Composite Materials 261 and 262

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Composite Materials 261 and 262"

Transcription

1 Composite Materials 261 and 262 Stefan Hartmann 1 David Moncayo 2 1 DYNAmore GmbH, Stuttgart, Germany 2 Daimler AG, Sindelfingen, Germany 11. LS-DYNA Forum 2012, Oktober 2012, Ulm 1

2 Outline Introduction - failure mechanisms / modeling possibilities Material models 261 and 262 for intralaminar failure - *MAT_LAMINATED_FRACTURE_DAIMLER_PINHO - *MAT_LAMINATED_FRACTURE_DAIMLER_CAMANHO - summary and comparison Preliminary results - three point bending of flat specimen / three point bending of a hat profile / shear specimen / drop tower test Summary and Outlook 2

3 Introduction failure mechanisms in fiber reinforced composites 3

4 Introduction modeling possibilities intralaminar - element: layered (thin/thick) shells one solid element per ply - material: plasticity / damage models layered thin shell elements + numerical cheap (thickness does not influence the critical time step size) + combination of single layers to sub-laminates - no stresses in thickness dir. (no delamination) layered thick shell elements + 3D stress state + combination of single layers to sub-laminates - thickness influences the critical time step size interlaminar (delamination) - cohesive elements - tiebreak contacts solid elements + 3D stress state - one element for every single layer (no layering) numerical expensive stacked shells layered thin shell element cohesive element layered thin shell element 4

5 Introduction layered thin shell definition with *PART_COMPOSITE» no *SECTION_SHELL-keyword card needed» different material models allowed *PART_COMPOSITE Composite Lay up (Version 971) $ $ PID ELFORM SHRF NLOC MAREA HGID ADOPT $ MID1 THICK1 BETA MID2 THICK2 BETA $ MID3 THICK3 BETA MID4 THICK4 BETA Listing of integration points begins from the bottom IP 3 IP 2 IP

6 Material models for intralaminar failure *MAT_261: [1] *MAT_LAMINATED_FRACTURE_ DAIMLER_PINHO *MAT_262: [2] *MAT_LAMINATED_FRACTURE_ DAIMLER_CAMANHO (Development together with Daimler AG) [1] Pinho, S.T., Iannucci, L.; Robinson, P.: Physically-based failure models and criteria for laminated fiber-reinforced composites with emphasis on fiber kinking: Part I Development & Part II FE implementation, Composites: Part A 37, 2006 [2] Maimí, P., Camanho, P.P., Mayugo, J.A., Dávila, D.G.: A continuum damage model for composite laminates: Part I Constitutive model & Part II Computational implementation and validation, Mechanics of Materials 39,

7 *MAT_261 (*MAT_LAMINATED_FRACTURE_DAIMLER_PINHO): constitutive law ( ) ˆ σ = 1 d ɶ σ 4 damage parameter dmat; dmac; dkink ; da 4 failure criteria da dkink dmat dmac 7

8 *MAT_261 (*MAT_..._PINHO): fiber tension (maximum stress) f a σ a = = 1 X t fiber compression (3D-kinking model) (interaction, transformation to fracture plane - 3D) f kink 2 2 τt τ L + = 1 if σ m 0 b ST µ Tσ n SL µ Lσ n = σ n τt τ L + + = 1 if σ m > 0 b YT ST SL ɶ σ m + ɶ σ ψ ɶ σ m ɶ σ ψ b c b c σ n = + cos(2 φ) + ɶ σ m ψ sin(2 φ) b c 2 2 ɶ σ m ɶ σ ψ b c τt = sin(2 φ) + ɶ σ m ψ cos(2 φ) b c 2 τ = ɶ σ cos( φ) + ɶ σ sin( φ) L a b c a m m ψ m matrix failure: transverse tension (transformation to fracture plane) f mat σ n τ T τ L = + + = 1 Yt ST SL matrix failure: transverse compression/shear (Mohr-Coulomb: Puck/Schürmann) f mac 2 2 τ T τ L = + = 1 ST µ Tσ n SL µ Lσ n φ 0 : φ : fracture plane for pure compression fracture plane under general loading 8

9 *MAT_261 (*MAT_LAMINATED_FRACTURE_DAIMLER_PINHO): linear damage laws ˆ σ = (1 d )[ ɶ σ, ɶ σ, ɶ σ, ɶ σ, ɶ σ ] a ˆ σ = (1 d )[ ɶ σ, ɶ σ, ɶ σ, ɶ σ, ɶ σ ] kink ˆ σ = (1 d )[ ɶ σ, ɶ σ, ɶ σ, ɶ σ ] mat ˆ σ = (1 d )[ ɶ σ, ɶ σ, ɶ σ, ɶ σ ] mac Γa, Γkink, Γb, ΓT, ΓL : σ 0 σ 0 ε Γ L 0 f d i = f 0 ( ) f ε ε ε ε ε ε ε fracture toughness from: CT, CC, 4-point bending, mode II interlaminar fracture (T,L) ε L : internal (characteristic) length for objectivity (localization!) 9

10 *MAT_261 (*MAT_LAMINATED_FRACTURE_DAIMLER_PINHO): in-plane shear behavior 1D plasticity formulation with combined isotropic/kinematic hardening coupled with linear damage model Nonlinearity defined via *DEFINE_CURVE 10

11 *MAT_262 (*MAT_LAMINATED_FRACTURE_DAIMLER_CAMANHO): constitutive relation 1 ε = H : σ σ = H : ε H 1 ν 21 ( 1 d1 ) E1 E2 ν12 1 = E ( 1 d ) E ( 1 d ) G failure criteria (LaRC03/04) 5 damage variables (, ); ( ); ( ); ( ); ( ) d r r d r d r d r d r σ d = d + d σ11 σ11 σ d = d + d σ σ σ 22 σ 22 damage activation functions F F F F = φ r = φ r = φ r = φ r

12 *MAT_262 (*MAT_LAMINATED_FRACTURE_DAIMLER_CAMANHO): failure surface (assembly of 4 sub-surfaces) 12

