Shunlong Luo. Academy of Mathematics and Systems Science Chinese Academy of Sciences

Size: px
Start display at page:

Download "Shunlong Luo. Academy of Mathematics and Systems Science Chinese Academy of Sciences"

Transcription

1 Superadditivity of Fisher Information: Classical vs. Quantum Shunlong Luo Academy of Mathematics and Systems Science Chinese Academy of Sciences Information Geometry and its Applications IV in honor of Shun-Ichi Amari on the Occasion of His 80th Birthday June 13-17, 2016, Liblice, Czech

2 A story about a conjecture of more than 50 years old strange difference between classical and quantum statistics Implications for clock synchronization

3 Outline 1. Classical Fisher Information 2. Superadditivity in Classical Case 3. Quantum Fisher Information 4. Superadditivity in Quantum Case 5. Weak Superadditivity in Quantum Case 6. Physical Implications of Superadditivity 7. Problems

4 1. Classical Fisher Information Fisher, 1922, 1925 Fisher information of a probability density p(x) = p(x 1, x 2,, x n ) (with respect to the location parameters) is defined as I F (p) = 4 p(x) 2 dx. R n : gradient : Euclidean norm in R n

5 More generally, the Fisher information matrix of a parametric densities p θ (x) on R n with parameter θ = (θ 1, θ 2,, θ m ) R m is the m m matrix defined as I ij = 4 I F (p θ ) = (I ij ) R n pθ (x) θ i with i, j = 1, 2,, m. pθ (x) dx θ j

6 In particular, if n = m and p θ (x) = p(x θ) is a translation family, then I F (p θ ) = (I ij ) is independent of the parameter θ, and p(x) p(x) I ij = 4 dx. x i x j R n In this case, we may simply denote I F (p θ ) by I F (p). We see that I F (p) = tri F (p).

7 Statistical Origin of Fisher Information Data: n samples x 1, x 2,, x n p θ (x). Aim: Estimate the parameter θ. Cramér-Rao: Unbiased estimate θ θ 1 ni (p θ ). Maximum Likelihood: θ(x 1,, x n ) n( θ θ) N(0, 1/I (pθ )).

8 Fisher Information vs. Shannon Entropy For a probability density p, its Shannon entropy is S(p) = p(x)lnp(x)dx. de Bruijin identity: t S(p g t) = 1 t=0 2 I (p), where g t (x) = 1 2πt e x2 /2t.

9 2. Superadditivity in Classical Case Basic Properties of Fisher Information (a). Fisher information is convex: I F (λ 1 p 1 + λ 2 p 2 ) λ 1 I F (p 1 ) + λ 2 I F (p 2 ). Here p 1 and p 2 are two probability densities and λ 1 + λ 2 = 1, λ j 0, j = 1, 2. Informational meaning: Mixing decreases information.

10 (b). Fisher information is additive: I F (p 1 p 2 ) = I F (p 1 ) + I F (p 2 ). Here p 1 and p 2 are two probability densities, and p 1 p 2 (x, y) := p 1 (x)p 2 (y) is the independent product density (which is a kind of tensor product).

11 (c). Fisher information is invariant under location translation, that is, for any fixed y R n, if we put p y (x) := p(x y), then I F (p y ) = I F (p).

12 Superadditivity (d). Fisher information I F (p) is superadditive: I F (p) I F (p 1 ) + I F (p 2 ). Here p(x) = p(x 1, x 2 ) is a bivariate density with marginal densities p 1 and p 2.

13 Amusing and Remarkable 1925: Fisher information was introduced. 1991: Superadditivity was discovered and proved by Carlen. Statistical meaning: When a composite system is decomposed into two subsystems, the correlation between them is missing, and thus the Fisher information decreases.

14 Superadditivity Analytical Proof E. A. Carlen Superadditivity of Fisher s information and logarithmic Sobolev inequalities Journal of Functional Analysis, 101 (1991),

15 Statistical Proof A. Kagan and Z. Landsman Statistical meaning of Carlen s superadditivity of the Fisher information Statist. Probab. Lett. 32 (1997),

16 3. Quantum Fisher Information Analogy between Classical and Quantum: Probability p θ Density operator (non-negative matrix with unit trace) ρ θ Integral Trace operation tr

17 Quantum Mechanics as a Framework of Calculating Probabilities, a Statistical Theory E. Schrödinger Quantum mechanics began with statistics, and will end with statistics.

18 In classical statistics, probabilities are given a priori: (Ω, F, P). In quantum physics, probabilities are generated from the pairing: (density operators ρ, observable H) p i = trρe i where H = i λ ie i is the spectral decomposition of the self-adjoint operator H.

19 H. Araki, M. M. Yanase Measurement of Quantum Mechanical Operators Phys. Rev. 120, 1960 Wigner-Araki-Yanase Theorem The existence of a conservation law imposes limitation on the measurement of an observable. An operator which does not commute with a conserved quantity cannot be measured exactly.

20 E. P. Wigner and M. M. Yanase Information content of distribution Proc. Nat. Acad. Sci., 49, (1963) Skew information I (ρ, H) = 1 2 tr[ ρ, H] 2 where ρ: density operator H: any self-adjoint operator [, ]: commutator

21 Wigner-Yanase-Dyson information I α (ρ, H) = 1 2 tr[ρα, H][ρ 1 α, H] where α (0, 1).

22 Basic Properties of Skew Information 1 I (ρ, H) ρ H := trρh 2 (trρh) 2. 2 Invariance: I (UρU, H) = I (ρ, H) if unitary U satisfying UH = HU. 3 Additivity 4 Convexity I (ρ 1 ρ 2, H H 2 ) = I (ρ 1, H 1 ) + I (ρ 2, H 2 ). I (λ 1 ρ 1 +λ 2 ρ 2, H) λ 1 I (ρ 1, H)+λ 2 I (ρ 2, H).

