Pseudo-seismic wavelet transformation of transient electromagnetic response in engineering geology exploration

Size: px
Start display at page:

Download "Pseudo-seismic wavelet transformation of transient electromagnetic response in engineering geology exploration"

Transcription

1 GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L645, doi:.29/27gl36, 27 Pseudo-seismic wavelet transformation of transient electromagnetic response in engineering geology exploration G. Q. Xue, Y. J. Yan, 2 and X. Li 3 Received 25 June 27; revised 27 July 27; accepted August 27; published 3 August 27. [] This paper presents some new theoretical analysis and numerical simulations of that transient electromagnetic diffusion-field response is transformed into a pseudoseismic wavelet in engineering geology exploration. It can clearly reveal the electric interface under ground. To simplify the integral equation used in the transformation, the integral range is separated into seven windows, and each window is compiled into a group of integral coefficients. Then, the accuracy of the coefficients is tested, and the calculated coefficients are used to derive the pseudo-seismic wavelet by optimization method. Finally, several geoelectric models are designed, so that model responses are transformed into the pseudo-seismic wavelet. The transformed imaginary wave shows that some reflection and refraction phenomena appear when the wave meets the electric interface. This result supports the introduction of the seismic interpretation in data processing of transient electromagnetic method. Citation: Xue, G. Q., Y. J. Yan, and X. Li (27), Pseudo-seismic wavelet transformation of transient electromagnetic response in engineering geology exploration, Geophys. Res. Lett., 34, L645, doi:.29/27gl36.. Introduction [2] Recently, the developed and developing technologies in seismology are gradually applied to Transient Electromagnetic Method (TEM), such as pseudo-seismic interpretation and MT migration imaging technique etc. These methods consumedly extend the potential capacities of TEM, so that the clear information of ground target can be extracted from practical measured data. [3] Over the past decades, transient electromagnetic methods (TEM) have become widely used in the ground source exploration [Gunderson et al., 986], ground target mapping [Xue et al., 24], and borehole-based ore investigations. However, with the rapid development of engineering construction, the precision involved in TEM prospecting has not met the increasingly stringent demands of engineering geology. It is very necessary that some new methods must be developed to solve this problem. Geophysicists have been paying close attention to research on pseudo-seismic methods and electromagnetic migration imaging methods. Many important advances as the combined migration and inversion have been made in these fields in recent years. Levy et al. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China. 2 Department of Engineering Mechanics, Northwestern Polytechnical University, Xi an, China. 3 School of Geology and Survey Engineering, Chang An University, Xi an, China. Copyright 27 by the American Geophysical Union /7/27GL36 [988] first investigated pseudo-seismic MT (Magnetotelluric). However, so far, research on TEM pseudo-seismic interpretation is still infrequent. [4] At present, the TEM pseudo-seismic interpretation has two approaches. One is to transform the data of the TEM diffusion field into MT data through the approximate formula t = (94 2)/f (t-ms, f-hz) [Maxwell, 996]. This was first used to correct the MT static shift according to TEM magnetic-field sounding data so that seismic-like data can be obtained via the MT pseudo-seismic method [Sternberg et al., 985]. [5] Another is the wave-field transformation method. Because there is some relationship between the diffusion and wave equations, the similarities between wave propagation and diffusion propagation should be. Lee et al. [987] formulated a complete imaging algorithm that is the EM equivalent of seismic migration. Based on the similarity of the Laplace transform for the diffusion and non-diffusion fields, Gershenson [993] presented a simple transformation from the diffusion field into wave field; and this was proposed as a means of interpreting TEM sounding data. The diffusion equation for a field H in time domain t can be transformed into a wave equation for a field U in a time-like variable [Lee et al., 989]. This involves transforming the TEM response into a pseudo-seismic wavelet and then interpreting the TEM sounding data according to plane-wave sounding theory.the pseudo-seismic wavelet is different with general wavelet transform. In fact, the former is only the echo wave similarly with earthquake. Based on the relationship between diffusion equation and wave equation, TEM sounding data can be converted into pseudo-seismic wavelet, and there will exist the certain relationship between converted imaginary wave and real seismic reflection wavelets. Thus, ones can equivalently regard effusion information as the seismic reflection signal which comes from underground interface. As a result, ones can interpret TEM sounding data according to well development seismic theory. [6] However, the transforming equation will give rise to difficulties in the numerical calculation, so efficient numerical solutions need still to be developed. Based on the above-mentioned wave-field transformation method, this paper shows how to realize the wave-field transformation and provides a more detailed solution to the pseudo-seismic wavelet inversion. In order to get good numerical solutions, the integral range is firstly separate into seven time windows, and integral coefficients are assigned to each time window using the same equation in all cases so that the precision in calculating the coefficients can be increased. Finally, an optimizing method is used to obtain a stable and reliable solution for the seismic-like wavelet. The example results have shown that the obtained pseudo-seismic curve L645 of5

2 L645 XUE ET AL.: PSEUDO-SEISMIC WAVELET TRANSFORMATION L645 can distinguish the electric interface more clearly than traditional data-processing curve. 2. Theoretical and Numerical Analyses [7] From the Maxwell equation, the partial differential equation of the magnetic field can be expressed as rrh m ðr; H mðr; tþ ¼ ; ðþ [4] Equation (7) is the formula of the wave-field transformation from a transient electromagnetic field component to a pseudo-seismic wavelet. [5] If the integral coefficients are known, we can obtain the wave field value U(t j ) from the surveyed transient electromagnetic field value H m (t) by performing an inverse transformation of equation (7). Consequently, the integral coefficient h j is more important. [6] Let u(t) =, equation (6) have the following form where H m is the magnetic field intensity, m is magnetic permeable, s is conductivity, and r is the distance from the source to the field point. [8] The initial and boundary conditions can be written as H m ðr; Þ ¼ ; H m j G ¼ H m ðr ; tþ; t > ; ð2þ where G is the boundary of volume V at r =r b. We introduce U(r, t) that satisfies the following wave equations rrur; ð 2 Ur; ð t Þ ¼ ; ð3þ Z According to the special integral equation (8) becomes Z xe ax2 dx ¼ 2a ; Z te t2 =4t dt: te t2 =4t dt ¼ p ffiffiffiffi pt ð8þ ð9þ ðþ Ur; ð Ur; ð tþj t¼ ¼ ; ð4þ Uj r ¼ Ur ð b ; tþ; t > ; ð5þ where t is the variable of pseudo-time in the wave domain. [9] The unique relationship between the time-domain diffusion field H m (r, t) and the imaginary t domain wave field U(r, t) is as following Z te t2 4t UðtÞdt: This transformation equation between the diffusion field H m (t) and the pseudo-wave field U(t) involves only time t and parameter t which is independent of r. [] According to equation (6), the value of the pseudowave field U(t) can be calculated using the surveyed value of the diffusion field H m (t). However, the equation is illposed and the unknown U(t) is hidden in the integral equation. Consequently, a suitable numerical scheme must be used to solve the problem. [] For a homogeneous whole space, the equation can be simplified so that a simple relationship between the diffusion and wave fields can be determined. For example, a standard finite-difference method can be used to obtain the solution of the pseudo-wave field. [2] In this section, to obtain the solution of the half space, we will seek a group of integral coefficients to linearize the integral functions. [3] We can rewrite equation (6) as follows: H m ðt i Þ ¼ Xn j¼ where a(t i, t j )= pffiffiffiffi 2 i ð6þ U t j ati ; t j hj : ð7þ t 2 j 4t t j e i, h j is the integral coefficient. and the right-hand term of equation (7) can be written as X n j¼ at i ; t j hj : ¼ p ffiffiffiffiffi : ðþ Integral coefficients can be obtained from equation () using optimization method. We rewrite equation () as a matrix equation: T ¼ a h þ a 2 h 2 þþa N h N T ¼ a 2 h þ a 22 h 2 þþa 2N h N T M ¼ a M h þ a M2 h 2 þþa MN h N ð2þ where T i = p ffiffiffiffi, a i,j = a(t i, t j ). Solving equation (2), the integral coefficients h j can be obtained using optimization method. [7] During the forward transformation of wave-field, in order to ensure transient electromagnetic field calculation precision, the two-step optimized method is adopted. This method can deal well with ill-posed question produced by large amount of integral coefficients and depress the illposed problem of the first calculator function. In wave-field inverse transformation, the normalized method are adopted, optimizing normalized parameters are selected by the deviation theory and the Newton iterative form to make the transformed wave field stable and reliable. [8] Because the temporal scope of transient electromagnetic field data is wide from several tens ms to several tens ms, the number of matrix coefficients will become excessive large. In order to overcome this trouble, the entire time range ( ms) is separated into seven time ranges so as to calculate the coefficients by solving equation (2) for each window. For every time window, the n in equation () is selected as 2, thus 2 integral coefficients (h h 2 ) can be obtained by solving equation (2). All results of the acquired integral coefficients are listed in Table. 2of5

