A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 3 ALGORITHMS OF FURNACE CHARGE BURDEN OPTIMISATION IN FOUNDRIES

Size: px
Start display at page:

Download "A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 3 ALGORITHMS OF FURNACE CHARGE BURDEN OPTIMISATION IN FOUNDRIES"

Transcription

1 A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume 5 7 Issue 3 E. ZIÓŁKOWSKI ALGORITHMS OF FURNACE CHARGE BURDEN OPTIMISATION IN FOUNDRIES ALGORYTMY OPTYMALIZACJI NAMIAROWANIA W SYSTEMACH ZAŁADUNKU PIECÓW ODLEWNICZYCH This rtile esries the methos helpful in hoosing n optimum hrge uren founry furnes with lssifition of those tehniques whih n e useful in respetive lultions. A si prt of ll methos re mthemtil moels esriing vrious situtions whih n hppen in the tehnologil proess when hrge uren is lulte. The primry prmeter in ll moels is the hemil omposition of hrge onstituents, whih n e efine in either eterministi or fuzzy m. The seonry prmeter opte in lultions re the urrently use unit pries of hrge mterils. The nlysis n synthesis of the methos of hrge lultion is omplete with n emple where the optimistion tsk of hrge uren lultion hs een solve using s tool the uthor s own omputer progrm. Keywors: uren lultions, fuzzy optimistion, founry furnes W rtykule przestwiono metoykę ooru optymlnego nmiru wsu l pieów olewnizyh wrz z klsyfikją meto mogąyh mieć zstosownie w olizenih. Integrlną zęśią meto są moele mtemtyzne ujmująe możliwe sytuje w proesie tehnologiznym nmirowni wsu. Prmetrem postwowym w poszzególnyh moelh jest skł hemizny skłników, który może yć zefiniowny w posti eterministyznej lu rozmytej. Prmetrmi rugorzęnymi, jkie przyjęto o olizeń, są eny jenostkowe zkupu mteriłów wsowyh. Dopełnieniem nlizy i syntezy metoyki wyznzni nmiru jest przykł olizeniowy, w którym znie optymlizji rozwiązno, stosują utorski progrm komputerowy.. Introution In n ttempt of optimising the sting proution proess it is neessry to use the most moern methos of plnning n ontrol t nerly ll stges of the tehnologil proess. One of the stges eing most importnt in the mnufture of stings is frition of liqui metl hrterise y stritly etermine prmeters. Most frequently these prmeters re itte y the type of the pplie tehnology of mnufture, inluing the quntity weight of hrge, hemil omposition s well s, n tpping n pouring temperture. A very importnt ftor in optimistion of the eonomi proution of stings is lso the ost of frition of mss volume of molten metl whih, uner given onitions, shoul e s low s possile. To stisfy the ove requirements, vrious ttempts hve een me to etermine optimum hrge uren, juste to the type of founry furne urrently use n to the opte poliy of mngement of the hrge mterils store in founry. The rtile esries the lssifition of the methos of hrge uren lultion, with selete mthemtil moels of tsks optimum hrge uren omputtion. The priniples of moelling the unertin fuzzy vlues, whih re use in the esription of inurte hemil omposition n/or unit prie of iniviul hrge mterils hve een esrie.. Clssifition of methos use to lulte the hrge uren It follows from vrious soures of inmtion known to the uthor tht the referene literture Polish n interntionl lks stuy whih woul isuss in omprehensive wy the theory of hrge uren lultion. Some funmentls re only ville, n they n serve s kgroun ginst whih theory like FOUNDRY MECHANISATION, AUTOMATION AND DESIGNING, FACULTY OF FOUNDRY ENGINEERING, AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, 3-59 KRAKÓW, 3 REYMONTA STR., POLAND

2 488 the one esrie in this rtile n e onstrute. The min element in this theory will e the metho of hrge uren lultion. The uthor proposes lssifition of the methos use so fr hrge uren lultion oring to the following riteri: I. Melting proess. Clultion of hrge uren to frite molten metl: Clultion of hrge uren n empty furne Clultion of hrge uren furne prtilly fille with: soli hrge melte hrge.. Clultion of hrge uren to orret the hemil omposition of molten metl in furne or in founry lle: simplifie methos, optimising methos. II. Type of metho use in hrge uren lultion. Digrmmti methos: grphil methos, geometri methos.. Anlytil methos 3. Numeril methos omputer-ie methos: liner lgery, optimistion methos of liner progrmming methos of squre progrmming III. Type of hrge n vlues of st lloy prmeters hemil omposition, unit prie:. Deterministi esription. Fuzzy esription: two-level, multi-level with finite numer of levels, ontinuous. IV. Type of optimistion:. Monoriteril tsks of hrge uren lultion. Multiriteril tsks of hrge uren lultion The presente lssifition llows the onventionl methos of hrge uren lultion, tking lso into onsiertion the most moern tehniques of fuzzy optimistion evelope y the uthor [-4]. 3. Stges of hrge uren lultion Stge I Determining, from tehnologil guielines or y lultions, the weight of the hrge unit. In most ses, the weight of the hrge epens on founry s proution emn n is restrite y the rte pity of melting instlltions. Only in the se of upols, the empiril mule re use, n they enle the weight of single hrge uren to e effetively etermine [, ]. Stge II Determining, y ssumption or lultion, the hemil omposition of hrge whih, given proes of melting, will ensure the orret hemil omposition of molten metl. Stge III Determining, y the selete metho, the hrge uren. This opertion inlues lultion of perent or mss frtion of hrge omponents inlue in the totl lulte hrge. The eisions of tehnologil nture tken t Stge II hve n importnt effet on finl output of the melting proess. This minly refers to the hemil omposition of molten metl whih my lso epen on ftors other thn the sole hemil omposition. The ftors tht re responsile the hemil omposition of molten metl inlue the type of hrge melting proess n the type of hrge melting instlltion. It is generlly ssume tht in eletri furnes inution, r n resistne, euse of melting losses, the ontent of hemil elements in molten metl is lower thn it is in the hrge. In upols this sitution is muh more omplite, minly euse the ontent of ron n sulphur tens to inrese, sine the metlli hrge is melte in the presene of soli fuel oke, ontining these oth elements. The hoie of metho to rry out Stge III epens on how omple the tsk of hrge uren lultion is, i.e. on the numer of hemil elements n hrge omponents inlue in lultions. The simplest tsks inluing one, two or three hemil elements n e solve y mens of selete igrmmti metho grphil or geometri or, if possile, n e reue to system of liner equtions n solve y one of the nlytil or numeril methos of the liner lger emple, Guss or Guss-Jorn elimintion metho. Further prt of this pulition esries in more omprehensive wy the mthemtil moels use in etermintion of optimum hrge uren. Clultion of hrge uren to eh type of the founry furne onsists of the three si stges:

3 A generlise eterministi moel of hrge uren lultion One of the first mthemtil moels of the tsk of hrge uren lultion ws esrie in []. The stuy esries the tsk of minimising, where the ojetive funtion is ssuming the following m: f = j j vetor of the serhe eision vriles; in this se it is the ontent of eh hrge omponent in % if m w = % or in kg if m w is epresse in kg, N numer of hrge mterils onsiere in lultions, j unit prie of j-th hrge mteril in prie unit per mss unit. The ojetive funtion serhes the hrge uren of the lowest totl ost. The tehnologil guielines this moel were efine s system of onstrints: i j j = i m w j = m w j j i=,,..., M;,,..., N i j ontent of i-th hemil element in j-th hrge omponent, %, i ontent of i-th hemil element in hrge, %, M numer of hemil elements onsiere in lultions, m w hrge weight in kg or equl to %, j upper limit of the ontent of j-th omponent in hrge in kg, or in %. In the quote referene literture [], five si hemil elements were tken into onsiertion, i.e. ron, silion, mngnese, phosphorus n sulphur C, Si, Mn, P n S. Aitionlly, the effet of onstrints on the ontent of iniviul mterils in the lulte hrge hs een ssume. The tsk of optimistion of the ojetive funtion with ontrints is the tsk of liner optimistion, sine oth funtion s well s the system of onstrints hve the m of liner funtions. In solving thus multe tsk one n use, e.g., the metho of simplees [8, 9]. The optimistion tsk my rete some prolems of stritly numeril nture. The system of onstrints oes not llow the lower limits in ontent of eh of the onsiere hrge mterils, so willingly use y proess engineers prepring the metl melting proess. If stritly etermine hemil omposition of hrge represente y vlue i is use, it my use errors when the vlues lulte with very high ury y omputer re roune, mking etermintion of the vlue of vetor impossile, whih the progrm reognises s lk of solution the optimistion tsk uner onsiertion. To eliminte the ove mentione inonvenienes, it woul e muh etter n esier to opt system of onstrints in the m [6]: i m w i j j i m w i=,,..., M j j j m w,,,..., N j = m w 3 i, i the lower n upper limit, respetively, in the ontent of i-th hemil element in hrge, %, j, j the lower n upper limit, respetively, in the ontent of j-th hrge mteril, epresse in the sme units s j. Then, the tsk of omputtion of the hrge uren onsists in serhing set of vlues of vetor suh tht will enle minimising the vlue of funtion uner onstrints 3. Yet, this tsk ontinues eing the tsk of liner optimistion, whih mens tht it is possile to use one of the methos of liner progrmming. 5. A generlise fuzzy moel of hrge uren lultion Applying the eterministi stritly etermine vlues of prmeters, suh s the hemil omposition or unit prie of hrge mterils is usully ue to: verging the vlues of the onsiere prmeters, ue to fuzzy lortory mesurements of the hemil omposition one on lrge volume of hrge mterils n simplifie t omprise in qulity ertifites, isregring some fetures hemil omposition, unit prie ommon to ifferent thes of the sme omponent, ollete in the sme in, onstrints impose y mthemtil moels use so fr to esrie the optimistion tsks, n iffiult to ess omputer progrms use solving of these tsks.

4 49 TABLE Compiltion of si polygonl memership funtions ompose of retiliner segments Nme of polygonl memership funtion Plotte grph Definition of memership funtion Asymmetri trpezoi or Left outsie Right outsie Retngulr or Symmetri tringle - + or Asymmetri tringle - or Symmetri trpezoi +- or 5.. Mthemtil esription of unertin fuzzy vlues In sitution when the preisely etermine vlues of prmeters use oversimplifitions onsierly restriting their prtil use, one n reur to esription of the investigte omin of relity using the theory of fuzziness. The unertinty of the vlues of the numeril vriles n e esrie y mens of fuzzy sets []. Aoring to [], y the nme of fuzzy set A, in numeril spe of onsiertions X, we enote set of pirs: A= { µ A, }, X 4

5 49 µ A memership funtion of fuzzy set A, whih to every element X sries the egree of its memershipµ A in fuzzy set A, whereµ A [; ]. The memership funtion sries to eh element of given vrile vlue from the omin [;]: µ A : X [; ], X 5 The vlue, lle the egree of memership, inms us to wht egree element elongs to fuzzy set A. In [] omprehensive review of fuzzy sets n the relte knowlege hve een presente. For the esription of unertin inurte, i.e. fuzzy, vlues of prmeters hrteristi of the hemil omposition n possily lso of the unit prie of hrge mterils, one n use the memership funtions of ifferent lsses. Tle elow gives ompiltion of the polygonl memership funtions uilt from retiliner segments. It hs een eie to esrie the fuzziness of the hemil omposition of hrge mterils y polygonl funtion in the m of uneven-rme trpezoi Fig.. The hoie hs een justifie in the following wy: the memership funtion in the m of symmetri trpezoi opertes t level, while the remining two funtions operte t level. In founry prtie, esriing the fuzziness of hemil omposition t more thn two levels of memership funtion signifintly inreses the imension of the optimistion tsk, whih fins no justifition in prtil pplition. It n e ssume tht level is pessimisti level, i.e. suh whih the rnge of the ontent of hemil elements will e the lest fvourle. On the other hn, level n e lle optimisti, i.e. the one whih the rnge of the ontent of hemil elements will e the nrrowest. Optimisti level Pessimisti level Fig.. Grphi interprettion of the ontent rnges of hemil elements t the levels:µ= pessimisti nµ= optimisti memership funtion in the m of symmetri trpezoi in terms of fuzzy esription of the hemil omposition of hrge omponents, the funtion of uneven-rme trpezoi reples ll other polygonl funtions of memership, the funtion is hrterise y four numers, whih mke the tehnologil ientifition very esy, n is very hny in olleting n proessing of inmtion in the tse of hrge mterils. The first numer enotes the lower ontent of hemil element t pessimisti level. The seon numer n the thir numer enote, respetively, the lower n upper ontents of this element t n optimisti level, while the lst, fourth numer enotes the upper ontent of hemil element t pessimisti level. The propose moel of esription of the fuzziness is lso pplile when esriing the unertin unit pries of hrge mterils llowe the lultions. 5.. Moel of hrge uren lultion fuzzy hemil omposition of hrge mterils n etermine unit pries The tsk of founry furne hrge uren lultion llowing fuzzy hemil omposition of hrge mterils will onsist in etermintion of suh frtions of j, whih the vlue of the ojetive funtion will e minimise to the m: min j j 6 uner the following onstrints: i jk j ik m w ā i jk j ik m w j j j m w j = m w i=,,..., M;,,..., N k=,,..., q 7 q numer of the memership funtion levels tken into onsiertion. For retngulr moel of the esription of fuzziness q=, the system of onstrints will ssume the m of:

6 49 i j j i m w ā i j j i m w j j j m w j = m w while trpezoil moel, the onstrints in optimistion tsk n e efine in the following wy: i j j i m w i j j i m w ā i j j i m w ā i j j i m w j j j m w j = m w Moel of hrge uren lultion fuzzy hemil omposition of hrge mterils n fuzzy unit pries The hrge uren with stritly etermine unit prie of hrge mterils n e lulte when these mterils hve lrey een purhse y the founry, or when their purhse is plnne n it is known sure tht oth the terms of purhse s well s the prmeters shll not hnge [5]. In the sitution of long-term plnning of hrge mterils purhse, or when suen hnges of pries over short perios of time threten, very onvenient option my e the possiility of etermining hrge uren unertin pries of the hrge omponents. The fuzziness of the prie of hrge mterils n e simulte with the help of selete memership funtions in wy similr s it hppens in the se of fuzzy hemil omposition. If the prie of hrge omponent is epliitly etermine, then the ojetive funtion in optimistion tsk nnot e efine in orne with reltionship. In this se, eh level of the memership funtion esriing the prie fuzziness, seprte ojetive funtion shoul e pplie. If so, then there re mny ojetive funtions whih reue the optimistion tsk to multi-riteril liner progrmming uner the ssumption tht the system of onstrints is in m or in one of its vrints, e.g. 3 or 5. One of the possiilities to etermine the vlue of vetor, whih ll the liner ojetive funtions re to e minimise, is y efining the, so lle, ompromise ojetive funtion. In its generl m, this ojetive funtion n e esrie s: min q f k jk j k= + f k jk j, q mimum quntity of memership funtion egrees eh of the fuzzy numers llowe in the moels of fuzziness, f the vlue of ojetive funtion in n optimistion tsk in whih the ojetive funtion t k-th level k hs the m of min [ f k = N ] jk j uner onstrints f k the vlue of ojetive funtion in n optimistion tsk in whih[ the ojetive] funtion t k-th level hs the m of min f k = N jk j uner onstrints Thus multe ojetive funtion shoul e regre s n eft to etermine the vlue of vetor, i.e. hrge uren the totl ost of whih will pproh oth minimum n mimum vlues of unit pries of the iniviul hrge mterils. To efine the ojetive funtion, it is neessry to minimise, t eh k-th level, the totl ost of hrge, ssuming the minimum, first, n mimum, net, vlues of the ost of eh hrge omponent. This enles etermintion of the vlue of oeffiients f n f k k n sustituting them in reltionship. For retngulr moel of fuzziness, the ompromise ojetive funtion shll ssume the m of: where min f = min f j j j j n + f j j, f = min j j,

7 493 while the trpezoil moel of fuzziness it shll ssume the m of: f j j + min + f j j + f = min f = min f f j j +, 3 j j j j, f = min j j, 4 j j, f = min j j. 5 The ompromise ojetive funtions, n 3 re squre funtions, n theree, these funtions, solving n optimistion tsk of hrge uren lultion requires llowing system of onstrints, 3 or 5, respetively, n using metho of squre progrmming. Prtil pplition of the tsk of hrge uren lultion hrge mterils hrterise y fuzzy hemil omposition n unertin unit pries shoul e in the uthor s opinion limite to the se in whih the fuzzy prie is simulte y retngulr memership funtion. Assuming one intervl of hnges in the unit prie of eh hrge mteril seems to e suffiient in mngement of the hin of founry supplies. The use of more omple funtions to esrie unit pries onsierly epns the ompromise funtions n mkes progrmming of proeures reting these funtions utomtilly iffiult though not impossile. An emple of lultions given elow shows the possiility of using in optimistion tsk retngulr moel of fuzziness of the unit pries Emple of hrge uren lultion fuzzy hemil omposition trpezoil moel n fuzzy prie retngulr moel Tle gives fuzzy prmeters hemil omposition, unit prie of hrge mterils tken into onsiertion in this optimistion tsk. In the emple of lultion no itionl onstrints hve een ssume s regrs the ontent of eh hrge omponent. Beuse of fuzzy unit pries quote in this emple in the m of n intervl of their hnges in retngulr version of the memership funtion, it is neessry to solve, first, the tsk of minimising the ojetive funtion to m: f = n net the tsk of minimising the ojetive funtion to m: f = uner the following onstrints: TABLE Chemil omposition n unit prie of hrge mterils n ssume hemil omposition of hrge lultion of emple Chrge omponent Chemil omposition, % Prie C Si Mn PLN/kg.;.4;.6;.9.6;.9;.34;.4.5;.7;.; ;3.5;3.6;3.75.6;.8;.9;..64;.75;.86; ;3.5;3.3; ;.84;.97;.5.35;.38;.39; ;.;.;.5 64.;64.3;64.7;65..5;.3;.34; ;9.;9.;9.5.;.;.;..;.;.; ;.44;.5;.57.3;.4;.5;.6 8.;8.6;8.; CHARGE

8 = 8 A solution of the tsk of minimising the ojetive funtion 6 uner onstrints 8 is: = 38.73% =.% 3 = 59.8% 4 =.5% 5 =.4% 6 =.35% f = The tsk of minimising funtion 7 with the system of onstrints 8 hs the following solution: = 94.49% =.% 3 =.% 4 =.88% 5 = 3.3% 6 =.5% f = 8.6 f= [ ] + + [ ]. The tsk of hrge uren lultion fuzzy prmeters of the hrge mterils hemil omposition n unit prie onsists in etermintion of the vlue of vetor, whih minimises the ompromise ojetive funtion uner onstrints 8. Hving introue the ove t to omputer progrm omputing the lgorithm of squre progrmming n hving perme the respetive omputtion proeure, the results shown in Figure re otine. For plotting ompromise ojetive funtion resulting from the reltionship, only the vlues of f from 9 n f from re neee. The frtions of iniviul hrge omponents given in reltionships 9 n re signifintly ifferent. This is importnt insmuh s in the se of solutions not iffering muh from eh other only unit prie hnges, plotting of ompromise funtion mkes no sense. The efinition of ompromise ojetive funtion is s follows: Fig.. Output of hrge uren lultions The lulte hrge uren is optiml the whole rnge of hnges in unit pries of the iniviul hrge mterils. Choosing this uren oring to Figure will e muh sfer thn it woul e if only verge unit pries of the iniviul hrge omponents were tken into onsiertion.

9 Summry The methos of hrge uren lultion esrie here, onsierly eten our knowlege founry prolems in prtiulr, ut lso siene in generl out optimising of proution proesses. Through moel pproh to the tsks oresponing to vrious situtions ourring in tehnologil proess, the opertion of hrge uren lultion n e ie y omputers n inlue in the system of utomti ontrol of evies whih prepre hrge uren founry furnes. In integrte system of proution plnning n preprtion, these methos my prove to e useful in serhes est strtegy to mnge the hin of supplies of new hrge mterils. REFERENCES [] C. P o r z u k i, C. K l t, Metlurgi i olewnitwo żeliw. Wy., Wywnitwo Śląsk, Ktowie 976. [] C. P o r z u k i, E. Z i ó ł k o w s k i, Computer- Aie Optimiztion of Cupol Buren Determintion. Zesz. Nuk. AGH Metlurgi i Olewnitwo. Krków, 7,, [3] W.M. S k w, T. W h e l k o, Oliznie nmirów żeliwikowyh. Skrypty l szkół wyższyh. Szkoł Inżyniersk w Częstohowie. PWN, Łóź-Krków 955. [4] E. Z i ó ł k o w s k i, Zstosownie meto progrmowni mtemtyznego w optymlizji wytopu w pieh olewnizyh. Pr ziorow po rekją Jnusz Kprzyk i Jn Węglrz pt.: Bni operyjne i systemowe woe wyzwń XXI wieku. Moelownie i Optymlizj. Metoy i zstosowni. Akemik Ofiyn Wywniz EXIT, s. II- II-3, Wrszw. [5] E. Z i ó ł k o w s k i, Optymlizj nmiru wsu o pieów olewnizyh z zstosowniem mteriłów wsowyh o niepewnyh enh. Arhiwum Tehnologii Mszyn i Automtyzji. Komisj Buowy Mszyn PAN O/Poznń. 4, 3 spejlny, 3 4. [6] E. Z i ó ł k o w s k i, Zstosownie lgorytmów optymlizji rozmytej o określni nmiru wsu l pieów olewnizyh. Pr ziorow po rekją Romn Kulikowskiego, Jnusz Kprzyk i Romn Słowińskiego p.t.: Bni operyjne i systemowe 4. Poejmownie eyzji. Postwy metoyzne i zstosowni. Wy. EXIT, s. 9 3, Wrszw 4. [7] E. Z i ó ł k o w s k i, Postwy teoretyzne lgorytmu ilnsowni prmetrów wsu zestwinego z mteriłów wsowyh o niepreyzyjnym skłzie hemiznym. Arhiwum Olewnitw. PAN O/Ktowie, 6, 9, [8] S.I. G s s, Progrmownie liniowe. Metoy i zstosowni. Wy. 4, PWN, Wrszw 98. [9] I. N y k o w s k i, Progrmownie liniowe. Wy., PWE, Wrszw 984. [] A. P i e g t, Moelownie i sterownie rozmyte. Akemik Ofiyn Wywniz EXIT, Wrszw 999. Reeive: 8 June 7.