23 Four Interpretations of Skew Information As information content of ρ with respect to observable not commuting with H Wigner and Yanase, 1963

24 As a measure of non-commutativity between ρ and H Connes, Stormer, J. Func. Anal. 1978

25 As a kind of quantum Fisher information D. Petz, H. Hasegawa, On the Riemannian metric of α-entropies of density matrices, Lett. Math. Phys S. Luo Phys. Rev. Lett IEEE Trans. Inform. Theory, 2004 Proc. Amer. Math. Soc. 2004

26 As the quantum uncertainty of H in the state ρ S. Luo, Phys. Rev. A, 2005, 2006

27 Skew Information as Quantum Fisher Information Generalizing classical Fisher information ( ) 2 p θ (x) I F (p θ ) := 4 dx θ to the quantum scenario, we may define ( ) 2 ρθ I F (ρ θ ) := 4tr θ as a kind of quantum Fisher information. Here ρ θ is a family of density operators.

28 In particular, if ρ θ satisfies the Landau-von Neumann equation then i ρ θ θ = [H, ρ θ], ρ 0 = ρ I F (ρ θ ) = 4tr[ρ 1/2, H] 2 = 8I (ρ, H) S. Luo, Phys. Rev. Lett. 2003

29 4. Superadditivity in Quantum case Conjecture: For bipartite density operator ρ, I α (ρ, H H 2 ) I α (ρ 1, H 1 )+I α (ρ 2, H 2 ). Here ρ 1 = tr 2 ρ, ρ 2 = tr 1 ρ: marginals of ρ H 1, H 2 : selfadjoint operators over subsystems 1: identity operator : tensor product of operators

30 Comments This conjecture was reviewed by Lieb. The only non-trivial confirmed case is for pure states with α = 1 2. Wigner-Yanase, 1963: Necessary requirement Lieb, 1973: Absolute requirement

31 Disproof F. Hansen, Journal of Statistical Physics, 2007 Numerical counterexample! Counterintuitive! Surprising!

32 L. Cai, N. Li, S. Luo Journal of Physics A, 2008 A Simple Counterexample. Let n > 2 and take ρ = 1 n Then n , H 1 = H 2 = ( I (ρ, H H 2 ) < I (ρ 1, H 1 ) + I (ρ 2, H 2 ) for large n. ).

33 Partial Results S. Luo, Journal of Statistical Physics, 2007 Let H = H H 2. If ρ = Ψ Ψ is a pure state, then superadditivity holds, that is I α (ρ, H) I α (ρ 1, H 1 ) + I α (ρ 2, H 2 ).

34 Let H = H H 2, and ρ be a diagonal density matrix. Then superadditivity holds, that is I α (ρ, H) I α (ρ 1, H 1 ) + I α (ρ 2, H 2 ).

35 Partial Results S. Luo and Q. Zhang Journal of Statistical Physics, 2008 For any classical-quantum state, the superadditivity holds.

36 Tripartite case R. Seiringer Lett. Math. Phys Failure of superadditivity of the Wigner-Yanase skew information for tripartite pure states. The following inequality may be violated by certain pure states: I α (ρ, H) I α (ρ 1, H 1 )+I α (ρ 2, H 2 )+I α (ρ 3, H 3 ) where ρ = Ψ 123 Ψ 123, H = H H H 3.

37 5. Weak Superadditivity in Quantum Case Though neither I (ρ, H H 2 ) I (ρ 1, H 1 ) + I (ρ 2, H 2 ) nor I (ρ, H H 2 ) I (ρ 1, H 1 ) + I (ρ 2, H 2 ) is always true, their sum is true: I (ρ, H H 2 ) + I (ρ, H H 2 ) ( ) 2 I (ρ 1, H 1 ) + I (ρ 2, H 2 ).

38 It holds that I (ρ, H H 2 ) 1 2 ( ) I (ρ 1, H 1 )+I (ρ 2, H 2 ).

39 6. Physical Implications of Superadditivity: Clock Synchronization Classical clock: (p, Q) (Q = i d dx moment observable) p t (x) = e itq p(x). is the Quality: classical Fisher information I F (p). Quantum clock: (ρ, H) ρ t = e ith ρe ith. Quality: quantum Fisher information I α (ρ, H).

40 Clock Synchronization A quantum clock shared by two parties: (ρ, H H 2 ) The violation of the superadditivity means that the sum of the quality of the component clock will be better than the overall quality: I α (ρ 1, H 1 )+I α (ρ 2, H 2 ) > I α (ρ, H H 2 ). Curious property of quantum clock!

41 A Conjecture There does not exit nontrivial quantum clocks such that I α (ρ 1, H 1 ) = I α (ρ 2, H 2 ) = I α (ρ, H H 2 ). Intuition: Otherwise, we could copy quantum timing information.

42 7. Problems 1. Conditions for superadditivity? 2. Intuitive meaning of the failure of superadditivity 3. Difference between classical and quantum from the perspective of Fisher information 4. Quantum logarithmic Sobolev inequalities? Thank you!