3 L645 XUE ET AL.: PSEUDO-SEISMIC WAVELET TRANSFORMATION L645 Table. Integral Conversion Coefficients h j 2 in Different Time Range Time Number of Time Gate Range [9] In order to validate the accuracy of the numerical calculating scheme, the acquired integral coefficients of every time window are inversed into the wave-field value. For the wave-field value u(t) =, we let the electromagnetic field value be H m (t i )= p ffiffiffiffi then, equation () can be rewritten as p ffiffiffiffiffi ¼ Xn j¼ U t j ati ; t j hj : ð3þ Equation (3) is solved using the calculated integral coefficients, so the wave-field value u(t) can be induced. Finally, the numerical results of wave-field value are compared with its theoretical value. Results of the inverse wave-field value and the theoretical wave-field value corresponding to each time window are shown in Figure. In Figure, the dotted lines represent the inverse wave-field value, while solid lines represent the theoretical wave-field value (u(t) = ). The inversion results and level of obtained accuracy demonstrate that it is appropriate to separate the time range into seven time windows and use the coefficients in calculating the wave-field values. It is also shown that relative errors for the 7 time windows are 5.7%, 6.7%, 5.4%, 6.%, 5.2%, 5.7%, and 4.5%, respectively. In general, this error level is acceptable in practice engineering issues. the results of wave-field transformation of the G-type model at different depths h. [24] During the forward calculation, the transmitter square loop is set to 2 m, the transmitter current equals to A, and the recorder time ranges from 72 ms to8msin Figure 2. However, information related to the geo-electric interface cannot be directly observed. On the other hand, Figure 2b shows that with the increase of h, the arrival time of the pseudo-wavelet wave becomes later, and the amplitude decreases, but the width of the pseudo wave-let increases. [25] In order to improve the identifying ability for the geo-electric interfaces using the proposed numerical analysis, the four more complex models with three-layered geoelectric interfaces are designed. The four models are labeled as H-type, K-type, A-type, and Q-type. For the H-type, r = 25W m and h =6m, r 2 =5W m and h 2 =6m, r 3 = 5W m. For the K-type, r =5W m and h =6m, r 2 =5W m and h 2 =6m, r 3 =5W m. For the A-type, 3. Model Examples [2] In this section, the 6 geo-electric models are given to obtain the pseudo-seismic wavelet using the proposed numerical approach. First, the two models with the twolayers, which are G-type model and D-type model, are designed using a center loop configuration that can be used to survey field data in a similar way to seismic exploration by self-exciting and a self-receiving configuration. Before doing the wave-field transformation, the response of the half-space from the resistivity of the first layer is subtracted using forward-calculated data. [2] For G-type model, the resistivity of the first layer is r =5Wm, and that of the second layer is r 2 = 5W m. For D-type model, the resistivity of the first layer is r = W m, and that of the second layer is r 2 =W m. [22] Based on equation (7), results of the wave-field transformation of the G-type model with the two-layer geo-electric section at different depth h, where the h equals to 4 m, 6 m, 8 m, m, 2 m, 4 m, 6 m, 8 m and 2 m in turn are showed in Figure 2. [23] Figure 2a is the forward calculations of the decay curve of the G-type model at different depths. Figure 2b is 3of5 Figure. Results of the wave-field inversion.

4 L645 XUE ET AL.: PSEUDO-SEISMIC WAVELET TRANSFORMATION L645 r =5W m and h =6m, r 2 =5W m and h 2 =6m, r 3 = 5W m. For the Q-type, r =25W m and h =6m, r 2 = 5W m and h 2 =6m, r 3 =W m. [26] The typical forward-calculated decay curves and their apparent resistivity of the H-type models are shown in Figures 3a and 3b. They cannot still reveal the geoelectric interface. However, the pseudo-wave field curves transformed from the center loop TEM responses of the model is plotted, as shown in Figure 3c, it can clearly depict geo-electric interfaces. Results also show that the magnitude of the first interface is greater than that of the second. Even for a body buried at a depth of 2 m, TEM is still able to distinguish the electric interface. 4. Conclusion [27] The proposed method of TEM pseudo-seismic interpretation represents an advance in the available technology in which we use a special equation to transform TEM field data into pseudo-seismic wavelet data. As the equation that links the time-domain diffusion field H m (r, t) and the pseudo wave field is generally ill-posed, we took the steps of determining a group of integral coefficients and linear integral equation, separating the integral range into seven time windows, and adopting an optimizing method to obtain Figure 3. Three-layer H-type geo-electric section: (a) decay curve, (b) apparent resistivity curve, and (c) result of wavefield transformation. stable wave field values. Tests of the accuracy of the model calculations indicate that the method is sound. [28] As the wavelength of the electric field is longer than that of the real seismic wave, the length of the transformed wave-field wavelet is also large. [29] The calculated result reveals that the transformed imaginary wave shows features of propagation during travel through a conductive medium: there are reflection and refraction phenomena when the wave meets the electric interface. This result supports the introduction of the seismic interpretation method into TEM data-processing. [3] Acknowledgments. This work was supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX2-YW- 3). The authors gratefully acknowledge the support of the K. C. Wong Education Foundation, Hong Kong (259986). This project was also supported by the China Postdoctoral Science Foundation ( ) and National Natural Science Fund (55398). Figure 2. Results for the transformation of the two-layer G-type model: (a) decay curves derived and (b) results of wave-field transformation. References Gershenson, M. (993), Simple interpretation of time domain electromagnet sounding using similarities between wave and diffusion propagation [J], Geophysics, 62, of5

