Parks Equations Generalised Machines. Represent ac machines in the simplest possible way.

Size: px
Start display at page:

Download "Parks Equations Generalised Machines. Represent ac machines in the simplest possible way."

Transcription

1 Park Euaton Generale Machne ereent ac machne n the mlet oble way. All machne excet oubly alent reluctance machne e.g. SM an teng motor are eentally alternatng n nature Ueful torue from funamental (atal) comonent of electrc an magnetc fel. Sngle ace harmonc = two uantte magntue an angle or n hae an uarature. Magnetc fel from multhae wnng rotate wth contant magntue Smlet way to rereent from reference ont ynchronou wth fel.

2 e.g. Inucton motor tator teay tate - hae, alternatng current, alternatng flux rotatng fel Smlet rereentaton = col wth c current rotatng wth fel Th exactly what a haor agram oe magntue an angle, ynchronouly rotatng

3 Synchronou machne

4 C Machne

5 Tranform e.g. Inuctor wth N turn. Want to rereent that wth an euvalent col wth turn. We have v ol ol ol t. If we go from N turn to we ntnctvely know that we mut ecreae the volt by N an ncreae the current by N. To kee the euaton rght we mut ajut the meance by N.N v v ol new new new N v N N ol t N new new Formally - tranformaton for ay current..e. ol C new Nee ytem to be ame after tranformaton.e. kee comlex ower contant - o calle ower nvarance - ctate voltage tranformaton.

6 Conton for Power Invarance t t v v ol t* v C t S P jq v S S Power In var ance ol ol ol new * * new ol new new ol t* new ol [ S] C v *

7 Orgnal voltage euaton wa: v Z ol ol ol t* new ol ol [ S] C Z t* C Z C new ol new t* t* C Z C new t* v new new ol new t* Therefore v new C Zol C new v new Z new new t* Z new C Zol C t* vnew C vol t* v C v ol new

8 Orthogonal Tranformaton If C t* C then v C ol v new C ol new C new ol

9 : Phae Tranformaton The, col nee to mmc the mmf from the a,b,c col aume ame turn n, col a n a,b,c an frt harmonc only:- c b c b a c b a c b a co(5) co() co(9) co(4) co() co() C ol new a b c

10 Prefer other way roun o nvert a b c Nee to a zero euence = comonent of current whch ame n all three hae. [All comonent ne wave frt harmonc n tme] Three hae of zero euence a u to zero n ar ga {but trlen ace harmonc on t cancel.e. r, 9 th,5 th etc. all ele o} Zero euence only ext f:- Searate hae connecton. Star connecte wth a neutral correcton, neutral current = x zero euence current.

11 C zero euence C a b c o o o o a b c V V V V V V a b c o a b c Voltage an current tranformaton ame excet for /. Make ame - remove / from voltage tranformaton. Gve error n ower an torue - to correct - multly by /. Naty but t work.

12 Force tranformaton to be ame an have ower nvarance by changng the turn by.e., col have le turn than the a,b,c col an zero euence turn by :- V V V V V V o a b c o a b c Th an orthogonal tranformaton.e. C C t *

13 otatng to Fxe Axe Tranformaton e.g. Synchronou or Inucton machne nee frt ::- then rotatng to fxe:- co n n co v v co n n v co v Note that [C] t* =[C] - for th tranformaton

14 Generalze Machne C Machne Ue tanar form:- Q = tatonary col = ueo tatonary.e. commutator col v v P a P v t v a t =Fel, =armature, f a f a t

15 ax v v v Q Q v ax Take a four col C machne v Z. Q a a a a a Q Q a Q v v v v

16 Alcablty 4 col machne ue to rereent we range of machne. e.g. Armature col n ynchronou machne Tranform them from col to, then tranform to col whch are tatonary wth flux Th exactly what the commutator oe hycally t tranform the real rotatng col n the armature whch rotate through the flux to an euvalent col whch tatonary wth reect to the tator. Inucton motor - armature col to, n rotor bar to col, fxe to tator, rotor or ynchronou

17 Park Euaton Wrte n form ung flux lnkage - Park euaton We note (for our 4 col generale machne) that a Q a v v therefore Frt ale to ynchronou machne n9. Blonell n France an Park, Concora, Kngley an Kron n Amerca

18 Torue Euaton We can wrte our voltage euaton a: v t a a a G Q a G t t t t G t T G r Ohmc ate of change of Store Energy a a Power Outut Through Shaft o P v t But r P t where P =ole ar T P G

19 Store energy Statonary axe - nuctance contant wth tme.e. t ate of change t t t t

20 T P Q a a Q a Q T P a Q T P a a Q P

21 Synchronou Machne ereente ung Q Q axe go wth the rotor, reuce tator to col whch are ueo tatonary wth reect to the rotor.e. the tator col are attache to a commutator wth the commutator bruhe attache to the rotor v Stator col rotataton ax v v

22 a a a v v v In the teay tate.e. t V I I V I I X V I I I V I E I X a f

23 Full Tranent Moel For a Synchronou Machne To to ocllaton (calle huntng) aroun Hz a hort crcut wnng - amer or amorteur wnng try to to flux movng w.r.t. rotor..e. amen or kll rotor flux ocllaton. Wnng ame a urrel cage wnng n nucton motor - try to to flux lng. Stator col rotaton,

24 [ Z] a a k a k kk a k k kk a a a a a a a a a efer all wnng to ay the, col by turn rato uare then a l l f fel leakage nuctance., a l l armature leakage nuctance a l, kk a k k ax amer leakage nuctance. kk a k, k ax amer leakage nuctance.

