Roll dynamics of a ship sailing in large amplitude head waves

Size: px
Start display at page:

Download "Roll dynamics of a ship sailing in large amplitude head waves"

Transcription

1 J Eng Math DOI /s Roll dynamics of a ship sailing in large amplitude head waves E. F. G. van Daalen M. Gunsing J. Grasman J. Remmert Received: 8 January 2013 / Accepted: 18 January 2014 Springer Science+Business Media Dordrecht 2014 Abstract Some ship types may show significant rolling when sailing in large-amplitude (near) head waves. The dynamics of the ship are such that the roll motion is affected by the elevation of the encountering waves. If the natural roll period (without forcing) is about half the period of the forcing by the waves, then a stationary solution will have an amplitude that is much larger than for other forcing frequencies. This phenomenon is called parametric resonance. For certain hull shape types the transverse stability may vary considerably due to the waves passing the ship. Moreover, near head waves will also have a direct effect on the roll dynamics. For these processes a differential equation model a Mathieu type of equation is formulated. Furthermore, the waves considered are of a type that is encountered in open seas. As a parameterization of these waves the Pierson Moskowitz spectrum is used. The risk that the ship will reach a critical state is characterized by the time of arrival at this state, starting from an arbitrary pattern of the waves and the dynamic state of the vessel in the stationary situation. Large-scale Monte Carlo simulations of this process are carried out. The percentiles of the arrival time distribution indicate the risk of significant rolling to which the vessel is exposed. Furthermore, a method is proposed to estimate the maximum roll angle in a stationary state by taking into consideration only the part of the wave spectrum that relates to the state of parametric resonance. The result is compared with the outcome of the large-scale Monte Carlo simulations. Keywords Critical roll amplitude Parametric resonance Stochastic waves E. F. G. van Daalen M. Gunsing Maritime Research Institute Netherlands (MARIN), Wageningen, The Netherlands J. Grasman (B) Mathematical and Statistical Methods Group, Wageningen University and Research Centre, Wageningen, The Netherlands johan.grasman@wur.nl J. Remmert Department of Maritime Technology, Delft University of Technology, Delft, The Netherlands Present Address: J. Remmert Maersk Maritime Technology, Copenhagen, Denmark

2 E. F. G. van Daalen et al. 1 Introduction In October 1998 a post-panamax C11 class cargo ship sailed on the Pacific Ocean from Taiwan to Seattle. While traversing a heavy storm, the vessel began an extreme rolling motion with roll angles of up to 40 to each side. After the storm had settled, the crew examined the status of the cargo and found that one-third of the deck-stowed containers were lost, and another third was heavily damaged. This incident is the greatest container casualty known so far; see [1] for a detailed account of the events. The ship experienced a phenomenon known as parametric resonance; within only a few roll cycles, the roll angle reached a value far above what would be considered normal (mostly up to 10 ). This kind of ship behaviour was known from the 1950s, but it was considered to be relevant only for smaller vessels in following seas. Since the October 1998 incident, interest has been renewed. It has been suggested [2] that the specific hull shape of modern container ships might increase the risk of parametric roll. To enlarge the load capacity while keeping the calm water resistance small, the length and width of container ships increased, and wide, flat sterns and pronounced bow flares appeared. This had a negative effect on dynamic stability in waves. Some possible countermeasures to avoid heavy rolling are the installation of (a combination of) bilge keels, stabilizing fins and anti-roll tanks of passive (free surface) or active (U-shape) type. Bilge keels are frequently applied but do not always provide sufficient additional roll damping. The effectiveness of fin stabilizers decreases with decreasing speed and increases the overall fuel consumption. Anti-roll tanks have the disadvantage of taking up a significant amount of space, thereby reducing the cargo capacity. That is why the last two measures are not applied to modern cargo ships. The estimation of the risk of parametric resonance for a given ship geometry and loading condition is of great importance to the maritime transport industry. In the literature this risk is usually quantified by a single coefficient in the equation of motion the roll damping coefficient. A critical value for the roll damping coefficient is derived based on a comparison between roll damping from the hull and the one that occurs in an unstable situation; see [3 5]. Here we take the stationary solution for a given resonant forcing as our starting point. We assume that near the resonance frequency the roll amplitude changes linearly with the forcing amplitude, so that with the relevant part of the wave spectrum an estimate of the roll amplitude can be made. The accuracy of this approximation method is analysed by computing the time until the critical state is reached for the full wave spectrum, starting from a probable state of the waves and the roll angle. From the distribution of these arrival times obtained from large-scale Monte Carlo simulations we calculate the appropriate percentiles for quantifying the risk that the critical state will be reached. In Sect. 2 we consider the way in which a single-frequency wave affects the roll amplitude of the stationary solution for a small range of frequencies around the parametrically resonant state. In Sect. 3 we introduce the Pierson Moskowitz wave spectrum and develop an efficient discretization method based on the inverse of the cumulative wave spectral density function. In Sect. 4 the roll amplitude is approximated from the part of the wave spectrum that corresponds with the parametrically resonant state. Large-scale Monte Carlo simulations are presented in Sect. 5 for different values of the two parameters of the Pierson Moskowitz wave spectrum as they may hold in open seas. For different seas and given arrival times at the critical state, the risk of attaining this critical state within these times is computed. Finally, in Sect. 6 the results are evaluated and the consequences of making some restricting assumptions are discussed. 2 Parametric resonance in the roll dynamics of a vessel In this section we analyse the roll dynamics of a vessel forced by a (near) head wave with a single frequency. To that end, we formulate the following one-degree-of-freedom differential equation model for the roll angle φ of a ship: (I + A) φ + B( φ) φ + Cφ = M exc, (1a)

3 Roll dynamics of a ship sailing in large amplitude head waves where the dot indicates differentiation with respect to time t. This equation describes a mass spring system with non-linear damping and external forcing; it is a generally accepted model for the roll motion of a ship in waves. By considering the roll motion only, we exclude interaction effects due to the coupling of roll motion with surge, sway and yaw motions. In doing so, we adopt the approach followed in the existing literature. However, the effects due to heave and pitch motions are included in our model, as will be explained subsequently. In (1a), I = kg m 2 is the moment of inertia and A = kg m 2 the added mass coefficient taken at the natural frequency ω nat of the vessel, depending on the forward speed U. The vessel-specific data are based on a C11 class container ship. The damping coefficient consists of a linear and a quadratic part: B( φ) = b 1 + b 2 φ, where b 1 = Nm/(rad/s) and b 2 = Nm/(rad 2 /s 2 ) are the linear and quadratic damping coefficients depending on U, respectively. These values are obtained from a roll decay experiment at 6 kn forward speed. Since the roll motion is typically narrow-banded (i.e. concentrated around the natural frequency of roll), the damping effect due to radiated waves is represented quite well by (1b). For a typically wide-banded response, memory effects should be accounted for by calculating the convolution integral of the retardation function and the velocity history. The restoring coefficient C consists of a mean part C 0 = Nm/rad and a time-varying part δc: C = C 0 + δc = ρgv(gm 0 + δgm), where ρ is the seawater density (taken as 1,025 kg/m 3 ), g the acceleration of gravity (taken as 9.81 m/s 2 ), V = m 3 the displacement volume and GM 0 and δgm the mean and time-varying parts of the (transverse) metacentric height, respectively. The linear form (1c) of the roll restoring coefficient is acceptable for a small to moderate roll angle regime, which applies to our analysis. For higher roll angles a more accurate representation of the GZ curve is required. The (undamped) natural frequency is calculated from ω nat = C 0 I + A(ω nat ). If we assume deep water conditions, then for a ship with forward velocity U and a wave with frequency ω approaching the ship at an angle μ = 180 (head waves), we obtain for the encounter frequency ω enc = ω + Uω2 g. (3) Compared to the other terms in (1a) the wave excitation roll moment M exc is small in (near) head sea conditions, and its effect is negligible. Therefore, for the remainder of this analysis we will assume that M exc = 0. The remaining forcing term δgm in (1c) is brought about by an incoming (undisturbed) wave with height = A cos(ωt + β ), where A is the wave amplitude and β the wave phase. The forcing term is described as follows: δgm = A δgm A cos(ω enc t + β + β δgm ), (5) where A δgm and β δgm are the amplitude ratio and the phase of the metacentric height variation. Thus, the differential equation describing the roll motion is given by (I + A) φ + ( b 1 + b 2 φ ) φ + C 0 φ = ρgvδgmφ. (6) This means that the way the wave acts upon the vessel is expressed in a transfer function denoting the manner in which the wave amplitude and phase are linearly transformed in the forcing function on the right-hand side of (6). This linear transfer function is obtained from quasi-static considerations of the instantaneous wave height along the moving ship. Figure 1 shows the amplitude A δgm and phase β δgm (with respect to the wave height) of the metacentric height variation for a wave amplitude of A (lin) = 1m. (1b) (1c) (2) (4)