Quantum Fisher Information. Shunlong Luo Beijing, Aug , 2006

Quantum Fisher Information. Shunlong Luo Beijing, Aug , 2006 Quantum Fisher Information Shunlong Luo luosl@amt.ac.cn Beijing, Aug. 10-12, 2006 Outline 1. Classical Fisher Information 2. Quantum Fisher Information, Logarithm 3. Quantum Fisher Information, Square

More information

Extremal properties of the variance and the quantum Fisher information; Phys. Rev. A 87, (2013).

Extremal properties of the variance and the quantum Fisher information; Phys. Rev. A 87, (2013). 1 / 24 Extremal properties of the variance and the quantum Fisher information; Phys. Rev. A 87, 032324 (2013). G. Tóth 1,2,3 and D. Petz 4,5 1 Theoretical Physics, University of the Basque Country UPV/EHU,

More information

Riemannian geometry of positive definite matrices: Matrix means and quantum Fisher information

Riemannian geometry of positive definite matrices: Matrix means and quantum Fisher information Riemannian geometry of positive definite matrices: Matrix means and quantum Fisher information Dénes Petz Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences POB 127, H-1364 Budapest, Hungary

More information

Ph 219/CS 219. Exercises Due: Friday 20 October 2006

Ph 219/CS 219. Exercises Due: Friday 20 October 2006 1 Ph 219/CS 219 Exercises Due: Friday 20 October 2006 1.1 How far apart are two quantum states? Consider two quantum states described by density operators ρ and ρ in an N-dimensional Hilbert space, and

More information

Means, Covariance, Fisher Information:

Means, Covariance, Fisher Information: Vienna Erwin Schrödinger Institute Means, Covariance, Fisher Information: the quantum theory and uncertainty relations Paolo Gibilisco Department of Economics and Finance University of Rome Tor Vergata

More information

Estimating entanglement in a class of N-qudit states

Estimating entanglement in a class of N-qudit states Estimating entanglement in a class of N-qudit states Sumiyoshi Abe 1,2,3 1 Physics Division, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China 2 Department of Physical

More information

Fisher information and Stam inequality on a finite group

Fisher information and Stam inequality on a finite group Fisher information and Stam inequality on a finite group Paolo Gibilisco and Tommaso Isola February, 2008 Abstract We prove a discrete version of Stam inequality for random variables taking values on a

More information

Some Bipartite States Do Not Arise from Channels

Some Bipartite States Do Not Arise from Channels Some Bipartite States Do Not Arise from Channels arxiv:quant-ph/0303141v3 16 Apr 003 Mary Beth Ruskai Department of Mathematics, Tufts University Medford, Massachusetts 0155 USA marybeth.ruskai@tufts.edu

More information

Nullity of Measurement-induced Nonlocality. Yu Guo

Nullity of Measurement-induced Nonlocality. Yu Guo Jul. 18-22, 2011, at Taiyuan. Nullity of Measurement-induced Nonlocality Yu Guo (Joint work with Pro. Jinchuan Hou) 1 1 27 Department of Mathematics Shanxi Datong University Datong, China guoyu3@yahoo.com.cn

More information

Quantum Fisher information and entanglement

Quantum Fisher information and entanglement 1 / 70 Quantum Fisher information and entanglement G. Tóth 1,2,3 1 Theoretical Physics, University of the Basque Country (UPV/EHU), Bilbao, Spain 2 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

More information

Multivariate trace inequalities. David Sutter, Mario Berta, Marco Tomamichel

Multivariate trace inequalities. David Sutter, Mario Berta, Marco Tomamichel Multivariate trace inequalities David Sutter, Mario Berta, Marco Tomamichel What are trace inequalities and why we should care. Main difference between classical and quantum world are complementarity and

More information

Ensembles and incomplete information

Ensembles and incomplete information p. 1/32 Ensembles and incomplete information So far in this course, we have described quantum systems by states that are normalized vectors in a complex Hilbert space. This works so long as (a) the system

More information

Tutorial: Statistical distance and Fisher information

Tutorial: Statistical distance and Fisher information Tutorial: Statistical distance and Fisher information Pieter Kok Department of Materials, Oxford University, Parks Road, Oxford OX1 3PH, UK Statistical distance We wish to construct a space of probability

More information

Chapter 5. Density matrix formalism

Chapter 5. Density matrix formalism Chapter 5 Density matrix formalism In chap we formulated quantum mechanics for isolated systems. In practice systems interect with their environnement and we need a description that takes this feature

More information

Gerardo Adesso. Davide Girolami. Alessio Serafini. University of Nottingham. University of Nottingham. University College London

Gerardo Adesso. Davide Girolami. Alessio Serafini. University of Nottingham. University of Nottingham. University College London Gerardo Adesso University of Nottingham Davide Girolami University of Nottingham Alessio Serafini University College London arxiv:1203.5116; Phys. Rev. Lett. (in press) A family of useful additive entropies

More information

6.1 Main properties of Shannon entropy. Let X be a random variable taking values x in some alphabet with probabilities.

6.1 Main properties of Shannon entropy. Let X be a random variable taking values x in some alphabet with probabilities. Chapter 6 Quantum entropy There is a notion of entropy which quantifies the amount of uncertainty contained in an ensemble of Qbits. This is the von Neumann entropy that we introduce in this chapter. In

More information

Quantum metrology from a quantum information science perspective

Quantum metrology from a quantum information science perspective 1 / 41 Quantum metrology from a quantum information science perspective Géza Tóth 1 Theoretical Physics, University of the Basque Country UPV/EHU, Bilbao, Spain 2 IKERBASQUE, Basque Foundation for Science,