25 Synchronou Machne / Euvalent Crcut a X l X f f f X a k v v f Xk ax

26 I a X l X a k V Xk ax

27 Inucton Motor Moel Stator eference Frame otor - t N rotor bar to two hae rotatng at r (electrcal) n otatng to fxe Stator - :

28 m m ( ) ( ) ( ) m m ( ) r r r m m r r r rotor r, tator,, Q r a m a Synch. fre., r, r rot. elec. ee. Steay tate = j

29 otor eference Frame Stator :, rotatng fxe, otor N: m m m m m r r m r r Ue for Inucton machne wth l rng connecton (e.g. FIG oubly fe nucton generator) - euaton n actual rotor uantte at l freuency. Steay tate = j

30 Synchronou eference Frame Stator :, rot. to fxe, otor n:, rot. to fxe, r r r m m r r r m m m m m m

31 In teay tate all fluxe rotate at ynchronou ee - n ynchronou reference frame all AC uantte become C. = gvng r r m r r m m m

Variable Structure Control ~ Motor Control

Variable Structure Control ~ Motor Control Varable Structure Control ~ Motor Control Harry G. Kwatny Department of Mechancal Engneerng & Mechancs Drexel Unversty Outlne Moels of ac Motors Synchronous motors Inucton motors Brushless c motors VS

More information

Overview Electrical Machines and Drives

Overview Electrical Machines and Drives Overvew Electrcal achnes an Drves 7-9 1: Introucton, axwell s equatons, magnetc crcuts 11-9 1.2-3: agnetc crcuts, Prncples 14-9 3-4.2: Prncples, DC machnes 18-9 4.3-4.7: DC machnes an rves 21-9 5.2-5.6:

More information

BASIC INDUCTION MOTOR CONCEPTS

BASIC INDUCTION MOTOR CONCEPTS INDUCTION MOTOS An induction motor ha the ame phyical tator a a ynchronou machine, with a different rotor contruction. There are two different type of induction motor rotor which can be placed inide the

More information

ECE 522 Power Systems Analysis II 2 Power System Modeling

ECE 522 Power Systems Analysis II 2 Power System Modeling ECE 522 Power Systems Analyss II 2 Power System Moelng Sprng 218 Instrutor: Ka Sun 1 Outlne 2.1 Moelng of synhronous generators for Stablty Stues Synhronous Mahne Moelng Smplfe Moels for Stablty Stues

More information

ECE 422 Power System Operations & Planning 2 Synchronous Machine Modeling

ECE 422 Power System Operations & Planning 2 Synchronous Machine Modeling ECE 422 Power System Operatons & Plannng 2 Synhronous Mahne Moelng Sprng 219 Instrutor: Ka Sun 1 Outlne 2.1 Moelng of synhronous generators for Stablty Stues Synhronous Mahne Moelng Smplfe Moels for Stablty

More information

Electric Machinery and Apparatus 1 AE1B14SP1. Miroslav Chomát room B3-248

Electric Machinery and Apparatus 1 AE1B14SP1. Miroslav Chomát room B3-248 Electrc Machnery and Apparatus 1 AE1B14SP1 Mroslav Chomát chomat@fel.cvut.cz room B3-48 Inducton Machne (IM) Applcatons Constructon Prncple Equatons Equvalent crcut Torque-speed characterstc Crcle dagram

More information

Overview: Induction Motors. Review Questions. Why the Rotor Moves: Motor Speed

Overview: Induction Motors. Review Questions. Why the Rotor Moves: Motor Speed Overview: nduction Motor Motor operation & Slip Speed-torque relationhip Equivalent circuit model Tranformer Motor efficiency Starting induction motor Smith College, EGR 35 ovember 5, 04 Review Quetion

More information

Overview Electrical Machines and Drives

Overview Electrical Machines and Drives Overview Electrical Machine and Drive 7-9 1: Introduction, Maxwell equation, magnetic circuit 11-9 1.-3: Magnetic circuit, Princile 14-9 3-4.: Princile, DC machine 18-9 4.3-4.7: DC machine and drive 1-9

More information

ECE 325 Electric Energy System Components 6- Three-Phase Induction Motors. Instructor: Kai Sun Fall 2015

ECE 325 Electric Energy System Components 6- Three-Phase Induction Motors. Instructor: Kai Sun Fall 2015 ECE 35 Electric Energy Sytem Component 6- Three-Phae Induction Motor Intructor: Kai Sun Fall 015 1 Content (Material are from Chapter 13-15) Component and baic principle Selection and application Equivalent

More information

8. The Synchronous Machine

8. The Synchronous Machine 8. The Synchronou Machine TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/1 ntitut ür Elektriche Synchronou machine with roun rotor an alient ole rotor ROND ROTOR: Fiel wining itribute

More information

Outcome of this lecture

Outcome of this lecture Outcome of this lecture At the en of this lecture you will be able to: List the ifferent parts of a synchronous machine Explain the operation principles of the machine Use the equivalent circuit moel of

More information

Basic parts of an AC motor : rotor, stator, The stator and the rotor are electrical