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply

More information

CS 491G Combinatorial Optimization Lecture Notes

CS 491G Combinatorial Optimization Lecture Notes CS 491G Comintoril Optimiztion Leture Notes Dvi Owen July 30, August 1 1 Mthings Figure 1: two possile mthings in simple grph. Definition 1 Given grph G = V, E, mthing is olletion of eges M suh tht e i,

More information

MCH T 111 Handout Triangle Review Page 1 of 3

MCH T 111 Handout Triangle Review Page 1 of 3 Hnout Tringle Review Pge of 3 In the stuy of sttis, it is importnt tht you e le to solve lgeri equtions n tringle prolems using trigonometry. The following is review of trigonometry sis. Right Tringle:

More information

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx Applitions of Integrtion Are of Region Between Two Curves Ojetive: Fin the re of region etween two urves using integrtion. Fin the re of region etween interseting urves using integrtion. Desrie integrtion

More information

Factorising FACTORISING.

Factorising FACTORISING. Ftorising FACTORISING www.mthletis.om.u Ftorising FACTORISING Ftorising is the opposite of expning. It is the proess of putting expressions into rkets rther thn expning them out. In this setion you will

More information

Eigenvectors and Eigenvalues

Eigenvectors and Eigenvalues MTB 050 1 ORIGIN 1 Eigenvets n Eigenvlues This wksheet esries the lger use to lulte "prinipl" "hrteristi" iretions lle Eigenvets n the "prinipl" "hrteristi" vlues lle Eigenvlues ssoite with these iretions.

More information

CARLETON UNIVERSITY. 1.0 Problems and Most Solutions, Sect B, 2005

CARLETON UNIVERSITY. 1.0 Problems and Most Solutions, Sect B, 2005 RLETON UNIVERSIT eprtment of Eletronis ELE 2607 Swithing iruits erury 28, 05; 0 pm.0 Prolems n Most Solutions, Set, 2005 Jn. 2, #8 n #0; Simplify, Prove Prolem. #8 Simplify + + + Reue to four letters (literls).

More information

Section 2.3. Matrix Inverses

Section 2.3. Matrix Inverses Mtri lger Mtri nverses Setion.. Mtri nverses hree si opertions on mtries, ition, multiplition, n sutrtion, re nlogues for mtries of the sme opertions for numers. n this setion we introue the mtri nlogue

More information

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 )

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 ) Neessry n suient onitions for some two vrile orthogonl esigns in orer 44 C. Koukouvinos, M. Mitrouli y, n Jennifer Seerry z Deite to Professor Anne Penfol Street Astrt We give new lgorithm whih llows us

More information

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106 8. Problem Set Due Wenesy, Ot., t : p.m. in - Problem Mony / Consier the eight vetors 5, 5, 5,..., () List ll of the one-element, linerly epenent sets forme from these. (b) Wht re the two-element, linerly

More information

I 3 2 = I I 4 = 2A

I 3 2 = I I 4 = 2A ECE 210 Eletril Ciruit Anlysis University of llinois t Chigo 2.13 We re ske to use KCL to fin urrents 1 4. The key point in pplying KCL in this prolem is to strt with noe where only one of the urrents

More information

6.5 Improper integrals

6.5 Improper integrals Eerpt from "Clulus" 3 AoPS In. www.rtofprolemsolving.om 6.5. IMPROPER INTEGRALS 6.5 Improper integrls As we ve seen, we use the definite integrl R f to ompute the re of the region under the grph of y =

More information

Now we must transform the original model so we can use the new parameters. = S max. Recruits

Now we must transform the original model so we can use the new parameters. = S max. Recruits MODEL FOR VARIABLE RECRUITMENT (ontinue) Alterntive Prmeteriztions of the pwner-reruit Moels We n write ny moel in numerous ifferent ut equivlent forms. Uner ertin irumstnes it is onvenient to work with

More information

A Primer on Continuous-time Economic Dynamics

A Primer on Continuous-time Economic Dynamics Eonomis 205A Fll 2008 K Kletzer A Primer on Continuous-time Eonomi Dnmis A Liner Differentil Eqution Sstems (i) Simplest se We egin with the simple liner first-orer ifferentil eqution The generl solution

More information

Lesson 2.1 Inductive Reasoning

Lesson 2.1 Inductive Reasoning Lesson 2.1 Inutive Resoning Nme Perio Dte For Eerises 1 7, use inutive resoning to fin the net two terms in eh sequene. 1. 4, 8, 12, 16,, 2. 400, 200, 100, 50, 25,, 3. 1 8, 2 7, 1 2, 4, 5, 4. 5, 3, 2,

More information

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

SECTION A STUDENT MATERIAL. Part 1. What and Why.? SECTION A STUDENT MATERIAL Prt Wht nd Wh.? Student Mteril Prt Prolem n > 0 n > 0 Is the onverse true? Prolem If n is even then n is even. If n is even then n is even. Wht nd Wh? Eploring Pure Mths Are

More information

Linear Algebra Introduction

Linear Algebra Introduction Introdution Wht is Liner Alger out? Liner Alger is rnh of mthemtis whih emerged yers k nd ws one of the pioneer rnhes of mthemtis Though, initilly it strted with solving of the simple liner eqution x +

More information

Lecture 6: Coding theory

Lecture 6: Coding theory Leture 6: Coing theory Biology 429 Crl Bergstrom Ferury 4, 2008 Soures: This leture loosely follows Cover n Thoms Chpter 5 n Yeung Chpter 3. As usul, some of the text n equtions re tken iretly from those

More information

Lesson 2.1 Inductive Reasoning

Lesson 2.1 Inductive Reasoning Lesson 2.1 Inutive Resoning Nme Perio Dte For Eerises 1 7, use inutive resoning to fin the net two terms in eh sequene. 1. 4, 8, 12, 16,, 2. 400, 200, 100, 50, 25,, 3. 1 8, 2 7, 1 2, 4, 5, 4. 5, 3, 2,

More information

Surds and Indices. Surds and Indices. Curriculum Ready ACMNA: 233,

Surds and Indices. Surds and Indices. Curriculum Ready ACMNA: 233, Surs n Inies Surs n Inies Curriulum Rey ACMNA:, 6 www.mthletis.om Surs SURDS & & Inies INDICES Inies n surs re very losely relte. A numer uner (squre root sign) is lle sur if the squre root n t e simplifie.