More information

In the mathematical model for a quantum mechanical system,

In the mathematical model for a quantum mechanical system, Metric adjusted skew information Frank Hansen Department of Economics, University of Copenhagen, Studiestraede 6, DK-455 Copenhagen, Denmark; Edited by Richard V. Kadison, University of Pennsylvania, Philadelphia,

More information

arxiv: v2 [quant-ph] 8 Jul 2014

arxiv: v2 [quant-ph] 8 Jul 2014 TOPICAL REVIEW Quantum metrology from a quantum information science perspective arxiv:1405.4878v2 [quant-ph] 8 Jul 2014 Géza Tóth 1,2,3, Iagoba Apellaniz 1 1 Department of Theoretical Physics, University

More information

Open Questions in Quantum Information Geometry

Open Questions in Quantum Information Geometry Open Questions in Quantum Information Geometry M. R. Grasselli Department of Mathematics and Statistics McMaster University Imperial College, June 15, 2005 1. Classical Parametric Information Geometry

More information

MP 472 Quantum Information and Computation

MP 472 Quantum Information and Computation MP 472 Quantum Information and Computation http://www.thphys.may.ie/staff/jvala/mp472.htm Outline Open quantum systems The density operator ensemble of quantum states general properties the reduced density

More information

Introduction to Quantum Information Hermann Kampermann

Introduction to Quantum Information Hermann Kampermann Introduction to Quantum Information Hermann Kampermann Heinrich-Heine-Universität Düsseldorf Theoretische Physik III Summer school Bleubeuren July 014 Contents 1 Quantum Mechanics...........................

More information

Quantum Information Types

Quantum Information Types qitd181 Quantum Information Types Robert B. Griffiths Version of 6 February 2012 References: R. B. Griffiths, Types of Quantum Information, Phys. Rev. A 76 (2007) 062320; arxiv:0707.3752 Contents 1 Introduction

More information

Logarithmic Sobolev Inequalities

Logarithmic Sobolev Inequalities Logarithmic Sobolev Inequalities M. Ledoux Institut de Mathématiques de Toulouse, France logarithmic Sobolev inequalities what they are, some history analytic, geometric, optimal transportation proofs

More information

Entanglement Measures and Monotones Pt. 2

Entanglement Measures and Monotones Pt. 2 Entanglement Measures and Monotones Pt. 2 PHYS 500 - Southern Illinois University April 8, 2017 PHYS 500 - Southern Illinois University Entanglement Measures and Monotones Pt. 2 April 8, 2017 1 / 13 Entanglement

More information

Quantification of Gaussian quantum steering. Gerardo Adesso

Quantification of Gaussian quantum steering. Gerardo Adesso Quantification of Gaussian quantum steering Gerardo Adesso Outline Quantum steering Continuous variable systems Gaussian entanglement Gaussian steering Applications Steering timeline EPR paradox (1935)

More information

Valerio Cappellini. References

Valerio Cappellini. References CETER FOR THEORETICAL PHYSICS OF THE POLISH ACADEMY OF SCIECES WARSAW, POLAD RADOM DESITY MATRICES AD THEIR DETERMIATS 4 30 SEPTEMBER 5 TH SFB TR 1 MEETIG OF 006 I PRZEGORZAłY KRAKÓW Valerio Cappellini

More information

arxiv: v4 [quant-ph] 21 Oct 2014

arxiv: v4 [quant-ph] 21 Oct 2014 REVIEW ARTICLE Quantum metrology from a quantum information science perspective arxiv:1405.4878v4 [quant-ph] 21 Oct 2014 Géza Tóth 1,2,3, Iagoba Apellaniz 1 1 Department of Theoretical Physics, University

More information

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Max-Planc-Institut für Mathemati in den Naturwissenschaften Leipzig Uncertainty Relations Based on Sew Information with Quantum Memory by Zhi-Hao Ma, Zhi-Hua Chen, and Shao-Ming Fei Preprint no.: 4 207

More information

Lecture: Quantum Information

Lecture: Quantum Information Lecture: Quantum Information Transcribed by: Crystal Noel and Da An (Chi Chi) November 10, 016 1 Final Proect Information Find an issue related to class you are interested in and either: read some papers

More information

Algebraic Theory of Entanglement

Algebraic Theory of Entanglement Algebraic Theory of (arxiv: 1205.2882) 1 (in collaboration with T.R. Govindarajan, A. Queiroz and A.F. Reyes-Lega) 1 Physics Department, Syracuse University, Syracuse, N.Y. and The Institute of Mathematical

More information

Is the world more classical or more quantum?

Is the world more classical or more quantum? Is the world more classical or more quantum? A. Lovas, A. Andai BUTE, Department of Analysis XXVI International Fall Workshop on Geometry and Physics Braga, 4-7 September 2017 A. Lovas, A. Andai Is the

More information

arxiv: v1 [quant-ph] 13 Mar 2015

arxiv: v1 [quant-ph] 13 Mar 2015 Generalized Fubini-Study Metric and Fisher Information Metric Debasis Mondal 1, 1 Quantum Information and Computation Group, Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad, India (Dated:

More information

Lecture 19 October 28, 2015

Lecture 19 October 28, 2015 PHYS 7895: Quantum Information Theory Fall 2015 Prof. Mark M. Wilde Lecture 19 October 28, 2015 Scribe: Mark M. Wilde This document is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike

More information

Matrix concentration inequalities

Matrix concentration inequalities ELE 538B: Mathematics of High-Dimensional Data Matrix concentration inequalities Yuxin Chen Princeton University, Fall 2018 Recap: matrix Bernstein inequality Consider a sequence of independent random

More information

Genuine three-partite entangled states with a hidden variable model

Genuine three-partite entangled states with a hidden variable model Genuine three-partite entangled states with a hidden variable model Géza Tóth 1,2 and Antonio Acín 3 1 Max-Planck Institute for Quantum Optics, Garching, Germany 2 Research Institute for Solid State Physics

More information

Abstract. In this article, several matrix norm inequalities are proved by making use of the Hiroshima 2003 result on majorization relations.