13 *MAT_262 (*MAT_LAMINATED_FRACTURE_DAIMLER_CAMANHO): fiber tension (maximum strain LaRC04 ) ɶ σ11 ν ɶ 12σ 12 φ 1 + = X T 2 fiber compression (LaRC03) (transformation to fracture plane - 2D) 2 m m ɶ σ 12 + µ ɶ Lσ 22 φ1 = S L matrix failure: transverse tension (LaRC04) (assumption: crack perpendicular to mid-surface) φ φ matrix failure: transverse compression/shear (LaRC04) (transformation to fracture plane) 2 2 ɶ σ ɶ σ ɶ σ = (1 g) + + ( ɶ σ 0) Y Y S T T L 12 L ɶ σ 22 S L φ2 2 ɶ σ + µ ɶ σ = ( < 0) 2 eff 2 τ L eff τ T = + S S T L m ɶ σ11 ɶ σ 22 C C ɶ σ12 = sin(2 ϕ ) + ɶ σ12 cos(2 ϕ ) 2 m ɶ σ11 + ɶ σ ɶ 22 σ11 ɶ σ 22 C C ɶ σ 22 = cos(2 ϕ ) ɶ σ12 sin(2 ϕ ) 2 2 (in-plane shear & transverse tension) (in-plane shear & small transverse compression) [ ] eff τ = ɶ σ cos( α ) sin( α ) µ cos( α ) cos( θ ) T T 0 eff τ L = cos( α0) ɶ σ 12 + µ ɶ Lσ 22 cos( α0)sin( θ ) 13

14 *MAT_262 (*MAT_LAMINATED_FRACTURE_DAIMLER_CAMANHO): evolution of threshold (internal) variables compression: tension: r { r φ } { φ } = max 1,, n+ 1 n n+ 1 1 /2 1 /2 1 /2 r = max 1, r, r, n+ 1 n n+ 1 n / /2+ 1 /2 1 + /2+ ( r [ 1 ] ) no damage due to crack (tension); crack closure evolution of damage variables ( d [ 0 1] ) ( ) d r (, ) (, ) E Eε ( r) = 1 m X G n X m n m bi-linear in fiber direction linear in transverse direction GXT, GXC, GYT, GYC, GSL fracture toughness from: CT, CC, DCB, -, 4-ENF l : internal (characteristic) length for objectivity (lokalization!) 14

15 *MAT_262 (*MAT_LAMINATED_FRACTURE_DAIMLER_CAMANHO): 1D elasto-plastic formulation with combined iso/kin hardening coupled to a linear damage evolution law σ 12 S L G SL l ε 12 15

16 *MAT_261 (Pinho) failure criterion may use 3D-stress state *MAT_262 (Camanho) failure criterion based on plane stress assumption maximum stress criterion fiber tension maximum strain criterion complex 3D-fiber kinking model, expensive search for controlling fracture plane fiber compression use constant fiber misalignment angle based on shear and longitudinal compressive strength matrix failure: transverse tension search for controlling fracture plane assume perpendicular fracture plane matrix failure: transverse compression/shear search for controlling fracture plane assume constant fracture plane angle (i.e. 53 ) 1D-plasticity model with combined (iso/kin) hardening based on *DEFINE_CURVE in-plane shear treatment 1D-plasticity model with combined (iso/kin) linear hardening damage evolution linear damage based on fracture toughness bi-/linear damage based on fracture toughness 16

17 Material Models in LS-DYNA (Intralaminar) *MAT_261: (*MAT_LAMINATED_FRACTURE_DAIMLER_PINHO) (together with Daimler AG) solid, shell, tshell (3,5) linear elastic orthotropic coupled failure criteria (plane stress) fracture plane: fiber tens./compr., matrix tens./compr. complex 3D fiber kinking model 1D plasticity formulation for in-plane shear linear damage evolution based on fracture toughness S.T. Pinho, L. Iannucci, P.Robinson: Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: Development & Part II: FE implementation, Composites: Part A 37 (2006) & *MAT_262: (*MAT_LAMINATED_FRACTURE_DAIMLER_CAMANHO) (together with Daimler AG) solid, shell, tshell (3,5) linear elastic orthotropic coupled failure criteria (plane stress) fracture plane 1D plasticity formulation for in-plane shear bi-linear damage evolution based on fracture toughness P. MaimÍ, P.P. Camanho, J.A. Mayugo, C.G. Dávila: A continuum damage model for composite laminates: Part I: Constitutive model & Part II: Computational implementation and validation, Mechanics of materials 39 (2007) &

18 Preliminary results three point bending of flat specimen single shell with a thickness of 4mm / carbon fibers in epoxy resin - [0 ] 5s (fibers in longitudinal direction of the plate) - [90 ] 5s (fibers in transverse direction of the plate) 18

19 Preliminary results three point bending of a hat profile single shell with a thickness of 2mm / carbon fibers in epoxy resin - [90 /0 /45 /-45 /0 /90 /-45 /45 /0 /90 ] Shell sublaminates Local failure Interfaces Local failure matrix failure 19

20 Preliminary results shear specimen single shell with a thickness of 2mm / carbon fibers in epoxy resin - [45 /-45 ] 3S Shear plasticity Experiment Simulation tensile test 20

21 Summary two continuum damage models implemented into LS-DYNA - advanced, coupled failure surfaces (transformation to fracture plane) - bi-linear/linear damage evolution laws (based on fracture toughness) - 1D elasto-plastic formulation for in-plane shear non-linearity preliminary results - material models able to represent general behavior, especially non-linearity in shear Outlook many detailed numerical studies necessary for further improvements - comparison and parameter studies with experiments - different element formulations and modeling techniques (stacked shells) Acknowledgement Thank for technical support to: Prof. Pedro Camanho, Dr. Pere Maimí & Dr. Silvestre Pinho 21

22 Thank you! 22

Impact and Crash Modeling of Composite Structures: A Challenge for Damage Mechanics

Impact and Crash Modeling of Composite Structures: A Challenge for Damage Mechanics Impact and Crash Modeling of Composite Structures: A Challenge for Damage Mechanics Dr. A. Johnson DLR Dr. A. K. Pickett ESI GmbH EURO-PAM 99 Impact and Crash Modelling of Composite Structures: A Challenge

More information

14. LS-DYNA Forum 2016

14. LS-DYNA Forum 2016 14. LS-DYNA Forum 2016 A Novel Approach to Model Laminated Glass R. Böhm, A. Haufe, A. Erhart DYNAmore GmbH Stuttgart 1 Content Introduction and Motivation Common approach to model laminated glass New

More information

Anisotropic modeling of short fibers reinforced thermoplastics materials with LS-DYNA

Anisotropic modeling of short fibers reinforced thermoplastics materials with LS-DYNA Anisotropic modeling of short fibers reinforced thermoplastics materials with LS-DYNA Alexandre Hatt 1 1 Faurecia Automotive Seating, Simplified Limited Liability Company 1 Abstract / Summary Polymer thermoplastics

More information

*MAT_PAPER - a new orthotropic elastoplastic model for paper materials

*MAT_PAPER - a new orthotropic elastoplastic model for paper materials *MAT_PAPER - a new orthotropic elastoplastic model for paper materials Jesper Karlsson, Dynamore Nordic Mikael Schill, Dynamore Nordic Johan Tryding, Tetra Pak *MAT_PAPER (*MAT_274) A new orthotropic elastoplastic

