RATE- AND STATE-DEPENDENT FRICTION MODEL FOR ELASTOMERIC SEALS

Size: px
Start display at page:

Download "RATE- AND STATE-DEPENDENT FRICTION MODEL FOR ELASTOMERIC SEALS"

Transcription

1 RATE- AND STATE-DEPENDENT FRICTION MODEL FOR ELASTOMERIC SEALS Oliver Heipl*, Hubertus Murrenhoff* * Institute for Fluid Power Drives and Controls (IFAS) RWTH Aachen University Steinbachstraße 53, 5272 Aachen, Germany ( oliver.heipl@ifas.rwth-aachen.de) ABSTRACT Seals are crucial for the functionality of pneumatic linear actuators. They separate chambers with different pressure levels. Little air leakage which leads to reduced volumetric efficiency is often accepted. More important is the role of friction which decreases the efficiency caused by tribological contacts between seals and counter surfaces. Furthermore, friction leads to reduced precision. Static friction models are state of the art within the designing of pneumatic systems including cylinder devices. These friction models are based on a description of the Stribeck curve. But they are not able to predict dynamic friction instabilities like stick-slip, increasing break-away force due to dwell-time and hysteretic friction phenomena. The paper shows a simulation approach based on a powerful rate- and state-dependent friction model. Loads on the tribological contact between seal and rod are realised by a structural mechanics method. The numerical results are compared with experimental investigations. KEY WORDS Friction, Seal, Pneumatics, Elastomer, Thermo-Viscoelasticity NOMENCLATURE A : Area B : Left Cauchy Green strain tensor b : Contact width C, C 2 : WLF parameter C, C : Mooney-Rivlin parameter e, : Relaxation parameter F : Force I : Invariant m : Mass p : Pressure T : Temperature t : Time v : Velocity W : Strain energy density x : Stroke,, γ : Carlson-Batista parameters : Frictional state variable INTRODUCTION Due to the simple and robust design pneumatic linear devices are often used for automation purposes to generate reciprocating motion. To ensure the functionality seals are applied, see Figure. They are

2 located at the piston to separate the cylinder chambers, in the area of the end cushioning and at the rod to enable a pressure difference between chamber and ambience. At the rod additional wipers are used to avoid a contamination of the pneumatic system by dust. They can be carried out as single element or combined with the seal. F F, FC sgn( v ) F Fe F sgn( F ) S e S F C e v / v S S sgn( v ) F v ; v and F v ; v e F S ; otherwise (2) x i Piston Seals p m P Piston Guide A P x, x, x Damper Seals p 2 m R x o Rod Seal Rod Guide Wiper Figure : Schematic of a pneumatic linear device p A F L A R A little air leckage which results in a decrease of the volumetric efficiency is often accepted. In contrast, friction is one of the main problems of pneumatic cylinder devices. In consequence of the contact between the seals, wipers and guidance elements with the counter surfaces, friction is induced when relative motion occurs. The dissipative character of friction (kinetic energy is transferred to thermal energy) causes a decline of the pneumatic-mechanical efficiency as well as an interaction with the dynamics of the piston. An established tool in the design and development stage of pneumatic systems is the one-dimensional system simulation of the fluidic circuit. Hereby the dynamic properties of a pneumatic linear device can be investigated in an early stage of the development process. With ease, interaction between fluidic, mechanical and control system can be optimised. The mathematical description of the piston motion is based on a differential equation of second order, see Equation. The pressures in the cylinder chambers can be easily described by the pressure build up as a result of mass flow, volumetric changes as well as heat generation and transfer. However, the implementation of the friction into the simulation is very insufficient. mp mr x p AP p2ap AR pa AR FL FF () State of the art in present system simulation tools are static friction models. Normally, the so called Stribeck model is used which describes the fundamental relationship between friction and velocity. In Equation 2 a possible form to reproduce a Stribeck curve is shown [9]. In addition a linear scaling factor f to describe the influence of the pressure on the friction is generally considered, see Equation 3. F F, FF p f (3) By investigating measured friction of a pneumatic seal a more complex behaviour including hysteretic effects, frictional memory and non reversible friction characteristic is detectable, see Figure 2 and 3. Static linking between friction and velocity is insufficient for a realistic description [2,3,5,7,8]. Rather, a change in the friction characteristic is detectable due to the change off the operating conditions. Among others a significant influence of the temperature appears. Friction Force [N] Friction Force [N] bar 4 bar 2 bar bar Velocity [m/s] Figure 2: Pressure-dependent friction force C 55 C 25 C Velocity [m/s] Figure 3: Temperature-dependent friction force