4 E. F. G. van Daalen et al. Fig. 1 Linear transfer function of metacentric height variation: amplitude (solid line) and phase (dashed line). For an arbitrary value of the wave frequency ω the amplitude change and phase shift are generated by linear interpolation on the complex amplitude Fig. 2 Parametric resonance indicated by squared roll amplitude of stationary solution of (1) (7) as a function of the encounter frequency ω enc for A = 1 m. Numerical results ( ) are based on the transfer function values given for the parametrically resonant case. The constant approximation (dashed line) is chosen for an interval with a length such that the enclosed surface equals the surface under the computed (solid) line. From a full wave spectrum the part that induces parametric resonance is identified by the length ω enc = rad/s of this interval In Fig. 2 the roll amplitude for the stationary solution is given for the encounter frequency interval [0.42, 0.54] rad/s, with U = 6.0kn= 3.1 m/s and A (lin) = 1 m. Furthermore, the transfer coefficients A δgm and β δgm are fixed at the value that corresponds with ω enc = 0.48 rad/s. Note that near this value the amplitude rises considerably from the periodic behaviour of the restoring coefficient C; seeeq.(1c). Actually, then the encounter frequency ω enc is approximately twice the natural frequency: ω enc 2ω nat. The roll motion amplitude A φ shows a peak (resonance) value of A φ,res = 0.39 rad 2 = 0.63 rad = 36, while away from the resonance frequency the amplitude is very small. In the literature this behaviour is described mathematically by a pendulum of variable length [6]. Using the preceding result for A (lin) = 1 m and assuming that the functional relation A φ = A φ (A ) is close to linear satisfying A φ (0) = 0, a wave with a frequency ω res = 0.42 rad/s and amplitude A brings about a roll motion with a frequency close to twice the natural frequency ω nat = 0.24 rad/s and with amplitude (7) (8) A φ = A φ,res A A (lin). (9) 3 Waves represented by a Pierson Moskowitz spectrum In the previous section we considered the effect of a single-frequency wave on roll dynamics. In reality sea waves are composed of waves with different frequencies. The distribution of these frequencies depends on the geographical data and the weather conditions and is given as a spectral density function S. Two parameters play an essential

5 Roll dynamics of a ship sailing in large amplitude head waves role in the specification of S : the peak wave period T p and the significant wave height H s. The significant wave height can be expressed directly in the zeroth-order moment m 0 of the spectrum H s = 4 m 0 with m 0 = 0 S (ω) dω. We choose the two-parameter Bretschneider or Pierson Moskowitz wave spectrum [7], which is a frequently used type of spectrum for fully developed seas: S (ω) = a ( ω 5 exp b ) ω 4, (11) where the spectrum parameters a and b are related to the peak wave period and the significant wave height as follows: ( ) 4 1/4 a T p = 2π 5 b and H s = 2 b. (12) To apply an efficient discretization of the spectrum, we define the cumulative spectral density function Q (ω) def = ω 0 S (ω ) dω = a 4b exp ( b ω 4 ), (13) with inverse ( ) Q 1 b 1/4 (q) =. (14) ln (a) ln (4bq) We split up the spectrum into N ω intervals with the areas under the curve at an interval all having the value d(a, b) = m 0 = a. (15) N ω 4bN ω To that end we define the median of each interval by (( def ω j = Q 1 j 1 ) ) ( 1/4 a b = )) 2 4bN ω ln (N ω ) ln ( j 2 1, j = 1, 2,...,N ω. (16) In Fig. 3 it is shown how the discretization works out for N ω = 10. The points separating the intervals are the set of expected values if nine points chosen from a statistical distribution with the shape of the spectrum [8]. In practice, much larger values for N ω are chosen. The advantage of this approach is that for some required approximation accuracy the number N ω is smaller than for a method that uses equidistant points: since all wave components represent the same area d(a, b), all points contribute equally to the total energy. A wave composed in the aforementioned way of N ω components takes the form N ω N ω ( ) = j = 2d(a, b) cos ω j t + β j, (17) j=1 j=1 where the phases β j have randomly chosen values with a uniform distribution on the interval [0, 2π]. (10) 4 Critical sea states based on stationary roll amplitude As a starting point we consider the numerical stationary solution of Eqs. (1a) (1c) forced by a sea parameterized by a Pierson Moskowitz wave spectrum. For parametric resonance only the part of the wave spectrum near the resonance frequency ω res = 0.42 rad/s is important. In Fig. 2 we replaced the numerically computed (solid) line by

6 E. F. G. van Daalen et al. Fig. 3 Pierson Moskowitz wave spectral density S, with H s = 5.5m and T p = 14.5 s. The area under the spectral density curve is divided into N ω = 10 equal parts of size d(a, b);see(14) (15) Fig. 4 Critical significant wave height H s,crit as function of peak wave period T p for different values of critical roll amplitude A φ,crit for numerical stationary solution of Eqs. (1a) (1c) a (dashed) line with the same enclosed area. It covers an interval of length ω enc = rad/s on the encounter frequency axis. Since from (3) we can derive that dω enc dω = 1 + 2Uω g, it is concluded that from the spectrum S (ω) only an interval of length / dωenc ω res = ω enc dω (ω res) = rad/s, (19) with ω res = 0.42 rad/s as centre, must be considered. Consequently, we take for the resonant wave as amplitude the value A = 2S (ω res ) ω res. (20) Now, from Eqs. (9), (11) (12) and (20) we can easily establish a relation between the peak wave period T p,the critical significant wave height H s,crit and the critical resonance roll amplitude A φ,crit : H s,crit ( Tp ; A φ,crit ) = A φ,crit T 2 p π 2 A φ,res ω 5 res 10 ω res exp (18) ( ( ) ) π (21) ω res T p In Fig. 4 curves are given above which the wave spectrum parameters have values that yield a roll amplitude larger than a given critical value in a stationary state (e.g. for A φ,crit = 36, see dashed curve). Thus, based on the numerical stationary solution of Eqs. (1a) (1c) and on the estimates of the amplitude we made, we may conclude which seas are safe (below the curve) and unsafe (above the curve). In the next section we deal with the case where the wave pattern is not stationary because of random fluctuations. Then we must consider the time-dependent problem of reaching a critical state given an arbitrary starting state in a safe phase. 5 Distribution of arrival times at a critical roll energy It is worthwhile considering the energy balance as part of the roll dynamics. Energy enters the system through the incoming wave and dissipates through damping due to wave radiation and friction. At a given instance the total energy E tot stored in the roll motion equals the sum of kinetic energy E kin and potential energy E pot :

