complex. 1.1 Kick off with CAS 1Numer systems: real and complex 1.1 Kick off with CAS 1. Review of set notation 1.3 Properties of surds 1. The set of complex numers 1.5 Multiplication and division of complex numers 1.6 Representing

More information

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61 Integrals D. DeTurck University of Pennsylvania January 1, 2018 D. DeTurck Math 104 002 2018A: Integrals 1 / 61 Integrals Start with dx this means a little bit of x or a little change in x If we add up

More information

Topic: Fluids PHYSICS 231

Topic: Fluids PHYSICS 231 Topic: Fluids PHYSICS 231 Key Concepts Density, Volume, Mass density as material property Pressure units, how to measure, direction Hydrostatic pressure in liquid on earth Buoyancy and Archimedes Principle

More information

Figure 1. You will learn why it doesn't make sense to say that lead is heavier than air.

Figure 1. You will learn why it doesn't make sense to say that lead is heavier than air. Module 4 Density INTRODUCTION What do ballpoint pens, armor-piercing bullets, fingerprints, DNA, and the boat below have in common? All these topics are related to density. Osmium is the most dense of

More information

Jordan University of Science & Technology PHYS 101A Final exam First semester 2007

Jordan University of Science & Technology PHYS 101A Final exam First semester 2007 Student Name Student ID Jordan University of Science & Technology PHYS 101A Final exam First semester 2007 Approximate your answer to those given for each question. Use this table to fill in your answer

More information

That teaches better, that feels better. Mass Volume and Density. Over Betuwe College 2013 Page 1

That teaches better, that feels better. Mass Volume and Density. Over Betuwe College 2013 Page 1 Mass Volume and Density Over Betuwe College 2013 Page 1 Contents 1 Volume... 3 1.1 Calculating volume.... 3 1.2 Volume 2... 5 1.3 Symbols and conversion.... 5 2 Mass... 6 3 Density... 7 3.1 The ratio table...

More information

Math 216 Second Midterm 28 March, 2013

Math 216 Second Midterm 28 March, 2013 Math 26 Second Midterm 28 March, 23 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

Please fill in your Student ID number (UIN): IMPORTANT. Read these directions carefully:

Please fill in your Student ID number (UIN): IMPORTANT. Read these directions carefully: Physics 208: Electricity and Magnetism. Common Exam 1, 26 September 2016 Printyournameneatly: Last name: First name: Sign your name: Please fill in your Student ID number (UIN): Your classroom instructor:

More information

Exam 3--PHYS 101-WWP--Fall Chapters 8, 9, & 10

Exam 3--PHYS 101-WWP--Fall Chapters 8, 9, & 10 Class: Date: Exam 3--PHYS 101-WWP--Fall 2013--Chapters 8, 9, & 10 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A vault is opened by applying a force

More information

Conceptual Explanations: Logarithms

Conceptual Explanations: Logarithms Conceptual Eplanations: Logarithms Suppose you are a iologist investigating a population that doules every year. So if you start with 1 specimen, the population can e epressed as an eponential function:

More information

Page 1. Physics 131: Lecture 23. Today s Agenda. Announcements. States of Matter

Page 1. Physics 131: Lecture 23. Today s Agenda. Announcements. States of Matter Physics 131: Lecture 3 Today s Agenda Description of Fluids at Rest Pressure vs Depth Pascal s Principle: hydraulic forces Archimedes Principle: objects in a fluid Bernoulli s equation Physics 01: Lecture

More information

Physics 207 Lecture 18

Physics 207 Lecture 18 Physics 07, Lecture 8, Nov. 6 MidTerm Mean 58.4 (64.6) Median 58 St. Dev. 6 (9) High 94 Low 9 Nominal curve: (conservative) 80-00 A 6-79 B or A/B 34-6 C or B/C 9-33 marginal 9-8 D Physics 07: Lecture 8,

More information