Abstract. In this article, several matrix norm inequalities are proved by making use of the Hiroshima 2003 result on majorization relations. HIROSHIMA S THEOREM AND MATRIX NORM INEQUALITIES MINGHUA LIN AND HENRY WOLKOWICZ Abstract. In this article, several matrix norm inequalities are proved by making use of the Hiroshima 2003 result on majorization

More information

Noncommutative Uncertainty Principle

Noncommutative Uncertainty Principle Noncommutative Uncertainty Principle Zhengwei Liu (joint with Chunlan Jiang and Jinsong Wu) Vanderbilt University The 12th East Coast Operator Algebras Symposium, Oct 12, 2014 Z. Liu (Vanderbilt) Noncommutative

More information

BONA FIDE MEASURES OF NON-CLASSICAL CORRELATIONS

BONA FIDE MEASURES OF NON-CLASSICAL CORRELATIONS BON FIDE MESURES OF NON-CLSSICL CORRELTIONS New J. Phys. 16, 073010 (2014). De Pasquale in collaboration with. Farace, L. Rigovacca and V. Giovannetti Outline MIN IDE: Introduction of measures of non-classical

More information

Entanglement: concept, measures and open problems

Entanglement: concept, measures and open problems Entanglement: concept, measures and open problems Division of Mathematical Physics Lund University June 2013 Project in Quantum information. Supervisor: Peter Samuelsson Outline 1 Motivation for study

More information

Majorization-preserving quantum channels

Majorization-preserving quantum channels Majorization-preserving quantum channels arxiv:1209.5233v2 [quant-ph] 15 Dec 2012 Lin Zhang Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018, PR China Abstract In this report, we give

More information

A Holevo-type bound for a Hilbert Schmidt distance measure

A Holevo-type bound for a Hilbert Schmidt distance measure Journal of Quantum Information Science, 205, *,** Published Online **** 204 in SciRes. http://www.scirp.org/journal/**** http://dx.doi.org/0.4236/****.204.***** A Holevo-type bound for a Hilbert Schmidt

More information

Basics on quantum information

Basics on quantum information Basics on quantum information Mika Hirvensalo Department of Mathematics and Statistics University of Turku mikhirve@utu.fi Thessaloniki, May 2014 Mika Hirvensalo Basics on quantum information 1 of 49 Brief

More information

Coherence, Discord, and Entanglement: Activating one resource into another and beyond

Coherence, Discord, and Entanglement: Activating one resource into another and beyond 586. WE-Heraeus-Seminar Quantum Correlations beyond Entanglement Coherence, Discord, and Entanglement: Activating one resource into another and beyond Gerardo School of Mathematical Sciences The University

More information

Law of Cosines and Shannon-Pythagorean Theorem for Quantum Information

Law of Cosines and Shannon-Pythagorean Theorem for Quantum Information In Geometric Science of Information, 2013, Paris. Law of Cosines and Shannon-Pythagorean Theorem for Quantum Information Roman V. Belavkin 1 School of Engineering and Information Sciences Middlesex University,

More information

Quantum Entanglement- Fundamental Aspects

Quantum Entanglement- Fundamental Aspects Quantum Entanglement- Fundamental Aspects Debasis Sarkar Department of Applied Mathematics, University of Calcutta, 92, A.P.C. Road, Kolkata- 700009, India Abstract Entanglement is one of the most useful

More information

Monotonicity of quantum relative entropy revisited

Monotonicity of quantum relative entropy revisited Monotonicity of quantum relative entropy revisited This paper is dedicated to Elliott Lieb and Huzihiro Araki on the occasion of their 70th birthday arxiv:quant-ph/0209053v1 6 Sep 2002 Dénes Petz 1 Department

More information

BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS

BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS P. Caban, K. Podlaski, J. Rembieliński, K. A. Smoliński and Z. Walczak Department of Theoretical Physics, University of Lodz Pomorska 149/153,

More information

Ferromagnetic Ordering of Energy Levels for XXZ Spin Chains

Ferromagnetic Ordering of Energy Levels for XXZ Spin Chains Ferromagnetic Ordering of Energy Levels for XXZ Spin Chains Bruno Nachtergaele and Wolfgang L. Spitzer Department of Mathematics University of California, Davis Davis, CA 95616-8633, USA bxn@math.ucdavis.edu

More information

Introduction to Quantum Mechanics

Introduction to Quantum Mechanics Introduction to Quantum Mechanics R. J. Renka Department of Computer Science & Engineering University of North Texas 03/19/2018 Postulates of Quantum Mechanics The postulates (axioms) of quantum mechanics

More information

Basics on quantum information

Basics on quantum information Basics on quantum information Mika Hirvensalo Department of Mathematics and Statistics University of Turku mikhirve@utu.fi Thessaloniki, May 2016 Mika Hirvensalo Basics on quantum information 1 of 52 Brief