5 L645 XUE ET AL.: PSEUDO-SEISMIC WAVELET TRANSFORMATION L645 Gunderson, B. M., G. A. Newman, and G. W. Hohmann (986), Three dimensional transient electromagnetic responses for a grounded source, Geophysics, 5, Lee, K. H., G. Liu, and H. F. Morrison (989), A new approach to modeling the electromagnetic response of conductive media, Geophysics, 54, Lee, S., G. A. McMechan, and C. L. V. Aiken (987), Phase-field imaging: The electromagnetic equivalent of seismic migration, Geophysics, 52, Levy, S., D. Oldenburg, and J. Wang (988), Subsurface imaging using magnetotelluric data, Geophysics, 53, 4 7. Maxwell, A. M. (996), Joint inversion of TEM and distorted MT soundings: Effective practical considerations, Geophysics, 6, P56 P65. Xue, G. Q., J. P. Song, and S. Yan (24), Detecting shallow caverns in China using TEM, The Leading Edge, 23(7), Sternberg, B. K., J. C. Washburne, and R. G. Anderson (985), Investigation of MT static shift correction methods, SEG Tech. Prog. Expanded Abstr., 4, X. Li, School of Geology and Survey Engineering, Chang An University, Xi an, 754, China. G. Q. Xue, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 29, China. Y. J. Yan, Department of Engineering Mechanics, Northwestern Polytechnical University, Xi an, 772, China. (yjyan_2895@nwpu. edu.cn) 5of5

THEORETICAL ANALYSIS AND NUMERICAL CALCULATION OF LOOP-SOURCE TRANSIENT ELECTROMAGNETIC IMAGING

THEORETICAL ANALYSIS AND NUMERICAL CALCULATION OF LOOP-SOURCE TRANSIENT ELECTROMAGNETIC IMAGING CHINESE JOURNAL OF GEOPHYSICS Vol.47, No.2, 24, pp: 379 386 THEORETICAL ANALYSIS AND NUMERICAL CALCULATION OF LOOP-SOURCE TRANSIENT ELECTROMAGNETIC IMAGING XUE Guo-Qiang LI Xiu SONG Jian-Ping GUO Wen-Bo

More information

3D pseudo-seismic imaging of transient electromagnetic data a feasibility study

3D pseudo-seismic imaging of transient electromagnetic data a feasibility study Geophysical Prospecting, 213, 61 (Suppl. 1), 561 571 doi: 1.1111/j.1365-2478.212.119.x 3D pseudo-seismic imaging of transient electromagnetic data a feasibility study G.Q. Xue 1, L.-J. Gelius 2,L.Xiu 3,Z.P.Qi

More information

Downloaded 01/09/13 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 01/09/13 to Redistribution subject to SEG license or copyright; see Terms of Use at 3D modeling of IP effects on electromagnetic data in the time domain David Marchant, Eldad Haber, Laurens Beran and Douglas W. Oldenburg, University of British Columbia Downloaded /9/3 to 37.82.7.. Redistribution

More information

Magnetotelluric (MT) Method

Magnetotelluric (MT) Method Magnetotelluric (MT) Method Dr. Hendra Grandis Graduate Program in Applied Geophysics Faculty of Mining and Petroleum Engineering ITB Geophysical Methods Techniques applying physical laws (or theory) to

More information

Seismic wavepropagation concepts applied to the interpretation of marine controlled-source electromagnetics

Seismic wavepropagation concepts applied to the interpretation of marine controlled-source electromagnetics Seismic wavepropagation concepts applied to the interpretation of marine controlled-source electromagnetics Rune Mittet, EMGS SUMMARY are very useful for the interpretation of seismic data. Moreover, these

More information

Adaptive Sharp Boundary Inversion for Transient Electromagnetic Data

Adaptive Sharp Boundary Inversion for Transient Electromagnetic Data Progress In Electromagnetics Research M, Vol. 57, 19 138, 017 Adaptive Sharp Boundary Inversion for Transient Electromagnetic Data Rui Guo 1,, Xin Wu 1,, *,LihuaLiu 1,JutaoLi 1, Pan Xiao 1,, and Guangyou

More information

Dr. Jing-Bo Chen Professor Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China

Dr. Jing-Bo Chen Professor Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China Dr. Jing-Bo Chen Professor Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China Biography Jing -Bo Chen received a B.S. (1990) in mathematics from Heibei U niversity in C hina

More information

Modeling of 3D MCSEM and Sensitivity Analysis

Modeling of 3D MCSEM and Sensitivity Analysis PIERS ONLINE, VOL. 3, NO. 5, 2007 641 Modeling of 3D MCSEM and Sensitivity Analysis Zhanxiang He 1, 2, Zhigang Wang 2, Gang Yu 3, Kurt Strack 3, and Haiying Liu 2 1 Department of Geosciences, University

More information

The simulation and research of seismoelectric logs for Logging While Drilling(LWD) Zhao Yongpeng1, a, Sun Xiangyang2,b

The simulation and research of seismoelectric logs for Logging While Drilling(LWD) Zhao Yongpeng1, a, Sun Xiangyang2,b nd International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 017) The simulation and research of seismoelectric logs for Logging While Drilling(LWD) Zhao Yongpeng1,

More information

Integrated Geophysical Model for Suswa Geothermal Prospect using Resistivity, Seismics and Gravity Survey Data in Kenya

Integrated Geophysical Model for Suswa Geothermal Prospect using Resistivity, Seismics and Gravity Survey Data in Kenya Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April 2015 Integrated Geophysical Model for Suswa Geothermal Prospect using Resistivity, Seismics and Gravity Survey Data in Kenya

More information

Tieyuan Zhu Postdoctoral Fellow, Jackson School of Geosciences, the University of Texas at Austin Mail address: Telephone: Website:

Tieyuan Zhu Postdoctoral Fellow, Jackson School of Geosciences, the University of Texas at Austin Mail address: Telephone:   Website: Postdoctoral Fellow, Jackson School of Geosciences, the University of Texas at Austin Mail address: Telephone: Email: Website: 10100 Burnet Rd. #130, Austin TX 01-650- 308-6506 tzhu@jsg.utexas.edu http://www.jsg.utexas.edu/tyzhu/

More information

Estimation of S-wave scattering coefficient in the mantle from envelope characteristics before and after the ScS arrival

Estimation of S-wave scattering coefficient in the mantle from envelope characteristics before and after the ScS arrival GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 24, 2248, doi:10.1029/2003gl018413, 2003 Estimation of S-wave scattering coefficient in the mantle from envelope characteristics before and after the ScS arrival