Basic parts of an AC motor : rotor, stator, The stator and the rotor are electrical INDUCTION MOTO 1 CONSTUCTION Baic part of an AC motor : rotor, tator, encloure The tator and the rotor are electrical circuit that perform a electromagnet. CONSTUCTION (tator) The tator - tationary part

More information

Synchronous Machines - Structure

Synchronous Machines - Structure Synchronou Machine - Structure Synchronou Machine - Structure rotate at contant peed. primary energy converion device of the word electric power ytem. both generator and motor operation can draw either

More information

Application of Extended Kalman Filter to Parameter Estimation of Doubly-Fed Induction Generators in Variable-Speed Wind Turbine Systems

Application of Extended Kalman Filter to Parameter Estimation of Doubly-Fed Induction Generators in Variable-Speed Wind Turbine Systems Applcaton of Extene Kalman Flter to Parameter Etmaton of Doubly-Fe Inucton Generator n Varable-Spee Wn Turbne Sytem Mohame Abelrahem Stuent Member, IEEE Inttute for Electrcal Drve Sytem an Power Electronc

More information

Section Induction motor drives

Section Induction motor drives Section 5.1 - nduction motor drive Electric Drive Sytem 5.1.1. ntroduction he AC induction motor i by far the mot widely ued motor in the indutry. raditionally, it ha been ued in contant and lowly variable-peed

More information

3. MODELING OF PARALLEL THREE-PHASE CURRENT-UNIDIRECTIONAL CONVERTERS 3. MODELING OF PARALLEL THREE-PHASE CURRENT-

3. MODELING OF PARALLEL THREE-PHASE CURRENT-UNIDIRECTIONAL CONVERTERS 3. MODELING OF PARALLEL THREE-PHASE CURRENT- 3. MOEING OF PARAE THREE-PHASE URRENT-UNIIRETIONA ONERTERS 3. MOEING OF PARAE THREE-PHASE URRENT- UNIIRETIONA ONERTERS Ths chater eelos the moels of the arallel three-hase current-unrectonal swtch base

More information

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy An Introduction to Electrical Machines P. Di Barba, University of Pavia, Italy Academic year 0-0 Contents Transformer. An overview of the device. Principle of operation of a single-phase transformer 3.

More information

Lesson 17: Synchronous Machines

Lesson 17: Synchronous Machines Lesson 17: Synchronous Machines ET 332b Ac Motors, Generators and Power Systems Lesson 17_et332b.pptx 1 Learning Objectives After this presentation you will be able to: Explain how synchronous machines

More information

18 Problem 1. 7 d Sketch a cross section of a switched reluctance machine and explain the principle of operation.

18 Problem 1. 7 d Sketch a cross section of a switched reluctance machine and explain the principle of operation. Exam Electrical Machine and Drive (ET4117) 9 November 01 from 14.00 to 17.00. Thi exam conit of 3 roblem on 3 age. Page 5 can be ued to anwer roblem 4 quetion a. The number before a quetion indicate how

More information

Dynamic Modeling of a Synchronous Generator Using T-S Fuzzy Approach

Dynamic Modeling of a Synchronous Generator Using T-S Fuzzy Approach e-issn : 0975-0 Hee-Jn Lee / Internatonal Journal of Engneerng an echnology (IJE) Dynamc oelng of a Synchronous Generator Usng -S Fuzzy Approach Hee-Jn Lee Department of Electronc Engneerng Kumoh Natonal

More information

Saliency Modeling in Radial Flux Permanent Magnet Synchronous Machines

Saliency Modeling in Radial Flux Permanent Magnet Synchronous Machines NORPIE 4, Tronheim, Norway Saliency Moeling in Raial Flux Permanent Magnet Synchronou Machine Abtract Senorle control of Permanent Magnet Synchronou Machine i popular for everal reaon: cot aving an ytem

More information

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder S-. The Method of Steepet cent Chapter. Supplemental Text Materal The method of teepet acent can be derved a follow. Suppoe that we have ft a frtorder model y = β + β x and we wh to ue th model to determne

More information

Electric and magnetic field sensor and integrator equations

Electric and magnetic field sensor and integrator equations Techncal Note - TN12 Electrc and magnetc feld enor and ntegrator uaton Bertrand Da, montena technology, 1728 oen, Swtzerland Table of content 1. Equaton of the derate electrc feld enor... 1 2. Integraton

More information

60 p. 2. A 200hp 600V, 60 Hz 3-phase induction motor has start code F. What line current should be expected at starting? 4 marks.

60 p. 2. A 200hp 600V, 60 Hz 3-phase induction motor has start code F. What line current should be expected at starting? 4 marks. EE 004 Final Solution : Thi wa a hr exam. A 60 Hz 4 pole -phae induction motor rotate at 740rpm. a) What i the lip? mark b) What i the peed o rotation o the rotor magnetic ield (in rpm)? mark The motor

More information

VECTOR CONTROL OF INDUCTION MOTORS USING UPWM VOLTAGE SOURCE INVERTER

VECTOR CONTROL OF INDUCTION MOTORS USING UPWM VOLTAGE SOURCE INVERTER VECOR CONROL OF INDUCION MOORS USING UPWM VOLAGE Abtract SOURCE INVERER G. Emaly (M.Sc.), A. Khoabakhhan (Ph.D), K. Jamh (Ph.D) Faclty of Engneerng, Ifahan Unverty, Ifahan, Iran he objectve of th paper