More information

arxiv:quant-ph/ v1 27 May 2004

arxiv:quant-ph/ v1 27 May 2004 arxiv:quant-ph/0405166v1 27 May 2004 Separability condition for the states of fermion lattice systems and its characterization Hajime Moriya Abstract We introduce a separability condition for the states

More information

Multiplicativity of Maximal p Norms in Werner Holevo Channels for 1 < p 2

Multiplicativity of Maximal p Norms in Werner Holevo Channels for 1 < p 2 Multiplicativity of Maximal p Norms in Werner Holevo Channels for 1 < p 2 arxiv:quant-ph/0410063v1 8 Oct 2004 Nilanjana Datta Statistical Laboratory Centre for Mathematical Sciences University of Cambridge

More information

Free probability and quantum information

Free probability and quantum information Free probability and quantum information Benoît Collins WPI-AIMR, Tohoku University & University of Ottawa Tokyo, Nov 8, 2013 Overview Overview Plan: 1. Quantum Information theory: the additivity problem

More information

Postulates of quantum mechanics

Postulates of quantum mechanics Postulates of quantum mechanics Armin Scrinzi November 22, 2012 1 Postulates of QM... and of classical mechanics 1.1 An analogy Quantum Classical State Vector Ψ from H Prob. distr. ρ(x, p) on phase space

More information

Operator norm convergence for sequence of matrices and application to QIT

Operator norm convergence for sequence of matrices and application to QIT Operator norm convergence for sequence of matrices and application to QIT Benoît Collins University of Ottawa & AIMR, Tohoku University Cambridge, INI, October 15, 2013 Overview Overview Plan: 1. Norm

More information

arxiv: v2 [math-ph] 22 Nov 2013

arxiv: v2 [math-ph] 22 Nov 2013 Geometry behind Robertson type uncertainty principles arxiv:3.5069v [math-ph] Nov 03 Attila Lovas, Attila Andai Department for Mathematical Analysis, Budapest University of Technology and Economics, H-5

More information

Multivariate Trace Inequalities

Multivariate Trace Inequalities Multivariate Trace Inequalities Mario Berta arxiv:1604.03023 with Sutter and Tomamichel (to appear in CMP) arxiv:1512.02615 with Fawzi and Tomamichel QMath13 - October 8, 2016 Mario Berta (Caltech) Multivariate

More information

Different quantum f-divergences and the reversibility of quantum operations

Different quantum f-divergences and the reversibility of quantum operations Different quantum f-divergences and the reversibility of quantum operations Fumio Hiai Tohoku University 2016, September (at Budapest) Joint work with Milán Mosonyi 1 1 F.H. and M. Mosonyi, Different quantum

More information

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Coherence of Assistance and Regularized Coherence of Assistance by Ming-Jing Zhao, Teng Ma, and Shao-Ming Fei Preprint no.: 14 2018

More information

Entropy in Classical and Quantum Information Theory

Entropy in Classical and Quantum Information Theory Entropy in Classical and Quantum Information Theory William Fedus Physics Department, University of California, San Diego. Entropy is a central concept in both classical and quantum information theory,

More information

Geometry and the Kato square root problem

Geometry and the Kato square root problem Geometry and the Kato square root problem Lashi Bandara Centre for Mathematics and its Applications Australian National University 7 June 2013 Geometric Analysis Seminar University of Wollongong Lashi

More information

INSTITUT FOURIER. Quantum correlations and Geometry. Dominique Spehner

INSTITUT FOURIER. Quantum correlations and Geometry. Dominique Spehner i f INSTITUT FOURIER Quantum correlations and Geometry Dominique Spehner Institut Fourier et Laboratoire de Physique et Modélisation des Milieux Condensés, Grenoble Outlines Entangled and non-classical

More information

An Introduction to Quantum Computation and Quantum Information

An Introduction to Quantum Computation and Quantum Information An to and Graduate Group in Applied Math University of California, Davis March 13, 009 A bit of history Benioff 198 : First paper published mentioning quantum computing Feynman 198 : Use a quantum computer

More information

Distance between physical theories based on information theory

Distance between physical theories based on information theory Distance between physical theories based on information theory Jacques Calmet 1 and Xavier Calmet 2 Institute for Cryptography and Security (IKS) Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe,

More information

arxiv: v2 [quant-ph] 17 Nov 2016

arxiv: v2 [quant-ph] 17 Nov 2016 Improved Uncertainty Relation in the Presence of Quantum Memory Yunlong Xiao, 1, Naihuan Jing, 3,4 Shao-Ming Fei, 5, and Xianqing Li-Jost 1 School of Mathematics, South China University of Technology,

More information

M. Ledoux Université de Toulouse, France

M. Ledoux Université de Toulouse, France ON MANIFOLDS WITH NON-NEGATIVE RICCI CURVATURE AND SOBOLEV INEQUALITIES M. Ledoux Université de Toulouse, France Abstract. Let M be a complete n-dimensional Riemanian manifold with non-negative Ricci curvature

More information

Properties of Nonnegative Hermitian Matrices and New Entropic Inequalities for Noncomposite Quantum Systems

Properties of Nonnegative Hermitian Matrices and New Entropic Inequalities for Noncomposite Quantum Systems Entropy 2015, 17, 2876-2894; doi:10.3390/e17052876 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Review Properties of Nonnegative Hermitian Matrices and New Entropic Inequalities for