More information

3. Magnetic Methods / 62

3. Magnetic Methods / 62 Contents Preface to the Second Edition / xv Excerpts from Preface to the FirstEdition / xvii Mathematical Conventions / xix 1. Introduction / 1 Reference / 5 2. Gravity Methods / 6 2. I. Introduction /

More information

A Brief Introduction to Magnetotellurics and Controlled Source Electromagnetic Methods

A Brief Introduction to Magnetotellurics and Controlled Source Electromagnetic Methods A Brief Introduction to Magnetotellurics and Controlled Source Electromagnetic Methods Frank Morrison U.C. Berkeley With the help of: David Alumbaugh Erika Gasperikova Mike Hoversten Andrea Zirilli A few

More information

A new method for multi-exponential inversion of NMR relaxation measurements

A new method for multi-exponential inversion of NMR relaxation measurements Science in China Ser. G Physics, Mechanics & Astronomy 2004 Vol.47 No.3 265 276 265 A new method for multi-exponential inversion of NMR relaxation measurements WANG Zhongdong 1, 2, XIAO Lizhi 1 & LIU Tangyan

More information

Elastic full waveform inversion for near surface imaging in CMP domain Zhiyang Liu*, Jie Zhang, University of Science and Technology of China (USTC)

Elastic full waveform inversion for near surface imaging in CMP domain Zhiyang Liu*, Jie Zhang, University of Science and Technology of China (USTC) Elastic full waveform inversion for near surface imaging in CMP domain Zhiyang Liu*, Jie Zhang, University of Science and Technology of China (USTC) Summary We develop an elastic full waveform inversion

More information

Inductive source induced polarization David Marchant, Eldad Haber and Douglas W. Oldenburg, University of British Columbia

Inductive source induced polarization David Marchant, Eldad Haber and Douglas W. Oldenburg, University of British Columbia David Marchant, Eldad Haber and Douglas W. Oldenburg, University of British Columbia Downloaded /9/3 to 37.8.7.. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

More information

Numerical study on scanning radiation acoustic field in formations generated from a borehole

Numerical study on scanning radiation acoustic field in formations generated from a borehole Science in China Ser. G Physics, Mechanics & Astronomy 5 Vol.48 No. 47 56 47 Numerical study on scanning radiation acoustic field in formations generated from a borehole CHE Xiaohua 1, ZHANG Hailan 1,

More information

Achieving depth resolution with gradient array survey data through transient electromagnetic inversion

Achieving depth resolution with gradient array survey data through transient electromagnetic inversion Achieving depth resolution with gradient array survey data through transient electromagnetic inversion Downloaded /1/17 to 128.189.118.. Redistribution subject to SEG license or copyright; see Terms of

More information

Seismic tomography with co-located soft data

Seismic tomography with co-located soft data Seismic tomography with co-located soft data Mohammad Maysami and Robert G. Clapp ABSTRACT There is a wide range of uncertainties present in seismic data. Limited subsurface illumination is also common,

More information

INTRODUCTION TO APPLIED GEOPHYSICS

INTRODUCTION TO APPLIED GEOPHYSICS INTRODUCTION TO APPLIED GEOPHYSICS EXPLORING THE SHALL0W SUBSURFACE H. Robert Burger Anne F. Sheehan Craig H.Jones VERSITY OF COLORADO VERSITY OF COLORADO W. W. NORTON & COMPANY NEW YORK LONDON Contents

More information

PART A: Short-answer questions (50%; each worth 2%)

PART A: Short-answer questions (50%; each worth 2%) PART A: Short-answer questions (50%; each worth 2%) Your answers should be brief (just a few words) and may be written on these pages if you wish. Remember to hand these pages in with your other exam pages!

More information

Geophysical Applications GPR Ground Penetrating Radar

Geophysical Applications GPR Ground Penetrating Radar Overview: Basics of GPR Radar-wave velocity, attenuation and skin depth Modes of acquisition The Radar-range equation Dielectric properties of materials and relation to porosity Case studies [Archeology,

More information

Attenuation compensation in least-squares reverse time migration using the visco-acoustic wave equation

Attenuation compensation in least-squares reverse time migration using the visco-acoustic wave equation Attenuation compensation in least-squares reverse time migration using the visco-acoustic wave equation Gaurav Dutta, Kai Lu, Xin Wang and Gerard T. Schuster, King Abdullah University of Science and Technology

More information

Controlled source interferometry with noisy data Jürg Hunziker, Joost van der Neut, Evert Slob and Kees Wapenaar, Delft University of Technology

Controlled source interferometry with noisy data Jürg Hunziker, Joost van der Neut, Evert Slob and Kees Wapenaar, Delft University of Technology Jürg Hunziker, Joost van der Neut, Evert Slob and Kees Wapenaar, Delft University of Technology SUMMARY We investigate the effects of noise on controlled-source interferometry by multi-dimensional deconvolution

More information

Wenyong Pan and Lianjie Huang. Los Alamos National Laboratory, Geophysics Group, MS D452, Los Alamos, NM 87545, USA

Wenyong Pan and Lianjie Huang. Los Alamos National Laboratory, Geophysics Group, MS D452, Los Alamos, NM 87545, USA PROCEEDINGS, 44th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 019 SGP-TR-14 Adaptive Viscoelastic-Waveform Inversion Using the Local Wavelet

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara VELOCITY STRUCTURE INVERSIONS FROM HORIZONTAL TO VERTICAL

More information

Comparison between least-squares reverse time migration and full-waveform inversion

Comparison between least-squares reverse time migration and full-waveform inversion Comparison between least-squares reverse time migration and full-waveform inversion Lei Yang, Daniel O. Trad and Wenyong Pan Summary The inverse problem in exploration geophysics usually consists of two

More information

A 27-point scheme for a 3D frequency-domain scalar wave equation based on an average-derivative method

A 27-point scheme for a 3D frequency-domain scalar wave equation based on an average-derivative method Geophysical Prospecting 04 6 58 77 doi: 0./365-478.090 A 7-point scheme for a 3D frequency-domain scalar wave equation based on an average-derivative method Jing-Bo Chen Key Laboratory of Petroleum Resources

More information

One-step extrapolation method for reverse time migration

One-step extrapolation method for reverse time migration GEOPHYSICS VOL. 74 NO. 4 JULY-AUGUST 2009; P. A29 A33 5 FIGS. 10.1190/1.3123476 One-step extrapolation method for reverse time migration Yu Zhang 1 and Guanquan Zhang 2 ABSTRACT We have proposed a new

More information

Use of Seismic and EM Data for Exploration, Appraisal and Reservoir Characterization

Use of Seismic and EM Data for Exploration, Appraisal and Reservoir Characterization Use of Seismic and EM Data for Exploration, Appraisal and Reservoir Characterization Anton Ziolkowski and Folke Engelmark Petroleum Geo-Services CSEG, Calgary, 6 May 2009 Outline Exploration, appraisal,

