1 Solution of Final. Dr. Franz Rothe December 25, Figure 1: Dissection proof of the Pythagorean theorem in a special case

Size: px
Start display at page:

Download "1 Solution of Final. Dr. Franz Rothe December 25, Figure 1: Dissection proof of the Pythagorean theorem in a special case"

Transcription

1 Math 3181 Dr. Franz Rothe December 25, 2012 Name: 1 Solution of Final Figure 1: Dissection proof of the Pythagorean theorem in a special case 10 Problem 1. Given is a right triangle ABC with angle α = 60. Squares are erected on its three sides. As done in the figure on page 1, one can construct dissections of them which prove the Theorem of Pythagoras. What kind of quadrilateral is ALKB. Put a = 2 3 and determine b and the segment lengths x = LE and y = BL. Answer. The quadrilateral ABLK is a parallelogram. Its opposite sides are congruent. Hence y = AK = AC + CK = AC + LE = b + x. Secondly, a = BE = BL + LE = y + x. Given values are a = 2 3, hence b = 2 and c = 4. x + y = a and y x = b imply x = a b = 3 1 and y = a + b =

2 Figure 2: One of many possible constructions of the parallel. 10 Problem 2. Given is a line l through two points A and B and a point P not lying on the line. One of many possible constructions of the parallel to line l through the point P is shown in the figure on page 2. Explain how the point Q is obtained. What does one know about the lines AB and P Q. Explain how the point R is obtained. What does one know about the lines P R and P Q. Explain why the lines P R and AB are parallel. Answer. The point Q is the second intersection point of the two circles around A and B through point P. The lines AB and P Q are perpendicular. Point R is the intersection of the circle around A with the line AQ. By Thales Theorem, the lines P R and P Q are perpendicular. Since both lines P R and AB are perpendicular to line P Q, they are parallel. 2

3 10 Problem 3 (Another triangle). Construct a triangle with angles of 30, 45 and 105, using only compass and straightedge, but no protractor. Describe your construction. Figure 3: Construction of a triangle with angles of 45, 30 and 105. Answer. On an arbitrary segment OB, an equilateral triangle OBD is erected. As described in Euclid I.1, D is an intersection point of a circle around B through O with a circle around O through B. At point O, we erect the perpendicular onto this diameter. Let E be the intersection of the perpendicular with the circle around O, lying on the same side of AB as point D. Let A be the second endpoint of diameter AOB. The rays AD and BE intersect in point C. We thus get a triangle ABC with the angles 30, 45 and 105 at its vertices A, B and C. The angle BAD = 30 since triangle OBD is equilateral and ADB = 90. The angle ABC = 45 is obtained from the right isosceles triangle OBE. Finally, one calculates the third angle BCA = = 105 by the angle sum of triangle ABC. 3

4 10 Problem 4 (Tangents to a circle). Given is a circle C with center O, and a point P outside of C. Construct the tangents from point P to the circle C. Actually do and describe the construction! Answer. Figure 4: Tangents to a circle Construction 1 (Tangents to a circle). One begins by constructing a second circle T with diameter OP. (I call this circle the Thales circle over the segment OP ). The Thales circle intersects the given circle in!! two points T and S. The lines P T and P S are the two tangents from P to circle C. Validity of the Construction. By Thales theorem, the angle!! P T O is a right angle, because it is an angle in the semicircle over diameter OP. Since point T lies on the circle C, too, the segment OT is a radius of that circle. By Euclid III. 16, The line perpendicular to a diameter is!! tangent to a circle. Since T P is perpendicular to the radius OT, and hence to a diameter, it is a tangent of circle C. 4

5 10 Problem 5. Construct a right triangle with projections p = 3 and q = 4 of the legs onto the hypothenuse. Use Thales theorem. Describe your construction. Measure the lengths of the two legs of your triangle. Figure 5: Construction of a right triangle with projections p = 3, q = 4. Answer. Adjacent to each other on one line, we draw segments with the given lengths AF = q = 4 and F B = p = 3. We erect the perpendicular on line AB at point F and draw a semicircle with diameter AB. The semicircle and the perpendicular intersect at point C. The triangle ABC is a right triangle with hypothenuse AB, and the projections q = AF and F B = p have the lengths as required. I measure the two legs as a = 4.6 and b = Problem 6. What are the lengths of the two legs of the triangle from the last problem. Use the leg theorem to calculate exact root expressions. Answer. The leg theorem gives the squares a 2 = (p + q)p = 21 and b 2 = (p + q)q = 28. Hence the lengths of the legs are a = 21 and b = 28 5

6 Figure 6: Constructing a circle through a point and touching two lines. 10 Problem 7. Given are two intersecting lines l and m and a point A different from their intersection point. We have to construct a circle through the point A touching both lines. Describe the construction given in the figure on page 6. Answer. We draw the angular bisector of the the two given lines, bisecting the angle α in the interior of which the given point A lies. We choose any point O on the bisector and draw a circle around it touching both line l and line m. We draw the ray emanating from the intersection point Z of the two given lines and pointing into the interior of the angle α. This ray intersects the circle in two points C and D. The parallel to line DO through point A intersects the bisector in point O. The circle around O through point A does touch the two given lines and solves the problem. A second solution is obtained by drawing the parallel to line CO through point A. This line intersects the bisector in the center O 2. The circle around O 2 through 6

7 point A does touch the two given lines and yields the second solution of the problem. 10 Problem 8. We explain that there are two pairs of similar triangles ZAO ZDO and ZF O ZF O and prove from the resulting proportions that the circle around O through point A touches the two given lines l and m. Complete the following reasoning: Reason for the construction. The two triangles ZAO ZDO are equiangular because the lines AO and DO are!! parallel by construction. Because the lines F O and F O are both perpendicular to the same!! line m and hence parallel, the triangles ZF O ZF O are!! equiangular. Since equiangular triangles are similar, we get the proportions Division yields ZO AO = ZO DO and ZO F O = ZO F O AO F O = DO F O = 1 Indeed, the latter quotient equals 1 since both points D and F lie on a!! circle around O. Hence the former quotient equals one, too. Hence both points A and F lie on a circle C around O. This means that the constructed circle C touches the line!! m. Since the centers O and O lie on the!! angle bisector of the two given lines l and m, the circle O touches the line l, too. 7