More information

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs Isomorphism of Grphs Definition The simple grphs G 1 = (V 1, E 1 ) n G = (V, E ) re isomorphi if there is ijetion (n oneto-one n onto funtion) f from V 1 to V with the property tht n re jent in G 1 if

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

Let s divide up the interval [ ab, ] into n subintervals with the same length, so we have

Let s divide up the interval [ ab, ] into n subintervals with the same length, so we have III. INTEGRATION Eonomists seem muh more intereste in mrginl effets n ifferentition thn in integrtion. Integrtion is importnt for fining the epete vlue n vrine of rnom vriles, whih is use in eonometris

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Clulus BC Chpter 8: Integrtion Tehniques, L Hopitl s Rule nd Improper Integrls 8. Bsi Integrtion Rules In this setion we will review vrious integrtion strtegies. Strtegies: I. Seprte the integrnd into

More information

University of Sioux Falls. MAT204/205 Calculus I/II

University of Sioux Falls. MAT204/205 Calculus I/II University of Sioux Flls MAT204/205 Clulus I/II Conepts ddressed: Clulus Textook: Thoms Clulus, 11 th ed., Weir, Hss, Giordno 1. Use stndrd differentition nd integrtion tehniques. Differentition tehniques

More information

Algebra 2 Semester 1 Practice Final

Algebra 2 Semester 1 Practice Final Alger 2 Semester Prtie Finl Multiple Choie Ientify the hoie tht est ompletes the sttement or nswers the question. To whih set of numers oes the numer elong?. 2 5 integers rtionl numers irrtionl numers

More information

Lecture 2: Cayley Graphs

Lecture 2: Cayley Graphs Mth 137B Professor: Pri Brtlett Leture 2: Cyley Grphs Week 3 UCSB 2014 (Relevnt soure mteril: Setion VIII.1 of Bollos s Moern Grph Theory; 3.7 of Gosil n Royle s Algeri Grph Theory; vrious ppers I ve re

More information

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite! Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:

More information

Ranking Generalized Fuzzy Numbers using centroid of centroids

Ranking Generalized Fuzzy Numbers using centroid of centroids Interntionl Journl of Fuzzy Logi Systems (IJFLS) Vol. No. July ning Generlize Fuzzy Numers using entroi of entrois S.Suresh u Y.L.P. Thorni N.vi Shnr Dept. of pplie Mthemtis GIS GITM University Vishptnm

More information

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES PAIR OF LINEAR EQUATIONS IN TWO VARIABLES. Two liner equtions in the sme two vriles re lled pir of liner equtions in two vriles. The most generl form of pir of liner equtions is x + y + 0 x + y + 0 where,,,,,,

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

CSC2542 State-Space Planning

CSC2542 State-Space Planning CSC2542 Stte-Spe Plnning Sheil MIlrith Deprtment of Computer Siene University of Toronto Fll 2010 1 Aknowlegements Some the slies use in this ourse re moifitions of Dn Nu s leture slies for the textook

More information

Data Structures LECTURE 10. Huffman coding. Example. Coding: problem definition

Data Structures LECTURE 10. Huffman coding. Example. Coding: problem definition Dt Strutures, Spring 24 L. Joskowiz Dt Strutures LEURE Humn oing Motivtion Uniquel eipherle oes Prei oes Humn oe onstrution Etensions n pplitions hpter 6.3 pp 385 392 in tetook Motivtion Suppose we wnt

More information

Lecture Notes No. 10

Lecture Notes No. 10 2.6 System Identifition, Estimtion, nd Lerning Leture otes o. Mrh 3, 26 6 Model Struture of Liner ime Invrint Systems 6. Model Struture In representing dynmil system, the first step is to find n pproprite

More information

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1)

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1) Green s Theorem Mth 3B isussion Session Week 8 Notes Februry 8 nd Mrh, 7 Very shortly fter you lerned how to integrte single-vrible funtions, you lerned the Fundmentl Theorem of lulus the wy most integrtion

More information

Integration. antidifferentiation

Integration. antidifferentiation 9 Integrtion 9A Antidifferentition 9B Integrtion of e, sin ( ) nd os ( ) 9C Integrtion reognition 9D Approimting res enlosed funtions 9E The fundmentl theorem of integrl lulus 9F Signed res 9G Further

More information

Chapter 4 State-Space Planning

Chapter 4 State-Space Planning Leture slides for Automted Plnning: Theory nd Prtie Chpter 4 Stte-Spe Plnning Dn S. Nu CMSC 722, AI Plnning University of Mrylnd, Spring 2008 1 Motivtion Nerly ll plnning proedures re serh proedures Different

More information

Review Topic 14: Relationships between two numerical variables

Review Topic 14: Relationships between two numerical variables Review Topi 14: Reltionships etween two numeril vriles Multiple hoie 1. Whih of the following stterplots est demonstrtes line of est fit? A B C D E 2. The regression line eqution for the following grph

More information

If we have a function f(x) which is well-defined for some a x b, its integral over those two values is defined as

If we have a function f(x) which is well-defined for some a x b, its integral over those two values is defined as Y. D. Chong (26) MH28: Complex Methos for the Sciences 2. Integrls If we hve function f(x) which is well-efine for some x, its integrl over those two vlues is efine s N ( ) f(x) = lim x f(x n ) where x

More information

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of:

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of: 22: Union Fin CS 473u - Algorithms - Spring 2005 April 14, 2005 1 Union-Fin We wnt to mintin olletion of sets, uner the opertions of: 1. MkeSet(x) - rete set tht ontins the single element x. 2. Fin(x)

More information

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014 S 224 DIGITAL LOGI & STATE MAHINE DESIGN SPRING 214 DUE : Mrh 27, 214 HOMEWORK III READ : Relte portions of hpters VII n VIII ASSIGNMENT : There re three questions. Solve ll homework n exm prolems s shown

More information

SEMI-EXCIRCLE OF QUADRILATERAL

SEMI-EXCIRCLE OF QUADRILATERAL JP Journl of Mthemtil Sienes Volume 5, Issue &, 05, Pges - 05 Ishn Pulishing House This pper is ville online t http://wwwiphsiom SEMI-EXCIRCLE OF QUADRILATERAL MASHADI, SRI GEMAWATI, HASRIATI AND HESY

More information

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix tries Definition of tri mtri is regulr rry of numers enlosed inside rkets SCHOOL OF ENGINEERING & UIL ENVIRONEN Emple he following re ll mtries: ), ) 9, themtis ), d) tries Definition of tri Size of tri

More information

50 AMC Lectures Problem Book 2 (36) Substitution Method

50 AMC Lectures Problem Book 2 (36) Substitution Method 0 AMC Letures Prolem Book Sustitution Metho PROBLEMS Prolem : Solve for rel : 9 + 99 + 9 = Prolem : Solve for rel : 0 9 8 8 Prolem : Show tht if 8 Prolem : Show tht + + if rel numers,, n stisf + + = Prolem

More information

ANALYSIS AND MODELLING OF RAINFALL EVENTS

ANALYSIS AND MODELLING OF RAINFALL EVENTS Proeedings of the 14 th Interntionl Conferene on Environmentl Siene nd Tehnology Athens, Greee, 3-5 Septemer 215 ANALYSIS AND MODELLING OF RAINFALL EVENTS IOANNIDIS K., KARAGRIGORIOU A. nd LEKKAS D.F.

