Control Lab. Thermal Plant. Chriss Grimholt


 Dale Joseph
 1 years ago
 Views:
Transcription
1 Control Lab Thermal Plant Chriss Grimholt Process System Engineering Department of Chemical Engineering Norwegian University of Science and Technology October 3, 23 C. Grimholt (NTNU) Thermal Plant October 3, 23 / 7
2 What is a controller? disturbance variable, DV (d) controller sensor actuator setpoint (y s ) controlled variable, CV (y) manipulated variable, MV (u) C. Grimholt (NTNU) Thermal Plant October 3, 23 2 / 7
3 The PID Controller K c e u P P e dt error, e u I + u = u P + u I + u D I de dt u D D In Time Domain: u = K c e + Kc τ I edt + Kc τ D de dt C. Grimholt (NTNU) Thermal Plant October 3, 23 3 / 7
4 The PID K c e up.5 u P error, e ui.4.2 e dt u I + u u = u P + u I + u D de dt.5 ud.5 u D C. Grimholt (NTNU) Thermal Plant October 3, 23 4 / 7
5 The Experimental Setup and the Task y s e Controller u Process y Task: Tune the PI controller.??? where to begin? Trial and Error? C. Grimholt (NTNU) Thermal Plant October 3, 23 5 / 7
6 Trial and Error Trial and Error Trial and error is usually everybody s first approach to tuning. Tuning works by changing the tuning parameters up and down until a satisfactory response is obtained. Tuning with this method is very time consuming. Hard to get a satisfactory response. hmm, as a lazy engineer I must find a better method less time consuming to get a satisfactory response C. Grimholt (NTNU) Thermal Plant October 3, 23 6 / 7
7 How to Tune a Controller A more systematic approach: SIMC tuning rules Obtain a model of the process. 2 Use the SIMC tuning rules. 3 If the closedloop response is not satisfactory, adjust τ c. Perfect! C. Grimholt (NTNU) Thermal Plant October 3, 23 7 / 7
8 Finding The Model Process??? How to find the model of your process? C. Grimholt (NTNU) Thermal Plant October 3, 23 8 / 7
9 Finding The Model Process Step Response C. Grimholt (NTNU) Thermal Plant October 3, 23 8 / 7
10 Finding The Model Input, u Time Process. Apply a step to the input of the process C. Grimholt (NTNU) Thermal Plant October 3, 23 8 / 7
11 Finding The Model Input, u Time Process Output, y Time. Apply a step to the input of the process 2. Observe the process response (process output) C. Grimholt (NTNU) Thermal Plant October 3, 23 8 / 7
12 Finding The Model Input, u Time Process Output, y Time Looks like a First Order Response A First Order Model might describe the system well! y(s) = k τ s+ e( θs) u(s) C. Grimholt (NTNU) Thermal Plant October 3, 23 8 / 7
13 Model Library Input, u Input Step Time Time Delay Process First Order Process Integrating Process Output, y Time Output, y Time Output, y Time y = ke ( θs) u y = k τ s+ e( θs) u y = k s e( θs) u τ τ C. Grimholt (NTNU) Thermal Plant October 3, 23 9 / 7
14 Fitting a First Order Model to the Response An easy way to find the model parameters such that the model have the same response as the process. Input, u Output, y y y y(t = τ ) = y +.63 y u y Good Model Parameters: Gain: k = y u = Time delay: θ = Time constant: τ = θ τ C. Grimholt (NTNU) Thermal Plant October 3, 23 / 7
15 Fitting a First Order Model to the Response An easy way to find the model parameters such that the model have the same response as the process. Input, u Output, y y y y(t = τ ) = y +.63 y u y Good Model Parameters: Gain: k = y u = Time delay: θ = Time constant: τ = Nice Fit! θ τ C. Grimholt (NTNU) Thermal Plant October 3, 23 / 7
16 Fitting an Integrating Model to the Response An easy way to find the model parameters such that the model have the same response as the process. Input, u Output, y slope u Good Model Parameters: Gain: k = slope u =.2 Time delay: θ = θ C. Grimholt (NTNU) Thermal Plant October 3, 23 / 7
17 Fitting an Integrating Model to the Response An easy way to find the model parameters such that the model have the same response as the process. Input, u Output, y slope u Good Model Parameters: Gain: k = slope u =.2 Time delay: θ = Nice Fit! θ C. Grimholt (NTNU) Thermal Plant October 3, 23 / 7
18 We have found a model of the process, now we need to tune the controller. K C =? τ I =? k τ s+ e θs y s e Controller u Process y Task: Tune the PI controller.??? How to use the model to tune? C. Grimholt (NTNU) Thermal Plant October 3, 23 2 / 7