8 Figure 7: How to trisect a segment but not an angle. 10 Problem 9. A right triangle with the angles 30, 60, 90, the hypothenuse has twice the length of the shorter leg. Give any convincing reason you want for this fact. Take two equilateral triangles with the common side AB. Together they give the rhombus ACBF as shown in the figure on page 8. We draw the long diagonal CF. Let M and N be the midpoints of segments AC and AF. The segment BM intersects the long diagonal CF in point D. The segment BN intersects the long diagonal CF in point E. We see and explain the following facts: At vertex B we get the angles CBM = 30, MBN = 60 and NBF = 30. The points D and E trisect the long diagonal CF. 8

9 Figure 8: How to trisect a segment but not an angle. 10 Problem 10. Complete the following reasoning: The different angles at vertex B. The ray BM bisects the angle!! CBA. But this is the angle of an!! equilateral triangle, and hence measures!! 60. Hence the bisected angle CBM measures 30. Similarly, we see that the most left angle NBF measures!! 30. The middle angle MBN is obtained by addition of two bisected angles of 30 and hence measures!! Problem 11. Complete the following reasoning: The trisection of the long diagonal CF. The ray BM bisects the angle!! CBA. Hence the triangles BMA = BMC are congruent. The point M is indeed the midpoint of side AC. The angle BMA is congruent to its supplement BMC and hence a!! right angle. The angles in the small triangle MCD are!! 90, 30 and 60, at the vertices M, C and D, respectively. The small triangles MCD = OBD, because of the vertical angles at D, the right angles at M and O and the congruent sides MC = OB. The small triangles OBD = OBE, because of the vertical angles at D, the right angles at O, the congruent angles at B and the common side!! OB. 9

10 For any right triangle with the angles 30, 60, 90, the hypothenuse has twice the length of the!! shorter leg. Hence CD = BD = 2 DO = DE Similarly we see that EF = DE. Hence points D and E trisect the long diagonal CF. 10

11 10 Problem 12. The angle of 120 can be constructed, but not trisected with ruler and compass. Complete the following argument: Proof. The construction of an angle of 120 was done in a previous problem. To investigate the trisection, we use the trigonometric formula 4 cos 3 α 3 cos α = cos 3α with 3α = 120 and obtain 4 cos cos 40 = cos 120 = 1 2 Hence k = 2 cos 40 is a root of the cubic equation x 3 3x + 1 = 0 This cubic polynomial has no rational root, as shown in the Lemma below. Since it has degree only!! three, this fact already implies that the polynomial cannot at all be factored over the rational numbers. Hence the polynomial is irreducible. For an!! irreducible polynomial, the field extension generated by root has dimension given by the!! degree of this polynomial. Hence we have obtained [Q(cos 40 ) : Q] = 3 We know that, for every constructible number k, the dimension [Q(k) : Q] is a!! power of two. Since 3 is not a power of two, we conclude that cos 40 is not a constructible number. Lemma 1. The polynomial x 3 3x + 1 has no rational root. Proof. Suppose towards a!! contradiction that x = p/q with p and q nonzero relatively prime integers is a rational root of x 3 3x + 1. By plugging the fraction into this polynomial, we obtain both p 3 = 3pq 2 q 3 = (3p q 2 )q and q 3 = p 3 + 3pq 2 = p( p 2 + 3q 2 ). The first relation implies that q divides p 3. Since p and q are relatively prime, the integer q can only be ±1. The second relation q 3 = p( p 2 + 3q 2 ) implies that p!! divides q 3. Since p and q are relatively prime, this implies p = ±1. Hence x = p/q is equal to!! ±1. But neither one of these two numbers is a root of x 3 3x + 1 = 0. This contradiction shows that there is no rational root of the polynomial x 3 3x+1. 11

12 10 Problem 13. In the coordinate plane are given: the circle with radius 3 and center (0, 0) and the line through points P = ( 1, 0) and Q = (0, 1). 1. What are the equations for the circle and the line. 2. What are the coordinates (x, y) for the intersection points of the circle and the line. 3. Give the exact root expressions for both coordinates of one intersection point. For the construction of which regular polygon could this be a useful first step? Answer. The equations for the circle and the line are x 2 + y 2 = 9 and y = x + 1 To get the coordinates (x, y) of the intersection points of the circle and the line, we plug y = x + 1 into the equation of the circle and get x 2 + (x + 1) 2 = 9 2x 2 + 2x 8 = 0 x 2 + x 4 = 0 The two intersection points have coordinates ( 1 17, 1 ) 17 and 2 2 x 1,2 = 1 ± 17 2 ( , 1 + ) These values could be used as a first step in a construction of a regular 17-gon. 12

13 10 Problem 14. The cubic polynomial x 3 2 is irreducible over the rational numbers, since 3 2 is irrational. One can use the Eisenstein criterium to check that the polynomial x 5 2 is irreducible over the rational numbers. Which ones of the roots 2, 3 2, 4 2, 5 2 are in the constructible field, which ones are not. Answer. The numbers!! 2 and!! 4 2 = 2 are constructible. The dimension of an extension generated by one root of an irreducible polynomial is given by its degree: [Q( 3 2) : Q] = 3 and [Q( 5 2) : Q] = 5 We have shown that the!! dimension [Q(k) : Q] is a!! power of two for every constructible number k. Since neither 3 nor 5 is a power of two, we conclude that neither 3 2 nor 5 2 are constructible. 13

14 Figure 9: Trisection with Nicolson s angle. Construction 2 (Trisection with Nicolson s angle (1883)). Nicolson s angle consists of a strip of two parallels with distance AB to which an extra square of congruent side BC is attached at point B. Thus B becomes the midpoint of segment AC. The points A, B and C are marked on the Nicolson angle. To trisect any given angle P OR, we first draw the parallel to side OP at distance AB which cuts the interior of the given angle. Next we place the Nicolson angle in such a way that on the parallel to side OP lies point A; on the other side OR lies point C; The vertex O lies on the edge of the Nicolson angle with extension through point B. The rays OA and OB trisect the given angle P OR. 14