More information

GEOPHYSICAL SITE CHARACTERIZATION IN SUPPORT OF HIGHWAY EXPANSION PROJECT

GEOPHYSICAL SITE CHARACTERIZATION IN SUPPORT OF HIGHWAY EXPANSION PROJECT GEOPHYSICAL SITE CHARACTERIZATION IN SUPPORT OF HIGHWAY EXPANSION PROJECT * Shane Hickman, * Todd Lippincott, * Steve Cardimona, * Neil Anderson, and + Tim Newton * The University of Missouri-Rolla Department

More information

Downloaded 08/29/13 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 08/29/13 to Redistribution subject to SEG license or copyright; see Terms of Use at New approach to 3D inversion of MCSEM and MMT data using multinary model transform Alexander V. Gribenko and Michael S. Zhdanov, University of Utah and TechnoImaging SUMMARY Marine controlled-source electromagnetic

More information

CHAPTER 9 ELECTROMAGNETIC WAVES

CHAPTER 9 ELECTROMAGNETIC WAVES CHAPTER 9 ELECTROMAGNETIC WAVES Outlines 1. Waves in one dimension 2. Electromagnetic Waves in Vacuum 3. Electromagnetic waves in Matter 4. Absorption and Dispersion 5. Guided Waves 2 Skip 9.1.1 and 9.1.2

More information

Electrical Impedance Tomography Based on Vibration Excitation in Magnetic Resonance System

Electrical Impedance Tomography Based on Vibration Excitation in Magnetic Resonance System 16 International Conference on Electrical Engineering and Automation (ICEEA 16) ISBN: 978-1-6595-47-3 Electrical Impedance Tomography Based on Vibration Excitation in Magnetic Resonance System Shi-qiang

More information

Research on Ground Penetrating Radar Migration Imaging Technology

Research on Ground Penetrating Radar Migration Imaging Technology Sensors & Transducers, Vol. 80, Issue 0, October 04, pp. 5-55 Sensors & Transducers 04 by IFSA Publishing, S. L. http://www.sensorsportal.com Research on Ground Penetrating Radar Migration Imaging Technology

More information

Seismic processing of numerical EM data John W. Neese* and Leon Thomsen, University of Houston

Seismic processing of numerical EM data John W. Neese* and Leon Thomsen, University of Houston Seismic processing of numerical EM data John W. Neese* and Leon Thomsen, University of Houston Summary The traditional methods for acquiring and processing CSEM data are very different from those for seismic

More information

Least squares inversion of self-potential (SP) data and application to the shallow flow of ground water in sinkholes

Least squares inversion of self-potential (SP) data and application to the shallow flow of ground water in sinkholes Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33,, doi:10.1029/2006gl027458, 2006 Least squares inversion of self-potential (SP) data and application to the shallow flow of ground water

More information

V r : A new index to represent the variation rate of geomagnetic activity

V r : A new index to represent the variation rate of geomagnetic activity Earthq Sci (2010)23: 343 348 343 Doi: 10.1007/s11589-010-0731-9 V r : A new index to represent the variation rate of geomagnetic activity Dongmei Yang 1, Yufei He 1 Chuanhua Chen 2 and Jiadong Qian 3 1

More information

Modelling IP effects in airborne time domain electromagnetics

Modelling IP effects in airborne time domain electromagnetics Modelling IP effects in airborne time domain electromagnetics Dave Marchant* Seogi Kang Mike McMillian Eldad Haber Computational Geosciences University of British Columbia Computational Geosciences University

More information

Early Analogue Modeling Experiments and Related Studies to Today s Problems of Geo-electromagnetic Exploration

Early Analogue Modeling Experiments and Related Studies to Today s Problems of Geo-electromagnetic Exploration Journal of Earth Science, Vol. 20, No. 3, p. 618 625, June 2009 ISSN 1674-487X Printed in China DOI: 10.1007/s12583-009-0051-y Early Analogue Modeling Experiments and Related Studies to Today s Problems

More information

GEOPHYSICAL INVERSE THEORY AND REGULARIZATION PROBLEMS

GEOPHYSICAL INVERSE THEORY AND REGULARIZATION PROBLEMS Methods in Geochemistry and Geophysics, 36 GEOPHYSICAL INVERSE THEORY AND REGULARIZATION PROBLEMS Michael S. ZHDANOV University of Utah Salt Lake City UTAH, U.S.A. 2OO2 ELSEVIER Amsterdam - Boston - London

More information

Lesson 1 Introduction to geophysical methods Emanuele Forte

Lesson 1 Introduction to geophysical methods Emanuele Forte Lesson 1 Introduction to geophysical methods Emanuele Forte 3 rd September 2016 Naxos, Greece 1 Outline - What is Geophysics - Base concepts: (Geo)Physical parameters Sensitivity Resolution - Active and

More information

A PML absorbing boundary condition for 2D viscoacoustic wave equation in time domain: modeling and imaging

A PML absorbing boundary condition for 2D viscoacoustic wave equation in time domain: modeling and imaging A PML absorbing boundary condition for 2D viscoacoustic wave equation in time domain: modeling and imaging Ali Fathalian and Kris Innanen Department of Geoscience, University of Calgary Summary The constant-q

More information

Multi-source inversion of TEM data: with field applications to Mt. Milligan

Multi-source inversion of TEM data: with field applications to Mt. Milligan Multi-source inversion of TEM data: with field applications to Mt. Milligan D. Oldenburg, E. Haber, D. Yang Geophysical Inversion Facility, University of British Columbia, Vancouver, BC, Canada Summary

More information

Relative Peak Frequency Increment Method for Quantitative Thin-Layer Thickness Estimation

Relative Peak Frequency Increment Method for Quantitative Thin-Layer Thickness Estimation Journal of Earth Science, Vol. 4, No. 6, p. 168 178, December 13 ISSN 1674-487X Printed in China DOI: 1.17/s1583-13-387-1 Relative Peak Frequency Increment Method for Quantitative Thin-Layer Thickness

More information

Marchenko redatuming: advantages and limitations in complex media Summary Incomplete time reversal and one-sided focusing Introduction

Marchenko redatuming: advantages and limitations in complex media Summary Incomplete time reversal and one-sided focusing Introduction Marchenko redatuming: advantages and limitations in complex media Ivan Vasconcelos*, Schlumberger Gould Research, Dirk-Jan van Manen, ETH Zurich, Matteo Ravasi, University of Edinburgh, Kees Wapenaar and

More information

Tu Efficient 3D MT Inversion Using Finite-difference Time-domain Modelling

Tu Efficient 3D MT Inversion Using Finite-difference Time-domain Modelling Tu 11 16 Efficient 3D MT Inversion Using Finite-difference Time-domain Modelling S. de la Kethulle de Ryhove* (Electromagnetic Geoservices ASA), J.P. Morten (Electromagnetic Geoservices ASA) & K. Kumar

More information

Reflection of SV- Waves from the Free Surface of a. Magneto-Thermoelastic Isotropic Elastic. Half-Space under Initial Stress