More information

AP CALCULUS Test #6: Unit #6 Basic Integration and Applications

AP CALCULUS Test #6: Unit #6 Basic Integration and Applications AP CALCULUS Test #6: Unit #6 Bsi Integrtion nd Applitions A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS IN THIS PART OF THE EXAMINATION. () The ext numeril vlue of the orret

More information

Momentum and Energy Review

Momentum and Energy Review Momentum n Energy Review Nme: Dte: 1. A 0.0600-kilogrm ll trveling t 60.0 meters per seon hits onrete wll. Wht spee must 0.0100-kilogrm ullet hve in orer to hit the wll with the sme mgnitue of momentum

More information

Probability. b a b. a b 32.

Probability. b a b. a b 32. Proility If n event n hppen in '' wys nd fil in '' wys, nd eh of these wys is eqully likely, then proility or the hne, or its hppening is, nd tht of its filing is eg, If in lottery there re prizes nd lnks,

More information

Lesson 2: The Pythagorean Theorem and Similar Triangles. A Brief Review of the Pythagorean Theorem.

Lesson 2: The Pythagorean Theorem and Similar Triangles. A Brief Review of the Pythagorean Theorem. 27 Lesson 2: The Pythgoren Theorem nd Similr Tringles A Brief Review of the Pythgoren Theorem. Rell tht n ngle whih mesures 90º is lled right ngle. If one of the ngles of tringle is right ngle, then we

More information

Lecture 8: Abstract Algebra

Lecture 8: Abstract Algebra Mth 94 Professor: Pri Brtlett Leture 8: Astrt Alger Week 8 UCSB 2015 This is the eighth week of the Mthemtis Sujet Test GRE prep ourse; here, we run very rough-n-tumle review of strt lger! As lwys, this

More information

Activities. 4.1 Pythagoras' Theorem 4.2 Spirals 4.3 Clinometers 4.4 Radar 4.5 Posting Parcels 4.6 Interlocking Pipes 4.7 Sine Rule Notes and Solutions

Activities. 4.1 Pythagoras' Theorem 4.2 Spirals 4.3 Clinometers 4.4 Radar 4.5 Posting Parcels 4.6 Interlocking Pipes 4.7 Sine Rule Notes and Solutions MEP: Demonstrtion Projet UNIT 4: Trigonometry UNIT 4 Trigonometry tivities tivities 4. Pythgors' Theorem 4.2 Spirls 4.3 linometers 4.4 Rdr 4.5 Posting Prels 4.6 Interloking Pipes 4.7 Sine Rule Notes nd

More information

Appendix A: HVAC Equipment Efficiency Tables

Appendix A: HVAC Equipment Efficiency Tables Appenix A: HVAC Equipment Effiieny Tles Figure A.1 Resientil Centrl Air Conitioner FEMP Effiieny Reommention Prout Type Reommene Level Best Aville 11.0 or more EER 14.6 EER Split Systems 13.0 or more SEER

More information

SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVEX STOCHASTIC PROCESSES ON THE CO-ORDINATES

SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVEX STOCHASTIC PROCESSES ON THE CO-ORDINATES Avne Mth Moels & Applitions Vol3 No 8 pp63-75 SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVE STOCHASTIC PROCESSES ON THE CO-ORDINATES Nurgül Okur * Imt Işn Yusuf Ust 3 3 Giresun University Deprtment

More information

Common intervals of genomes. Mathieu Raffinot CNRS LIAFA

Common intervals of genomes. Mathieu Raffinot CNRS LIAFA Common intervls of genomes Mthieu Rffinot CNRS LIF Context: omprtive genomis. set of genomes prtilly/totlly nnotte Informtive group of genes or omins? Ex: COG tse Mny iffiulties! iology Wht re two similr

More information

APPROXIMATION AND ESTIMATION MATHEMATICAL LANGUAGE THE FUNDAMENTAL THEOREM OF ARITHMETIC LAWS OF ALGEBRA ORDER OF OPERATIONS

APPROXIMATION AND ESTIMATION MATHEMATICAL LANGUAGE THE FUNDAMENTAL THEOREM OF ARITHMETIC LAWS OF ALGEBRA ORDER OF OPERATIONS TOPIC 2: MATHEMATICAL LANGUAGE NUMBER AND ALGEBRA You shoul unerstn these mthemtil terms, n e le to use them ppropritely: ² ition, sutrtion, multiplition, ivision ² sum, ifferene, prout, quotient ² inex

More information

ERT 316: REACTION ENGINEERING CHAPTER 3 RATE LAWS & STOICHIOMETRY

ERT 316: REACTION ENGINEERING CHAPTER 3 RATE LAWS & STOICHIOMETRY ER 316: REIO EGIEERIG HER 3 RE LWS & SOIHIOMERY 1 OULIE R 1: Rte Lws Reltive Rtes of Retion Retion Orer & Rte Lw Retion Rte onstnt, k R 2: Stoihiometry th System Stoihiometri le low System Stoihiometri

More information

MATH 1080: Calculus of One Variable II Spring 2018 Textbook: Single Variable Calculus: Early Transcendentals, 7e, by James Stewart.

MATH 1080: Calculus of One Variable II Spring 2018 Textbook: Single Variable Calculus: Early Transcendentals, 7e, by James Stewart. MATH 1080: Clulus of One Vrile II Spring 2018 Textook: Single Vrile Clulus: Erly Trnsenentls, 7e, y Jmes Stewrt Unit 2 Skill Set Importnt: Stuents shoul expet test questions tht require synthesis of these

More information

Solutions to Problem Set #1

Solutions to Problem Set #1 CSE 233 Spring, 2016 Solutions to Prolem Set #1 1. The movie tse onsists of the following two reltions movie: title, iretor, tor sheule: theter, title The first reltion provies titles, iretors, n tors

More information

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours Mi-Term Exmintion - Spring 0 Mthemtil Progrmming with Applitions to Eonomis Totl Sore: 5; Time: hours. Let G = (N, E) e irete grph. Define the inegree of vertex i N s the numer of eges tht re oming into

More information

QUADRATIC EQUATION. Contents

QUADRATIC EQUATION. Contents QUADRATIC EQUATION Contents Topi Pge No. Theory 0-04 Exerise - 05-09 Exerise - 09-3 Exerise - 3 4-5 Exerise - 4 6 Answer Key 7-8 Syllus Qudrti equtions with rel oeffiients, reltions etween roots nd oeffiients,

More information

y = c 2 MULTIPLE CHOICE QUESTIONS (MCQ's) (Each question carries one mark) is...