Chapter 3 Cumulative Review Answers

Chapter 3 Cumulative Review Answers Chapter 3 Cumulative Review Answers 1a. The triangle inequality is violated. 1b. The sum of the angles is not 180º. 1c. Two angles are equal, but the sides opposite those angles are not equal. 1d. The

More information

12 Inversion by a Circle

12 Inversion by a Circle 12 Inversion by a Circle 12.1 Definition and construction of the inverted point Let D be a open circular disk of radius R and center O, and denote its boundary circle by D. Definition 12.1 (Inversion by

More information

Chapter (Circle) * Circle - circle is locus of such points which are at equidistant from a fixed point in

Chapter (Circle) * Circle - circle is locus of such points which are at equidistant from a fixed point in Chapter - 10 (Circle) Key Concept * Circle - circle is locus of such points which are at equidistant from a fixed point in a plane. * Concentric circle - Circle having same centre called concentric circle.

More information

Lesson 9.1 Skills Practice

Lesson 9.1 Skills Practice Lesson 9.1 Skills Practice Name Date Earth Measure Introduction to Geometry and Geometric Constructions Vocabulary Write the term that best completes the statement. 1. means to have the same size, shape,

More information

CLASS-IX MATHEMATICS. For. Pre-Foundation Course CAREER POINT

CLASS-IX MATHEMATICS. For. Pre-Foundation Course CAREER POINT CLASS-IX MATHEMATICS For Pre-Foundation Course CAREER POINT CONTENTS S. No. CHAPTERS PAGE NO. 0. Number System... 0 3 0. Polynomials... 39 53 03. Co-ordinate Geometry... 54 04. Introduction to Euclid's

More information

Question 1 ( 1.0 marks) places of decimals? Solution: Now, on dividing by 2, we obtain =

Question 1 ( 1.0 marks) places of decimals? Solution: Now, on dividing by 2, we obtain = Question 1 ( 1.0 marks) The decimal expansion of the rational number places of decimals? will terminate after how many The given expression i.e., can be rewritten as Now, on dividing 0.043 by 2, we obtain

More information

Theorem 1.2 (Converse of Pythagoras theorem). If the lengths of the sides of ABC satisfy a 2 + b 2 = c 2, then the triangle has a right angle at C.

Theorem 1.2 (Converse of Pythagoras theorem). If the lengths of the sides of ABC satisfy a 2 + b 2 = c 2, then the triangle has a right angle at C. hapter 1 Some asic Theorems 1.1 The ythagorean Theorem Theorem 1.1 (ythagoras). The lengths a b < c of the sides of a right triangle satisfy the relation a + b = c. roof. b a a 3 b b 4 b a b 4 1 a a 3

More information

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true?

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true? chapter vector geometry solutions V. Exercise A. For the shape shown, find a single vector which is equal to a)!!! " AB + BC AC b)! AD!!! " + DB AB c)! AC + CD AD d)! BC + CD!!! " + DA BA e) CD!!! " "

More information

Visit: ImperialStudy.com For More Study Materials Class IX Chapter 12 Heron s Formula Maths

Visit: ImperialStudy.com For More Study Materials Class IX Chapter 12 Heron s Formula Maths Exercise 1.1 1. Find the area of a triangle whose sides are respectively 150 cm, 10 cm and 00 cm. The triangle whose sides are a = 150 cm b = 10 cm c = 00 cm The area of a triangle = s(s a)(s b)(s c) Here

More information

Sample Question Paper Mathematics First Term (SA - I) Class IX. Time: 3 to 3 ½ hours

Sample Question Paper Mathematics First Term (SA - I) Class IX. Time: 3 to 3 ½ hours Sample Question Paper Mathematics First Term (SA - I) Class IX Time: 3 to 3 ½ hours M.M.:90 General Instructions (i) All questions are compulsory. (ii) The question paper consists of 34 questions divided

More information

0612ge. Geometry Regents Exam

0612ge. Geometry Regents Exam 0612ge 1 Triangle ABC is graphed on the set of axes below. 3 As shown in the diagram below, EF intersects planes P, Q, and R. Which transformation produces an image that is similar to, but not congruent

More information

Chapter 1. Some Basic Theorems. 1.1 The Pythagorean Theorem

Chapter 1. Some Basic Theorems. 1.1 The Pythagorean Theorem hapter 1 Some asic Theorems 1.1 The ythagorean Theorem Theorem 1.1 (ythagoras). The lengths a b < c of the sides of a right triangle satisfy the relation a 2 + b 2 = c 2. roof. b a a 3 2 b 2 b 4 b a b

More information

0114ge. Geometry Regents Exam 0114

0114ge. Geometry Regents Exam 0114 0114ge 1 The midpoint of AB is M(4, 2). If the coordinates of A are (6, 4), what are the coordinates of B? 1) (1, 3) 2) (2, 8) 3) (5, 1) 4) (14, 0) 2 Which diagram shows the construction of a 45 angle?

More information

37th United States of America Mathematical Olympiad

37th United States of America Mathematical Olympiad 37th United States of America Mathematical Olympiad 1. Prove that for each positive integer n, there are pairwise relatively prime integers k 0, k 1,..., k n, all strictly greater than 1, such that k 0

More information

HIGHER GEOMETRY. 1. Notation. Below is some notation I will use. KEN RICHARDSON

HIGHER GEOMETRY. 1. Notation. Below is some notation I will use. KEN RICHARDSON HIGHER GEOMETRY KEN RICHARDSON Contents. Notation. What is rigorous math? 3. Introduction to Euclidean plane geometry 3 4. Facts about lines, angles, triangles 6 5. Interlude: logic and proofs 9 6. Quadrilaterals

More information

SOLUTIONS SECTION A [1] = 27(27 15)(27 25)(27 14) = 27(12)(2)(13) = cm. = s(s a)(s b)(s c)

SOLUTIONS SECTION A [1] = 27(27 15)(27 25)(27 14) = 27(12)(2)(13) = cm. = s(s a)(s b)(s c) 1. (A) 1 1 1 11 1 + 6 6 5 30 5 5 5 5 6 = 6 6 SOLUTIONS SECTION A. (B) Let the angles be x and 3x respectively x+3x = 180 o (sum of angles on same side of transversal is 180 o ) x=36 0 So, larger angle=3x

More information

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg Undefined Terms: Point, Line, Incident, Between, Congruent. Incidence Axioms:

More information

2005 Palm Harbor February Invitational Geometry Answer Key

2005 Palm Harbor February Invitational Geometry Answer Key 005 Palm Harbor February Invitational Geometry Answer Key Individual 1. B. D. C. D 5. C 6. D 7. B 8. B 9. A 10. E 11. D 1. C 1. D 1. C 15. B 16. B 17. E 18. D 19. C 0. C 1. D. C. C. A 5. C 6. C 7. A 8.