7 Roll dynamics of a ship sailing in large amplitude head waves E tot = E kin + E pot = 1 2 (I + A) φ C 0φ 2. (22) This study aims at quantifying the risk of parametric roll. As a measure for this risk one could take the time until a certain critical value ±φ crit is reached, given some initial state of the roll angle and the wave. This would be a rather sensitive indicator because, given a certain amount of energy stored in the roll motion, it may happen that for a very short moment this threshold is only slightly exceeded. For this reason we consider the time until the total energy reaches the value corresponding to the potential energy at φ = φ crit : E tot = E crit def = 1 2 C 0φ 2 crit. (23) For a sea state characterized by the values of the parameters a and b of the Pierson Moskowitz spectrum (11) we compute the arrival time distribution if the threshold value E crit is reached within a finite time. Since integration over large time intervals may be needed, we must take into account that in fact the wave height given by (17) is quasi-periodic. To overcome this problem, we change the wave input by making it a stochastic process. In (17) the phases β j are given fixed random values. A better representation of the random effects that continuously influence the waves is obtained by letting β j be a Brownian motion process: dβ j = εdw (t), where dw (t) denotes the standard Wiener increment [9] and ε is a phase modulation parameter. If the (quasi-) periodicity of the input (17) is felt at a time scale T, then for ε one should take ε = T 1. A realization of β j (t) is obtained from a forward Euler scheme with a sufficiently small time step t: β j (t + t) = β j (t) + εr(t) t. Here, r(t) is a random number having a standard normal distribution with zero mean and unit variance. It is remarked that this white noise component changes the spectrum and adds energy to the system: for all frequencies S (ω) is increased by ε 2. Consequently, wε 2 /m 0 (with w the bandwidth) gives an indication of the relative size of the effect. Since w/m 0 is of the order O (1), the effect is of the same order as ε 2 itself. The numerical simulations are based on Eqs. (1a) (1c), which are rewritten as a set of first-order, non-linear differential equations with initial conditions d dt ( φ φ ) = ( φ ( B ( φ ) φ + Cφ ) /(I + A) ), ( ) φ (0) = φ (0) (24) (25) ( ) 0. (26) 0 These equations are solved with an explicit first-order Euler forward scheme. The restoring coefficient C is evaluated at each time step taking into account Eqs. (5) and (24), with phase modulations applied to all frequency components. For all possible combinations of the peak wave period and the significant wave height, the solution is calculated for a long time (Fig. 5). Depending on ( T p, H s ),see(12), the system will show one of the three following types of behaviour: 1. If the excitation is very weak, then the system will remain in the safe zone (where E tot < E crit ) at all times. 2. If the excitation is very strong, then the system will go directly into the unsafe zone (where E tot > E crit ) and it will remain there for the rest of the simulation. 3. For all cases in between very weak and very strong excitation, the system may enter and exit the unsafe zone from time to time. We register the consecutive time stages at which the system enters (at t = t in ) and exits (at t = t out ) the safe zone. From these entry and exit times, we calculate the lengths of the time intervals during which the system is in the safe zone: T int = t out t in. Next we consider an infinitely large set of Monte Carlo runs as follows: one large run is made for which the integration is continued regardless whether the system is in the safe or unsafe zone (Fig. 5a). Then we consider all starting points t 0 within a safe zone i forming the interval [t in,i, t out,i ]. This approach guarantees that the system will startatanytimet 0 in a state that corresponds with a stationary situation given the parameters of the wave spectrum.

8 E. F. G. van Daalen et al. (a) (b) Fig. 5 Schematization of Monte Carlo simulation procedure to determine distribution of exit (arrival) times. In a safe zone the total energy is below the critical energy E crit, meaning the maximum angle also stays below φ crit. a A run in which the critical energy is exceeded repeatedly. b Typical example of output from a single Monte Carlo simulation run to determine the distribution of exit (arrival) times with T p = 16.0s and H s = 6.5 m. The critical energy level E crit is indicated by the dashed line. Left: full simulation run (up to approximately t = 85 h) with 1,000 exits from the safe zone. Right: excerpt from simulation (from t = 50 h to t = 51 h) displaying a few exits from the safe zone Since each starting value has an equal probability, we can compute the fraction q i (τ) of runs that will arrive within a given time τ at the critical energy E crit as follows: ( ) q i (τ) def τ = min, 1. (27) T int,i Next we take a weighted average of the first j safe zones within the large run: Q j (τ) def = j T int,i q i (τ) i=1. j T int,i i=1 (28)

9 Roll dynamics of a ship sailing in large amplitude head waves Fig. 6 Estimating the risk of reaching the critical energy before time τ = 10 min with T p = 16.0 sandh s = 6.5 m based on the first j safe intervals with j = 1, 2,...,1,000 using (27) for Q j (τ) and the unbiased result S j (τ) based on one randomly chosen start value at each safe interval. The wave spectrum is discretized with N ω = 50 and ε = 0.01 Fig. 7 Output from numerical simulations: probability of an exit time less than 10 min as function of peak wave period T p and significant wave height H s. Dashed curve: boundary between safe sea states (lower area) and unsafe sea states (upper area) based on stationary approach described in Sect. 4 with critical angle amplitude of 36 Simulation runs starting in the same safe interval are statistically interdependent because they are exposed to the same stochastic wave pattern during the time they overlap. Consequently, Q j (τ) may give a biased estimate of the risk of reaching a critical energy within time τ. Drawing only one starting value from a safe interval based on a uniform distribution over this interval and weighting the scores over all safe intervals in the same way as for Q j (τ) gives an unbiased estimate S j (τ). However, in the latter case of single runs, the convergence is slow for increasing j (Fig. 6). It is also noted that the limit value of Q j (τ) stays close to the expected limit value of the unbiased sequence S j (τ), the fraction of single runs up to safe interval j that reach the critical energy within timeτ. In Fig. 7, the fraction Q j (τ) is presented for j = 1,000 and τ = 10 min and for a variety of combinations of the peak wave period T p and the significant wave height H s using 50 frequencies in the discretized wave spectrum. The position and shape of the level contours match very well with the result from the stationary approach presented in Sect. 4. In a sense, the stationary result can be seen as the 100 % limit solution from the non-stationary approach. 6 Conclusions and recommendations The aim of this study was to quantify the risk of significant rolling in (near) head waves containing a frequency component which is twice the natural roll frequency of the vessel. The resulting large roll response is known as parametric resonance and was mathematically analysed in the prototype differential equation known as the Mathieu equation [10]. The starting point of our study on roll dynamics was the numerical solution of the one-degreeof-freedom equations of motion [Eqs. (1a) (1c)] near this resonance frequency with given parametric forcing amplitude. It led to a numerical approximation of the roll amplitude as a function of the frequency (Fig. 2). Next we considered the composition of sea waves as parameterized by the Pierson Moskowitz spectrum. Using the result given in Fig. 2 we were in a position to identify the part of the spectrum which could be linked to the resonance state and led to the resonance forcing amplitude given by (20). With this formula the resulting roll amplitude was easily derived for different values of the peak period and significant wave height (Fig. 4). The outcome compared quite well with that of a stochastic stability analysis of roll dynamics introduced in [4]; see Fig. 11 in [5]. Our rather straightforward approximation method can be improved in different ways, as follows:

10 E. F. G. van Daalen et al. In (1a) the restoring moment is approximated by a term proportional to the roll angle φ. We also verified that using the exact formula with sin φ does not change the results significantly. Using sin φ instead of φ does not require much additional effort, but then a comparison with the existing literature could not be made that easily because mostly the linear approximation is used. The same argument applies to the use of the linear roll restoring coefficient (1c) (Sect. 2). The expression for the roll amplitude, being linear in the forcing amplitude (9), can be replaced by e.g. a quadratic function. Then in addition to the case A = 1 m a second numerical solution is needed within the range that corresponds to realistic roll amplitudes (e.g. A = 1.25 m). In the Monte Carlo simulation we considered the full Pierson Moskowitz spectrum discretized in a number of frequencies covering the spectrum in an efficient way. Furthermore, instead of working with the roll amplitude in the stationary state for the resonant wave frequency we considered the evolution of the roll amplitude when starting with a probable state of the vessel in a given sea. The total energy in the roll motion is considered to be a good measure to distinguish between safe and unsafe states. In risk analysis the occurrence of a catastrophic event should be well defined and include the time span that is taken into consideration. Thus, the probability should be found that a certain critical value will be reached before a given time for all feasible values of the parameters T p and H s of the wave spectrum. In Fig. 7 these probabilities are given for the event that the energy will exceed a given critical level within 10 min. The result is obtained from Monte Carlo simulations based on an integration of Eqs. (1a) (1c). In our study we applied a mixed analytical numerical approach in which we computed the resonant state itself and used it in our risk analysis, while in the existing literature [1 6] the destabilization of the rest state of (1a) (1c) is analysed by estimating which forcing would lower the damping coefficient B critically. In fact, this is a local (near equilibrium) analysis which becomes less accurate for larger forcing. Acknowledgments The authors would like to thank the organizers and participants of the Study Group Mathematics with Industry for initiating a first exploration of the subject; see [11]. References 1. France WN, Levadou M, Treakle TW, Paulling JR, Michel RK, Moore C (2003) An investigation of head-sea parametric rolling and its influence on container lashing systems. Mar Technol SNAME News 40(1): Santos-Neves MA, Rodriguez CA (2007) Influence of non-linearities on the limit of stability of ships rolling in head seas. Ocean Eng 34: Dunwoody AB (1989) Roll of a ship in Astern Seas Metacentric height spectra. J Ship Res 33: Dunwoody AB (1989) Roll of a ship in Astern Seas Response to GM fluctuations. J Ship Res 33: Levadou ML, Van t Veer R (2006) Parametric roll and ship design. In: Proceedings of the 9th international conference on stability of ships and ocean vehicles, vol 1, pp Shin YS, Belenky VL, Pauling JR, Weems KM, Lin WM (2004) Criteria for parametric roll of large container ships in longitudinal seas. Trans Soc Naval Archit Mar Eng 112: Pierson WJ, Moskowitz L (1964) A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitaigorodskij. J Geophys Res 69: David HA, Nagaraja HN (2003) Order statistics, Wiley Interscience, Hoboken 9. Gardiner CW (1990) Handbook of stochastic methods for physics, chemistry and the natural sciences. Springer, Berlin 10. Tondl A, Ruijgrok T, Verhulst F, Nabergoj R (2000) Autoparametric resonance in mechanical systems. Cambridge University Press, Cambridge 11. Archer C, Van Daalen EFG, Dobberschütz S, Godeau M-F, Grasman J, Gunsing M, Muskulus M, Pischanskyy A, Wakker M (2009) Dynamical models of extreme rolling of vessels in head waves. In: Molenaar J, Keesman K, Van Opheusden J, Doeswijk T (eds) Proceedings of the 67th European Study Group Mathematics with Industry, pp ISBN