19 The SIMC tuning rules K C = k τ τ c + θ () τ I = min{τ, 4(τ c + θ)} (2) where τ c is the tuning parameter (i.e. what you can adjust to trade off between fast and robust tuning). τ c is also called the closedloop time constant, meaning the speed of the control. small τ c large fast response slow response less robust more robust τ c = θ recommended for fast and robust tuning C. Grimholt (NTNU) Thermal Plant October 3, 23 3 / 7
20 The Role of τ c The closedloop time constant τ c is used to trade off between robustness and the speed of control. slow SIMC Tuning speed of control Infeasible τ c = θ fast high robustness low C. Grimholt (NTNU) Thermal Plant October 3, 23 4 / 7
21 SIMC for integrating processes The SIMC tuning rules K C = k τ c + θ (3) τ I = 4(τ c + θ) (4) Why? Integrating process: τ G(s) = τ s + τ s k τ s + k τ s = k s (τ, τ θ) τ I = min{τ, 4(τ c + θ)} = 4(τ c + θ) C. Grimholt (NTNU) Thermal Plant October 3, 23 5 / 7
22 The Windup Problem the MV is either at min or max value If the MV becomes saturated when using a PI controller, you might experience problems with windup. So what is the windup problem? Given the model: y = 2s+ e( s) u We find the SIMC PI controller tuning: with τ c = θ: K C =.5 and τ I = 8 Note: u is constrained between and.5 C. Grimholt (NTNU) Thermal Plant October 3, 23 6 / 7
23 The Windup Problem the MV is either at min or max value If the MV becomes saturated when using a PI controller, you might experience problems with windup. So what is the windup problem? Input, u Output, y Given the model:.4 y = 2s+ e( s) u.2 We find the SIMC PI controller tuning: with τ c = θ: K C =.5 2and τ I = 8 4 Note: u is constrained between and ?! y is below the setpoint but the controller does not increase u! what a bad controller! C. Grimholt (NTNU) Thermal Plant October 3, 23 6 / 7
24 The Windup Problem Why does windup happen? Integral action is to blame! Cause: Integral action (u I ) keeps on increasing the controller output past the saturation limit. u = u P + u I + u D Because u I can only decrease if the error changes sign, the controller will be temporarily disabled until u I is decreased such that u is under the saturation limit. C. Grimholt (NTNU) Thermal Plant October 3, 23 7 / 7
Dynamics and PID control. Process dynamics
Dynamics and PID control Sigurd Skogestad Process dynamics Things take time Step response (response of output y to step in input u): k = Δy( )/ Δu process gain  process time constant (63%)  process time
More informationEnhanced SingleLoop Control Strategies Chapter 16
Enhanced SingleLoop Control Strategies Chapter 16 1. Cascade control 2. Timedelay compensation 3. Inferential control 4. Selective and override control 5. Nonlinear control 6. Adaptive control 1 Chapter
More informationOptimal Temperature Control of Rooms
Optimal Temperature Control of Rooms Specialization project 2012 Siri Hofstad Trapnes Supervisor: Sigurd Skogestad Cosupervisor: Chriss Grimholt December 6, 2012 Norwegian University of Science and Technology
More informationCM 3310 Process Control, Spring Lecture 21
CM 331 Process Control, Spring 217 Instructor: Dr. om Co Lecture 21 (Back to Process Control opics ) General Control Configurations and Schemes. a) Basic SingleInput/SingleOutput (SISO) Feedback Figure
More informationProcess Control, 3P4 Assignment 5
Process Control, 3P4 Assignment 5 Kevin Dunn, kevin.dunn@mcmaster.ca Due date: 12 March 2014 This assignment is due on Wednesday, 12 March 2014. Late handins are not allowed. Since it is posted mainly
More informationGoodwin, Graebe, Salgado, Prentice Hall Chapter 11. Chapter 11. Dealing with Constraints
Chapter 11 Dealing with Constraints Topics to be covered An ubiquitous problem in control is that all real actuators have limited authority. This implies that they are constrained in amplitude and/or rate
More informationFeedback Control of Linear SISO systems. Process Dynamics and Control
Feedback Control of Linear SISO systems Process Dynamics and Control 1 OpenLoop Process The study of dynamics was limited to openloop systems Observe process behavior as a result of specific input signals
More informationModel based control design
Model based control design Alf Isaksson September, 999 Supplied as supplement to course book in Automatic Control Basic course (Reglerteknik AK) Objective: To introduce some general approaches to model
More informationChapter 8. Feedback Controllers. Figure 8.1 Schematic diagram for a stirredtank blending system.