Reflection of SV- Waves from the Free Surface of a. Magneto-Thermoelastic Isotropic Elastic. Half-Space under Initial Stress Mathematica Aeterna, Vol. 4, 4, no. 8, 877-93 Reflection of SV- Waves from the Free Surface of a Magneto-Thermoelastic Isotropic Elastic Half-Space under Initial Stress Rajneesh Kakar Faculty of Engineering

More information

A new second order absorbing boundary layer formulation for anisotropic-elastic wavefeld simulation

A new second order absorbing boundary layer formulation for anisotropic-elastic wavefeld simulation A new second order absorbing boundary layer formulation for anisotropic-elastic wavefeld simulation Junxiao Li, Kris Innanen and Bing Wang University of Calgary China University of Petroleum-Beijing Summary

More information

ambiguity in earth sciences IESO Geophysics Section Eddy hartantyo, Lab Geofisika FMIPA UGM

ambiguity in earth sciences IESO Geophysics Section Eddy hartantyo, Lab Geofisika FMIPA UGM ambiguity in earth sciences IESO Geophysics Section Eddy hartantyo, Lab Geofisika FMIPA UGM Pelatihan Tahap II IESO Teknik Geologi UGM Februari 2009 1 Introduction Photos from http://www.eegs.org/whatis/

More information

ANGLE-DEPENDENT TOMOSTATICS. Abstract

ANGLE-DEPENDENT TOMOSTATICS. Abstract ANGLE-DEPENDENT TOMOSTATICS Lindsay M. Mayer, Kansas Geological Survey, University of Kansas, Lawrence, KS Richard D. Miller, Kansas Geological Survey, University of Kansas, Lawrence, KS Julian Ivanov,

More information

APPLICATION OF OPTIMAL BASIS FUNCTIONS IN FULL WAVEFORM INVERSION

APPLICATION OF OPTIMAL BASIS FUNCTIONS IN FULL WAVEFORM INVERSION METHODS AND APPLICATIONS OF ANALYSIS. c 2004 International Press Vol. 11, No. 3, pp. 345 352, September 2004 004 APPLICATION OF OPTIMAL BASIS FUNCTIONS IN FULL WAVEFORM INVERSION PING SHENG, GANG SUN,

More information

1330. Comparative study of model updating methods using frequency response function data

1330. Comparative study of model updating methods using frequency response function data 1330. Comparative study of model updating methods using frequency response function data Dong Jiang 1, Peng Zhang 2, Qingguo Fei 3, Shaoqing Wu 4 Jiangsu Key Laboratory of Engineering Mechanics, Nanjing,

More information

Absorption-Amplification Response with or Without Spontaneously Generated Coherence in a Coherent Four-Level Atomic Medium

Absorption-Amplification Response with or Without Spontaneously Generated Coherence in a Coherent Four-Level Atomic Medium Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 425 430 c International Academic Publishers Vol. 42, No. 3, September 15, 2004 Absorption-Amplification Response with or Without Spontaneously Generated

More information

The exploding-reflector concept for ground-penetrating-radar modeling

The exploding-reflector concept for ground-penetrating-radar modeling ANNALS OF GEOPHYSCS, VOL. 45, N. 3/4, June/August 2002 The exploding-reflector concept for ground-penetrating-radar modeling José M. Carcione ( 1 ), Laura Piñero Feliciangeli ( 2 ) and Michela Zamparo

More information

Quasi-static Vertical Magnetic Field of a Large Horizontal Circular Loop Located at the Earth s Surface

Quasi-static Vertical Magnetic Field of a Large Horizontal Circular Loop Located at the Earth s Surface Progress In Electromagnetics Research Letters, Vol. 6, 9 34, 16 Quasi-static Vertical Magnetic Field of a Large Horizontal Circular Loop Located at the Earth s Surface Mauro Parise * Abstract In this work,

More information

Electromagnetic fields and waves

Electromagnetic fields and waves Electromagnetic fields and waves Maxwell s rainbow Outline Maxwell s equations Plane waves Pulses and group velocity Polarization of light Transmission and reflection at an interface Macroscopic Maxwell

More information

MT Prospecting. Map Resistivity. Determine Formations. Determine Structure. Targeted Drilling

MT Prospecting. Map Resistivity. Determine Formations. Determine Structure. Targeted Drilling MT Prospecting Map Resistivity Determine Formations Determine Structure Targeted Drilling Cross-sectional interpretation before and after an MT survey of a mineral exploration prospect containing volcanic

More information

Directive Emission Obtained by Coordinate Transformation

Directive Emission Obtained by Coordinate Transformation Directive Emission Obtained by Coordinate Transformation Jingjing Zhang 1, Yu Luo 1, Hongsheng Chen 1 2*, Lixin Ran 1, Bae-Ian Wu 2, and Jin Au Kong 1 2 1 The Electromagnetics Academy at Zhejiang University,

More information

1D and 2D Inversion of the Magnetotelluric Data for Brine Bearing Structures Investigation

1D and 2D Inversion of the Magnetotelluric Data for Brine Bearing Structures Investigation 1D and 2D Inversion of the Magnetotelluric Data for Brine Bearing Structures Investigation Behrooz Oskooi *, Isa Mansoori Kermanshahi * * Institute of Geophysics, University of Tehran, Tehran, Iran. boskooi@ut.ac.ir,

More information

Observations of an interplanetary slow shock associated with magnetic cloud boundary layer

Observations of an interplanetary slow shock associated with magnetic cloud boundary layer Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L15107, doi:10.1029/2006gl026419, 2006 Observations of an interplanetary slow shock associated with magnetic cloud boundary layer P. B.

More information

Observation of shear-wave splitting from microseismicity induced by hydraulic fracturing: A non-vti story

Observation of shear-wave splitting from microseismicity induced by hydraulic fracturing: A non-vti story Observation of shear-wave splitting from microseismicity induced by hydraulic fracturing: A non-vti story Petr Kolinsky 1, Leo Eisner 1, Vladimir Grechka 2, Dana Jurick 3, Peter Duncan 1 Summary Shear

More information

Flute-Model Acoustic Metamaterials with Simultaneously. Negative Bulk Modulus and Mass Density

Flute-Model Acoustic Metamaterials with Simultaneously. Negative Bulk Modulus and Mass Density Flute-Model Acoustic Metamaterials with Simultaneously Negative Bulk Modulus and Mass Density H. C. Zeng, C. R. Luo, H. J. Chen, S. L. Zhai and X. P. Zhao * Smart Materials Laboratory, Department of Applied

More information

An equivalent viscoelastic model for rock mass with parallel joints

An equivalent viscoelastic model for rock mass with parallel joints Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2008jb006241, 2010 An equivalent viscoelastic model for rock mass with parallel joints Jianchun Li, 1 Guowei Ma, 1 and

More information

Tomography for Static Corrections and Prestack Depth Imaging

Tomography for Static Corrections and Prestack Depth Imaging Tomography for Static Corrections and Prestack Depth Imaging Xianhuai Zhu, Ph.D. Fusion Petroleum Technologies Inc. 25231 Grogan's Mill Road, Suite 175 The Woodlands, TX 77380, USA Summary Turning-ray

More information

Anna Avdeeva Dmitry Avdeev and Marion Jegen. 31 March Introduction to 3D MT inversion code x3di

Anna Avdeeva Dmitry Avdeev and Marion Jegen. 31 March Introduction to 3D MT inversion code x3di Anna Avdeeva (aavdeeva@ifm-geomar.de), Dmitry Avdeev and Marion Jegen 31 March 211 Outline 1 Essential Parts of 3D MT Inversion Code 2 Salt Dome Overhang Study with 3 Outline 1 Essential Parts of 3D MT

More information

Daniele Colombo* Geosystem-WesternGeco, Calgary, AB M.Virgilio Geosystem-WesternGeco, Milan, Italy.