More information

Benchmarking study of steel-composite structures in CAE crash applications. Master s thesis in Applied Mechanics MADELEINE ANDERSSON EMMA LARSSON

Benchmarking study of steel-composite structures in CAE crash applications. Master s thesis in Applied Mechanics MADELEINE ANDERSSON EMMA LARSSON Benchmarking study of steel-composite structures in CAE crash applications Master s thesis in Applied Mechanics MADELEINE ANDERSSON EMMA LARSSON Department of Applied Mechanics CHALMERS UNIVERSITY OF TECHNOLOGY

More information

FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS

FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS Ever J. Barbero Department of Mechanical and Aerospace Engineering West Virginia University USA CRC Press Taylor &.Francis Group Boca Raton London New York

More information

QUESTION BANK Composite Materials

QUESTION BANK Composite Materials QUESTION BANK Composite Materials 1. Define composite material. 2. What is the need for composite material? 3. Mention important characterits of composite material 4. Give examples for fiber material 5.

More information

Crashworthy Design of Composite Structures Using CAE Process Chain

Crashworthy Design of Composite Structures Using CAE Process Chain 0 th European LS-DYNA Conference 205, Würzburg, Germany Crashworthy Design of Composite Structures Using CAE Process Chain Madhukar Chatiri, Thorsten Schuetz 2, Anton Matzenmiller 3 CADFEM GmbH, Grafing

More information

Crash and Impact Simulation of Composite Structures by Using CAE Process Chain

Crash and Impact Simulation of Composite Structures by Using CAE Process Chain Crash and Impact Simulation of Composite Structures by Using CAE Process Chain Madhukar Chatiri 1, Thorsten Schütz 2, Anton Matzenmiller 3, Ulrich Stelzmann 1 1 CADFEM GmbH, Grafing/Munich, Germany, mchatiri@cadfem.de

More information

Simulation of Dynamic Delamination and Mode I Energy Dissipation

Simulation of Dynamic Delamination and Mode I Energy Dissipation Simulation of Dynamic Delamination and Mode I Energy Dissipation Muhammad Ilyas, Christine Espinosa 1, Frédéric Lachaud and Michel Salaün Université de Toulouse ISAE, DMSM, 1 Avenue Edouard Belin, 3154

More information

Computational Analysis for Composites

Computational Analysis for Composites Computational Analysis for Composites Professor Johann Sienz and Dr. Tony Murmu Swansea University July, 011 The topics covered include: OUTLINE Overview of composites and their applications Micromechanics

More information

REPRESENTING MATRIX CRACKS THROUGH DECOMPOSITION OF THE DEFORMATION GRADIENT TENSOR IN CONTINUUM DAMAGE MECHANICS METHODS

REPRESENTING MATRIX CRACKS THROUGH DECOMPOSITION OF THE DEFORMATION GRADIENT TENSOR IN CONTINUUM DAMAGE MECHANICS METHODS 20 th International Conference on Composite Materials Copenhagen, 19-24 th July 2015 REPRESENTING MATRIX CRACKS THROUGH DECOMPOSITION OF THE DEFORMATION GRADIENT TENSOR IN CONTINUUM DAMAGE MECHANICS METHODS

More information

DYNAMIC DELAMINATION OF AERONAUTIC STRUCTURAL COMPOSITES BY USING COHESIVE FINITE ELEMENTS

DYNAMIC DELAMINATION OF AERONAUTIC STRUCTURAL COMPOSITES BY USING COHESIVE FINITE ELEMENTS DYNAMIC DELAMINATION OF AERONAUTIC STRUCTURAL COMPOSITES BY USING COHESIVE FINITE ELEMENTS M. Ilyas, F. Lachaud 1, Ch. Espinosa and M. Salaün Université de Toulouse, ISAE/DMSM, 1 avenue Edouard Belin,

More information

LS-DYNA MAT54 for simulating composite crash energy absorption

LS-DYNA MAT54 for simulating composite crash energy absorption LS-DYNA MAT54 for simulating composite crash energy absorption Bonnie Wade and Paolo Feraboli (UW) Mostafa Rassaian (Boeing BR&T) JAMS 2011 The Joint Advanced Materials and Structures Center of Excellence

More information

*MAT_PAPER and *MAT_COHESIVE_PAPER: Two New Models for Paperboard Materials

*MAT_PAPER and *MAT_COHESIVE_PAPER: Two New Models for Paperboard Materials 14 th International LS-DYNA Users Conference Session: Constitutive Modeling *MAT_PAPER and *MAT_COHESIVE_PAPER: Two New Models for Paperboard Materials Jesper Karlsson 1, Mikael Schill 1, Johan Tryding

More information

COMPARISON OF COHESIVE ZONE MODELS USED TO PREDICT DELAMINATION INITIATED FROM FREE-EDGES : VALIDATION AGAINST EXPERIMENTAL RESULTS

COMPARISON OF COHESIVE ZONE MODELS USED TO PREDICT DELAMINATION INITIATED FROM FREE-EDGES : VALIDATION AGAINST EXPERIMENTAL RESULTS COMPARISON OF COHESIVE ZONE MODELS USED TO PREDICT DELAMINATION INITIATED FROM FREE-EDGES : VALIDATION AGAINST EXPERIMENTAL RESULTS A. Uguen 1, L. Zubillaga 2, A. Turon 3, N. Carrère 1 1 Laboratoire Brestois

More information

EXPERIMENTAL CHARACTERIZATION AND COHESIVE LAWS FOR DELAMINATION OF OFF-AXIS GFRP LAMINATES

EXPERIMENTAL CHARACTERIZATION AND COHESIVE LAWS FOR DELAMINATION OF OFF-AXIS GFRP LAMINATES 20 th International Conference on Composite Materials Copenhagen, 19-24 th July 2015 EXPERIMENTAL CHARACTERIZATION AND COHESIVE LAWS FOR DELAMINATION OF OFF-AXIS GFRP LAMINATES Esben Lindgaard 1 and Brian

More information

ADVANCES IN THE PROGRESSIVE DAMAGE ANALYSIS OF COMPOSITES

ADVANCES IN THE PROGRESSIVE DAMAGE ANALYSIS OF COMPOSITES NAFEMS WORLD CONGRESS 13, SALZBURG, AUSTRIA ADVANCES IN THE PROGRESSIVE DAMAGE ANALYSIS OF M. Bruyneel, J.P. Delsemme, P. Jetteur (LMS Samtech, Belgium); A.C. Goupil (ISMANS, France). Dr. Ir. M. Bruyneel,

More information

Tensile behaviour of anti-symmetric CFRP composite

Tensile behaviour of anti-symmetric CFRP composite Available online at www.sciencedirect.com Procedia Engineering 1 (211) 1865 187 ICM11 Tensile behaviour of anti-symmetric CFRP composite K. J. Wong a,b, *, X. J. Gong a, S. Aivazzadeh a, M. N. Tamin b

More information

FAILURE CRITERIA FOR COMPOSITE MATERIALS UNDER MULTIAXIAL STRESS STATES

FAILURE CRITERIA FOR COMPOSITE MATERIALS UNDER MULTIAXIAL STRESS STATES FAILURE CRITERIA FOR COMPOSITE MATERIALS UNDER MULTIAXIAL STRESS STATES Essam Totry 1, Carlos González 1, 2 and Javier LLorca 1, 2 1 Departmento de Ciencia de Materiales, Universidad Politécnica de Madrid.