Feedback Controllers Figure 8.1 Schematic diagram for a stirredtank blending system. 1 Basic Control Modes Next we consider the three basic control modes starting with the simplest mode, proportional
More informationControl Systems 2. Lecture 4: Sensitivity function limits. Roy Smith
Control Systems 2 Lecture 4: Sensitivity function limits Roy Smith 2017314 4.1 Inputoutput controllability Control design questions: 1. How well can the plant be controlled? 2. What control structure
More informationFundamental Principles of Process Control
Fundamental Principles of Process Control Motivation for Process Control Safety First: people, environment, equipment The Profit Motive: meeting final product specs minimizing waste production minimizing
More informationCHAPTER 19: SingleLoop IMC Control
When I coplete this chapter, I want to be able to do the following. Recognize that other feedback algoriths are possible Understand the IMC structure and how it provides the essential control features
More informationSimple analytic rules for model reduction and PID controller tuning
Journal of Process Control 3 (2003) 29 309 www.elsevier.com/locate/jprocont Simple analytic rules for model reduction and PID controller tuning Sigurd Sogestad* Department of Chemical Engineering, Norwegian
More informationControl Systems II. ETH, MAVT, IDSC, Lecture 4 17/03/2017. G. Ducard
Control Systems II ETH, MAVT, IDSC, Lecture 4 17/03/2017 Lecture plan: Control Systems II, IDSC, 2017 SISO Control Design 24.02 Lecture 1 Recalls, Introductory case study 03.03 Lecture 2 Cascaded Control
More informationControl System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #24 Wednesday, March 10, 2004 Dr. Ian C. Bruce Room: CRL229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Remedies We next turn to the question
More informationAnalysis and Design of Control Systems in the Time Domain
Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.
More informationEnhanced SingleLoop Control Strategies (Advanced Control) Cascade Control TimeDelay Compensation Inferential Control Selective and Override Control
Enhanced SingleLoop Control Strategies (Advanced Control) Cascade Control TimeDelay Compensation Inferential Control Selective and Override Control 1 Cascade Control A disadvantage of conventional feedback
More informationOpen Loop Tuning Rules
Open Loop Tuning Rules Based on approximate process models Process Reaction Curve: The process reaction curve is an approximate model of the process, assuming the process behaves as a first order plus
More informationreality is complex process
ISS0080 Automation and Process Control Lecture 5 1 Process models the desire to describe reality Model of the process, model simplication, identication. model reality is complex process Replaces the original;
More informationFeedback Basics. David M. Auslander Mechanical Engineering University of California at Berkeley. copyright 1998, D.M. Auslander
Feedback Basics David M. Auslander Mechanical Engineering University of California at Berkeley copyright 1998, D.M. Auslander 1 I. Feedback Control Context 2 What is Feedback Control? Measure desired behavior
More informationA unified doubleloop multiscale control strategy for NMP integratingunstable systems
Home Search Collections Journals About Contact us My IOPscience A unified doubleloop multiscale control strategy for NMP integratingunstable systems This content has been downloaded from IOPscience.