ROLL MOTION OF A RORO-SHIP IN IRREGULAR FOLLOWING WAVES

ROLL MOTION OF A RORO-SHIP IN IRREGULAR FOLLOWING WAVES 38 Journal of Marine Science and Technology, Vol. 9, o. 1, pp. 38-44 (2001) ROLL MOTIO OF A RORO-SHIP I IRREGULAR FOLLOWIG WAVES Jianbo Hua* and Wei-Hui Wang** Keywords: roll motion, parametric excitation,

More information

SCALE MODEL TESTS OF A FISHING VESSEL IN ROLL MOTION PARAMETRIC RESONANCE

SCALE MODEL TESTS OF A FISHING VESSEL IN ROLL MOTION PARAMETRIC RESONANCE N. Perez Síntesis Tecnológica. V.3 Nº 1 (26) 33-37 SCALE MODEL TESTS OF A FISHING VESSEL IN ROLL MOTION PARAMETRIC RESONANCE NELSON A. PEREZ M. Instituto de Ciencias Navales y Marítimas, M.Sc, nperez@uach.cl,

More information

Requirements for Computational Methods to be sed for the IMO Second Generation Intact Stability Criteria

Requirements for Computational Methods to be sed for the IMO Second Generation Intact Stability Criteria Proceedings of the 1 th International Conference on the Stability of Ships and Ocean Vehicles, 14-19 June 15, Glasgow, UK Requirements for Computational Methods to be sed for the IMO Second Generation

More information

Seakeeping Models in the Frequency Domain

Seakeeping Models in the Frequency Domain Seakeeping Models in the Frequency Domain (Module 6) Dr Tristan Perez Centre for Complex Dynamic Systems and Control (CDSC) Prof. Thor I Fossen Department of Engineering Cybernetics 18/09/2007 One-day

More information

Chapter 1 Dynamical Models of Extreme Rolling of Vessels in Head Waves

Chapter 1 Dynamical Models of Extreme Rolling of Vessels in Head Waves Chapter 1 Dynamical Models of Extreme Rolling of Vessels in Head Waves Claude Archer 1 Ed F.G. van Daalen 2 Sören Dobberschütz 3 Marie-France Godeau 1 Johan Grasman 4 Michiel Gunsing 2 Michael Muskulus

More information

On an Advanced Shipboard Information and Decision-making System for Safe and Efficient Passage Planning

On an Advanced Shipboard Information and Decision-making System for Safe and Efficient Passage Planning International Journal on Marine Navigation and Safety of Sea Transportation Volume 2 Number 1 March 28 On an Advanced Shipboard Information and Decision-making System for Safe and Efficient Passage Planning

More information

Breu, Frequency Detuning of Parametric Roll

Breu, Frequency Detuning of Parametric Roll Frequency Detuning of Parametric Roll Conference on CeSOS Highlights and AMOS Visions, May 29, 2013 Dominik Breu Department of Engineering Cybernetics, NTNU, Trondheim, Norway Centre for Ships and Ocean

More information

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February ISSN

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February ISSN International Journal of Scientific & Engineering Research Volume 9, Issue, February-8 48 Structural Response of a Standalone FPSO by Swell Wave in Offshore Nigeria Abam Tamunopekere Joshua*, Akaawase

More information

A Preliminary Analysis on the Statistics of about One-Year Air Gap Measurement for a Semi-submersible in South China Sea

A Preliminary Analysis on the Statistics of about One-Year Air Gap Measurement for a Semi-submersible in South China Sea Proceedings of the Twenty-sixth (2016) International Ocean and Polar Engineering Conference Rhodes, Greece, June 26-July 1, 2016 Copyright 2016 by the International Society of Offshore and Polar Engineers

More information

A case study on operational limitations by means of navigation simulation

A case study on operational limitations by means of navigation simulation Proceedings of the 16 th International Ship Stability Workshop, 5-7 June 2017, Belgrade, Serbia 1 A case study on operational limitations by means of navigation simulation Hirotada Hashimoto, Kobe University,

More information

Motions and Resistance of a Ship in Regular Following Waves

Motions and Resistance of a Ship in Regular Following Waves Reprinted: 01-11-2000 Revised: 03-10-2007 Website: www.shipmotions.nl Report 440, September 1976, Delft University of Technology, Ship Hydromechanics Laboratory, Mekelweg 2, 2628 CD Delft, The Netherlands.

More information

NONLINEAR DYNAMICS ON PARAMETRIC ROLL RESONANCE WITH REALISTIC NUMERICAL MODELLING

NONLINEAR DYNAMICS ON PARAMETRIC ROLL RESONANCE WITH REALISTIC NUMERICAL MODELLING 8 th International Conference on 81 NONLINEAR DYNAMICS ON PARAMETRIC ROLL RESONANCE WITH REALISTIC NUMERICAL MODELLING Naoya Umeda*, Hirotada Hashimoto*, Dracos Vassalos**, Shinichi Urano* and Kenji Okou*

More information

SEAKEEPING AND MANEUVERING Prof. Dr. S. Beji 2

SEAKEEPING AND MANEUVERING Prof. Dr. S. Beji 2 SEAKEEPING AND MANEUVERING Prof. Dr. S. Beji 2 Ship Motions Ship motions in a seaway are very complicated but can be broken down into 6-degrees of freedom motions relative to 3 mutually perpendicular axes

More information

Viscous Damping of Vessels Moored in Close Proximity of Another Object

Viscous Damping of Vessels Moored in Close Proximity of Another Object Proceedings of The Fifteenth (5) International Offshore and Polar Engineering Conference Seoul, Korea, June 9 4, 5 Copyright 5 by The International Society of Offshore and Polar Engineers ISBN -885-4-8

More information

PREDICTION OF PARAMETRIC ROLL OF SHIPS IN REGULAR AND IRREGULAR SEA. A Thesis HISHAM MOIDEEN

PREDICTION OF PARAMETRIC ROLL OF SHIPS IN REGULAR AND IRREGULAR SEA. A Thesis HISHAM MOIDEEN PREDICTION OF PARAMETRIC ROLL OF SHIPS IN REGULAR AND IRREGULAR SEA A Thesis by HISHAM MOIDEEN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements

More information

Seakeeping characteristics of intact and damaged ship in the Adriatic Sea

Seakeeping characteristics of intact and damaged ship in the Adriatic Sea Towards Green Marine Technology and Transport Guedes Soares, Dejhalla & Pavleti (Eds) 2015 Taylor & Francis Group, London, ISBN 978-1-138-02887-6 Seakeeping characteristics of intact and damaged ship in