More information

PROGRESSIVE DAMAGE ANALYSES OF SKIN/STRINGER DEBONDING. C. G. Dávila, P. P. Camanho, and M. F. de Moura

PROGRESSIVE DAMAGE ANALYSES OF SKIN/STRINGER DEBONDING. C. G. Dávila, P. P. Camanho, and M. F. de Moura PROGRESSIVE DAMAGE ANALYSES OF SKIN/STRINGER DEBONDING C. G. Dávila, P. P. Camanho, and M. F. de Moura Abstract The debonding of skin/stringer constructions is analyzed using a step-by-step simulation

More information

COMPARISON OF NUMERICAL SIMULATION AND EXPERIMENT OF A FLEXIBLE COMPOSITE CONNECTING ROD

COMPARISON OF NUMERICAL SIMULATION AND EXPERIMENT OF A FLEXIBLE COMPOSITE CONNECTING ROD 10th International DAAAM Baltic Conference "INDUSTRIAL ENGINEERING - 12-13 May 2015, Tallinn, Estonia COMPARISON OF NUMERICAL SIMULATION AND EXPERIMENT OF A FLEXIBLE COMPOSITE CONNECTING ROD Sedláček,

More information

An orthotropic damage model for crash simulation of composites

An orthotropic damage model for crash simulation of composites High Performance Structures and Materials III 511 An orthotropic damage model for crash simulation of composites W. Wang 1, F. H. M. Swartjes 1 & M. D. Gan 1 BU Automotive Centre of Lightweight Structures

More information

Finite element modelling of infinitely wide Angle-ply FRP. laminates

Finite element modelling of infinitely wide Angle-ply FRP. laminates www.ijaser.com 2012 by the authors Licensee IJASER- Under Creative Commons License 3.0 editorial@ijaser.com Research article ISSN 2277 9442 Finite element modelling of infinitely wide Angle-ply FRP laminates

More information

Experimentally Calibrating Cohesive Zone Models for Structural Automotive Adhesives

Experimentally Calibrating Cohesive Zone Models for Structural Automotive Adhesives Experimentally Calibrating Cohesive Zone Models for Structural Automotive Adhesives Mark Oliver October 19, 2016 Adhesives and Sealants Council Fall Convention contact@veryst.com www.veryst.com Outline

More information

DAMAGE SIMULATION OF CFRP LAMINATES UNDER HIGH VELOCITY PROJECTILE IMPACT

DAMAGE SIMULATION OF CFRP LAMINATES UNDER HIGH VELOCITY PROJECTILE IMPACT 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS DAMAGE SIMULATION OF CFRP LAMINATES UNDER HIGH VELOCITY PROJECTILE IMPACT A. Yoshimura 1*, T. Okabe, M. Yamada 3, T. Ogasawara 1, Y. Tanabe 3 1 Advanced

More information

SKIN-STRINGER DEBONDING AND DELAMINATION ANALYSIS IN COMPOSITE STIFFENED SHELLS

SKIN-STRINGER DEBONDING AND DELAMINATION ANALYSIS IN COMPOSITE STIFFENED SHELLS SKIN-STRINER DEBONDIN AND DELAMINATION ANALYSIS IN COMPOSITE STIFFENED SHELLS R. Rikards, K. Kalnins & O. Ozolinsh Institute of Materials and Structures, Riga Technical University, Riga 1658, Latvia ABSTRACT

More information

IMPACT ON LAMINATED COMPOSITE PLATES: COMPARISON OF TEST AND SIMULATION RESULTS OBTAINED WITH LMS SAMTECH SAMCEF

IMPACT ON LAMINATED COMPOSITE PLATES: COMPARISON OF TEST AND SIMULATION RESULTS OBTAINED WITH LMS SAMTECH SAMCEF V ECCOMAS Thematic Conference on the Mechanical Response of Composites COMPOSITES 015 S.R. Hallett and J.J.C. Remmers (Editors) IMPACT ON LAMINATED COMPOSITE PLATES: COMPARISON OF TEST AND SIMULATION RESULTS

More information

KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP)

KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP) KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP) 1 University of Science & Technology Beijing, China, niukm@ustb.edu.cn 2 Tsinghua University, Department of Engineering Mechanics, Beijing, China,

More information

Modelling and simulation of composites crash tests for validation of material models using LS-DYNA

Modelling and simulation of composites crash tests for validation of material models using LS-DYNA Modelling and simulation of composites crash tests for validation of material models using LS-DYNA Master s thesis in Applied Mechanics FREDRIK KARLSSON WICTOR GRADIN Department of Applied Mechanics CHALMERS

More information

MODELING OF THE BEHAVIOR OF WOVEN LAMINATED COMPOSITES UNTIL RUPTURE

MODELING OF THE BEHAVIOR OF WOVEN LAMINATED COMPOSITES UNTIL RUPTURE MODELING OF THE BEHAVIOR OF WOVEN LAMINATED COMPOSITES UNTIL RUPTURE Jean Paul Charles, Christian Hochard,3, Pierre Antoine Aubourg,3 Eurocopter, 375 Marignane cedex, France Unimeca, 6 rue J. Curie, 3453

More information

Composite Damage Material Modeling for Crash Simulation: MAT54 & the Efforts of the CMH-17 Numerical Round Robin

Composite Damage Material Modeling for Crash Simulation: MAT54 & the Efforts of the CMH-17 Numerical Round Robin Composite Damage Material Modeling for Crash Simulation: MAT54 & the Efforts of the CMH-17 Numerical Round Robin 2014 Technical Review Bonnie Wade (UW) Prof. Paolo Feraboli AMTAS (JAMS) Crashworthiness

More information

University of Bristol - Explore Bristol Research. Early version, also known as pre-print