More informationProcess Solutions. Process Dynamics. The Fundamental Principle of Process Control. APC Techniques Dynamics 21. Page 21
Process Dynamics The Fundamental Principle of Process Control APC Techniques Dynamics 21 Page 21 Process Dynamics (1) All Processes are dynamic i.e. they change with time. If a plant were totally static
More informationPID controllers, part I
Faculty of Mechanical and Power Engineering Dr inŝ. JANUSZ LICHOTA CONTROL SYSTEMS PID controllers, part I Wrocław 2007 CONTENTS Controller s classification PID controller what is it? Typical controller
More informationFeedback: Still the simplest and best solution
Feedback: Still the simplest and best solution Sigurd Skogestad Department of Chemical Engineering Norwegian Univ. of Science and Tech. (NTNU) Trondheim, Norway skoge@ntnu.no Abstract Most engineers are
More informationAdvanced control If singleloop feedback control (PID) alone is not good enough
The decision hierarchy is based on time scale separation setpoints Advanced control (MPC) setpoints Fast regulatory control (PID) PROCESS Advanced control If singleloop feedback control (PID) alone is
More informationPID Control. Objectives
PID Control Objectives The objective of this lab is to study basic design issues for proportionalintegralderivative control laws. Emphasis is placed on transient responses and steadystate errors. The
More informationLearn2Control Laboratory
Learn2Control Laboratory Version 3.2 Summer Term 2014 1 This Script is for use in the scope of the Process Control lab. It is in no way claimed to be in any scientific way complete or unique. Errors should
More informationProportional, Integral & Derivative Control Design. Raktim Bhattacharya
AERO 422: Active Controls for Aerospace Vehicles Proportional, ntegral & Derivative Control Design Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University
More informationController Design Based on Transient Response Criteria. Chapter 12 1
Controller Design Based on Transient Response Criteria Chapter 12 1 Desirable Controller Features 0. Stable 1. Quik responding 2. Adequate disturbane rejetion 3. Insensitive to model, measurement errors
More informationTime scale separation and the link between openloop and closedloop dynamics
Time scale separation and the link between openloop and closedloop dynamics Antonio Araújo a Michael Baldea b Sigurd Skogestad a,1 Prodromos Daoutidis b a Department of Chemical Engineering Norwegian
More informationIMC based automatic tuning method for PID controllers in a Smith predictor configuration
Computers and Chemical Engineering 28 (2004) 281 290 IMC based automatic tuning method for PID controllers in a Smith predictor configuration Ibrahim Kaya Department of Electrical and Electronics Engineering,
More informationSatellite Attitude Control System Design Using Reaction Wheels Bhanu Gouda Brian Fast Dan Simon
Satellite Attitude Control System Design Using Reaction Wheels Bhanu Gouda Brian Fast Dan Simon Outline 1. Overview of Attitude Determination and Control system. Problem formulation 3. Control schemes
More informationControl of MIMO processes. 1. Introduction. Control of MIMO processes. Control of MultipleInput, Multiple Output (MIMO) Processes
Control of MIMO processes Control of MultipleInput, Multiple Output (MIMO) Processes Statistical Process Control Feedforward and ratio control Cascade control Split range and selective control Control
More informationMultiple Model Based Adaptive Control for Shell and Tube Heat Exchanger Process
Multiple Model Based Adaptive Control for Shell and Tube Heat Exchanger Process R. Manikandan Assistant Professor, Department of Electronics and Instrumentation Engineering, Annamalai University, Annamalai
More informationObjective: To study P, PI, and PID temperature controller for an oven and compare their performance. Name of the apparatus Range Quantity
Objective: To study P, PI, and PID temperature controller for an oven and compare their. Apparatus Used: Name of the apparatus Range Quantity 1. Temperature Controller System 1 PID Kp (010) Kd(020) Ki(00.02)
More informationCONTROLLED VARIABLE AND MEASUREMENT SELECTION
CONTROLLED VARIABLE AND MEASUREMENT SELECTION Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Technology (NTNU) Trondheim, Norway Bratislava, Nov. 2010 1 NTNU, Trondheim
More informationAn Improved Relay Auto Tuning of PID Controllers for SOPTD Systems
Proceedings of the World Congress on Engineering and Computer Science 7 WCECS 7, October 46, 7, San Francisco, USA An Improved Relay Auto Tuning of PID Controllers for SOPTD Systems Sathe Vivek and M.