More information

arxiv: v1 [quant-ph] 19 Oct 2016

arxiv: v1 [quant-ph] 19 Oct 2016 Hamiltonian extensions in quantum metrology Julien Mathieu Elias Fraïsse 1 and Daniel Braun 1 1 Eberhard-Karls-Universität Tübingen, Institut für Theoretische Physik, 72076 Tübingen, Germany Abstract arxiv:1610.05974v1

More information

THE NUMBER OF ORTHOGONAL CONJUGATIONS

THE NUMBER OF ORTHOGONAL CONJUGATIONS THE NUMBER OF ORTHOGONAL CONJUGATIONS Armin Uhlmann University of Leipzig, Institute for Theoretical Physics After a short introduction to anti-linearity, bounds for the number of orthogonal (skew) conjugations

More information

ON SPECTRA OF LÜDERS OPERATIONS

ON SPECTRA OF LÜDERS OPERATIONS ON SPECTRA OF LÜDERS OPERATIONS GABRIEL NAGY Abstract. We show that the all eigenvalues of certain generalized Lüders operations are non-negative real numbers, in two cases of interest. In particular,

More information

Numerical radius, entropy and preservers on quantum states

Numerical radius, entropy and preservers on quantum states 2th WONRA, TSIMF, Sanya, July 204 Numerical radius, entropy and preservers on quantum states Kan He (å Ä) Joint with Pro. Jinchuan Hou, Chi-Kwong Li and Zejun Huang Taiyuan University of Technology, Taiyuan,

More information

Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement

Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement Karol Życzkowski in collaboration with Lukasz Rudnicki (Warsaw) Pawe l Horodecki (Gdańsk) Jagiellonian University, Cracow,

More information

Spectral law of the sum of random matrices

Spectral law of the sum of random matrices Spectral law of the sum of random matrices Florent Benaych-Georges benaych@dma.ens.fr May 5, 2005 Abstract The spectral distribution of a matrix is the uniform distribution on its spectrum with multiplicity.

More information

Quantum Chaos and Nonunitary Dynamics

Quantum Chaos and Nonunitary Dynamics Quantum Chaos and Nonunitary Dynamics Karol Życzkowski in collaboration with W. Bruzda, V. Cappellini, H.-J. Sommers, M. Smaczyński Phys. Lett. A 373, 320 (2009) Institute of Physics, Jagiellonian University,

More information

Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016

Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016 Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016 Problem 3: The EPR state (30 points) The Einstein-Podolsky-Rosen (EPR) paradox is based around a thought experiment of measurements

More information

Markovian Marginals. Isaac H. Kim. Oct. 9, arxiv: IBM T.J. Watson Research Center

Markovian Marginals. Isaac H. Kim. Oct. 9, arxiv: IBM T.J. Watson Research Center Markovian Marginals Isaac H. Kim IBM T.J. Watson Research Center Oct. 9, 2016 arxiv:1609.08579 Marginal Problem Consider a physical system I. Given { I 0}, istherea 0 such that I = I 8I? If yes, the marginals

More information

On Some Extensions of Bernstein s Inequality for Self-Adjoint Operators

On Some Extensions of Bernstein s Inequality for Self-Adjoint Operators On Some Extensions of Bernstein s Inequality for Self-Adjoint Operators Stanislav Minsker e-mail: sminsker@math.duke.edu Abstract: We present some extensions of Bernstein s inequality for random self-adjoint

More information

Entropic Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement

Entropic Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement Entropic Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement Karol Życzkowski in collaboration with Lukasz Rudnicki (Warsaw) Pawe l Horodecki (Gdańsk) Phys. Rev. Lett. 107,

More information

Entanglement of indistinguishable particles

Entanglement of indistinguishable particles Entanglement of indistinguishable particles Fabio Benatti Dipartimento di Fisica, Università di Trieste QISM Innsbruck -5 September 01 Outline 1 Introduction Entanglement: distinguishable vs identical

More information

On positive maps in quantum information.

On positive maps in quantum information. On positive maps in quantum information. Wladyslaw Adam Majewski Instytut Fizyki Teoretycznej i Astrofizyki, UG ul. Wita Stwosza 57, 80-952 Gdańsk, Poland e-mail: fizwam@univ.gda.pl IFTiA Gdańsk University

More information

Output entropy of tensor products of random quantum channels 1

Output entropy of tensor products of random quantum channels 1 Output entropy of tensor products of random quantum channels 1 Motohisa Fukuda 1 [Collins, Fukuda and Nechita], [Collins, Fukuda and Nechita] 1 / 13 1 Introduction Aim and background Existence of one large

More information

The geometrical structure of quantum theory as a natural generalization of information geometry

The geometrical structure of quantum theory as a natural generalization of information geometry The geometrical structure of quantum theory as a natural generalization of information geometry Marcel Reginatto Physikalisch-Technische Bundesanstalt, Braunschweig, Germany Abstract. Quantum mechanics

More information

Strong Converse and Stein s Lemma in the Quantum Hypothesis Testing

Strong Converse and Stein s Lemma in the Quantum Hypothesis Testing Strong Converse and Stein s Lemma in the Quantum Hypothesis Testing arxiv:uant-ph/9906090 v 24 Jun 999 Tomohiro Ogawa and Hiroshi Nagaoka Abstract The hypothesis testing problem of two uantum states is

More information

arxiv: v3 [quant-ph] 17 Nov 2014

arxiv: v3 [quant-ph] 17 Nov 2014 REE From EOF Eylee Jung 1 and DaeKil Park 1, 1 Department of Electronic Engineering, Kyungnam University, Changwon 631-701, Korea Department of Physics, Kyungnam University, Changwon 631-701, Korea arxiv:1404.7708v3