More information

Design of Recursive Digital Filters IIR

Design of Recursive Digital Filters IIR Degn of Recurve Dgtal Flter IIR The outut from a recurve dgtal flter deend on one or more revou outut value, a well a on nut t nvolve feedbac. A recurve flter ha an nfnte mule reone (IIR). The mulve reone

More information

Lecture Set 8 Induction Machines

Lecture Set 8 Induction Machines Lecture Set 8 Induction Machine S.D. Sudhoff Spring 2018 Reading Chapter 6, Electromechanical Motion Device, Section 6.1-6.9, 6.12 2 Sample Application Low Power: Shaded pole machine (mall fan) Permanent

More information

Induction Motor Drive

Induction Motor Drive Induction Motor Drive 1. Brief review of IM theory.. IM drive characteritic with: Variable input voltage Variable rotor reitance Variable rotor power Variable voltage and variable frequency, VVVF drive

More information

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE.

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A col of wre wth a VOLTAGE across each end wll have a current n t - Wre doesn t HAVE to have voltage source, voltage can be INDUCED V Common ways

More information

Transient and Static Modeling of Tubular Linear Induction Motors

Transient and Static Modeling of Tubular Linear Induction Motors Proceengs of the 5th WSEAS nt. Conf. on Power Systems an Electromagnetc Comatblty, Corfu, Greece, August -5, 5 (55-557) ransent an Statc oelng of ubular near nucton otors EZA HAGHAA(,) ABBAS SHOAE() ()

More information

General Theory of Electric Machines 2017 Shiraz University of Technology Dr. A. Rahideh

General Theory of Electric Machines 2017 Shiraz University of Technology Dr. A. Rahideh In The ame o Go The Mot Compaonate, The Mot Mecul Geneal Theoy o Electc Machne 7 Shaz Unety o Technoloy D. A. Raheh Tale o Content. Intoucton. Tanome. Reeence Fame Theoy 4. Inucton Machne 5. Synchonou

More information

Coupling Element and Coupled circuits. Coupled inductor Ideal transformer Controlled sources

Coupling Element and Coupled circuits. Coupled inductor Ideal transformer Controlled sources Couplng Element and Coupled crcuts Coupled nductor Ideal transformer Controlled sources Couplng Element and Coupled crcuts Coupled elements hae more that one branch and branch oltages or branch currents

More information

Electrical Machines and Energy Systems: Operating Principles (Part 1) SYED A Rizvi

Electrical Machines and Energy Systems: Operating Principles (Part 1) SYED A Rizvi Electrical Machines and Energy Systems: Operating Principles (Part 1) SYED A Rizvi AC Machines Operating Principles: Rotating Magnetic Field The key to the functioning of AC machines is the rotating magnetic

More information

Equivalent Circuit Analysis of Interior Permanent Magnet Synchronous Motor Considering Magnetic saturation

Equivalent Circuit Analysis of Interior Permanent Magnet Synchronous Motor Considering Magnetic saturation Page 0114 World Electrc Vehcle Journal Vol. 3 - ISSN 2032-6653 - 2009 AVERE EVS24 Stavanger, Norway, May 13-16, 2009 Euvalent Crcut Analyss of Interor Permanent Magnet Synchronous Motor Consderng Magnetc

More information

ELECTRIC MACHINE TORQUE PRODUCTION 101

ELECTRIC MACHINE TORQUE PRODUCTION 101 ELECTRIC MACHINE TORQUE PRODUCTION 101 Best Electric Machine, 014 INTRODUCTION: The following discussion will show that the symmetrical (or true dual-ported) transformer electric machine as only provided

More information

ELECTRICALMACHINES-I QUESTUION BANK

ELECTRICALMACHINES-I QUESTUION BANK ELECTRICALMACHINES-I QUESTUION BANK UNIT-I INTRODUCTION OF MAGNETIC MATERIAL PART A 1. What are the three basic rotating Electric machines? 2. Name the three materials used in machine manufacture. 3. What

More information

ECE 325 Electric Energy System Components 7- Synchronous Machines. Instructor: Kai Sun Fall 2015

ECE 325 Electric Energy System Components 7- Synchronous Machines. Instructor: Kai Sun Fall 2015 ECE 325 Electric Energy System Components 7- Synchronous Machines Instructor: Kai Sun Fall 2015 1 Content (Materials are from Chapters 16-17) Synchronous Generators Synchronous Motors 2 Synchronous Generators

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set 10 Issued November 11, 2013 Due November 20, 2013 Problem 1: Permanent

More information

Solutions to Practice Problems

Solutions to Practice Problems Phys A Solutons to Practce Probles hapter Inucton an Maxwell s uatons (a) At t s, the ef has a agntue of t ag t Wb s t Wb s Wb s t Wb s V t 5 (a) Table - gves the resstvty of copper Thus, L A 8 9 5 (b)

More information

Synchronous Generator Modeling Using SimuLink

Synchronous Generator Modeling Using SimuLink ynhronou Genertor Moelng Ung mun Outlne ner Moel Ung Eulent Crut ner Moel Ung Emee Mt Nonlner Moel Eulent Crut on Ax From we get m m l m t t m l r ) ( t t m l ) ( t t m l ) ( Eulent Crut on Ax From we

More information

Chapter 4. Synchronous Generators. Basic Topology

Chapter 4. Synchronous Generators. Basic Topology Basic Topology Chapter 4 ynchronous Generators In stator, a three-phase winding similar to the one described in chapter 4. ince the main voltage is induced in this winding, it is also called armature winding.