More informationEE C128 / ME C134 Feedback Control Systems
EE C128 / ME C134 Feedback Control Systems Lecture Additional Material Introduction to Model Predictive Control Maximilian Balandat Department of Electrical Engineering & Computer Science University of
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More informationPassivitybased Adaptive Inventory Control
Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference Shanghai, P.R. China, December 68, 29 ThB.2 Passivitybased Adaptive Inventory Control Keyu Li, Kwong Ho Chan and
More informationDistributed RealTime Control Systems
Distributed RealTime Control Systems Chapter 9 Discrete PID Control 1 Computer Control 2 Approximation of Continuous Time Controllers Design Strategy: Design a continuous time controller C c (s) and then
More informationCHAPTER 6 CLOSED LOOP STUDIES
180 CHAPTER 6 CLOSED LOOP STUDIES Improvement of closedloop performance needs proper tuning of controller parameters that requires process model structure and the estimation of respective parameters which
More informationA NEW APPROACH TO MIXED H 2 /H OPTIMAL PI/PID CONTROLLER DESIGN
Copyright 2002 IFAC 15th Triennial World Congress, Barcelona, Spain A NEW APPROACH TO MIXED H 2 /H OPTIMAL PI/PID CONTROLLER DESIGN Chyi Hwang,1 ChunYen Hsiao Department of Chemical Engineering National
More informationSurvey of Methods of Combining Velocity Profiles with Position control
Survey of Methods of Combining Profiles with control Petter Karlsson Mälardalen University P.O. Box 883 713 Västerås, Sweden pkn91@student.mdh.se ABSTRACT In many applications where some kind of motion
More informationAppendix A MoReRT Controllers Design Demo Software
Appendix A MoReRT Controllers Design Demo Software The use of the proposed ModelReference Robust Tuning (MoReRT) design methodology, described in Chap. 4, to tune a twodegreeoffreedom (2DoF) proportional
More informationRoot Locus. Motivation Sketching Root Locus Examples. School of Mechanical Engineering Purdue University. ME375 Root Locus  1
Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus  1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: D 0.09 Position
More informationLecture 7: Antiwindup and friction compensation
Lecture 7: Antiwindup and friction compensation Compensation for saturations (antiwindup) Friction models Friction compensation Material Lecture slides Course Outline Lecture 13 Lecture 26 Lecture
More informationEE3CL4: Introduction to Linear Control Systems
1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We
More informationA Holistic Approach to the Application of Model Predictive Control to Batch Reactors
A Holistic Approach to the Application of Model Predictive Control to Batch Reactors A Singh*, P.G.R de Villiers**, P Rambalee***, G Gous J de Klerk, G Humphries * Lead Process Control Engineer, Anglo
More informationExam. 135 minutes + 15 minutes reading time
Exam January 23, 27 Control Systems I (559L) Prof. Emilio Frazzoli Exam Exam Duration: 35 minutes + 5 minutes reading time Number of Problems: 45 Number of Points: 53 Permitted aids: Important: 4 pages
More informationParis'09 ECCI Eduardo F. Camacho MPC Constraints 2. Paris'09 ECCI Eduardo F. Camacho MPC Constraints 4
Outline Constrained MPC Eduardo F. Camacho Univ. of Seville. Constraints in Process Control. Constraints and MPC 3. Formulation of Constrained MPC 4. Illustrative Examples 5. Feasibility. Constraint Management
More informationTRACKING TIME ADJUSTMENT IN BACK CALCULATION ANTIWINDUP SCHEME
TRACKING TIME ADJUSTMENT IN BACK CALCULATION ANTIWINDUP SCHEME Hayk Markaroglu Mujde Guzelkaya Ibrahim Eksin Engin Yesil Istanbul Technical University, Faculty of Electrical and Electronics Engineering,
More information100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =
1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot
More informationIterative Learning Control (ILC)
Department of Automatic Control LTH, Lund University ILC ILC  the main idea Time Domain ILC approaches Stability Analysis Example: The Milk Race Frequency Domain ILC Example: Marine Vibrator Material:
More informationLecture 1: Feedback Control Loop
Lecture : Feedback Control Loop Loop Transfer function The standard feedback control system structure is depicted in Figure. This represend(t) n(t) r(t) e(t) u(t) v(t) η(t) y(t) F (s) C(s) P (s) Figure
More informationFall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) FengLi Lian. NTUEE Sep07 Jan08
Fall 2007 線性系統 Linear Systems Chapter 08 State Feedback & State Estimators (SISO) FengLi Lian NTUEE Sep07 Jan08 Materials used in these lecture notes are adopted from Linear System Theory & Design, 3rd.