More information

DYNAMIC STABILITY ASSESSMENT IN EARLY-STAGE SHIP DESIGN

DYNAMIC STABILITY ASSESSMENT IN EARLY-STAGE SHIP DESIGN 1 th International Conference 141 DYNAMIC STABILITY ASSESSMENT IN EARLY-STAGE SHIP DESIGN Vadim Belenky, Christopher C. Bassler, Naval Surface Warfare Center, Carderock Division, USA Kostas Spyrou, National

More information

SEAKEEPING NUMERICAL ANALYSIS IN IRREGULAR WAVES OF A CONTAINERSHIP

SEAKEEPING NUMERICAL ANALYSIS IN IRREGULAR WAVES OF A CONTAINERSHIP Mechanical Testing and Diagnosis ISSN 47 9635, 13 (III), Volume 1, pp. 19-31 SEAKEEPING NUMERICAL ANALYSIS IN IRREGULAR WAVES OF A CONTAINERSHIP Carmen GASPAROTTI, Eugen RUSU University of Galati, ROMANIA

More information

Classification of offshore structures

Classification of offshore structures Classification: Internal Status: Draft Classification of offshore structures A classification in degree of non-linearities and importance of dynamics. Sverre Haver, StatoilHydro, January 8 A first classification

More information

Study on Motions of a Floating Body under Composite External Loads

Study on Motions of a Floating Body under Composite External Loads 137 Study on Motions of a Floating Body under Composite External Loads by Kunihiro Ikegami*, Member Masami Matsuura*, Member Summary In the field of marine engineering, various types of floating bodies

More information

13.42 READING 6: SPECTRUM OF A RANDOM PROCESS 1. STATIONARY AND ERGODIC RANDOM PROCESSES

13.42 READING 6: SPECTRUM OF A RANDOM PROCESS 1. STATIONARY AND ERGODIC RANDOM PROCESSES 13.42 READING 6: SPECTRUM OF A RANDOM PROCESS SPRING 24 c A. H. TECHET & M.S. TRIANTAFYLLOU 1. STATIONARY AND ERGODIC RANDOM PROCESSES Given the random process y(ζ, t) we assume that the expected value

More information

Linear and Nonlinear Oscillators (Lecture 2)

Linear and Nonlinear Oscillators (Lecture 2) Linear and Nonlinear Oscillators (Lecture 2) January 25, 2016 7/441 Lecture outline A simple model of a linear oscillator lies in the foundation of many physical phenomena in accelerator dynamics. A typical

More information

SIMPLIFICATION BY MATHEMATIC MODEL TO SOLVE THE EXPERIMENTAL OF SLOSHING EFFECT ON THE FPSO VESSEL

SIMPLIFICATION BY MATHEMATIC MODEL TO SOLVE THE EXPERIMENTAL OF SLOSHING EFFECT ON THE FPSO VESSEL European International Journal of Science and Technology Vol. 3 No. 5 June, 2014 SIMPLIFICATION BY MATHEMATIC MODEL TO SOLVE THE EXPERIMENTAL OF SLOSHING EFFECT ON THE FPSO VESSEL LuhutTumpalParulianSinaga

More information

Development of formulas allowing to predict hydrodynamic responses of inland vessels operated within the range of navigation 0.6 Hs 2.

Development of formulas allowing to predict hydrodynamic responses of inland vessels operated within the range of navigation 0.6 Hs 2. Gian Carlo Matheus Torres 6 th EMship cycle: October 2015 February 2017 Master Thesis Development of formulas allowing to predict hydrodynamic responses of inland vessels operated within the range of navigation

More information

Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber

Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber J.C. Ji, N. Zhang Faculty of Engineering, University of Technology, Sydney PO Box, Broadway,

More information

The use of a floating quay for container terminals. 1. Introduction

The use of a floating quay for container terminals. 1. Introduction The use of a floating quay for container terminals. M. van der Wel M.vanderWel@student.tudelft.nl Ir. J.G. de Gijt J.G.deGijt@tudelft.nl Public Works Rotterdam/TU Delft Ir. D. Dudok van Heel D.DudokvanHeel@gw.rotterdam.nl

More information

Dynamic response and fluid structure interaction of submerged floating tunnels

Dynamic response and fluid structure interaction of submerged floating tunnels Fluid Structure Interaction and Moving Boundary Problems 247 Dynamic response and fluid structure interaction of submerged floating tunnels S. Remseth 1, B. J. Leira 2, A. Rönnquist 1 & G. Udahl 1 1 Department

More information

NUMERICAL MODELLING AND STUDY OF PARAMETRIC ROLLING FOR C11 CONTAINERSHIP IN REGULAR HEAD SEAS USING CONSISTENT STRIP THEORY

NUMERICAL MODELLING AND STUDY OF PARAMETRIC ROLLING FOR C11 CONTAINERSHIP IN REGULAR HEAD SEAS USING CONSISTENT STRIP THEORY Brodogradnja/Shipbuilding/Open access Volume 68 Number 3, 217 Kaiye HU Rui WANG Shan MA Wenyang DUAN Wenhao XU Rui DENG http://dx.doi.org/1.21278/brod6839 ISSN 7-215X eissn 185-5859 NUMERICAL MODELLING

More information

INVESTIGATION OF PARAMETRIC ROLL OF A CONTAINER SHIP IN IRREGULAR SEAS BY NUMERICAL SIMULATION

INVESTIGATION OF PARAMETRIC ROLL OF A CONTAINER SHIP IN IRREGULAR SEAS BY NUMERICAL SIMULATION 10 th International Conference 549 INVESTIGATION OF PARAMETRIC ROLL OF A CONTAINER SHIP IN IRREGULAR SEAS BY NUMERICAL SIMULATION Sa Young Hong, MOERI/KORDI,171 Jang-dong, Daejeon,305-343 KOREA, sayhong@moeri.re.kr,

More information

Trajectory Tracking of a Near-Surface Torpedo using Numerical Methods

Trajectory Tracking of a Near-Surface Torpedo using Numerical Methods ISSN (Print) : 2347-671 An ISO 3297: 27 Certified Organization Vol.4, Special Issue 12, September 215 Trajectory Tracking of a Near-Surface Torpedo using Numerical Methods Anties K. Martin, Anubhav C.A.,

More information

Autoparametric Resonance in Mechanical Systems. Thijs Ruijgrok Ferdinand Verhulst Radoslav Nabergoj

Autoparametric Resonance in Mechanical Systems. Thijs Ruijgrok Ferdinand Verhulst Radoslav Nabergoj Autoparametric Resonance in Mechanical Systems Aleš Tondl Thijs Ruijgrok Ferdinand Verhulst Radoslav Nabergoj PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington

More information

Experimental Analysis of Roll Damping in Small Fishing Vessels for Large Amplitude Roll Forecasting

Experimental Analysis of Roll Damping in Small Fishing Vessels for Large Amplitude Roll Forecasting International Ship Stability Workshop 213 1 Experimental Analysis of Roll Damping in Small Fishing Vessels for Large Amplitude Roll Forecasting Marcos Míguez González, Vicente Díaz Casás, Fernando López

More information

WAMIT-MOSES Hydrodynamic Analysis Comparison Study. JRME, July 2000

WAMIT-MOSES Hydrodynamic Analysis Comparison Study. JRME, July 2000 - Hydrodynamic Analysis Comparison Study - Hydrodynamic Analysis Comparison Study JRME, Prepared by Hull Engineering Department J. Ray McDermott Engineering, LLC 1 - Hydrodynamic Analysis Comparison Study

More information

Mooring Model for Barge Tows in Lock Chamber

Mooring Model for Barge Tows in Lock Chamber Mooring Model for Barge Tows in Lock Chamber by Richard L. Stockstill BACKGROUND: Extensive research has been conducted in the area of modeling mooring systems in sea environments where the forcing function

More information

Reliability Theory of Dynamically Loaded Structures (cont.)