More information

University of Bahrain College of Science Dept. of Physics PHYCS 102 FINAL EXAM

University of Bahrain College of Science Dept. of Physics PHYCS 102 FINAL EXAM Unversty o Bahran College o Scence Dept. o Physcs PHYCS 10 FINAL XAM Date: 15/1/001 Tme:Two Hours Name:-------------------------------------------------ID#---------------------- Secton:----------------

More information

A capacitor is simply two pieces of metal near each other, separated by an insulator or air. A capacitor is used to store charge and energy.

A capacitor is simply two pieces of metal near each other, separated by an insulator or air. A capacitor is used to store charge and energy. -1 apactors A capactor s smply two peces of metal near each other, separate by an nsulator or ar. A capactor s use to store charge an energy. A parallel-plate capactor conssts of two parallel plates separate

More information

Generalized Theory of Electrical Machines- A Review

Generalized Theory of Electrical Machines- A Review Generalized Theory of Electrical Machines- A Review Dr. Sandip Mehta Department of Electrical and Electronics Engineering, JIET Group of Institutions, Jodhpur Abstract:-This paper provides an overview

More information

Analytical and numerical computation of the no-load magnetic field in induction motors

Analytical and numerical computation of the no-load magnetic field in induction motors Analytical and numerical computation of the no-load induction motors Dan M. Ionel University of Glasgow, Glasgow, Scotland, UK and Mihai V. Cistelecan Research Institute for Electrical Machines, Bucharest

More information

PHYSICS - CLUTCH 1E CH 28: INDUCTION AND INDUCTANCE.

PHYSICS - CLUTCH 1E CH 28: INDUCTION AND INDUCTANCE. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A col of wre wth a VOLTAGE across each end wll have a current n t - Wre doesn t HAVE to have voltage source, voltage can be INDUCED V Common ways

More information

III. Electromechanical Energy Conversion

III. Electromechanical Energy Conversion . Electoancal Enegy Coneson Schematc epesentaton o an toancal enegy coneson ece coppe losses coe losses (el losses) ancal losses Deental enegy nput om tcal souce: W V t Rt e t t W net ancal enegy output

More information

Synchronous Machine Modeling

Synchronous Machine Modeling ECE 53 Session ; Page / Fall 07 Synchronous Machine Moeling Reference θ Quarature Axis B C Direct Axis Q G F D A F G Q A D C B Transient Moel for a Synchronous Machine Generator Convention ECE 53 Session

More information

CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS

CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS 103 Phy 1 9.1 Lnear Momentum The prncple o energy conervaton can be ued to olve problem that are harder to olve jut ung Newton law. It ued to decrbe moton

More information

Conservation of Angular Momentum = "Spin"

Conservation of Angular Momentum = Spin Page 1 of 6 Conservaton of Angular Momentum = "Spn" We can assgn a drecton to the angular velocty: drecton of = drecton of axs + rght hand rule (wth rght hand, curl fngers n drecton of rotaton, thumb ponts

More information

ELECTRIC POWER CIRCUITS BASIC CONCEPTS AND ANALYSIS

ELECTRIC POWER CIRCUITS BASIC CONCEPTS AND ANALYSIS Contents ELEC46 Power ystem Analysis Lecture ELECTRC POWER CRCUT BAC CONCEPT AND ANALY. Circuit analysis. Phasors. Power in single phase circuits 4. Three phase () circuits 5. Power in circuits 6. ingle

More information

Applications of Lagrange Equations

Applications of Lagrange Equations Applcaton of agang Euaton Ca Stuy : Elctc Ccut ng th agang uaton of oton, vlop th athatcal ol fo th ccut hown n Fgu.Sulat th ult by SIMI. Th ccuty paat a: 0.0 H, 0.00 H, 0.00 H, C 0.0 F, C 0. F, 0 Ω, Ω

More information

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR-621220 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I Unit I Introduction 1. What are the three basic types

More information

PHY2049 Exam 2 solutions Fall 2016 Solution:

PHY2049 Exam 2 solutions Fall 2016 Solution: PHY2049 Exam 2 solutons Fall 2016 General strategy: Fnd two resstors, one par at a tme, that are connected ether n SERIES or n PARALLEL; replace these two resstors wth one of an equvalent resstance. Now

More information

No-load And Blocked Rotor Test On An Induction Machine

No-load And Blocked Rotor Test On An Induction Machine No-load And Blocked Rotor Tet On An Induction Machine Aim To etimate magnetization and leakage impedance parameter of induction machine uing no-load and blocked rotor tet Theory An induction machine in

More information

University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department

University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department EE471: Electrical Machines-II Tutorial # 2: 3-ph Induction Motor/Generator Question #1 A 100 hp, 60-Hz, three-phase

More information

Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drive by Considering Magnetic Saturation

Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drive by Considering Magnetic Saturation Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronou Motor Drive by Conidering Magnetic Saturation Behrooz Majidi * Jafar Milimonfared * Kaveh Malekian * *Amirkabir

More information

15 Problem 1. 3 a Draw the equivalent circuit diagram of the synchronous machine. 2 b What is the expected synchronous speed of the machine?