More information

0811ge. Geometry Regents Exam BC, AT = 5, TB = 7, and AV = 10.

0811ge. Geometry Regents Exam BC, AT = 5, TB = 7, and AV = 10. 0811ge 1 The statement "x is a multiple of 3, and x is an even integer" is true when x is equal to 1) 9 2) 8 3) 3 4) 6 2 In the diagram below, ABC XYZ. 4 Pentagon PQRST has PQ parallel to TS. After a translation

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name: GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, January 27, 2011 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name

More information

0811ge. Geometry Regents Exam

0811ge. Geometry Regents Exam 0811ge 1 The statement "x is a multiple of 3, and x is an even integer" is true when x is equal to 1) 9 ) 8 3) 3 4) 6 In the diagram below, ABC XYZ. 4 Pentagon PQRST has PQ parallel to TS. After a translation

More information

A sequence of thoughts on constructible angles.

A sequence of thoughts on constructible angles. A sequence of thoughts on constructible angles. Dan Franklin & Kevin Pawski Department of Mathematics, SUNY New Paltz, New Paltz, NY 12561 Nov 23, 2002 1 Introduction In classical number theory the algebraic

More information

Nozha Directorate of Education Form : 2 nd Prep. Nozha Language Schools Ismailia Road Branch

Nozha Directorate of Education Form : 2 nd Prep. Nozha Language Schools Ismailia Road Branch Cairo Governorate Department : Maths Nozha Directorate of Education Form : 2 nd Prep. Nozha Language Schools Sheet Ismailia Road Branch Sheet ( 1) 1-Complete 1. in the parallelogram, each two opposite

More information

Berkeley Math Circle, May

Berkeley Math Circle, May Berkeley Math Circle, May 1-7 2000 COMPLEX NUMBERS IN GEOMETRY ZVEZDELINA STANKOVA FRENKEL, MILLS COLLEGE 1. Let O be a point in the plane of ABC. Points A 1, B 1, C 1 are the images of A, B, C under symmetry

More information

RMT 2013 Geometry Test Solutions February 2, = 51.

RMT 2013 Geometry Test Solutions February 2, = 51. RMT 0 Geometry Test Solutions February, 0. Answer: 5 Solution: Let m A = x and m B = y. Note that we have two pairs of isosceles triangles, so m A = m ACD and m B = m BCD. Since m ACD + m BCD = m ACB,

More information

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg ( )

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg ( ) Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg (2005-02-16) Logic Rules (Greenberg): Logic Rule 1 Allowable justifications.

More information

0112ge. Geometry Regents Exam Line n intersects lines l and m, forming the angles shown in the diagram below.

0112ge. Geometry Regents Exam Line n intersects lines l and m, forming the angles shown in the diagram below. Geometry Regents Exam 011 011ge 1 Line n intersects lines l and m, forming the angles shown in the diagram below. 4 In the diagram below, MATH is a rhombus with diagonals AH and MT. Which value of x would

More information

LAMC Beginners Circle November 10, Oleg Gleizer. Warm-up

LAMC Beginners Circle November 10, Oleg Gleizer. Warm-up LAMC Beginners Circle November 10, 2013 Oleg Gleizer oleg1140@gmail.com Warm-up Problem 1 Can a power of two (a number of the form 2 n ) have all the decimal digits 0, 1,..., 9 the same number of times?

More information

International Mathematical Talent Search Round 26

International Mathematical Talent Search Round 26 International Mathematical Talent Search Round 26 Problem 1/26. Assume that x, y, and z are positive real numbers that satisfy the equations given on the right. x + y + xy = 8, y + z + yz = 15, z + x +

More information

SM2H Unit 6 Circle Notes

SM2H Unit 6 Circle Notes Name: Period: SM2H Unit 6 Circle Notes 6.1 Circle Vocabulary, Arc and Angle Measures Circle: All points in a plane that are the same distance from a given point, called the center of the circle. Chord:

More information

Homework Assignments Math /02 Fall 2014

Homework Assignments Math /02 Fall 2014 Homework Assignments Math 119-01/02 Fall 2014 Assignment 1 Due date : Friday, September 5 6th Edition Problem Set Section 6.1, Page 178: #1, 2, 3, 4, 5, 6. Section 6.2, Page 185: #1, 2, 3, 5, 6, 8, 10-14,

More information

History of Mathematics Workbook

History of Mathematics Workbook History of Mathematics Workbook Paul Yiu Department of Mathematics Florida Atlantic University Last Update: April 7, 2014 Student: Spring 2014 Problem A1. Given a square ABCD, equilateral triangles ABX

More information

Homework Assignments Math /02 Fall 2017

Homework Assignments Math /02 Fall 2017 Homework Assignments Math 119-01/02 Fall 2017 Assignment 1 Due date : Wednesday, August 30 Section 6.1, Page 178: #1, 2, 3, 4, 5, 6. Section 6.2, Page 185: #1, 2, 3, 5, 6, 8, 10-14, 16, 17, 18, 20, 22,

More information

Problems First day. 8 grade. Problems First day. 8 grade

Problems First day. 8 grade. Problems First day. 8 grade First day. 8 grade 8.1. Let ABCD be a cyclic quadrilateral with AB = = BC and AD = CD. ApointM lies on the minor arc CD of its circumcircle. The lines BM and CD meet at point P, thelinesam and BD meet

More information

2. In ABC, the measure of angle B is twice the measure of angle A. Angle C measures three times the measure of angle A. If AC = 26, find AB.