University of Bristol - Explore Bristol Research. Early version, also known as pre-print Hallett, S. R., & Wisnom, M. R. (2006). Numerical investigation of progressive damage and the effect of layup in notched tensile tests. Journal of Composite Materials, 40 (14), 1229-1245. DOI: 10.1177/0021998305057432

More information

15 INTERLAMINAR STRESSES

15 INTERLAMINAR STRESSES 15 INTERLAMINAR STRESSES 15-1 OUT-OF-PLANE STRESSES Classical laminate plate theor predicts the stresses in the plane of the lamina,, and τ but does not account for out-of-plane stresses, τ and τ. It assumes

More information

Calibration and Experimental Validation of LS-DYNA Composite Material Models by Multi Objective Optimization Techniques

Calibration and Experimental Validation of LS-DYNA Composite Material Models by Multi Objective Optimization Techniques 9 th International LS-DYNA Users Conference Optimization Calibration and Experimental Validation of LS-DYNA Composite Material Models by Multi Objective Optimization Techniques Stefano Magistrali*, Marco

More information

PREDICTION OF OUT-OF-PLANE FAILURE MODES IN CFRP

PREDICTION OF OUT-OF-PLANE FAILURE MODES IN CFRP PREDICTION OF OUT-OF-PLANE FAILURE MODES IN CFRP R. R. Pinto 1, P. P. Camanho 2 1 INEGI - Instituto de Engenharia Mecanica e Gestao Industrial, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal 2 DEMec,

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011 Interlaminar failure analysis of FRP cross ply laminate with elliptical cutout Venkateswara Rao.S 1, Sd. Abdul Kalam 1, Srilakshmi.S 1, Bala Krishna Murthy.V 2 1 Mechanical Engineering Department, P. V.

More information

Open-hole compressive strength prediction of CFRP composite laminates

Open-hole compressive strength prediction of CFRP composite laminates Open-hole compressive strength prediction of CFRP composite laminates O. İnal 1, A. Ataş 2,* 1 Department of Mechanical Engineering, Balikesir University, Balikesir, 10145, Turkey, inal@balikesir.edu.tr

More information

Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala

Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala Abstract: FRP laminated composites have been extensively used in Aerospace and allied industries

More information

Effects of Resin and Fabric Structure

Effects of Resin and Fabric Structure Fatigue of Wind Blade Laminates: Effects of Resin and Fabric Structure Details David Miller, Daniel D. Samborsky and John F. Mandell Montana State t University it MCARE 2012 Outline Overview of MSU Fatigue

More information

Fracture Mechanics, Damage and Fatigue: Composites

Fracture Mechanics, Damage and Fatigue: Composites University of Liège Aerospace & Mechanical Engineering Fracture Mechanics, Damage and Fatigue: Composites Ludovic Noels Computational & Multiscale Mechanics of Materials CM3 http://www.ltas-cm3.ulg.ac.be/

More information

FASTENER PULL-THROUGH FAILURE IN GFRP LAMINATES

FASTENER PULL-THROUGH FAILURE IN GFRP LAMINATES 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS FASTENER PULL-THROUGH FAILURE IN GFRP LAMINATES G. Catalanotti 1*, P.P. Camanho 1, P. Ghys 2, A.T. Marques 1 1 DEMec, Faculdade de Engenharia, Universidade

More information

Strength of GRP-laminates with multiple fragment damages

Strength of GRP-laminates with multiple fragment damages Strength of GRP-laminates with multiple fragment damages S. Kazemahvazi, J. Kiele, D. Zenkert Kungliga Tekniska Högskolan, KTH 100 44 Stockholm, Sweden sohrabk@kth.se SUMMARY The strength of glass fibre

More information

Coupling of plasticity and damage in glass fibre reinforced polymer composites

Coupling of plasticity and damage in glass fibre reinforced polymer composites EPJ Web of Conferences 6, 48 1) DOI: 1.151/epjconf/1648 c Owned by the authors, published by EDP Sciences, 1 Coupling of plasticity and damage in glass fibre reinforced polymer composites R. Kvale Joki

More information

A Semianalytical Model for the Simulation of Polymers

A Semianalytical Model for the Simulation of Polymers A Semianalytical Model for the Simulation of Polymers Paul Du Bois 3, Stefan Kolling 1, Markus Feucht 1 & André Haufe 2 1 DaimlerChrysler AG, Sindelfingen, Germany 2 Dynamore GmbH, Stuttgart, Germany 3

More information

Crashworthiness of composite structures: Experiment and Simulation

Crashworthiness of composite structures: Experiment and Simulation Crashworthiness of composite structures: Experiment and Simulation Francesco Deleo, Bonnie Wade and Prof. Paolo Feraboli (UW) Dr. Mostafa Rassaian (Boeing R&T) JAMS 2010 The Joint Advanced Materials and

More information

Enhancement of Spot Weld Modeling using MAT 100 DAI

Enhancement of Spot Weld Modeling using MAT 100 DAI 7. LS-DYNA Anwenderforum, Bamberg 2008 Crash II - Verbindungstechnik, Versagen Enhancement of Spot Weld Modeling using MAT 100 DAI Falko Seeger a, Markus Feucht a, George Dumitru b, Tobias Graf b a Daimler

More information

Autodesk Helius PFA. Guidelines for Determining Finite Element Cohesive Material Parameters

Autodesk Helius PFA. Guidelines for Determining Finite Element Cohesive Material Parameters Autodesk Helius PFA Guidelines for Determining Finite Element Cohesive Material Parameters Contents Introduction...1 Determining Cohesive Parameters for Finite Element Analysis...2 What Test Specimens

More information

CHARACTERIZATION, ANALYSIS AND PREDICTION OF DELAMINATION IN COMPOSITES USING FRACTURE MECHANICS

CHARACTERIZATION, ANALYSIS AND PREDICTION OF DELAMINATION IN COMPOSITES USING FRACTURE MECHANICS Oral Reference Number: ICF100942OR CHARACTERIZATION, ANALYSIS AND PREDICTION OF DELAMINATION IN COMPOSITES USING FRACTURE MECHANICS T. Kevin O Brien U.S. Army Research Laboratory Vehicle Technology Directorate

More information

An overview of Carbon Fiber modeling in LS-DYNA. John Zhao October 23 th 2017

An overview of Carbon Fiber modeling in LS-DYNA. John Zhao October 23 th 2017 An overview of Carbon Fiber modeling in LS-DYNA John Zhao zhao@lstc.com October 23 th 2017 Outline Manufacturing of Carbon Fiber Compression molding *MAT_277 & 278 *MAT_293 *MAT_249 Resin transform molding

More information

NUMERICAL AND EXPERIMENTAL ANALYSES OF MULTIPLE DELAMINATIONS IN CURVED COMPOSITE LAMINATES

NUMERICAL AND EXPERIMENTAL ANALYSES OF MULTIPLE DELAMINATIONS IN CURVED COMPOSITE LAMINATES THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS NUMERICAL AND EXPERIMENTAL ANALYSES OF MULTIPLE DELAMINATIONS IN CURVED COMPOSITE LAMINATES A. Baldi 1 *, A. Airoldi 1, P. Belotti 1, P. Bettini

More information

Calculation of Energy Release Rate in Mode I Delamination of Angle Ply Laminated Composites

Calculation of Energy Release Rate in Mode I Delamination of Angle Ply Laminated Composites Copyright c 2007 ICCES ICCES, vol.1, no.2, pp.61-67, 2007 Calculation of Energy Release Rate in Mode I Delamination of Angle Ply Laminated Composites K. Gordnian 1, H. Hadavinia 1, G. Simpson 1 and A.