15 Problem 1. 3 a Draw the equivalent circuit diagram of the synchronous machine. 2 b What is the expected synchronous speed of the machine? Exam Electrical Machine and Drive (ET4117) 6 November 009 from 9.00 to 1.00. Thi exam conit of 4 problem on 4 page. Page 5 can be ued to anwer problem quetion b. The number before a quetion indicate how

More information

Five-level fuzzy logic direct torque control of double star synchronous machine

Five-level fuzzy logic direct torque control of double star synchronous machine Fe-leel uzzy logc rect torue control o ouble tar ynchronou machne Elakhar Benyoue, Abelkaer erouel an a Barkat Abtract Th paper eal wth the rect torue control o the alent-pole ouble tar ynchronou machne

More information

Nonlinear Control of a Grid-Connected Double Fed Induction Generator Based Vertical Axis Wind Turbine: A Residential Application

Nonlinear Control of a Grid-Connected Double Fed Induction Generator Based Vertical Axis Wind Turbine: A Residential Application Internatonal Journal of Electrcal Energy, Vol 4, No 4, December 6 Nonlnear Control of a Gr-Connecte Double Fe Inucton Generator Bae Vertcal Ax Wn Turbne: A Reental Applcaton Rha Chekh an Hocne Belml Untée

More information

Introduction to Synchronous. Machines. Kevin Gaughan

Introduction to Synchronous. Machines. Kevin Gaughan Introduction to Synchronous Machines Kevin Gaughan The Synchronous Machine An AC machine (generator or motor) with a stator winding (usually 3 phase) generating a rotating magnetic field and a rotor carrying

More information

IMPROVED TRAJECTORY CONTROL FOR AN INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVE WITH EXTENDED OPERATING LIMIT

IMPROVED TRAJECTORY CONTROL FOR AN INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVE WITH EXTENDED OPERATING LIMIT IMPROVED TRAJECTORY CONTRO FOR AN INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVE WITH EXTENDED OPERATING IMIT Abstract M. E. Haue,. Zhong an M. F. Rahman School of Electrcal Engneerng an Telecommuncaton

More information

Vote today! Physics 122, Fall November (c) University of Rochester 1. Today in Physics 122: applications of induction

Vote today! Physics 122, Fall November (c) University of Rochester 1. Today in Physics 122: applications of induction Phscs 1, Fall 01 6 Noember 01 Toda n Phscs 1: applcatons of nducton Generators, motors and back EMF Transformers Edd currents Vote toda! Hdropower generators on the Nagara Rer below the Falls. The ste

More information

Synchronous Machines

Synchronous Machines Synchronous machine 1. Construction Generator Exciter View of a twopole round rotor generator and exciter. A Stator with laminated iron core C Slots with phase winding B A B Rotor with dc winding B N S

More information

Dynamics of the synchronous machine

Dynamics of the synchronous machine ELEC0047 - Power system ynamics, control an stability Dynamics of the synchronous machine Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct These slies follow those presente in course

More information

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016)

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016) 6th Internatonal Conerence on Avance Desgn an Manuacturng Engneerng (ICADME 16) Flux-enng Control Research or Interor Permanent Magnet Synchronous Motor n Electrc Vehcle L Ln1,a, Yong-kuang L,b, Ha-yan

More information

Modeling and analysis of parallel connected permanent magnet synchronous generators in a small hydropower plant

Modeling and analysis of parallel connected permanent magnet synchronous generators in a small hydropower plant Proceeings of the 2006 IASME/WSEAS International Conference on Energy & Environmental Systems, Chalkia, Greece, May 8-10, 2006 (pp83-88) Moeling an analysis of parallel connecte permanent magnet synchronous

More information

MANUFACTURING TOLERANCES AS A CAUSE FOR AUDIBLE NOISE OF INDUCTION MOTORS

MANUFACTURING TOLERANCES AS A CAUSE FOR AUDIBLE NOISE OF INDUCTION MOTORS MANUFACTURING TOLERANCES AS A CAUSE FOR AUDIBLE NOISE OF INDUCTION MOTORS Delaere K., Franen J., Hameyer K., Belman R. Katholieke Univeriteit Leuven, De. EE (ESAT) Div. ELEN, Kardinaal Mercierlaan 94,

More information

MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES

MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES JOHN CHIASSON IEEE PRESS ü t SERIES ON POWER ENGINEERING IEEE Press Series on Power Engineering Mohamed E. El-Hawary, Series Editor The Institute

More information

EMF induced in a coil by moving a bar magnet. Induced EMF: Faraday s Law. Induction and Oscillations. Electromagnetic Induction.

EMF induced in a coil by moving a bar magnet. Induced EMF: Faraday s Law. Induction and Oscillations. Electromagnetic Induction. Inducton and Oscllatons Ch. 3: Faraday s Law Ch. 3: AC Crcuts Induced EMF: Faraday s Law Tme-dependent B creates nduced E In partcular: A changng magnetc flux creates an emf n a crcut: Ammeter or voltmeter.