2. In ABC, the measure of angle B is twice the measure of angle A. Angle C measures three times the measure of angle A. If AC = 26, find AB. 2009 FGCU Mathematics Competition. Geometry Individual Test 1. You want to prove that the perpendicular bisector of the base of an isosceles triangle is also the angle bisector of the vertex. Which postulate/theorem

More information

0809ge. Geometry Regents Exam Based on the diagram below, which statement is true?

0809ge. Geometry Regents Exam Based on the diagram below, which statement is true? 0809ge 1 Based on the diagram below, which statement is true? 3 In the diagram of ABC below, AB AC. The measure of B is 40. 1) a b ) a c 3) b c 4) d e What is the measure of A? 1) 40 ) 50 3) 70 4) 100

More information

TRIANGLES CHAPTER 7. (A) Main Concepts and Results. (B) Multiple Choice Questions

TRIANGLES CHAPTER 7. (A) Main Concepts and Results. (B) Multiple Choice Questions CHAPTER 7 TRIANGLES (A) Main Concepts and Results Triangles and their parts, Congruence of triangles, Congruence and correspondence of vertices, Criteria for Congruence of triangles: (i) SAS (ii) ASA (iii)

More information

Edexcel New GCE A Level Maths workbook Circle.

Edexcel New GCE A Level Maths workbook Circle. Edexcel New GCE A Level Maths workbook Circle. Edited by: K V Kumaran kumarmaths.weebly.com 1 Finding the Midpoint of a Line To work out the midpoint of line we need to find the halfway point Midpoint

More information

(D) (A) Q.3 To which of the following circles, the line y x + 3 = 0 is normal at the point ? 2 (A) 2

(D) (A) Q.3 To which of the following circles, the line y x + 3 = 0 is normal at the point ? 2 (A) 2 CIRCLE [STRAIGHT OBJECTIVE TYPE] Q. The line x y + = 0 is tangent to the circle at the point (, 5) and the centre of the circles lies on x y = 4. The radius of the circle is (A) 3 5 (B) 5 3 (C) 5 (D) 5

More information

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Winter 2012 Quiz Solutions

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Winter 2012 Quiz Solutions Mathematics 2260H Geometry I: Euclidean geometry Trent University, Winter 2012 Quiz Solutions Quiz #1. Tuesday, 17 January, 2012. [10 minutes] 1. Given a line segment AB, use (some of) Postulates I V,

More information

CLASS IX : CHAPTER - 1 NUMBER SYSTEM

CLASS IX : CHAPTER - 1 NUMBER SYSTEM MCQ WORKSHEET-I CLASS IX : CHAPTER - 1 NUMBER SYSTEM 1. Rational number 3 40 is equal to: (a) 0.75 (b) 0.1 (c) 0.01 (d) 0.075. A rational number between 3 and 4 is: (a) 3 (b) 4 3 (c) 7 (d) 7 4 3. A rational

More information

Nozha Directorate of Education Form : 2 nd Prep

Nozha Directorate of Education Form : 2 nd Prep Cairo Governorate Department : Maths Nozha Directorate of Education Form : 2 nd Prep Nozha Language Schools Geometry Revision Sheet Ismailia Road Branch Sheet ( 1) 1-Complete 1. In the parallelogram, each

More information

INVERSION IN THE PLANE BERKELEY MATH CIRCLE

INVERSION IN THE PLANE BERKELEY MATH CIRCLE INVERSION IN THE PLANE BERKELEY MATH CIRCLE ZVEZDELINA STANKOVA MILLS COLLEGE/UC BERKELEY SEPTEMBER 26TH 2004 Contents 1. Definition of Inversion in the Plane 1 Properties of Inversion 2 Problems 2 2.

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name: GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 17, 2011 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of

More information

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg ( )

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg ( ) Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg (2009-03-26) Logic Rule 0 No unstated assumptions may be used in a proof.

More information

21. Prove that If one side of the cyclic quadrilateral is produced then the exterior angle is equal to the interior opposite angle.

21. Prove that If one side of the cyclic quadrilateral is produced then the exterior angle is equal to the interior opposite angle. 21. Prove that If one side of the cyclic quadrilateral is produced then the exterior angle is equal to the interior opposite angle. 22. Prove that If two sides of a cyclic quadrilateral are parallel, then

More information

1 Line n intersects lines l and m, forming the angles shown in the diagram below. 4 In the diagram below, MATH is a rhombus with diagonals AH and MT.

1 Line n intersects lines l and m, forming the angles shown in the diagram below. 4 In the diagram below, MATH is a rhombus with diagonals AH and MT. 1 Line n intersects lines l and m, forming the angles shown in the diagram below. 4 In the diagram below, MATH is a rhombus with diagonals AH and MT. Which value of x would prove l m? 1) 2.5 2) 4.5 3)

More information

Class 9 Quadrilaterals

Class 9 Quadrilaterals ID : in-9-quadrilaterals [1] Class 9 Quadrilaterals For more such worksheets visit www.edugain.com Answer t he quest ions (1) The diameter of circumcircle of a rectangle is 13 cm and rectangle's width

More information

Rhombi, Rectangles and Squares

Rhombi, Rectangles and Squares Rhombi, Rectangles and Squares Math Practice Return to the Table of Contents 1 Three Special Parallelograms All the same properties of a parallelogram apply to the rhombus, rectangle, and square. Rhombus

More information

The Theorem of Pythagoras

The Theorem of Pythagoras CONDENSED LESSON 9.1 The Theorem of Pythagoras In this lesson you will Learn about the Pythagorean Theorem, which states the relationship between the lengths of the legs and the length of the hypotenuse

More information

Fill in the blanks Chapter 10 Circles Exercise 10.1 Question 1: (i) The centre of a circle lies in of the circle. (exterior/ interior) (ii) A point, whose distance from the centre of a circle is greater

More information

Higher Geometry Problems

Higher Geometry Problems Higher Geometry Problems (1) Look up Eucidean Geometry on Wikipedia, and write down the English translation given of each of the first four postulates of Euclid. Rewrite each postulate as a clear statement

More information

0611ge. Geometry Regents Exam Line segment AB is shown in the diagram below.