More information

Prediction of failure in notched CFRP laminates under multi-axial loading. J L Y Tan, V S Deshpande and N A Fleck*,

Prediction of failure in notched CFRP laminates under multi-axial loading. J L Y Tan, V S Deshpande and N A Fleck*, Prediction of failure in notched CFRP laminates under multi-axial loading J L Y Tan, V S Deshpande and N A Fleck*, Cambridge University Engineering Dept., Trumpington St., Cambridge, CB2 1PZ, UK * Corresponding

More information

Numerical Analysis of Delamination Behavior in Laminated Composite with Double Delaminations Embedded in Different Depth Positions

Numerical Analysis of Delamination Behavior in Laminated Composite with Double Delaminations Embedded in Different Depth Positions Numerical Analysis of Delamination Behavior in Laminated Composite with Double Delaminations Embedded in Different Depth Positions Numerical Analysis of Delamination Behavior in Laminated Composite with

More information

RATE-DEPENDENT OFF-AXIS COMPRESSIVE STRENGTH OF A UNIDIRECTIONAL CARBON/EPOXY LAMINATE AT HIGH TEMPERATURE

RATE-DEPENDENT OFF-AXIS COMPRESSIVE STRENGTH OF A UNIDIRECTIONAL CARBON/EPOXY LAMINATE AT HIGH TEMPERATURE 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS RATE-DEPENDENT OFF-AXIS COMPRESSIVE STRENGTH OF A UNIDIRECTIONAL CARBON/EPOXY LAMINATE AT HIGH TEMPERATURE Masamichi KAWAI *, Satoru SAITO **, Jian-Qi

More information

INITIATION AND PROPAGATION OF FIBER FAILURE IN COMPOSITE LAMINATES

INITIATION AND PROPAGATION OF FIBER FAILURE IN COMPOSITE LAMINATES THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS INITIATION AND PROPAGATION OF FIBER FAILURE IN COMPOSITE LAMINATES E. Iarve 1,2*, D. Mollenhauer 1, T. Breitzman 1, K. Hoos 2, M. Swindeman 2 1

More information

NUMERICAL INVESTIGATION OF DELAMINATION IN L-SHAPED CROSS-PLY COMPOSITE BRACKET

NUMERICAL INVESTIGATION OF DELAMINATION IN L-SHAPED CROSS-PLY COMPOSITE BRACKET NUMERICAL INVESTIGATION OF DELAMINATION IN L-SHAPED CROSS-PLY COMPOSITE BRACKET M.Gümüş a*, B.Gözlüklü a, D.Çöker a a Department of Aerospace Eng., METU, Ankara, Turkey *mert.gumus@metu.edu.tr Keywords:

More information

Failure analysis of serial pinned joints in composite materials

Failure analysis of serial pinned joints in composite materials Indian Journal of Engineering & Materials Sciences Vol. 18, April 2011, pp. 102-110 Failure analysis of serial pinned joints in composite materials Alaattin Aktaş* Department of Mechanical Engineering,

More information

Predicting Failure of Multiangle Composite Laminates

Predicting Failure of Multiangle Composite Laminates Predicting Failure of Multiangle Composite Laminates Preliminary discussion (not in textbook): Micromechanics failure analyses vs Macromechanics failure analyses Fiber Architecture of Some Common Composite

More information

Published in: Composites Part B: Engineering. Document Version: Peer reviewed version

Published in: Composites Part B: Engineering. Document Version: Peer reviewed version Experimental and numerical studies on the impact response of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates Liu, H., Falzon, B., & Tan, W. (2018). Experimental

More information

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens.

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens. a). Cohesive Failure b). Interfacial Failure c). Oscillatory Failure d). Alternating Failure Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double

More information

Numerical Analysis of Composite Panels in the Post-Buckling Field taking into account Progressive Failure

Numerical Analysis of Composite Panels in the Post-Buckling Field taking into account Progressive Failure Copyright c 007 ICCES ICCES, vol.1, no.3, pp.93-98, 007 Numerical Analysis of Composite Panels in the Post-Buckling Field taking into account Progressive Failure C. Bisagni 1 Summary The research here

More information

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina Module III - Macro-mechanics of Lamina Lecture 23 Macro-Mechanics of Lamina For better understanding of the macromechanics of lamina, the knowledge of the material properties in essential. Therefore, the

More information

Numerical simulation of the crash behaviour of braided composites

Numerical simulation of the crash behaviour of braided composites 5th International CFK-Valley Stade Convention Numerical simulation of the crash behaviour of braided composites Stade, Dipl.-Ing. Ralf Matheis Institut für Kraftfahrzeuge RWTH Aachen University #110410

More information

Predictive simulations of damage propagation in laminated composite materials and structures with SAMCEF

Predictive simulations of damage propagation in laminated composite materials and structures with SAMCEF 015-01-XXXX Predictive simulations of damage propagation in laminated composite materials and structures with SAMCEF Bruyneel M. 1, Naito T., Urushiyama Y., MacDougall S. 3 1 SAMTECH s.a. (A Siemens Company)

More information

An Elasto-Visco-Plastic Multiscale Model for Fibrous Unidirectional Composite Materials

An Elasto-Visco-Plastic Multiscale Model for Fibrous Unidirectional Composite Materials An Elasto-Visco-Plastic Multiscale Model for Fibrous Unidirectional Composite Materials by Shari Lynn King A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for

More information

Fracture Behaviour of FRP Cross-Ply Laminate With Embedded Delamination Subjected To Transverse Load

Fracture Behaviour of FRP Cross-Ply Laminate With Embedded Delamination Subjected To Transverse Load Fracture Behaviour of FRP Cross-Ply Laminate With Embedded Delamination Subjected To Transverse Load Sriram Chintapalli 1, S.Srilakshmi 1 1 Dept. of Mech. Engg., P. V. P. Siddhartha Institute of Technology.