More information

Lecture (20) DC Machine Examples Start of Synchronous Machines

Lecture (20) DC Machine Examples Start of Synchronous Machines Lecture (20) DC Machine Examples Start of Synchronous Machines Energy Systems Research Laboratory, FIU All rights reserved. 20-1 Energy Systems Research Laboratory, FIU All rights reserved. 20-2 Ra R f

More information

A Generalized Dynamic Model of Induction Motor using Simulink

A Generalized Dynamic Model of Induction Motor using Simulink A Generalzed Dynac Model of Inducton Motor ung Sulnk P. M. Palpankar, R. U. Ghanare & *N. Makade D.B.A.C.E.R, Nagpur *Y.C.C.E, Nagpur E-al : prach_bd@yahoo.co, ghanare.rahul@gal.co, nluakde@gal.co Abtract

More information

Synchronous Machines

Synchronous Machines Synchronous Machines Synchronous generators or alternators are used to convert mechanical power derived from steam, gas, or hydraulic-turbine to ac electric power Synchronous generators are the primary

More information

S-Domain Analysis. s-domain Circuit Analysis. EE695K VLSI Interconnect. Time domain (t domain) Complex frequency domain (s domain) Laplace Transform L

S-Domain Analysis. s-domain Circuit Analysis. EE695K VLSI Interconnect. Time domain (t domain) Complex frequency domain (s domain) Laplace Transform L EE695K S nterconnect S-Doman naly -Doman rcut naly Tme doman t doman near rcut aplace Tranform omplex frequency doman doman Tranformed rcut Dfferental equaton lacal technque epone waveform aplace Tranform

More information

İSTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY MODELING AND CONTROL OF VARIABLE-SPEED DIRECT-DRIVE WIND POWER PLANT

İSTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY MODELING AND CONTROL OF VARIABLE-SPEED DIRECT-DRIVE WIND POWER PLANT İSTANBU TECHNICA UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOOGY MODEING AND CONTRO OF VARIABE-SPEED DIRECT-DRIVE WIND POWER PANT M.S. The by Yuuf GÜRKAYNAK Department : Programme: Electrcal Engneerng Control

More information

HW #3. 1. Spin Matrices. HW3-soln-improved.nb 1. We use the spin operators represented in the bases where S z is diagonal:

HW #3. 1. Spin Matrices. HW3-soln-improved.nb 1. We use the spin operators represented in the bases where S z is diagonal: HW3-oln-mproved.nb HW #3. Spn Matrce We ue the pn operator repreented n the bae where S dagonal: S x = 880,

More information

Chapter 5 Three phase induction machine (1) Shengnan Li

Chapter 5 Three phase induction machine (1) Shengnan Li Chapter 5 Three phase induction machine (1) Shengnan Li Main content Structure of three phase induction motor Operating principle of three phase induction motor Rotating magnetic field Graphical representation

More information

ENGI9496 Lecture Notes Multiport Models in Mechanics

ENGI9496 Lecture Notes Multiport Models in Mechanics ENGI9496 Moellng an Smulaton of Dynamc Systems Mechancs an Mechansms ENGI9496 Lecture Notes Multport Moels n Mechancs (New text Secton 4..3; Secton 9.1 generalzes to 3D moton) Defntons Generalze coornates

More information

THREE PHASE SYSTEMS Part 1

THREE PHASE SYSTEMS Part 1 ERT105: ELECTRCAL TECHNOLOGY CHAPTER 3 THREE PHASE SYSTEMS Part 1 1 Objectives Become familiar with the operation of a three phase generator and the magnitude and phase relationship. Be able to calculate

More information

CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS

CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS 47 CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS 5.1 INTRODUCTION This chapter describes the simulation model and experimental set up used for the fault analysis. For the simulation set up, the

More information

EEE3405 ELECTRICAL ENGINEERING PRINCIPLES 2 - TEST

EEE3405 ELECTRICAL ENGINEERING PRINCIPLES 2 - TEST ATTEMPT ALL QUESTIONS (EACH QUESTION 20 Marks, FULL MAKS = 60) Given v 1 = 100 sin(100πt+π/6) (i) Find the MS, period and the frequency of v 1 (ii) If v 2 =75sin(100πt-π/10) find V 1, V 2, 2V 1 -V 2 (phasor)

More information

Physics 1202: Lecture 11 Today s Agenda

Physics 1202: Lecture 11 Today s Agenda Physcs 122: Lecture 11 Today s Agenda Announcements: Team problems start ths Thursday Team 1: Hend Ouda, Mke Glnsk, Stephane Auger Team 2: Analese Bruder, Krsten Dean, Alson Smth Offce hours: Monday 2:3-3:3

More information

Unified Torque Expressions of AC Machines. Qian Wu

Unified Torque Expressions of AC Machines. Qian Wu Unified Torque Expressions of AC Machines Qian Wu Outline 1. Review of torque calculation methods. 2. Interaction between two magnetic fields. 3. Unified torque expression for AC machines. Permanent Magnet

More information

Dynamic Simulation of a Three-Phase Induction Motor Using Matlab Simulink

Dynamic Simulation of a Three-Phase Induction Motor Using Matlab Simulink Dynamic Simulation of a ThreePhae Induction Motor Uing Matlab Simulink Adel Aktaibi & Daw Ghanim, graduate tudent member, IEEE, M. A. Rahman, life fellow, IEEE, Faculty of Engineering and Applied Science,

More information

RE 11.e Mon. Review for Final (1-11) HW11: Pr s 39, 57, 64, 74, 78 Sat. 9 a.m. Final Exam (Ch. 1-11)