0611ge. Geometry Regents Exam Line segment AB is shown in the diagram below. 0611ge 1 Line segment AB is shown in the diagram below. In the diagram below, A B C is a transformation of ABC, and A B C is a transformation of A B C. Which two sets of construction marks, labeled I,

More information

Ch 10 Review. Multiple Choice Identify the choice that best completes the statement or answers the question.

Ch 10 Review. Multiple Choice Identify the choice that best completes the statement or answers the question. Ch 10 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. In the diagram shown, the measure of ADC is a. 55 b. 70 c. 90 d. 180 2. What is the measure

More information

right angle an angle whose measure is exactly 90ᴼ

right angle an angle whose measure is exactly 90ᴼ right angle an angle whose measure is exactly 90ᴼ m B = 90ᴼ B two angles that share a common ray A D C B Vertical Angles A D C B E two angles that are opposite of each other and share a common vertex two

More information

Chapter 10. Properties of Circles

Chapter 10. Properties of Circles Chapter 10 Properties of Circles 10.1 Use Properties of Tangents Objective: Use properties of a tangent to a circle. Essential Question: how can you verify that a segment is tangent to a circle? Terminology:

More information

1 / 23

1 / 23 CBSE-XII-07 EXAMINATION CBSE-X-009 EXAMINATION MATHEMATICS Series: HRL Paper & Solution Code: 0/ Time: Hrs. Max. Marks: 80 General Instuctions : (i) All questions are compulsory. (ii) The question paper

More information

4 Arithmetic of Segments Hilbert s Road from Geometry

4 Arithmetic of Segments Hilbert s Road from Geometry 4 Arithmetic of Segments Hilbert s Road from Geometry to Algebra In this section, we explain Hilbert s procedure to construct an arithmetic of segments, also called Streckenrechnung. Hilbert constructs

More information

Higher Geometry Problems

Higher Geometry Problems Higher Geometry Problems (1 Look up Eucidean Geometry on Wikipedia, and write down the English translation given of each of the first four postulates of Euclid. Rewrite each postulate as a clear statement

More information

Indicate whether the statement is true or false.

Indicate whether the statement is true or false. PRACTICE EXAM IV Sections 6.1, 6.2, 8.1 8.4 Indicate whether the statement is true or false. 1. For a circle, the constant ratio of the circumference C to length of diameter d is represented by the number.

More information

The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca Euclid Contest. Wednesday, April 15, 2015

The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca Euclid Contest. Wednesday, April 15, 2015 The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca 015 Euclid Contest Wednesday, April 15, 015 (in North America and South America) Thursday, April 16, 015 (outside of North America

More information

Name Geometry Common Core Regents Review Packet - 3. Topic 1 : Equation of a circle

Name Geometry Common Core Regents Review Packet - 3. Topic 1 : Equation of a circle Name Geometry Common Core Regents Review Packet - 3 Topic 1 : Equation of a circle Equation with center (0,0) and radius r Equation with center (h,k) and radius r ( ) ( ) 1. The endpoints of a diameter

More information

Additional Mathematics Lines and circles

Additional Mathematics Lines and circles Additional Mathematics Lines and circles Topic assessment 1 The points A and B have coordinates ( ) and (4 respectively. Calculate (i) The gradient of the line AB [1] The length of the line AB [] (iii)

More information

2018 LEHIGH UNIVERSITY HIGH SCHOOL MATH CONTEST

2018 LEHIGH UNIVERSITY HIGH SCHOOL MATH CONTEST 08 LEHIGH UNIVERSITY HIGH SCHOOL MATH CONTEST. A right triangle has hypotenuse 9 and one leg. What is the length of the other leg?. Don is /3 of the way through his run. After running another / mile, he

More information

8-6. a: 110 b: 70 c: 48 d: a: no b: yes c: no d: yes e: no f: yes g: yes h: no

8-6. a: 110 b: 70 c: 48 d: a: no b: yes c: no d: yes e: no f: yes g: yes h: no Lesson 8.1.1 8-6. a: 110 b: 70 c: 48 d: 108 8-7. a: no b: yes c: no d: yes e: no f: yes g: yes h: no 8-8. b: The measure of an exterior angle of a triangle equals the sum of the measures of its remote

More information

Exercises for Unit V (Introduction to non Euclidean geometry)

Exercises for Unit V (Introduction to non Euclidean geometry) Exercises for Unit V (Introduction to non Euclidean geometry) V.1 : Facts from spherical geometry Ryan : pp. 84 123 [ Note : Hints for the first two exercises are given in math133f07update08.pdf. ] 1.

More information

0113ge. Geometry Regents Exam In the diagram below, under which transformation is A B C the image of ABC?

0113ge. Geometry Regents Exam In the diagram below, under which transformation is A B C the image of ABC? 0113ge 1 If MNP VWX and PM is the shortest side of MNP, what is the shortest side of VWX? 1) XV ) WX 3) VW 4) NP 4 In the diagram below, under which transformation is A B C the image of ABC? In circle

More information

SMT 2018 Geometry Test Solutions February 17, 2018

SMT 2018 Geometry Test Solutions February 17, 2018 SMT 018 Geometry Test Solutions February 17, 018 1. Consider a semi-circle with diameter AB. Let points C and D be on diameter AB such that CD forms the base of a square inscribed in the semicircle. Given

More information

1 / 23

1 / 23 CBSE-XII-017 EXAMINATION CBSE-X-008 EXAMINATION MATHEMATICS Series: RLH/ Paper & Solution Code: 30//1 Time: 3 Hrs. Max. Marks: 80 General Instuctions : (i) All questions are compulsory. (ii) The question

More information

Triangles. 3.In the following fig. AB = AC and BD = DC, then ADC = (A) 60 (B) 120 (C) 90 (D) none 4.In the Fig. given below, find Z.