More informationK c < K u K c = K u K c > K u step 4 Calculate and implement PID parameters using the the ZieglerNichols tuning tables: 30
1.5 QUANTITIVE PID TUNING METHODS Tuning PID parameters is not a trivial task in general. Various tuning methods have been proposed for dierent model descriptions and performance criteria. 1.5.1 CONTINUOUS
More informationTuning PD and PID Controllers for Double Integrating Plus Time Delay Systems
Modeling, Identification and Control, Vol. 38, No., 7, pp. 95, ISSN 89 38 Tuning PD and PID Controllers for Double Integrating Plus Time Delay Systems David Di Ruscio, Christer Dalen Department of Electrical,
More informationCONTROL OF DIGITAL SYSTEMS
AUTOMATIC CONTROL AND SYSTEM THEORY CONTROL OF DIGITAL SYSTEMS Gianluca Palli Dipartimento di Ingegneria dell Energia Elettrica e dell Informazione (DEI) Università di Bologna Email: gianluca.palli@unibo.it
More informationAlireza Mousavi Brunel University
Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 OpenLoop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched
More informationB11. Closedloop control. Chapter 1. Fundamentals of closedloop control technology. Festo Didactic Process Control System
B11 Chapter 1 Fundamentals of closedloop control technology B12 This chapter outlines the differences between closedloop and openloop control and gives an introduction to closedloop control technology.
More informationQuanser NIELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual
Quanser NIELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control DC Motor Control Trainer (DCMCT) Student Manual Table of Contents 1 Laboratory Objectives1 2 References1 3 DCMCT Plant
More informationIncorporating Feedforward Action into Selfoptimizing Control Policies
Incorporating Feedforward Action into Selfoptimizing Control Policies Lia Maisarah Umar, Yi Cao and Vinay Kariwala School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
More informationEEL2216 Control Theory CT1: PID Controller Design
EEL6 Control Theory CT: PID Controller Design. Objectives (i) To design proportionalintegralderivative (PID) controller for closed loop control. (ii) To evaluate the performance of different controllers
More informationModelling the Temperature Changes of a Hot Plate and Water in a Proportional, Integral, Derivative Control System
Modelling the Temperature Changes of a Hot Plate and Water in a Proportional, Integral, Derivative Control System Grant Hutchins 1. Introduction Temperature changes in a hot plate heating system can be
More informationSCALEUP OF BATCH PROCESSES VIA DECENTRALIZED CONTROL. A. Marchetti, M. Amrhein, B. Chachuat and D. Bonvin
SCALEUP OF BATCH PROCESSES VIA DECENTRALIZED CONTROL A. Marchetti, M. Amrhein, B. Chachuat and D. Bonvin Laboratoire d Automatique Ecole Polytechnique Fédérale de Lausanne (EPFL) CH1015 Lausanne, Switzerland
More informationRobust tuning procedures of deadtime compensating controllers
ISSN 28 5316 ISRN LUTFD2/TFRT5645SE Robust tuning procedures of deadtime compensating controllers Ari Ingimundarson Department of Automatic Control Lund Institute of Technology December 2 Department
More informationAN INTRODUCTION TO THE CONTROL THEORY
OpenLoop controller An OpenLoop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, nonlinear dynamics and parameter
More informationLecture 9. Welcome back! Coming week labs: Today: Lab 16 System Identification (2 sessions)
232 Welcome back! Coming week labs: Lecture 9 Lab 16 System Identification (2 sessions) Today: Review of Lab 15 System identification (ala ME4232) Time domain Frequency domain 1 Future Labs To develop
More informationIan G. Horn, Jeffery R. Arulandu, Christopher J. Gombas, Jeremy G. VanAntwerp, and Richard D. Braatz*
Ind. Eng. Chem. Res. 996, 35, 3437344 3437 PROCESS DESIGN AND CONTROL Improved Filter Design in Internal Model Control Ian G. Horn, Jeffery R. Arulandu, Christopher J. Gombas, Jeremy G. VanAntwerp, and