More information

Quantum Entanglement and Measurement

Quantum Entanglement and Measurement Quantum Entanglement and Measurement Haye Hinrichsen in collaboration with Theresa Christ University of Würzburg, Germany 2nd Workhop on Quantum Information and Thermodynamics Korea Institute for Advanced

More information

Quantum theory without predefined causal structure

Quantum theory without predefined causal structure Quantum theory without predefined causal structure Ognyan Oreshkov Centre for Quantum Information and Communication, niversité Libre de Bruxelles Based on work with Caslav Brukner, Nicolas Cerf, Fabio

More information

On the relation between scaling properties of functionals and existence of constrained minimizers

On the relation between scaling properties of functionals and existence of constrained minimizers On the relation between scaling properties of functionals and existence of constrained minimizers Jacopo Bellazzini Dipartimento di Matematica Applicata U. Dini Università di Pisa January 11, 2011 J. Bellazzini

More information

Geometry and the Kato square root problem

Geometry and the Kato square root problem Geometry and the Kato square root problem Lashi Bandara Centre for Mathematics and its Applications Australian National University 7 June 2013 Geometric Analysis Seminar University of Wollongong Lashi

More information

Some applications of matrix inequalities in Rényi entropy

Some applications of matrix inequalities in Rényi entropy Some applications of matrix inequalities in Rényi entropy arxiv:608.03362v [math-ph] Aug 206 Hadi Reisizadeh, and S. Mahmoud Manjegani 2, Department of Electrical and Computer Engineering, 2 Department

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 4 May 1997

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 4 May 1997 Coupled Harmonic Oscillators and Feynman s Rest of the arxiv:cond-mat/9705029v [cond-mat.stat-mech] 4 May 997 Universe D. Han National Aeronautics and Space Administration, Goddard Space Flight Center,

More information

Entropies and correlations in classical and quantum systems

Entropies and correlations in classical and quantum systems IL NUOVO CIMENTO 38 C (2015) 167 DOI 10.1393/ncc/i2015-15167-1 Colloquia: VILASIFEST Entropies and correlations in classical and quantum systems Margarita A. Man ko( 1 ), Vladimir I. Man ko( 2 )andgiuseppe

More information

Bulletin of the Iranian Mathematical Society

Bulletin of the Iranian Mathematical Society ISSN: 7-6X (Print ISSN: 735-855 (Online Special Issue of the ulletin of the Iranian Mathematical Society in Honor of Professor Heydar Radjavi s 8th irthday Vol. 4 (5, No. 7, pp. 85 94. Title: Submajorization

More information

Trace Inequalities and Quantum Entropy: An Introductory Course

Trace Inequalities and Quantum Entropy: An Introductory Course Contemporary Mathematics Trace Inequalities and Quantum Entropy: An Introductory Course Eric Carlen Abstract. We give an elementary introduction to the subject of trace inequalities and related topics

More information

Covariance and Fisher information in quantum mechanics

Covariance and Fisher information in quantum mechanics arxiv:quant-ph/0106125v1 22 Jun 2001 Covariance and Fisher information in quantum mechanics Dénes Petz Department for Mathematical Analysis Budapest University of Technology and Economics H-1521 Budapest

More information

Qubits vs. bits: a naive account A bit: admits two values 0 and 1, admits arbitrary transformations. is freely readable,

Qubits vs. bits: a naive account A bit: admits two values 0 and 1, admits arbitrary transformations. is freely readable, Qubits vs. bits: a naive account A bit: admits two values 0 and 1, admits arbitrary transformations. is freely readable, A qubit: a sphere of values, which is spanned in projective sense by two quantum

More information

GENERALIZED INFORMATION ENTROPIES IN QUANTUM PHYSICS

GENERALIZED INFORMATION ENTROPIES IN QUANTUM PHYSICS GENERALIZED INFORMATION ENTROPIES IN QUANTUM PHYSICS Mariela Portesi 1, S. Zozor 2, G.M. Bosyk 1, F. Holik 1, P.W. Lamberti 3 1 IFLP & Dpto de Fisica, CONICET & Univ. Nac. de La Plata, Argentina 2 GIPSA-Lab,

More information

CUT-OFF FOR QUANTUM RANDOM WALKS. 1. Convergence of quantum random walks

CUT-OFF FOR QUANTUM RANDOM WALKS. 1. Convergence of quantum random walks CUT-OFF FOR QUANTUM RANDOM WALKS AMAURY FRESLON Abstract. We give an introduction to the cut-off phenomenon for random walks on classical and quantum compact groups. We give an example involving random

More information

Complete Moment Convergence for Sung s Type Weighted Sums of ρ -Mixing Random Variables

Complete Moment Convergence for Sung s Type Weighted Sums of ρ -Mixing Random Variables Filomat 32:4 (208), 447 453 https://doi.org/0.2298/fil804447l Published by Faculty of Sciences and Mathematics, Uversity of Niš, Serbia Available at: http://www.pmf..ac.rs/filomat Complete Moment Convergence

More information

Norm inequalities related to the matrix geometric mean

Norm inequalities related to the matrix geometric mean isid/ms/2012/07 April 20, 2012 http://www.isid.ac.in/ statmath/eprints Norm inequalities related to the matrix geometric mean RAJENDRA BHATIA PRIYANKA GROVER Indian Statistical Institute, Delhi Centre

More information