More information

NUMERICAL SIMULATION OF DAMAGE IN THERMOPLASTIC COMPOSITE MATERIALS

NUMERICAL SIMULATION OF DAMAGE IN THERMOPLASTIC COMPOSITE MATERIALS 5 th European LS-DYNA Users Conference Composites NUMERICAL SIMULATION OF DAMAGE IN THERMOPLASTIC COMPOSITE MATERIALS Kevin Brown 1, Richard Brooks, Nicholas Warrior School of Mechanical, Materials and

More information

Multiaxial Fatigue. Professor Darrell F. Socie. Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Multiaxial Fatigue. Professor Darrell F. Socie. Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign Multiaxial Fatigue Professor Darrell F. Socie Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 2001-2011 Darrell Socie, All Rights Reserved Contact Information

More information

PRELIMINARY PREDICTION OF SPECIMEN PROPERTIES CLT and 1 st order FEM analyses

PRELIMINARY PREDICTION OF SPECIMEN PROPERTIES CLT and 1 st order FEM analyses OPTIMAT BLADES Page 1 of 24 PRELIMINARY PREDICTION OF SPECIMEN PROPERTIES CLT and 1 st order FEM analyses first issue Peter Joosse CHANGE RECORD Issue/revision date pages Summary of changes draft 24-10-02

More information

Static and Time Dependent Failure of Fibre Reinforced Elastomeric Components. Salim Mirza Element Materials Technology Hitchin, UK

Static and Time Dependent Failure of Fibre Reinforced Elastomeric Components. Salim Mirza Element Materials Technology Hitchin, UK Static and Time Dependent Failure of Fibre Reinforced Elastomeric Components Salim Mirza Element Materials Technology Hitchin, UK Introduction Fibre reinforced elastomers are used in many applications,

More information

A Constitutive Model for DYNEEMA UD composites

A Constitutive Model for DYNEEMA UD composites A Constitutive Model for DYNEEMA UD composites L Iannucci 1, D J Pope 2, M Dalzell 2 1 Imperial College, Department of Aeronautics London, SW7 2AZ l.iannucci@imperial.ac.uk 2 Dstl, Porton Down, Salisbury,

More information

EXPERIMENTAL AND NUMERICAL INVESTIGATION ON THE FAILURE MODES OF THICK COMPOSITE LAMINATES

EXPERIMENTAL AND NUMERICAL INVESTIGATION ON THE FAILURE MODES OF THICK COMPOSITE LAMINATES 5 TH NTERNATONAL CONGRESS OF THE AERONAUTCAL SCENCES EXPERMENTAL AND NUMERCAL NVESTGATON ON THE FALURE MODES OF THCK COMPOSTE LAMNATES Airoldi A.*, Sala G.*, Pasqualini F.* *Aerospace Engineering Department,

More information

American Society for Testing and Materials (ASTM) Standards. Mechanical Testing of Composites and their Constituents

American Society for Testing and Materials (ASTM) Standards. Mechanical Testing of Composites and their Constituents Mechanical Testing of Composites and their Constituents American Society for Testing and Materials (ASTM) Standards Tests done to determine intrinsic material properties such as modulus and strength for

More information

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence Girão-Coelho AM. Finite element guidelines for simulation of delamination dominated failures in composite materials validated by case studies. Archives of Computational Methods in Engineering 2016, 1-26.

More information

PERFORMANCE OF COMPOSITE PANELS SUBJECTED TO UNDERWATER IMPULSIVE LOADING

PERFORMANCE OF COMPOSITE PANELS SUBJECTED TO UNDERWATER IMPULSIVE LOADING PERFORMANCE OF COMPOSITE PANELS SUBJECTED TO UNDERWATER IMPULSIVE LOADING F. Latourte, D. Grégoire, R. Bellur-Ramaswamy, H.D. Espinosa* Northwestern University, 2145 Sheridan Road, Evanston IL 60202 (*)

More information

THE ROLE OF DELAMINATION IN NOTCHED AND UNNOTCHED TENSILE STRENGTH

THE ROLE OF DELAMINATION IN NOTCHED AND UNNOTCHED TENSILE STRENGTH THE ROLE OF DELAMINATION IN NOTCHED AND UNNOTCHED TENSILE STRENGTH M. R. Wisnom University of Bristol Advanced Composites Centre for Innovation and Science University Walk, Bristol BS8 1TR, UK M.Wisnom@bristol.ac.uk

More information

Invariant Based Transversely-Isotropic Material and Failure Model for Fiber-Reinforced Polymers

Invariant Based Transversely-Isotropic Material and Failure Model for Fiber-Reinforced Polymers Copyright 2010 Tech Science Press CMC, vol.16, no.1, pp.25-49, 2010 Invariant Based Transversely-Isotropic Material and Failure Model for Fiber-Reinforced Polymers M. Vogler 1, G. Ernst 1 and R. Rolfes

More information

Numerical simulation of delamination onset and growth in laminated composites

Numerical simulation of delamination onset and growth in laminated composites Numerical simulation of delamination onset and growth in laminated composites G. Wimmer, C. Schuecker, H.E. Pettermann Austrian Aeronautics Research (AAR) / Network for Materials and Engineering at the

More information

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture by Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling of Materials in Manufacturing

More information

FINITE ELEMENT MODELING OF DELAMINATION DAMAGE IN CARBON FIBER LAMINATES SUBJECT TO LOW-VELOCITY IMPACT AND

FINITE ELEMENT MODELING OF DELAMINATION DAMAGE IN CARBON FIBER LAMINATES SUBJECT TO LOW-VELOCITY IMPACT AND FINITE ELEMENT MODELING OF DELAMINATION DAMAGE IN CARBON FIBER LAMINATES SUBJECT TO LOW-VELOCITY IMPACT AND COMPARISON WITH EXPERIMENTAL IMPACT TESTS USING NONDESTRUCTIVE VIBROTHERMOGRAPHY EVALUATION A

More information

FLOATING NODE METHOD AND VIRTUAL CRACK CLOSURE TECHNIQUE FOR MODELING MATRIX CRACKING- DELAMINATION MIGRATION

FLOATING NODE METHOD AND VIRTUAL CRACK CLOSURE TECHNIQUE FOR MODELING MATRIX CRACKING- DELAMINATION MIGRATION THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS FLOATING NODE METHOD AND VIRTUAL CRACK CLOSURE TECHNIQUE FOR MODELING MATRIX CRACKING- DELAMINATION MIGRATION N. V. De Carvalho 1*, B. Y. Chen

More information

Simulation of the Crash Performance of Crash Boxes based on Advanced Thermoplastic Composite

Simulation of the Crash Performance of Crash Boxes based on Advanced Thermoplastic Composite 5 th European LS-DYNA Users Conference Composites Simulation of the Crash Performance of Crash Boxes based on Advanced Thermoplastic Composite Authors: Dr.-Ing. Matthias Hörmann, CADFEM GmbH, Germany Dipl.-Ing.