y = c 2 MULTIPLE CHOICE QUESTIONS (MCQ's) (Each question carries one mark) is... . Liner Equtions in Two Vriles C h p t e r t G l n e. Generl form of liner eqution in two vriles is x + y + 0, where 0. When we onsier system of two liner equtions in two vriles, then suh equtions re lle

More information

APPENDIX. Precalculus Review D.1. Real Numbers and the Real Number Line

APPENDIX. Precalculus Review D.1. Real Numbers and the Real Number Line APPENDIX D Preclculus Review APPENDIX D.1 Rel Numers n the Rel Numer Line Rel Numers n the Rel Numer Line Orer n Inequlities Asolute Vlue n Distnce Rel Numers n the Rel Numer Line Rel numers cn e represente

More information

Electromagnetism Notes, NYU Spring 2018

Electromagnetism Notes, NYU Spring 2018 Eletromgnetism Notes, NYU Spring 208 April 2, 208 Ation formultion of EM. Free field desription Let us first onsider the free EM field, i.e. in the bsene of ny hrges or urrents. To tret this s mehnil system

More information

CSE 332. Sorting. Data Abstractions. CSE 332: Data Abstractions. QuickSort Cutoff 1. Where We Are 2. Bounding The MAXIMUM Problem 4

CSE 332. Sorting. Data Abstractions. CSE 332: Data Abstractions. QuickSort Cutoff 1. Where We Are 2. Bounding The MAXIMUM Problem 4 Am Blnk Leture 13 Winter 2016 CSE 332 CSE 332: Dt Astrtions Sorting Dt Astrtions QuikSort Cutoff 1 Where We Are 2 For smll n, the reursion is wste. The onstnts on quik/merge sort re higher thn the ones

More information

2.4 Theoretical Foundations

2.4 Theoretical Foundations 2 Progrmming Lnguge Syntx 2.4 Theoretil Fountions As note in the min text, snners n prsers re se on the finite utomt n pushown utomt tht form the ottom two levels of the Chomsky lnguge hierrhy. At eh level

More information

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx Clulus Chet Sheet Integrls Definitions Definite Integrl: Suppose f ( ) is ontinuous Anti-Derivtive : An nti-derivtive of f ( ) on [, ]. Divide [, ] into n suintervls of is funtion, F( ), suh tht F = f.

More information

This enables us to also express rational numbers other than natural numbers, for example:

This enables us to also express rational numbers other than natural numbers, for example: Overview Study Mteril Business Mthemtis 05-06 Alger The Rel Numers The si numers re,,3,4, these numers re nturl numers nd lso lled positive integers. The positive integers, together with the negtive integers

More information

Chapter Gauss Quadrature Rule of Integration

Chapter Gauss Quadrature Rule of Integration Chpter 7. Guss Qudrture Rule o Integrtion Ater reding this hpter, you should e le to:. derive the Guss qudrture method or integrtion nd e le to use it to solve prolems, nd. use Guss qudrture method to

More information

CS 573 Automata Theory and Formal Languages

CS 573 Automata Theory and Formal Languages Non-determinism Automt Theory nd Forml Lnguges Professor Leslie Lnder Leture # 3 Septemer 6, 2 To hieve our gol, we need the onept of Non-deterministi Finite Automton with -moves (NFA) An NFA is tuple

More information

8 THREE PHASE A.C. CIRCUITS

8 THREE PHASE A.C. CIRCUITS 8 THREE PHSE.. IRUITS The signls in hpter 7 were sinusoidl lternting voltges nd urrents of the so-lled single se type. n emf of suh type n e esily generted y rotting single loop of ondutor (or single winding),

More information

SIMPLE NONLINEAR GRAPHS

SIMPLE NONLINEAR GRAPHS S i m p l e N o n l i n e r G r p h s SIMPLE NONLINEAR GRAPHS www.mthletis.om.u Simple SIMPLE Nonliner NONLINEAR Grphs GRAPHS Liner equtions hve the form = m+ where the power of (n ) is lws. The re lle

More information

Chapter 8 Roots and Radicals

Chapter 8 Roots and Radicals Chpter 8 Roots nd Rdils 7 ROOTS AND RADICALS 8 Figure 8. Grphene is n inredily strong nd flexile mteril mde from ron. It n lso ondut eletriity. Notie the hexgonl grid pttern. (redit: AlexnderAIUS / Wikimedi

More information

SOME COPLANAR POINTS IN TETRAHEDRON

SOME COPLANAR POINTS IN TETRAHEDRON Journl of Pure n Applie Mthemtis: Avnes n Applitions Volume 16, Numer 2, 2016, Pges 109-114 Aville t http://sientifivnes.o.in DOI: http://x.oi.org/10.18642/jpm_7100121752 SOME COPLANAR POINTS IN TETRAHEDRON

More information

A Study on the Properties of Rational Triangles

A Study on the Properties of Rational Triangles Interntionl Journl of Mthemtis Reserh. ISSN 0976-5840 Volume 6, Numer (04), pp. 8-9 Interntionl Reserh Pulition House http://www.irphouse.om Study on the Properties of Rtionl Tringles M. Q. lm, M.R. Hssn

More information

Applied. Grade 9 Assessment of Mathematics. Multiple-Choice Items. Winter 2005

Applied. Grade 9 Assessment of Mathematics. Multiple-Choice Items. Winter 2005 Applie Gre 9 Assessment of Mthemtis Multiple-Choie Items Winter 2005 Plese note: The formt of these ooklets is slightly ifferent from tht use for the ssessment. The items themselves remin the sme. . Multiple-Choie

More information

Edexcel Level 3 Advanced GCE in Mathematics (9MA0) Two-year Scheme of Work

Edexcel Level 3 Advanced GCE in Mathematics (9MA0) Two-year Scheme of Work Eexel Level 3 Avne GCE in Mthemtis (9MA0) Two-yer Sheme of Work Stuents stuying A Level Mthemtis will tke 3 ppers t the en of Yer 13 s inite elow. All stuents will stuy Pure, Sttistis n Mehnis. A level

More information

1 This diagram represents the energy change that occurs when a d electron in a transition metal ion is excited by visible light.

1 This diagram represents the energy change that occurs when a d electron in a transition metal ion is excited by visible light. 1 This igrm represents the energy hnge tht ours when eletron in trnsition metl ion is exite y visile light. Give the eqution tht reltes the energy hnge ΔE to the Plnk onstnt, h, n the frequeny, v, of the

More information

Statistics in medicine

Statistics in medicine Sttistis in meiine Workshop 1: Sreening n ignosti test evlution Septemer 22, 2016 10:00 AM to 11:50 AM Hope 110 Ftm Shel, MD, MS, MPH, PhD Assistnt Professor Chroni Epiemiology Deprtment Yle Shool of Puli

More information

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 3 : Interaction by Particle Exchange and QED. Recap

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 3 : Interaction by Particle Exchange and QED. Recap Prtile Physis Mihelms Term 2011 Prof Mrk Thomson g X g X g g Hnout 3 : Intertion y Prtile Exhnge n QED Prof. M.A. Thomson Mihelms 2011 101 Rep Working towrs proper lultion of ey n sttering proesses lnitilly