Daniele Colombo* Geosystem-WesternGeco, Calgary, AB M.Virgilio Geosystem-WesternGeco, Milan, Italy. Seismic Imaging Strategies for Thrust-Belt Exploration: Extended Offsets, Seismic/Gravity/EM simultaneous Joint-Inversion and Anisotropic Gaussian Beam Pre-Stack Depth Migration Daniele Colombo* Geosystem-WesternGeco,

More information

I. Rhineland Brown Coal and Near-surface Electromagnetics

I. Rhineland Brown Coal and Near-surface Electromagnetics Vertical Electrical Resistivity Structure of the Garzweiler and Frimmersdorf Coal Seams Inferred from Transient Electromagnetic Data Karam S. I. Farag* and Bülent Tezkan* E-mail: farag@geo.uni-koeln.de

More information

2D Laplace-Domain Waveform Inversion of Field Data Using a Power Objective Function

2D Laplace-Domain Waveform Inversion of Field Data Using a Power Objective Function Pure Appl. Geophys. Ó 213 Springer Basel DOI 1.17/s24-13-651-4 Pure and Applied Geophysics 2D Laplace-Domain Waveform Inversion of Field Data Using a Power Objective Function EUNJIN PARK, 1 WANSOO HA,

More information

New Concept Conformal Antennas Utilizing Metamaterial and Transformation Optics

New Concept Conformal Antennas Utilizing Metamaterial and Transformation Optics New Concept Conformal Antennas Utilizing Metamaterial and Transformation Optics The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

The relative influence of different types of magnetotelluric data on joint inversions

The relative influence of different types of magnetotelluric data on joint inversions Earth Planets Space, 55, 243 248, 23 The relative influence of different types of magnetotelluric data on joint inversions Anna Gabàs and Alex Marcuello GRC Geodinàmica i Anàlisi de Conques, Departament

More information

Application of Hopfield neural network for extracting Doppler spectrum from ocean echo

Application of Hopfield neural network for extracting Doppler spectrum from ocean echo RADIO SCIENCE, VOL. 41,, doi:10.109/005rs00334, 006 Application of Hopfield neural network for extracting Doppler spectrum from ocean echo Renzhuo Gui 1 and Zijie Yang 1 Received 5 July 005; revised 4

More information

Attenuation compensation in viscoacoustic reserve-time migration Jianyong Bai*, Guoquan Chen, David Yingst, and Jacques Leveille, ION Geophysical

Attenuation compensation in viscoacoustic reserve-time migration Jianyong Bai*, Guoquan Chen, David Yingst, and Jacques Leveille, ION Geophysical Attenuation compensation in viscoacoustic reserve-time migration Jianyong Bai*, Guoquan Chen, David Yingst, and Jacques Leveille, ION Geophysical Summary Seismic waves are attenuated during propagation.

More information

Magnetotelluric Array and Magnetic Magnetotelluric Surveys

Magnetotelluric Array and Magnetic Magnetotelluric Surveys Magnetotelluric Array and Magnetic Magnetotelluric Surveys Dr. Wen J Whan JTech Co., Ltd.; wwj@jtech.com.tw Abstract. Surveys using synchronous MT array could further reduce the local noise. Multi variance

More information

DOING PHYSICS WITH MATLAB

DOING PHYSICS WITH MATLAB DOING PHYSICS WITH MATLAB ELECTROMAGNETISM USING THE FDTD METHOD [1D] Propagation of Electromagnetic Waves Matlab Download Director ft_3.m ft_sources.m Download and run the script ft_3.m. Carefull inspect

More information

An Introduction to Geophysical Exploration

An Introduction to Geophysical Exploration An Introduction to Geophysical Exploration Philip Kearey Department of Earth Sciences University of Bristol Michael Brooks Ty Newydd, City Near Cowbridge Vale of Glamorgan Ian Hill Department of Geology

More information

ENV-5004B/ENVK5005B. Figure 6. Student Registration No. ENV-5004B/ENVK5005B Version 2

ENV-5004B/ENVK5005B. Figure 6. Student Registration No. ENV-5004B/ENVK5005B Version 2 ENV-5004B/ENVK5005B Figure 6 Student Registration No UNIVERSITY OF EAST ANGLIA School of Environmental Sciences Main Series UG Examination 014-15 SOLID EARTH GEOPHYSICS SOLID EARTH GEOPHYSICS WITH FIELDCOURSE

More information

Structural Damage Detection Using Time Windowing Technique from Measured Acceleration during Earthquake

Structural Damage Detection Using Time Windowing Technique from Measured Acceleration during Earthquake Structural Damage Detection Using Time Windowing Technique from Measured Acceleration during Earthquake Seung Keun Park and Hae Sung Lee ABSTRACT This paper presents a system identification (SI) scheme

More information

Computational Modeling of Geoelectrical Soundings using PML-FDTD

Computational Modeling of Geoelectrical Soundings using PML-FDTD 120 Computational Modeling of Geoelectrical Soundings using PML-FDTD Luísa F. Ribeiro 1 and Marcela S. Novo 2 1,2 Federal University of Bahia UFBA, Electrical Engineering Department, Salvador BA, Brazil

More information

INFRARED THERMOGRAPHIC NONDESTRUCTIVE TESTING OF COMPOSITE MATERIALS: DETERMINING THERMAL PROPERTIES, DETECTING AND CHARACTERIZING HIDDEN DEFECTS

INFRARED THERMOGRAPHIC NONDESTRUCTIVE TESTING OF COMPOSITE MATERIALS: DETERMINING THERMAL PROPERTIES, DETECTING AND CHARACTERIZING HIDDEN DEFECTS INFRARED THERMOGRAPHIC NONDESTRUCTIVE TESTING OF COMPOSITE MATERIALS: DETERMINING THERMAL PROPERTIES, DETECTING AND CHARACTERIZING HIDDEN DEFECTS 1. Introduction Vladimir VAVILOV TOMSK POLYTECHNIC UNIVERSITY,

More information

Effects of Dipping Layers on TEM 1D-Inversion

Effects of Dipping Layers on TEM 1D-Inversion Effects of Dipping Layers on TEM 1D-Inversion S. Hölz, T. Hiller & H. Burkhardt Angew. Geowissenschaften, FR Geophysik TU Berlin Introduction In the interpretation of central-loop or coincident-loop TEM-measurements,