Reliability Theory of Dynamically Loaded Structures (cont.) Outline of Reliability Theory of Dynamically Loaded Structures (cont.) Probability Density Function of Local Maxima in a Stationary Gaussian Process. Distribution of Extreme Values. Monte Carlo Simulation

More information

Parametric Excitation of a Linear Oscillator

Parametric Excitation of a Linear Oscillator Parametric Excitation of a Linear Oscillator Manual Eugene Butikov Annotation. The manual includes a description of the simulated physical system and a summary of the relevant theoretical material for

More information

A NUMERICAL IDENTIFICATION OF EXCITATION FORCE AND NONLINEAR RESTORING CHARACTERISTICS OF SHIP ROLL MOTION

A NUMERICAL IDENTIFICATION OF EXCITATION FORCE AND NONLINEAR RESTORING CHARACTERISTICS OF SHIP ROLL MOTION ournal of Marine Science and Technology Vol. 5 No. 4 pp. 475-481 (017 475 DOI: 10.6119/MST-017-0418-1 A NUMERICAL IDENTIFICATION OF EXCITATION FORCE AND NONNEAR RESTORING CHARACTERISTICS OF SHIP ROLL MOTION

More information

Modelling trends in the ocean wave climate for dimensioning of ships

Modelling trends in the ocean wave climate for dimensioning of ships Modelling trends in the ocean wave climate for dimensioning of ships STK1100 lecture, University of Oslo Erik Vanem Motivation and background 2 Ocean waves and maritime safety Ships and other marine structures

More information

Chapter 14 Periodic Motion

Chapter 14 Periodic Motion Chapter 14 Periodic Motion 1 Describing Oscillation First, we want to describe the kinematical and dynamical quantities associated with Simple Harmonic Motion (SHM), for example, x, v x, a x, and F x.

More information

Optimal Design of FPSO Vessels

Optimal Design of FPSO Vessels November 2, 201 Optimal Design of FPSO Vessels Ezebuchi Akandu PhD, MTech, BTech, COREN, RINA, MNSE Department of Marine Engineering, Rivers State University, Port Harcourt, Nigeria akandu.ezebuchi@ust.edu.ng

More information

IDENTIFICATION OF SHIP PROPELLER TORSIONAL VIBRATIONS

IDENTIFICATION OF SHIP PROPELLER TORSIONAL VIBRATIONS Journal of KONES Powertrain and Transport, Vol., No. 015 IDENTIFICATION OF SHIP PROPELLER TORSIONAL VIBRATIONS Jan Rosłanowski Gdynia Maritime University, Faculty of Marine Engineering Morska Street 81-87,

More information

Design, Construction & Operation of LNG/LPG Ships, November, Glasgow, UK

Design, Construction & Operation of LNG/LPG Ships, November, Glasgow, UK Design, Construction & Operation of LNG/LPG Ships, 29-3 November, Glasgow, UK SLOSHING AND SWIRLING IN MEMBRANE LNG TANKS AND THEIR COUPLING EFFECTS WITH SHIP MOTION M Arai and G M Karuka, Yokohama National

More information

Safety and Energy Efficient Marine Operations

Safety and Energy Efficient Marine Operations University of Strathclyde 17 th 19 th November, 2015 Safety and Energy Efficient Marine Operations Prof. Apostolos Papanikolaou, NTUA-SDL Email: papa@deslab.ntua.gr URL: http://www.naval.ntua.gr/sdl Background

More information

A simplified method for calculating propeller thrust decrease for a ship sailing on a given shipping lane

A simplified method for calculating propeller thrust decrease for a ship sailing on a given shipping lane POLISH MARITIME RESEARCH 2(82) 2014 Vol 21; pp. 27-33 10.2478/pomr-2014-0015 A simplified method for calculating propeller thrust decrease for a ship sailing on a given shipping lane Katarzyna Zelazny,

More information

DREDGING DYNAMICS AND VIBRATION MEASURES

DREDGING DYNAMICS AND VIBRATION MEASURES DREDGING DYNAMICS AND VIBRATION MEASURES C R Barik, K Vijayan, Department of Ocean Engineering and Naval Architecture, IIT Kharagpur, India ABSTRACT The demands for dredging have found a profound increase

More information

4. Complex Oscillations

4. Complex Oscillations 4. Complex Oscillations The most common use of complex numbers in physics is for analyzing oscillations and waves. We will illustrate this with a simple but crucially important model, the damped harmonic

More information

1 Oscillations MEI Conference 2009

1 Oscillations MEI Conference 2009 1 Oscillations MEI Conference 2009 Some Background Information There is a film clip you can get from Youtube of the Tacoma Narrows Bridge called Galloping Gertie. This shows vibrations in the bridge increasing

More information

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS Unit 2: Unit code: QCF Level: 4 Credit value: 5 Engineering Science L/60/404 OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS UNIT CONTENT OUTCOME 2 Be able to determine the behavioural characteristics of elements

More information

SLAMMING LOADS AND STRENGTH ASSESSMENT FOR VESSELS

SLAMMING LOADS AND STRENGTH ASSESSMENT FOR VESSELS Guide for Slamming Loads and Strength Assessment for Vessels GUIDE FOR SLAMMING LOADS AND STRENGTH ASSESSMENT FOR VESSELS MARCH 2011 (Updated February 2016 see next page) American Bureau of Shipping Incorporated

More information

Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras

Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Module - 1 Lecture - 10 Methods of Writing Equation of Motion (Refer

More information

Ship structure dynamic analysis - effects of made assumptions on computation results

Ship structure dynamic analysis - effects of made assumptions on computation results Ship structure dynamic analysis - effects of made assumptions on computation results Lech Murawski Centrum Techniki Okrętowej S. A. (Ship Design and Research Centre) ABSTRACT The paper presents identification

More information

Chapter 2 Finite Element Formulations

Chapter 2 Finite Element Formulations Chapter 2 Finite Element Formulations The governing equations for problems solved by the finite element method are typically formulated by partial differential equations in their original form. These are

More information

SPRINGING ASSESSMENT FOR CONTAINER CARRIERS

SPRINGING ASSESSMENT FOR CONTAINER CARRIERS Guidance Notes on Springing Assessment for Container Carriers GUIDANCE NOTES ON SPRINGING ASSESSMENT FOR CONTAINER CARRIERS FEBRUARY 2014 American Bureau of Shipping Incorporated by Act of Legislature

More information

Effect of Tethers Tension Force in the Behavior of a Tension Leg Platform Subjected to Hydrodynamic Force Amr R. El-Gamal, Ashraf Essa, Ayman Ismail

Effect of Tethers Tension Force in the Behavior of a Tension Leg Platform Subjected to Hydrodynamic Force Amr R. El-Gamal, Ashraf Essa, Ayman Ismail Vol:7, No:1, 13 Effect of Tethers Tension Force in the Behavior of a Tension Leg Platform Subjected to Hydrodynamic Force Amr R. El-Gamal, Ashraf Essa, Ayman Ismail International Science Index, Bioengineering

More information

Hydrodynamic analysis and modelling of ships

Hydrodynamic analysis and modelling of ships Hydrodynamic analysis and modelling of ships Wave loading Harry B. Bingham Section for Coastal, Maritime & Structural Eng. Department of Mechanical Engineering Technical University of Denmark DANSIS møde

More information

Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes.

Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes. 13.012 Marine Hydrodynamics for Ocean Engineers Fall 2004 Quiz #2 Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes. For the problems in Section A, fill

More information

Stochastic Dynamics of SDOF Systems (cont.).