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design nd Anlysis LECTURE 5 Supplement Greedy Algorithms Cont d Minimizing lteness Ching (NOT overed in leture) Adm Smith 9/8/10 A. Smith; sed on slides y E. Demine, C. Leiserson, S. Rskhodnikov,

More information

Nondeterministic Automata vs Deterministic Automata

Nondeterministic Automata vs Deterministic Automata Nondeterministi Automt vs Deterministi Automt We lerned tht NFA is onvenient model for showing the reltionships mong regulr grmmrs, FA, nd regulr expressions, nd designing them. However, we know tht n

More information

Generalization of 2-Corner Frequency Source Models Used in SMSIM

Generalization of 2-Corner Frequency Source Models Used in SMSIM Generliztion o 2-Corner Frequeny Soure Models Used in SMSIM Dvid M. Boore 26 Mrh 213, orreted Figure 1 nd 2 legends on 5 April 213, dditionl smll orretions on 29 My 213 Mny o the soure spetr models ville

More information

CIT 596 Theory of Computation 1. Graphs and Digraphs

CIT 596 Theory of Computation 1. Graphs and Digraphs CIT 596 Theory of Computtion 1 A grph G = (V (G), E(G)) onsists of two finite sets: V (G), the vertex set of the grph, often enote y just V, whih is nonempty set of elements lle verties, n E(G), the ege

More information

Total score: /100 points

Total score: /100 points Points misse: Stuent's Nme: Totl sore: /100 points Est Tennessee Stte University Deprtment of Computer n Informtion Sienes CSCI 2710 (Trnoff) Disrete Strutures TEST 2 for Fll Semester, 2004 Re this efore

More information

Section 4: Integration ECO4112F 2011

Section 4: Integration ECO4112F 2011 Reding: Ching Chpter Section : Integrtion ECOF Note: These notes do not fully cover the mteril in Ching, ut re ment to supplement your reding in Ching. Thus fr the optimistion you hve covered hs een sttic

More information

1B40 Practical Skills

1B40 Practical Skills B40 Prcticl Skills Comining uncertinties from severl quntities error propgtion We usully encounter situtions where the result of n experiment is given in terms of two (or more) quntities. We then need

More information

Lecture 4: Graph Theory and the Four-Color Theorem

Lecture 4: Graph Theory and the Four-Color Theorem CCS Disrete II Professor: Pri Brtlett Leture 4: Grph Theory n the Four-Color Theorem Week 4 UCSB 2015 Through the rest of this lss, we re going to refer frequently to things lle grphs! If you hen t seen

More information

Conservation Law. Chapter Goal. 6.2 Theory

Conservation Law. Chapter Goal. 6.2 Theory Chpter 6 Conservtion Lw 6.1 Gol Our long term gol is to unerstn how mthemticl moels re erive. Here, we will stuy how certin quntity chnges with time in given region (sptil omin). We then first erive the

More information

Logarithms LOGARITHMS.

Logarithms LOGARITHMS. Logrithms LOGARITHMS www.mthletis.om.u Logrithms LOGARITHMS Logrithms re nother method to lulte nd work with eponents. Answer these questions, efore working through this unit. I used to think: In the

More information

Identifying and Classifying 2-D Shapes

Identifying and Classifying 2-D Shapes Ientifying n Clssifying -D Shpes Wht is your sign? The shpe n olour of trffi signs let motorists know importnt informtion suh s: when to stop onstrution res. Some si shpes use in trffi signs re illustrte

More information

The Stirling Engine: The Heat Engine

The Stirling Engine: The Heat Engine Memoril University of Newfounln Deprtment of Physis n Physil Oenogrphy Physis 2053 Lortory he Stirling Engine: he Het Engine Do not ttempt to operte the engine without supervision. Introution Het engines

More information

Part 4. Integration (with Proofs)

Part 4. Integration (with Proofs) Prt 4. Integrtion (with Proofs) 4.1 Definition Definition A prtition P of [, b] is finite set of points {x 0, x 1,..., x n } with = x 0 < x 1

More information

Engr354: Digital Logic Circuits

Engr354: Digital Logic Circuits Engr354: Digitl Logi Ciruits Chpter 4: Logi Optimiztion Curtis Nelson Logi Optimiztion In hpter 4 you will lern out: Synthesis of logi funtions; Anlysis of logi iruits; Tehniques for deriving minimum-ost

More information

Mathematics SKE: STRAND F. F1.1 Using Formulae. F1.2 Construct and Use Simple Formulae. F1.3 Revision of Negative Numbers

Mathematics SKE: STRAND F. F1.1 Using Formulae. F1.2 Construct and Use Simple Formulae. F1.3 Revision of Negative Numbers Mthemtis SKE: STRAND F UNIT F1 Formule: Tet STRAND F: Alger F1 Formule Tet Contents Setion F1.1 Using Formule F1. Construt nd Use Simple Formule F1.3 Revision of Negtive Numers F1.4 Sustitution into Formule

More information

Equivalent fractions have the same value but they have different denominators. This means they have been divided into a different number of parts.

Equivalent fractions have the same value but they have different denominators. This means they have been divided into a different number of parts. Frtions equivlent frtions Equivlent frtions hve the sme vlue ut they hve ifferent enomintors. This mens they hve een ivie into ifferent numer of prts. Use the wll to fin the equivlent frtions: Wht frtions

More information

Behavior Composition in the Presence of Failure

Behavior Composition in the Presence of Failure Behvior Composition in the Presene of Filure Sestin Srdin RMIT University, Melourne, Austrli Fio Ptrizi & Giuseppe De Giomo Spienz Univ. Rom, Itly KR 08, Sept. 2008, Sydney Austrli Introdution There re

More information

Mathematical Proofs Table of Contents

Mathematical Proofs Table of Contents Mthemtil Proofs Tle of Contents Proof Stnr Pge(s) Are of Trpezoi 7MG. Geometry 8.0 Are of Cirle 6MG., 9 6MG. 7MG. Geometry 8.0 Volume of Right Cirulr Cyliner 6MG. 4 7MG. Geometry 8.0 Volume of Sphere Geometry

More information

Area and Perimeter. Area and Perimeter. Solutions. Curriculum Ready.

Area and Perimeter. Area and Perimeter. Solutions. Curriculum Ready. Are n Perimeter Are n Perimeter Solutions Curriulum Rey www.mthletis.om How oes it work? Solutions Are n Perimeter Pge questions Are using unit squres Are = whole squres Are = 6 whole squres = units =

More information

Technology Mapping Method for Low Power Consumption and High Performance in General-Synchronous Framework

Technology Mapping Method for Low Power Consumption and High Performance in General-Synchronous Framework R-17 SASIMI 015 Proeeings Tehnology Mpping Metho for Low Power Consumption n High Performne in Generl-Synhronous Frmework Junki Kwguhi Yukihie Kohir Shool of Computer Siene, the University of Aizu Aizu-Wkmtsu

More information

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Nme Dte hpter 9 Mintining Mthemtil Profiieny Simplify the epression. 1. 500. 189 3. 5 4. 4 3 5. 11 5 6. 8 Solve the proportion. 9 3 14 7. = 8. = 9. 1 7 5 4 = 4 10. 0 6 = 11. 7 4 10 = 1. 5 9 15 3 = 5 +

More information