More information

PHYSICAL REVIEW B 71,

PHYSICAL REVIEW B 71, Coupling of electromagnetic waves and superlattice vibrations in a piezomagnetic superlattice: Creation of a polariton through the piezomagnetic effect H. Liu, S. N. Zhu, Z. G. Dong, Y. Y. Zhu, Y. F. Chen,

More information

Calculation of induced geoelectric field distribution in wide area geomagnetic storms based on time harmonic fitting

Calculation of induced geoelectric field distribution in wide area geomagnetic storms based on time harmonic fitting IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Calculation of induced geoelectric field distribution in wide area geomagnetic storms based on time harmonic fitting To cite this

More information

Comparison Study of the Band-gap Structure of a 1D-Photonic Crystal by Using TMM and FDTD Analyses

Comparison Study of the Band-gap Structure of a 1D-Photonic Crystal by Using TMM and FDTD Analyses Journal of the Korean Physical Society, Vol. 58, No. 4, April 2011, pp. 1014 1020 Comparison Study of the Band-gap Structure of a 1D-Photonic Crystal by Using TMM and FDTD Analyses Jian-Bo Chen, Yan Shen,

More information

SUMMARY ANGLE DECOMPOSITION INTRODUCTION. A conventional cross-correlation imaging condition for wave-equation migration is (Claerbout, 1985)

SUMMARY ANGLE DECOMPOSITION INTRODUCTION. A conventional cross-correlation imaging condition for wave-equation migration is (Claerbout, 1985) Comparison of angle decomposition methods for wave-equation migration Natalya Patrikeeva and Paul Sava, Center for Wave Phenomena, Colorado School of Mines SUMMARY Angle domain common image gathers offer

More information

Seismic Response and Wave Group Characteristics of Reef Carbonate Formation of Karloff-Oxford Group in Asser Block

Seismic Response and Wave Group Characteristics of Reef Carbonate Formation of Karloff-Oxford Group in Asser Block Seismic Response and Wave Group Characteristics of Reef Zeng zhongyu Zheng xuyao Hong qiyu Zeng zhongyu Zheng xuyao Hong qiyu Institute of Geophysics, China Earthquake Administration, Beijing 100081, China,

More information

Traveltime sensitivity kernels: Banana-doughnuts or just plain bananas? a

Traveltime sensitivity kernels: Banana-doughnuts or just plain bananas? a Traveltime sensitivity kernels: Banana-doughnuts or just plain bananas? a a Published in SEP report, 103, 61-68 (2000) James Rickett 1 INTRODUCTION Estimating an accurate velocity function is one of the

More information

Steering and focusing diffusive fields using synthetic aperture

Steering and focusing diffusive fields using synthetic aperture August 2011 EPL, 95 (2011) 34006 doi: 10.1209/0295-5075/95/34006 www.epljournal.org Steering and focusing diffusive fields using synthetic aperture Y. Fan 1,3(a), R. Snieder 1, E. Slob 2, J. Hunziker 2

More information

UBC-GIF: Capabilities for EM Modelling and Inversion of LSBB data

UBC-GIF: Capabilities for EM Modelling and Inversion of LSBB data The University of British Colubia Geophysical Inversion Facility slide 1 UBC-GIF: Capabilities for EM Modelling and Inversion of LSBB data Douglas W. Oldenburg Departent of Earth and Ocean Sciences June

More information

PE OIL AND GAS EXPLORATION METHODS COURSE STRUCTURE. I. FUNDAMENTAL CONSIDERATIONS (5 Hrs.) III. SEISMIC REFLECTION METHOD

PE OIL AND GAS EXPLORATION METHODS COURSE STRUCTURE. I. FUNDAMENTAL CONSIDERATIONS (5 Hrs.) III. SEISMIC REFLECTION METHOD PE6050 - OIL AND GAS EXPLORATION METHODS Total Hours: 50 Faculty: Dr. Rajesh R Nair COURSE STRUCTURE I. FUNDAMENTAL CONSIDERATIONS (5 Hrs.) - Stress - Strain Relationship - Elastic Coefficients - Seismic

More information

Transient electromagnetic inversion: A remedy for magnetotelluric static shifts

Transient electromagnetic inversion: A remedy for magnetotelluric static shifts geophysics VOL. 55. NO. 9 (SEPTEMBER 1990); P. 1242-1250, FlGS Transient electromagnetic inversion: A remedy for magnetotelluric static shifts Louise Pellerin* and Gerald W. Hohmann* ABSTRACT Surficial

More information

Finite difference elastic modeling of the topography and the weathering layer

Finite difference elastic modeling of the topography and the weathering layer Finite difference elastic modeling of the topography and the weathering layer Saul E. Guevara and Gary F. Margrave ABSTRACT Finite difference 2D elastic modeling is used to study characteristics of the

More information

Stress associated coda attenuation from ultrasonic waveform measurements

Stress associated coda attenuation from ultrasonic waveform measurements GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L09307, doi:10.1029/2007gl029582, 2007 Stress associated coda attenuation from ultrasonic waveform measurements Meng-Qiu Guo 1 and Li-Yun Fu 1 Received 8 February

More information

Department of Geophysics Faculty of Earth Sciences King Abdulaziz University

Department of Geophysics Faculty of Earth Sciences King Abdulaziz University Department of Geophysics Faculty of Earth Sciences King Abdulaziz University Dr. Mansour A. Al-Garni Office: room 233/Buld. 27 OR Dept. chair office/buld. 55 Introduction to Geophysics EGP 211 Time: 10-10:55

More information

Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami

Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L02611, doi:10.1029/2007gl032129, 2008 Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami S. Koshimura, 1 Y.

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Maxwell s equations predict the propagation of electromagnetic energy away from time-varying sources (current and charge) in the form of waves. Consider a linear, homogeneous, isotropic

More information

Geophysics for Environmental and Geotechnical Applications

Geophysics for Environmental and Geotechnical Applications Geophysics for Environmental and Geotechnical Applications Dr. Katherine Grote University of Wisconsin Eau Claire Why Use Geophysics? Improve the quality of site characterization (higher resolution and

More information

GPR profiling and electrical resistivity tomography for buried cavity detection: a test site at the Abbaye de l'ouye (France)

GPR profiling and electrical resistivity tomography for buried cavity detection: a test site at the Abbaye de l'ouye (France) GPR profiling and electrical resistivity tomography for buried cavity detection: a test site at the Abbaye de l'ouye (France) Nerouz BOUBAKI, Albane SAINTENOY, Piotr TUCHOLKA IDES - UMR 8148 CNRS, Université

More information

Principles of Applied Geophysics

Principles of Applied Geophysics Principles of Applied Geophysics Fifth edition D.S. Parasnis Professor emeritus of Applied Geophysics Department of Applied Geophysics, University ofluled, Lulea, Sweden Fellow of the Royal Swedish Academy

More information