Triangles. 3.In the following fig. AB = AC and BD = DC, then ADC = (A) 60 (B) 120 (C) 90 (D) none 4.In the Fig. given below, find Z. Triangles 1.Two sides of a triangle are 7 cm and 10 cm. Which of the following length can be the length of the third side? (A) 19 cm. (B) 17 cm. (C) 23 cm. of these. 2.Can 80, 75 and 20 form a triangle?

More information

KENDRIYA VIDYALAYA GACHIBOWLI, GPRA CAMPUS, HYD 32

KENDRIYA VIDYALAYA GACHIBOWLI, GPRA CAMPUS, HYD 32 KENDRIYA VIDYALAYA GACHIBOWLI, GPRA CAMPUS, HYD 32 SAMPLE PAPER 02 FOR PERIODIC TEST II EXAM (2018-19) SUBJECT: MATHEMATICS(041) BLUE PRINT FOR PERIODIC TEST II EXAM: CLASS IX Chapter VSA (1 mark) SA I

More information

Olympiad Correspondence Problems. Set 3

Olympiad Correspondence Problems. Set 3 (solutions follow) 1998-1999 Olympiad Correspondence Problems Set 3 13. The following construction and proof was proposed for trisecting a given angle with ruler and Criticizecompasses the arguments. Construction.

More information

KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION

KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION SAMPLE PAPER 02 FOR HALF YEARLY EXAM (2017-18) SUBJECT: MATHEMATICS(041) BLUE PRINT FOR HALF YEARLY EXAM: CLASS IX Chapter VSA (1 mark) SA I (2 marks) SA

More information

QUESTION BANK ON STRAIGHT LINE AND CIRCLE

QUESTION BANK ON STRAIGHT LINE AND CIRCLE QUESTION BANK ON STRAIGHT LINE AND CIRCLE Select the correct alternative : (Only one is correct) Q. If the lines x + y + = 0 ; 4x + y + 4 = 0 and x + αy + β = 0, where α + β =, are concurrent then α =,

More information

Page 1 of 15. Website: Mobile:

Page 1 of 15. Website:    Mobile: Exercise 10.2 Question 1: From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm. The radius of the circle is (A) 7 cm (B) 12 cm (C) 15 cm (D) 24.5

More information

C=2πr C=πd. Chapter 10 Circles Circles and Circumference. Circumference: the distance around the circle

C=2πr C=πd. Chapter 10 Circles Circles and Circumference. Circumference: the distance around the circle 10.1 Circles and Circumference Chapter 10 Circles Circle the locus or set of all points in a plane that are A equidistant from a given point, called the center When naming a circle you always name it by

More information

1 What is the solution of the system of equations graphed below? y = 2x + 1

1 What is the solution of the system of equations graphed below? y = 2x + 1 1 What is the solution of the system of equations graphed below? y = 2x + 1 3 As shown in the diagram below, when hexagon ABCDEF is reflected over line m, the image is hexagon A'B'C'D'E'F'. y = x 2 + 2x

More information

SUMMATIVE ASSESSMENT I, IX / Class IX

SUMMATIVE ASSESSMENT I, IX / Class IX I, 0 SUMMATIVE ASSESSMENT I, 0 0 MATHEMATICS / MATHEMATICS MATHEMATICS CLASS CLASS - IX - IX IX / Class IX MA-0 90 Time allowed : hours Maximum Marks : 90 (i) (ii) 8 6 0 0 (iii) 8 (iv) (v) General Instructions:

More information

Geometry Honors Review for Midterm Exam

Geometry Honors Review for Midterm Exam Geometry Honors Review for Midterm Exam Format of Midterm Exam: Scantron Sheet: Always/Sometimes/Never and Multiple Choice 40 Questions @ 1 point each = 40 pts. Free Response: Show all work and write answers

More information

PRACTICE TEST 1 Math Level IC

PRACTICE TEST 1 Math Level IC SOLID VOLUME OTHER REFERENCE DATA Right circular cone L = cl V = volume L = lateral area r = radius c = circumference of base h = height l = slant height Sphere S = 4 r 2 V = volume r = radius S = surface

More information

Part (1) Second : Trigonometry. Tan

Part (1) Second : Trigonometry. Tan Part (1) Second : Trigonometry (1) Complete the following table : The angle Ratio 42 12 \ Sin 0.3214 Cas 0.5321 Tan 2.0625 (2) Complete the following : 1) 46 36 \ 24 \\ =. In degrees. 2) 44.125 = in degrees,

More information

MATHEMATICS. IMPORTANT FORMULAE AND CONCEPTS for. Summative Assessment -II. Revision CLASS X Prepared by

MATHEMATICS. IMPORTANT FORMULAE AND CONCEPTS for. Summative Assessment -II. Revision CLASS X Prepared by MATHEMATICS IMPORTANT FORMULAE AND CONCEPTS for Summative Assessment -II Revision CLASS X 06 7 Prepared by M. S. KUMARSWAMY, TGT(MATHS) M. Sc. Gold Medallist (Elect.), B. Ed. Kendriya Vidyalaya GaCHiBOWli

More information

6 CHAPTER. Triangles. A plane figure bounded by three line segments is called a triangle.

6 CHAPTER. Triangles. A plane figure bounded by three line segments is called a triangle. 6 CHAPTER We are Starting from a Point but want to Make it a Circle of Infinite Radius A plane figure bounded by three line segments is called a triangle We denote a triangle by the symbol In fig ABC has

More information

0616geo. Geometry CCSS Regents Exam x 2 + 4x = (y 2 20)

0616geo. Geometry CCSS Regents Exam x 2 + 4x = (y 2 20) 0616geo 1 A student has a rectangular postcard that he folds in half lengthwise. Next, he rotates it continuously about the folded edge. Which three-dimensional object below is generated by this rotation?