More informationDesign Artificial Nonlinear Controller Based on Computed Torque like Controller with Tunable Gain
World Applied Sciences Journal 14 (9): 13061312, 2011 ISSN 18184952 IDOSI Publications, 2011 Design Artificial Nonlinear Controller Based on Computed Torque like Controller with Tunable Gain Samira Soltani
More informationHYDRAULIC LINEAR ACTUATOR VELOCITY CONTROL USING A FEEDFORWARDPLUSPID CONTROL
HYDRAULIC LINEAR ACTUATOR VELOCITY CONTROL UING A FEEDFORWARDPLUPID CONTROL Qin Zhang Department of Agricultural Engineering University of Illinois at UrbanaChampaign, Urbana, IL 68 ABTRACT: A practical
More informationDeadTime Compensation and Performance Monitoring in Process Control
DeadTime Compensation and Performance Monitoring in Process Control Ingimundarson, Ari Published: 2311 Link to publication Citation for published version (APA): Ingimundarson, A. (23). DeadTime Compensation
More informationComparative study of three practical IMC algorithms with inner controller of first and second order
Journal of Electrical Engineering, Electronics, Control and Computer Science JEEECCS, Volume 2, Issue 4, pages 228, 206 Comparative study of three practical IMC algorithms with inner controller of first
More informationAutomatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21211 1 / 39 Feedback
More informationChapter 7  Solved Problems
Chapter 7  Solved Problems Solved Problem 7.1. A continuous time system has transfer function G o (s) given by G o (s) = B o(s) A o (s) = 2 (s 1)(s + 2) = 2 s 2 + s 2 (1) Find a controller of minimal
More informationNDIBASED STRUCTURED LPV CONTROL A PROMISING APPROACH FOR AERIAL ROBOTICS
NDIBASED STRUCTURED LPV CONTROL A PROMISING APPROACH FOR AERIAL ROBOTICS JM. Biannic AERIAL ROBOTICS WORKSHOP OCTOBER 2014 CONTENT 1 Introduction 2 Proposed LPV design methodology 3 Applications to Aerospace
More informationControl System Architectures
Control System Architectures K. J. Åström Department of Automatic Control LTH Lund University Control System Architectures 1 Introduction 2 Examples 3 Control Paradigms 4 Three issues 5 Representations
More informationMost General Definition: Trust is good, control is better.
GOALS: To provide advanced students in mechanical engineering with a solid background in dynamic system modeling and analysis and to enable them to analyze and design linear control systems. FORMAT: Lecture:
More informationRELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS. Ryszard Gessing
RELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS Ryszard Gessing Politechnika Śl aska Instytut Automatyki, ul. Akademicka 16, 44101 Gliwice, Poland, fax: +4832 372127, email: gessing@ia.gliwice.edu.pl
More informationControl of robot manipulators
Control of robot manipulators Claudio Melchiorri Dipartimento di Elettronica, Informatica e Sistemistica (DEIS) Università di Bologna email: claudio.melchiorri@unibo.it C. Melchiorri (DEIS) Control 1 /
More informationISAPID Controller Tuning: A combined minmax / ISE approach
Proceedings of the 26 IEEE International Conference on Control Applications Munich, Germany, October 46, 26 FrB11.2 ISAPID Controller Tuning: A combined minmax / ISE approach Ramon Vilanova, Pedro Balaguer
More informationLaplace Transforms. Chapter 3. Pierre Simon Laplace Born: 23 March 1749 in BeaumontenAuge, Normandy, France Died: 5 March 1827 in Paris, France
Pierre Simon Laplace Born: 23 March 1749 in BeaumontenAuge, Normandy, France Died: 5 March 1827 in Paris, France Laplace Transforms Dr. M. A. A. Shoukat Choudhury 1 Laplace Transforms Important analytical
More informationProblem Set 5 Solutions 1
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Problem Set 5 Solutions The problem set deals with Hankel
More information4 CONTROL OF ACTIVATED SLUDGE WASTEWATER SYSTEM
Progress in Process Tomography and Instrumentation System: Series 2 57 4 CONTROL OF ACTIVATED SLUDGE WASTEWATER SYSTEM Norhaliza Abdul Wahab Reza Katebi Mohd Fuaad Rahmat Aznah Md Noor 4.1 INTRODUCTION
More information2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303)
MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
More informationControl System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #22 Dr. Ian C. Bruce Room: CRL229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Friday, March 5, 24 More General Effects of Open Loop Poles
More informationREPETITIVE LEARNING OF BACKSTEPPING CONTROLLED NONLINEAR ELECTROHYDRAULIC MATERIAL TESTING SYSTEM 1. Seunghyeokk James Lee 2, TsuChin Tsao
REPETITIVE LEARNING OF BACKSTEPPING CONTROLLED NONLINEAR ELECTROHYDRAULIC MATERIAL TESTING SYSTEM Seunghyeokk James Lee, TsuChin Tsao Mechanical and Aerospace Engineering Department University of California
More informationPole placement control: state space and polynomial approaches Lecture 2
: state space and polynomial approaches Lecture 2 : a state O. Sename 1 1 Gipsalab, CNRSINPG, FRANCE Olivier.Sename@gipsalab.fr www.gipsalab.fr/ o.sename based November 21, 2017 Outline : a state
More information6.302 Feedback Systems Recitation 16: Compensation Prof. Joel L. Dawson
Bode Obstacle Course is one technique for doing compensation, or designing a feedback system to make the closedloop behavior what we want it to be. To review:  G c (s) G(s) H(s) you are here! plant For
More informationChapter 13 Digital Control
Chapter 13 Digital Control Chapter 12 was concerned with building models for systems acting under digital control. We next turn to the question of control itself. Topics to be covered include: why one
More informationIndustrial Model Predictive Control
Industrial Model Predictive Control Emil Schultz Christensen Kongens Lyngby 2013 DTU ComputeM.Sc.201349 Technical University of Denmark DTU Compute Matematiktovet, Building 303B, DK2800 Kongens Lyngby,
More informationNONLINEAR BATCH REACTOR TEMPERATURE CONTROL BASED ON ADAPTIVE FEEDBACKBASED ILC
NONLINEAR BATCH REACTOR TEMPERATURE CONTROL BASED ON ADAPTIVE FEEDBACKBASED ILC Eduardo J. Adam 1 1 Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina ABSTRACT This
More informationTuning of Internal Model Control Proportional Integral Derivative Controller for Optimized Control
Tuning of Internal Model Control Proportional Integral Derivative Controller for Optimized Control Thesis submitted in partial fulfilment of the requirement for the award of Degree of MASTER OF ENGINEERING
More informationChapter 12. Feedback Control Characteristics of Feedback Systems
Chapter 1 Feedbac Control Feedbac control allows a system dynamic response to be modified without changing any system components. Below, we show an openloop system (a system without feedbac) and a closedloop
More informationAdditional ClosedLoop Frequency Response Material (Second edition, Chapter 14)
Appendix J Additional ClosedLoop Frequency Response Material (Second edition, Chapter 4) APPENDIX CONTENTS J. ClosedLoop Behavior J.2 Bode Stability Criterion J.3 Nyquist Stability Criterion J.4 Gain
More informationTwoLink Flexible Manipulator Control Using Sliding Mode Control Based Linear Matrix Inequality
IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS TwoLink Flexible Manipulator Control Using Sliding Mode Control Based Linear Matrix Inequality To cite this article: Zulfatman
More informationModeling and Control Overview
Modeling and Control Overview D R. T A R E K A. T U T U N J I A D V A N C E D C O N T R O L S Y S T E M S M E C H A T R O N I C S E N G I N E E R I N G D E P A R T M E N T P H I L A D E L P H I A U N I
More informationSinusoidal Forcing of a FirstOrder Process. / τ
Frequency Response Analysis Chapter 3 Sinusoidal Forcing of a FirstOrder Process For a firstorder transfer function with gain K and time constant τ, the response to a general sinusoidal input, xt = A
More informationRobust AntiWindup Compensation for PID Controllers
Robust AntiWindup Compensation for PID Controllers ADDISON RIOSBOLIVAR Universidad de Los Andes Av. Tulio Febres, Mérida 511 VENEZUELA FRANCKLIN RIVASECHEVERRIA Universidad de Los Andes Av. Tulio Febres,
More information