Stochastic Dynamics of SDOF Systems (cont.). Outline of Stochastic Dynamics of SDOF Systems (cont.). Weakly Stationary Response Processes. Equivalent White Noise Approximations. Gaussian Response Processes as Conditional Normal Distributions. Stochastic

More information

Wave Energy Converter Modeling in the Time Domain: A Design Guide

Wave Energy Converter Modeling in the Time Domain: A Design Guide Wave Energy Converter Modeling in the Time Domain: A Design Guide Bret Bosma, Ted K.A. Brekken, H. Tuba Özkan-Haller, Solomon C. Yim Oregon State University Corvallis, OR USA Abstract As the ocean wave

More information

Foundation Engineering Dr. Priti Maheshwari Department Of Civil Engineering Indian Institute Of Technology, Roorkee

Foundation Engineering Dr. Priti Maheshwari Department Of Civil Engineering Indian Institute Of Technology, Roorkee Foundation Engineering Dr. Priti Maheshwari Department Of Civil Engineering Indian Institute Of Technology, Roorkee Module - 02 Lecture - 15 Machine Foundations - 3 Hello viewers, In the last class we

More information

NONLINEAR BEHAVIOR OF A SINGLE- POINT MOORING SYSTEM FOR FLOATING OFFSHORE WIND TURBINE

NONLINEAR BEHAVIOR OF A SINGLE- POINT MOORING SYSTEM FOR FLOATING OFFSHORE WIND TURBINE NONLINEAR BEHAVIOR OF A SINGLE- POINT MOORING SYSTEM FOR FLOATING OFFSHORE WIND TURBINE Ma Chong, Iijima Kazuhiro, Masahiko Fujikubo Dept. of Naval Architecture and Ocean Engineering OSAKA UNIVERSITY RESEARCH

More information

Study of the influence of the resonance changer on the longitudinal vibration of marine propulsion shafting system

Study of the influence of the resonance changer on the longitudinal vibration of marine propulsion shafting system Study of the influence of the resonance changer on the longitudinal vibration of marine propulsion shafting system Zhengmin Li 1, Lin He 2, Hanguo Cui 3, Jiangyang He 4, Wei Xu 5 1, 2, 4, 5 Institute of

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Essential physics for game developers Introduction The primary issues Let s move virtual objects Kinematics: description

More information

INVESTIGATION OF SEAKEEPING CHARACTERISTICS OF HIGH-SPEED CATAMARANS IN WAVES

INVESTIGATION OF SEAKEEPING CHARACTERISTICS OF HIGH-SPEED CATAMARANS IN WAVES Journal of Marine Science and Technology, Vol. 12, No. 1, pp. 7-15 (2004) 7 INVESTIGATION OF SEAKEEPING CHARACTERISTICS OF HIGH-SPEED CATAMARANS IN WAVES Chih-Chung Fang* and Hoi-Sang Chan** Key words:

More information

Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur

Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 09 Free Surface Effect In the

More information

Evaluation of Hydrodynamic Performance of a Damaged Ship in Waves

Evaluation of Hydrodynamic Performance of a Damaged Ship in Waves Evaluation of Hydrodynamic Performance of a Damaged Ship in Waves Sa Young Hong, Seok-Kyu Cho, Byoung Wan Kim, Gyeong Jung Lee, Ki-Sup Kim Maritime and Ocean Engineering Research Institute/KORDI, Daejeon,

More information

Prediction of Wave and Wind induced Dynamic Response in Time Domain using RM Bridge

Prediction of Wave and Wind induced Dynamic Response in Time Domain using RM Bridge Prediction of Wave and Wind induced Dynamic Response in Time Domain using RM Bridge Johann Stampler, Jörg Sello, Mitja Papinutti Bentley Systems Austria, Graz, Austria Arne Bruer, Mathias Marley TDA AS,

More information

Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is

Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is Dr. Alain Brizard College Physics I (PY 10) Oscillations Textbook Reference: Chapter 14 sections 1-8. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring

More information

( ) Chapter 3: Free Vibration of the Breakwater. 3.1 Introduction

( ) Chapter 3: Free Vibration of the Breakwater. 3.1 Introduction Chapter : Free Vibration of the Breakwater. Introduction Before conducting forcing analyses on the breakwater, a free vibration study is necessary. This chapter will describe the analysis conducted to

More information

KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY OSCILLATIONS AND WAVES PRACTICE EXAM

KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY OSCILLATIONS AND WAVES PRACTICE EXAM KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY-10012 OSCILLATIONS AND WAVES PRACTICE EXAM Candidates should attempt ALL of PARTS A and B, and TWO questions from PART C. PARTS A and B should be answered

More information

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.)

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.) Outline of Single-Degree-of-Freedom Systems (cont.) Linear Viscous Damped Eigenvibrations. Logarithmic decrement. Response to Harmonic and Periodic Loads. 1 Single-Degreee-of-Freedom Systems (cont.). Linear

More information

Ship Nonlinear Rolling and Roll Angle Reconstruction Based on FIR

Ship Nonlinear Rolling and Roll Angle Reconstruction Based on FIR Open Access Library Journal Ship Nonlinear Rolling and Roll Angle Reconstruction Based on FIR Jianhui Lu 1,2*, Chunlei Zhang 2, Shaonan Chen 2, Yunxia Wu 2 1 Shandong Province Key Laboratory of Ocean Engineering,

More information

Forced Oscillations in a Linear System Problems

Forced Oscillations in a Linear System Problems Forced Oscillations in a Linear System Problems Summary of the Principal Formulas The differential equation of forced oscillations for the kinematic excitation: ϕ + 2γ ϕ + ω 2 0ϕ = ω 2 0φ 0 sin ωt. Steady-state

More information

LANMARK UNIVERSITY OMU-ARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR.

LANMARK UNIVERSITY OMU-ARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR. LANMARK UNIVERSITY OMU-ARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR. IBIKUNLE ROTIMI ADEDAYO SIMPLE HARMONIC MOTION. Introduction Consider

More information

Simple Estimation of Wave Added Resistance from Experiments in Transient and Irregular Water Waves

Simple Estimation of Wave Added Resistance from Experiments in Transient and Irregular Water Waves Simple Estimation of Wave Added Resistance from Experiments in Transient and Irregular Water Waves by Tsugukiyo Hirayama*, Member Xuefeng Wang*, Member Summary Experiments in transient water waves are

More information

MASS LOADING EFFECTS FOR HEAVY EQUIPMENT AND PAYLOADS Revision F

MASS LOADING EFFECTS FOR HEAVY EQUIPMENT AND PAYLOADS Revision F MASS LOADING EFFECTS FOR HEAVY EQUIPMENT AND PAYLOADS Revision F By Tom Irvine Email: tomirvine@aol.com May 19, 2011 Introduction Consider a launch vehicle with a payload. Intuitively, a realistic payload

More information

Influence of yaw-roll coupling on the behavior of a FPSO: an experimental and numerical investigation

Influence of yaw-roll coupling on the behavior of a FPSO: an experimental and numerical investigation Influence of yaw-roll coupling on the behavior of a FPSO: an experimental and numerical investigation Claudio Lugni a,b, Marilena Greco a,b, Odd Magnus Faltinsen b a CNR-INSEAN, The Italian Ship Model

More information

HEAVE DAMPING EFFECTS DUE TO CIRCULAR PLATES ATTACHED AT KEEL TO SPAR HULL

HEAVE DAMPING EFFECTS DUE TO CIRCULAR PLATES ATTACHED AT KEEL TO SPAR HULL HEAVE DAMPING EFFECTS DUE TO CIRCULAR PLATES ATTACHED AT KEEL TO SPAR HULL P.Uma 1 1 M.TECH Civil Engineering Dadi Institute of Engineering and Technology College Abstract Single point Anchor Reservoir

More information

On the Application of the Generalized Pareto Distribution for Statistical Extrapolation in the Assessment of Dynamic Stability in Irregular Waves

On the Application of the Generalized Pareto Distribution for Statistical Extrapolation in the Assessment of Dynamic Stability in Irregular Waves On the Application of the Generalized Pareto Distribution for Statistical Extrapolation in the Assessment of Dynamic Stability in Irregular Waves Bradley Campbell 1, Vadim Belenky 1, Vladas Pipiras 2 1.