More information

Fatigue and Fracture

Fatigue and Fracture Fatigue and Fracture Multiaxial Fatigue Professor Darrell F. Socie Mechanical Science and Engineering University of Illinois 2004-2013 Darrell Socie, All Rights Reserved When is Multiaxial Fatigue Important?

More information

Failure locus of fiber-reinforced composites under transverse compression and out-of-plane shear

Failure locus of fiber-reinforced composites under transverse compression and out-of-plane shear Failure locus of fiber-reinforced composites under transverse compression and out-of-plane shear Essam Totry, Carlos González, Javier Llorca To cite this version: Essam Totry, Carlos González, Javier Llorca.

More information

Modeling Fracture and Failure with Abaqus

Modeling Fracture and Failure with Abaqus Modeling Fracture and Failure with Abaqus Day 1 Lecture 1 Lecture 2 Lecture 3 Workshop 1 Workshop 2 Basic Concepts of Fracture Mechanics Modeling Cracks Fracture Analysis Crack in a Three-point Bend Specimen

More information

Composite models 30 and 131: Ply types 0 and 8 calibration

Composite models 30 and 131: Ply types 0 and 8 calibration Model calibration Composite Bi-Phase models 30 and 3 for elastic, damage and failure PAM-CRASH material model 30 is for solid and 3 for multi-layered shell elements. Within these models different ply types

More information

FINITE ELEMENT AND EXPERIMENTAL STUDY OF NOVEL CONCEPT OF 3D FIBRE CELL STRUCTURE

FINITE ELEMENT AND EXPERIMENTAL STUDY OF NOVEL CONCEPT OF 3D FIBRE CELL STRUCTURE FINITE ELEMENT AND EXPERIMENTAL STUDY OF NOVEL CONCEPT OF 3D FIBRE CELL STRUCTURE M. Růžička, V. Kulíšek 2, J. Had, O. Prejzek Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical

More information

Failure locus of fiber-reinforced composites under transverse compression and out-of-plane shear

Failure locus of fiber-reinforced composites under transverse compression and out-of-plane shear Available online at www.sciencedirect.com Composites Science and Technology xxx (27) xxx xxx COMPOSITES SCIENCE AND TECHNOLOGY www.elsevier.com/locate/compscitech Failure locus of fiber-reinforced composites

More information

A NUMERICAL APPROACH FOR LOW ENERGY IMPACTS ON COMPOSITE LAMINATES USING FE EXPLICIT CODES

A NUMERICAL APPROACH FOR LOW ENERGY IMPACTS ON COMPOSITE LAMINATES USING FE EXPLICIT CODES NUMERICL PPROCH FOR LOW ENERGY IMPCTS ON COMPOSITE LMINTES USING FE EXPLICIT CODES. aldi 1,. iroldi 1, M. Daleffe 1, G. Sala 1, M. asaglia 2 1 erospace Eng. Dept., Politecnico di Milano Via La Masa, 34

More information

Keywords: CFRP, compressive failure, kink-band, cohesive zone model. * Corresponding author

Keywords: CFRP, compressive failure, kink-band, cohesive zone model. * Corresponding author THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS AN EXPERIMENTAL METHOD TO DETERMINE THE CRITICAL ENERGY RELEASE RATE ASSOCIATED WITH LONGITUDINAL COMPRESSIVE FAILURE IN CFRP D. Svensson 1 *,

More information

Probabilistic Failure Analysis of Composite Beams for Optimum Ply Arrangements under Ballistic Impact

Probabilistic Failure Analysis of Composite Beams for Optimum Ply Arrangements under Ballistic Impact Journal of Aerospace Science and Technology 1 (015) 36-47 doi: 10.1765/33-858/015.01.005 D DAVID PUBLISHING Probabilistic Failure Analysis of Composite Beams for Optimum Ply Shivdayal Patel, Suhail Ahmad

More information

Numerical Simulation of the Mode I Fracture of Angle-ply Composites Using the Exponential Cohesive Zone Model

Numerical Simulation of the Mode I Fracture of Angle-ply Composites Using the Exponential Cohesive Zone Model Numerical Simulation of the Mode I Fracture of Angle-ply Composites Using the Exponential Cohesive Zone Model Numerical Simulation of the Mode I Fracture of Angle-ply Composites Using the Exponential Cohesive

More information

Strength Prediction Of Composite Laminate

Strength Prediction Of Composite Laminate Strength Prediction Of Composite te Prof. Yogananda. A 1, Mr. R. Vijayakumar 2 Assistant Professor, Department of Mechanical Engineering, East West Institute of Technology, Bangalore. Research Scholar,

More information

LS-DYNA Peridynamics for Brittle Failure Analysis

LS-DYNA Peridynamics for Brittle Failure Analysis LS-DYNA Peridynamics for Brittle Failure Analysis A new physical based theory to predict the mixed mode cracks in brittle solid Bo Ren boren@lstc.com Oct. 23, 2017 Shanghai, China 1 What is Peridynamics

More information

MASTER S THESIS. Finite element analysis and experimental testing of lifting capacity for GRP cover. Front page for master thesis

MASTER S THESIS. Finite element analysis and experimental testing of lifting capacity for GRP cover. Front page for master thesis Faculty of Science and Technology MASTER S THESIS Study program/ Specialization: Master`s degree in structural engineering and materials science specialization in offshore structures. Writer: Endre Ulversøy

More information

Enhancing Prediction Accuracy In Sift Theory

Enhancing Prediction Accuracy In Sift Theory 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Enhancing Prediction Accuracy In Sift Theory J. Wang 1 *, W. K. Chiu 1 Defence Science and Technology Organisation, Fishermans Bend, Australia, Department

More information

TABLE OF CONTENTS. Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA

TABLE OF CONTENTS. Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA TABLE OF CONTENTS 1. INTRODUCTION TO COMPOSITE MATERIALS 1.1 Introduction... 1.2 Classification... 1.2.1

More information

Modeling Hailstone Impact onto Composite Material Panel Under a Multi-axial State of Stress

Modeling Hailstone Impact onto Composite Material Panel Under a Multi-axial State of Stress Modeling Hailstone Impact onto Composite Material Panel Under a Multi-axial State of Stress Authors Marco ANGHILERI * Luigi-M L CASTELLETTI * Andrea MILANESE * and Andrea SEMBOLONI * Affiliation * Politecnico

More information