RE 11.e Mon. Review for Final (1-11) HW11: Pr s 39, 57, 64, 74, 78 Sat. 9 a.m. Final Exam (Ch. 1-11) We..7 -.9, (.) Moton Wth & Wthout Torque E. ab r. otaton ab Evals.0 Quantzaton, Quz, ect Evals E.e Mon. evew or nal (-) HW: Pr s 39, 57, 64, 74, 78 Sat. 9 a.m. nal Exam (Ch. -) Usng ngular Momentum The

More information

EE 742 Chapter 3: Power System in the Steady State. Y. Baghzouz

EE 742 Chapter 3: Power System in the Steady State. Y. Baghzouz EE 742 Chapter 3: Power System in the Steady State Y. Baghzouz Transmission Line Model Distributed Parameter Model: Terminal Voltage/Current Relations: Characteristic impedance: Propagation constant: π

More information

ISSN: [Basnet* et al., 6(3): March, 2017] Impact Factor: 4.116

ISSN: [Basnet* et al., 6(3): March, 2017] Impact Factor: 4.116 IJESR INERNAIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH ECHNOLOGY DIREC ORQUE CONROLLED INDUCION MOOR DRIVE FOR ORQUE RIPPLE REDUCION Bigyan Banet Department of Electrical Engineering, ribhuvan Univerity,

More information

JRE SCHOOL OF Engineering

JRE SCHOOL OF Engineering JRE SCHOOL OF Engineering Class Test-1 Examinations September 2014 Subject Name Electromechanical Energy Conversion-II Subject Code EEE -501 Roll No. of Student Max Marks 30 Marks Max Duration 1 hour Date

More information

Tutorial Sheet Fig. Q1

Tutorial Sheet Fig. Q1 Tutorial Sheet - 04 1. The magnetic circuit shown in Fig. Q1 has dimensions A c = A g = 9 cm 2, g = 0.050 cm, l c = 30 cm, and N = 500 turns. Assume the value of the relative permeability,µ r = 70,000

More information

Unit-3. Question Bank

Unit-3. Question Bank Unit- Question Bank Q.1 A delta connected load draw a current of 15A at lagging P.F. of.85 from 400, -hase, 50Hz suly. Find & of each hase. Given P = = 400 0 I = 15A Ans. 4.98, 5.7mH So I P = 15 =8.66A

More information

Ch. 6 Single Variable Control ES159/259

Ch. 6 Single Variable Control ES159/259 Ch. 6 Single Variable Control Single variable control How o we eterine the otor/actuator inut o a to coan the en effector in a eire otion? In general, the inut voltage/current oe not create intantaneou

More information

FUZZY LOGIC BASED FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

FUZZY LOGIC BASED FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR International Journal of Electrical, Electronic an Data Communication, ISSN: 2320-2084 Volume-3, Iue-8, Aug.-2015 FUZZY LOGIC BASED FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR 1 BINITA

More information

Torque Ripple minimization techniques in direct torque control induction motor drive

Torque Ripple minimization techniques in direct torque control induction motor drive orque Ripple minimization technique in irect torque control inuction motor rive inoini Bhole At.Profeor, Electrical Department College of Engineering, Pune, INDIA vbb.elec@coep.ac.in B.N.Chauhari Profeor,Electrical

More information

Parameter Estimation of Three Phase Squirrel Cage Induction Motor

Parameter Estimation of Three Phase Squirrel Cage Induction Motor International Conference On Emerging Trends in Mechanical and Electrical Engineering RESEARCH ARTICLE OPEN ACCESS Parameter Estimation of Three Phase Squirrel Cage Induction Motor Sonakshi Gupta Department

More information

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi AC Machines Operating Principles: Synchronous Motor In synchronous motors, the stator of the motor has a rotating magnetic

More information

FFT Based Spectrum Analysis of Three Phase Signals in Park (d-q) Plane

FFT Based Spectrum Analysis of Three Phase Signals in Park (d-q) Plane Proceedngs of the 00 Internatonal Conference on Industral Engneerng and Operatons Management Dhaka, Bangladesh, January 9 0, 00 FFT Based Spectrum Analyss of Three Phase Sgnals n Park (d-q) Plane Anuradha

More information

Computational Modelling of the Unbalanced Magnetic Pull by Finite Element Method

Computational Modelling of the Unbalanced Magnetic Pull by Finite Element Method Avalable onlne at www.scencedrect.com Proceda Engneerng 48 (2012 ) 83 89 MMaMS 2012 Computatonal Modellng of the Unbalanced Magnetc Pull by Fnte Element Method Martn Donát a * a Brno Unversty of Technology,

More information

Per Unit Analysis. Single-Phase systems

Per Unit Analysis. Single-Phase systems Per Unit Analyi The per unit method of power ytem analyi eliminate the need for converion of voltae, current and impedance acro every tranformer in the circuit. n addition, the need to tranform from 3-

More information

Prince Sattam bin Abdulaziz University College of Engineering. Electrical Engineering Department EE 3360 Electrical Machines (II)

Prince Sattam bin Abdulaziz University College of Engineering. Electrical Engineering Department EE 3360 Electrical Machines (II) Chapter # 4 Three-Phase Induction Machines 1- Introduction (General Principles) Generally, conversion of electrical power into mechanical power takes place in the rotating part of an electric motor. In

More information

Chapter 6. Induction Motors. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 6. Induction Motors. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Induction Motors 1 The Development of Induced Torque in an Induction Motor Figure 6-6 The development of induced torque in an induction motor. (a) The rotating stator field B S induces a voltage

More information