More information

Quantitative Assessment of Ship Behaviour in Critical Stern Quartering Seas

Quantitative Assessment of Ship Behaviour in Critical Stern Quartering Seas Quantitative Assessment of Ship Behaviour in Critical Stern Quartering Seas Maria Acanfora* and Jerzy Matusiak Dept. of Applied Mechanics, School of Engineering, Aalto University of Espoo, Finland Abstract:

More information

SOIL-STRUCTURE INTERACTION, WAVE PASSAGE EFFECTS AND ASSYMETRY IN NONLINEAR SOIL RESPONSE

SOIL-STRUCTURE INTERACTION, WAVE PASSAGE EFFECTS AND ASSYMETRY IN NONLINEAR SOIL RESPONSE SOIL-STRUCTURE INTERACTION, WAVE PASSAGE EFFECTS AND ASSYMETRY IN NONLINEAR SOIL RESPONSE Mihailo D. Trifunac Civil Eng. Department University of Southern California, Los Angeles, CA E-mail: trifunac@usc.edu

More information

Chapter IV. (Ship Hydro-Statics & Dynamics) Floatation & Stability

Chapter IV. (Ship Hydro-Statics & Dynamics) Floatation & Stability Chapter V (Ship Hydro-Statics & Dynamics) Floatation & Stability 4.1 mportant Hydro-Static Curves or Relations (see Fig. 4.11 at p44 & handout) Displacement Curves (displacement [molded, total] vs. draft,

More information

OTG-13. Prediction of air gap for column stabilised units. Won Ho Lee 01 February Ungraded. 01 February 2017 SAFER, SMARTER, GREENER

OTG-13. Prediction of air gap for column stabilised units. Won Ho Lee 01 February Ungraded. 01 February 2017 SAFER, SMARTER, GREENER OTG-13 Prediction of air gap for column stabilised units Won Ho Lee 1 SAFER, SMARTER, GREENER Contents Air gap design requirements Purpose of OTG-13 OTG-13 vs. OTG-14 Contributions to air gap Linear analysis

More information

PREDICTION OF THE NATURAL FREQUENCY OF SHIP S ROLL WITH REGARD TO VARIOUS MODELS OF ROLL DAMPING

PREDICTION OF THE NATURAL FREQUENCY OF SHIP S ROLL WITH REGARD TO VARIOUS MODELS OF ROLL DAMPING Journal of KONES Powertrain and Transport, Vol. 23, No. 3 2016 PREDICTION OF THE NATURAL FREQUENCY OF SHIP S ROLL WITH REGARD TO VARIOUS MODELS OF ROLL DAMPING Przemysław Krata, Wojciech Wawrzyński Gdynia

More information

1859. Forced transverse vibration analysis of a Rayleigh double-beam system with a Pasternak middle layer subjected to compressive axial load

1859. Forced transverse vibration analysis of a Rayleigh double-beam system with a Pasternak middle layer subjected to compressive axial load 1859. Forced transverse vibration analysis of a Rayleigh double-beam system with a Pasternak middle layer subjected to compressive axial load Nader Mohammadi 1, Mehrdad Nasirshoaibi 2 Department of Mechanical

More information

Effects of hull form parameters on seakeeping for YTU gulet series with cruiser stern

Effects of hull form parameters on seakeeping for YTU gulet series with cruiser stern csnk, 04 Int. J. Nav. rchit. Ocean Eng. (04) 6:700~74 http://dx.doi.org/0.478/ijnoe-03-006 pissn: 09-678, eissn: 09-6790 Effects of hull form parameters on seakeeping for YTU gulet series with cruiser

More information

DYNAMIC CHARACTERISTICS OF OFFSHORE TENSION LEG PLATFORMS UNDER HYDRODYNAMIC FORCES

DYNAMIC CHARACTERISTICS OF OFFSHORE TENSION LEG PLATFORMS UNDER HYDRODYNAMIC FORCES International Journal of Civil Engineering (IJCE) ISSN(P): 2278-9987; ISSN(E): 2278-9995 Vol. 3, Issue 1, Jan 214, 7-16 IASET DYNAMIC CHARACTERISTICS OF OFFSHORE TENSION LEG PLATFORMS UNDER HYDRODYNAMIC

More information

PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS

PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS 1 Macchiavello, Sergio *, 2 Tonelli, Angelo 1 D Appolonia S.p.A., Italy, 2 Rina Services S.p.A., Italy KEYWORDS pleasure vessel, vibration analysis,

More information

MATH 251 Week 6 Not collected, however you are encouraged to approach all problems to prepare for exam

MATH 251 Week 6 Not collected, however you are encouraged to approach all problems to prepare for exam MATH 51 Week 6 Not collected, however you are encouraged to approach all problems to prepare for exam A collection of previous exams could be found at the coordinator s web: http://www.math.psu.edu/tseng/class/m51samples.html

More information

Nonlinear Time Domain Simulation Technology for Seakeeping and Wave-Load Analysis for Modern Ship Design

Nonlinear Time Domain Simulation Technology for Seakeeping and Wave-Load Analysis for Modern Ship Design ABS TECHNICAL PAPERS 23 Nonlinear Time Domain Simulation Technology for Seakeeping and Wave-Load Analysis for Modern Ship Design Y.S. Shin, Associate Member, American Bureau of Shipping, V.L. Belenky,

More information

A Discussion About Seakeeping and Manoeuvring Models For Surface Vessels

A Discussion About Seakeeping and Manoeuvring Models For Surface Vessels A Discussion About Seakeeping and Manoeuvring Models For Surface Vessels Tristan Perez, Thor I. Fossen and Asgeir Sørensen Technical Report (MSS-TR-001) Marine System Simulator (MSS) Group (http://www.cesos.ntnu.no/mss/)

More information

AP Physics. Harmonic Motion. Multiple Choice. Test E

AP Physics. Harmonic Motion. Multiple Choice. Test E AP Physics Harmonic Motion Multiple Choice Test E A 0.10-Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.

More information

RULES FOR CLASSIFICATION. Ships. Part 3 Hull Chapter 4 Loads. Edition January 2017 DNV GL AS

RULES FOR CLASSIFICATION. Ships. Part 3 Hull Chapter 4 Loads. Edition January 2017 DNV GL AS RULES FOR CLASSIFICATION Ships Edition January 2017 Part 3 Hull Chapter 4 The content of this service document is the subject of intellectual property rights reserved by ("DNV GL"). The user accepts that

More information

Theory of Vibrations in Stewart Platforms

Theory of Vibrations in Stewart Platforms Theory of Vibrations in Stewart Platforms J.M. Selig and X. Ding School of Computing, Info. Sys. & Maths. South Bank University London SE1 0AA, U.K. (seligjm@sbu.ac.uk) Abstract This article develops a

More information

IJEScA. Motions Analysis of a Phinisi Ship Hull with New Strip Method. F. Mahmuddin 1, A. Fitriadhy 2 and S. Dewa 1 ABSTRACT 1.

IJEScA. Motions Analysis of a Phinisi Ship Hull with New Strip Method. F. Mahmuddin 1, A. Fitriadhy 2 and S. Dewa 1 ABSTRACT 1. Motions Analysis of a Phinisi Ship Hull with New Strip Method ABSTRACT F. Mahmuddin 1, A. Fitriadhy 2 and S. Dewa 1 1 Naval Architecture Department, Engineering Faculty, Hasanuddin University, Indonesia

More information

Dynamics of Machinery

Dynamics of Machinery Dynamics of Machinery Two Mark Questions & Answers Varun B Page 1 Force Analysis 1. Define inertia force. Inertia force is an imaginary force, which when acts upon a rigid body, brings it to an equilibrium

More information

PROOF COPY [EM/2004/023906] QEM

PROOF COPY [EM/2004/023906] QEM Coupled Surge-Heave Motions of a Moored System. II: Stochastic Analysis and Simulations Solomon C. S. Yim, M.ASCE 1 ; and Huan Lin, A.M.ASCE Abstract: Analyses and simulations of the coupled surge-and-heave

More information

CARGO STOWAGE AND SECURING

CARGO STOWAGE AND SECURING Resolutions from the 17th Session of the Assembly of IMO, November 1991, as amended CODE OF SAFE PRACTICE FOR CARGO STOWAGE AND SECURING CARGO STOWAGE AND SECURING ANNEX 13. Til bruk i maritime fagskoler

More information

Final Exam TTK4190 Guidance and Control

Final Exam TTK4190 Guidance and Control Trondheim Department of engineering Cybernetics Contact person: Professor Thor I. Fossen Phone: 73 59 43 61 Cell: 91 89 73 61 Email: tif@itk.ntnu.no Final Exam TTK4190 Guidance and Control Friday May 15,

More information

1. Froude Krylov Excitation Force

1. Froude Krylov Excitation Force .016 Hydrodynamics eading #8.016 Hydrodynamics Prof. A.H. Techet 1. Froude Krylov Ecitation Force Ultimately, if we assume the body to be sufficiently small as not to affect the pressure field due to an

More information

Numerical Study of the Roll Decay of Intact and Damaged Ships by Q. Gao and D. Vassalos

Numerical Study of the Roll Decay of Intact and Damaged Ships by Q. Gao and D. Vassalos Session 7 Stability of Damaged Ships Numerical Simulation of Progressive Flooding and Capsize Numerical Study of the Roll Decay of Intact and Damaged Ships by Q. Gao and D. Vassalos Qiuxin Gao and Dracos

More information