More information

Downloaded from

Downloaded from Triangles 1.In ABC right angled at C, AD is median. Then AB 2 = AC 2 - AD 2 AD 2 - AC 2 3AC 2-4AD 2 (D) 4AD 2-3AC 2 2.Which of the following statement is true? Any two right triangles are similar

More information

DISCOVERING GEOMETRY Over 6000 years ago, geometry consisted primarily of practical rules for measuring land and for

DISCOVERING GEOMETRY Over 6000 years ago, geometry consisted primarily of practical rules for measuring land and for Name Period GEOMETRY Chapter One BASICS OF GEOMETRY Geometry, like much of mathematics and science, developed when people began recognizing and describing patterns. In this course, you will study many

More information

8-6. a: 110 b: 70 c: 48 d: a: no b: yes c: no d: yes e: no f: yes g: yes h: no

8-6. a: 110 b: 70 c: 48 d: a: no b: yes c: no d: yes e: no f: yes g: yes h: no Lesson 8.1.1 8-6. a: 110 b: 70 c: 48 d: 108 8-7. a: no b: yes c: no d: yes e: no f: yes g: yes h: no 8-8. b: The measure of an exterior angle of a triangle equals the sum of the measures of its remote

More information

Properties of the Circle

Properties of the Circle 9 Properties of the Circle TERMINOLOGY Arc: Part of a curve, most commonly a portion of the distance around the circumference of a circle Chord: A straight line joining two points on the circumference

More information

Definitions. (V.1). A magnitude is a part of a magnitude, the less of the greater, when it measures

Definitions. (V.1). A magnitude is a part of a magnitude, the less of the greater, when it measures hapter 8 Euclid s Elements ooks V 8.1 V.1-3 efinitions. (V.1). magnitude is a part of a magnitude, the less of the greater, when it measures the greater. (V.2). The greater is a multiple of the less when

More information

Class X Delhi Math Set-3 Section A

Class X Delhi Math Set-3 Section A Class X Delhi Math Set-3 Section A 1. The angle of depression of a car, standing on the ground, from the top of a 75 m high tower, is 30. The distance of the car from the base of the tower (in m.) is:

More information

UNIT 1: SIMILARITY, CONGRUENCE, AND PROOFS. 1) Figure A'B'C'D'F' is a dilation of figure ABCDF by a scale factor of 1. 2 centered at ( 4, 1).

UNIT 1: SIMILARITY, CONGRUENCE, AND PROOFS. 1) Figure A'B'C'D'F' is a dilation of figure ABCDF by a scale factor of 1. 2 centered at ( 4, 1). 1) Figure A'B'C'D'F' is a dilation of figure ABCDF by a scale factor of 1. 2 centered at ( 4, 1). The dilation is Which statement is true? A. B. C. D. AB B' C' A' B' BC AB BC A' B' B' C' AB BC A' B' D'

More information

Inversion in the Plane. Part II: Radical Axes 1

Inversion in the Plane. Part II: Radical Axes 1 BERKELEY MATH CIRCLE, October 18 1998 Inversion in the Plane. Part II: Radical Axes 1 Zvezdelina Stankova-Frenkel, UC Berkeley Definition 2. The degree of point A with respect to a circle k(o, R) is defined

More information

Exercises for Unit I I I (Basic Euclidean concepts and theorems)

Exercises for Unit I I I (Basic Euclidean concepts and theorems) Exercises for Unit I I I (Basic Euclidean concepts and theorems) Default assumption: All points, etc. are assumed to lie in R 2 or R 3. I I I. : Perpendicular lines and planes Supplementary background

More information

( ) ( ) Geometry Team Solutions FAMAT Regional February = 5. = 24p.

( ) ( ) Geometry Team Solutions FAMAT Regional February = 5. = 24p. . A 6 6 The semi perimeter is so the perimeter is 6. The third side of the triangle is 7. Using Heron s formula to find the area ( )( )( ) 4 6 = 6 6. 5. B Draw the altitude from Q to RP. This forms a 454590

More information

MIDDLE SCHOOL - SOLUTIONS. is 1. = 3. Multiplying by 20n yields 35n + 24n + 20 = 60n, and, therefore, n = 20.

MIDDLE SCHOOL - SOLUTIONS. is 1. = 3. Multiplying by 20n yields 35n + 24n + 20 = 60n, and, therefore, n = 20. PURPLE COMET! MATH MEET April 208 MIDDLE SCHOOL - SOLUTIONS Copyright c Titu Andreescu and Jonathan Kane Problem Find n such that the mean of 7 4, 6 5, and n is. Answer: 20 For the mean of three numbers

More information

Write down all the 3-digit positive integers that are squares and whose individual digits are non-zero squares. Answer: Relay

Write down all the 3-digit positive integers that are squares and whose individual digits are non-zero squares. Answer: Relay A Write down all the 3-digit positive integers that are squares and whose individual digits are non-zero squares. A2 What is the sum of all positive fractions that are less than and have denominator 73?

More information

Statistics. To find the increasing cumulative frequency, we start with the first

Statistics. To find the increasing cumulative frequency, we start with the first Statistics Relative frequency = frequency total Relative frequency in% = freq total x100 To find the increasing cumulative frequency, we start with the first frequency the same, then add the frequency

More information

SECTION A(1) k k 1= = or (rejected) k 1. Suggested Solutions Marks Remarks. 1. x + 1 is the longest side of the triangle. 1M + 1A

SECTION A(1) k k 1= = or (rejected) k 1. Suggested Solutions Marks Remarks. 1. x + 1 is the longest side of the triangle. 1M + 1A SECTION A(). x + is the longest side of the triangle. ( x + ) = x + ( x 7) (Pyth. theroem) x x + x + = x 6x + 8 ( x )( x ) + x x + 9 x = (rejected) or x = +. AP and PB are in the golden ratio and AP >

More information

Section 5.1. Perimeter and Area

Section 5.1. Perimeter and Area Section 5.1 Perimeter and Area Perimeter and Area The perimeter of a closed plane figure is the distance around the figure. The area of a closed plane figure is the number of non-overlapping squares of

More information

IMO Training Camp Mock Olympiad #2 Solutions

IMO Training Camp Mock Olympiad #2 Solutions IMO Training Camp Mock Olympiad #2 Solutions July 3, 2008 1. Given an isosceles triangle ABC with AB = AC. The midpoint of side BC is denoted by M. Let X be a variable point on the shorter arc MA of the

More information