3 OBJECT OF RESEARCH Static friction models which are implemented in present one-dimensional system simulation tools do not allow considering the dynamic friction phenomena as well as the influence of the design of the sealing system. Furthermore the influence of the temperature on friction is neglected. Enhancing the description of friction within the system simulation by a novel approach based on a coupled simulation between system simulation, dynamic friction model and structural mechanics, a more accurate modelling including friction instabilities and time dependent effects is possible. Integration of structural mechanics allows considering the influence of the seal shape, the dimension of the groove as well as the seal material on friction. MODELLING APPROACH The modelling approach is based on a system simulation model, a friction model and a structural mechanics model. The interaction between the three partial models is figured out in Figure 4. Pre-Simulation System Simulation Temperature Material Time Lubricant Structural Mechanics Model Load FN Friction Force Friction Model FN x FR System Simulation Model Shape Dynamics Figure 4: Modelling approach Surface Pressure The system simulation model describes the fluidic, mechanical and control properties of the investigated system. For this purpose the commercial system simulation tool DSHplus is used. An exemplary system simulation model is shown in Figure 5. A pneumatic cylinder without any internal friction models is controlled by a valve. The programmable logic controller (PLC) triggers the valve with a typical driving cycle. A signal input is used as well as a signal output to couple the system simulation model with the friction model. Separating system simulation and friction model allows using different system simulation tools. To determine the friction force, values (e.g. temperature, pressure and velocity) from the system simulation are transferred to the friction model via the signal output. Loading of the pneumatic cylinder by a friction force occurs via the signal input. Figure 5: System simulation model The friction model uses the values from the system simulation tool and calculates the friction forces based on empirically and physically motivated equations. This partial model characterises the friction in a microscopic way which means that the description is limited to the contact area. The implemented rate- and state-dependent friction model is based upon the model by Carlson and Batista [,4,] which describes the fundamental physics in the easiest possible way. The basic principle of this model is a frictional state variable to model the transition from dry friction to a full hydrodynamic friction. The change of the frictional state variable in a range from (dry friction) to (hydrodynamic friction) satisfies Equation 4. The state term on the left side implies melting of the film defined by a time constant. The rate term on the right side describes the change of the film due to shear stresses. The factor α correlates to a characteristic length in which the changes take place. In addition a load on the contact is taken into account by the factor F N. The load is dependent on the installation situation, the shape and the material of the seal as well as the operating conditions like pressure and temperature. FN x (4) FN A progression of the frictional state variable for a simple periodic motion is shown in Figure 6. With increasing velocity a transition between dry friction and hydrodynamic friction occurs (lower loop) while with decreasing velocity the value of the frictional state variable increases again and the portion of boundary friction grows. The transition between the different states effects a hysteretic behaviour. By increasing the load F N a rather weakly developed transition between dry and hydrodynamic friction occurs (upper loop).

4 Dry friction Stroke [m] State Variable [-] [,] which bases on a strain energy function, see Equation 6. B is the left Cauchy Green strain tensor and tr(b) represents the first principal invariant I of that tensor, while tr(b - ) stands for the second principal strain invariant I 2. The parameters C and C have to be determined by curve fitting for each material. C trb C trb 3 kdet( B ) 2 3 W (6) Fluid friction Velocity [m/s] Figure 6: Progression of the frictional state variable The friction force is calculated based on the frictional state variable, see Equation 5. A distinction between static F a and dynamic frictional components F b takes place. In addition, the third term of the equation provides the viscous friction which is assumed as linearly dependent to the piston velocity. The parameter describes the fluid properties, primarily the (equivalent-)viscosity of grease. The factor F N and the contact width b are interfaces to the structural mechanics again. F F Θ F F b γ x FF a b b N (5) The structural mechanics model is the third partial model and provides the loading on the tribological contact in a macroscopic way using a Finite Element Method (FEM). First geometrically simple O-ring seals are applied to simplify the modelling. Due to this a fully parameterisable axial symmetric seal model was build up. The FE-model is able to consider the fundamental physics of elastomeric seals. In contrast to steel elastomeric materials does not possess a linear stress-strain relation even at low loading. Measured quasi-static stress-strain relations are shown in Figure 7 for two typical sealing materials for pneumatic applications. Stress [MPa] uniaxial tensile test Mooney-Rivlin NBR 8 Shore A NBR 72 Shore A The third term of the strain energy function represents a thermal expansion which is equivalent to a change in the third invariant I 3, see Equation 7. T I3 det( F ) 3 T T (7) If temperature is varied and especially when temperature is low relative to the glass transition temperature the thermo-viscoelasticity of the sealing material has to be taken into account [6,2]. In this case the history-dependent behaviour requires a strain energy function which considers not only the actual but also the past values of loading, see Equation 8 and 9. Ŵ W log at,tg N tˆ t Î; Î2 ei { exp( )} (8) i iat, TG C T TG (9) C T T 2 G Using this constitutive framework for elastomeric seals FE analysis can be performed. As an exemplary result a cooling process is shown in Figure 8. The temperature of an O-ring seal which is assembled in a groove is going down from room temperature to -9 C. The cooling rate is small enough that the sealing forces are in a thermodynamic equilibrium until the glass transition temperature T G. Below the glass transition temperature the thermal shrinkage is less adapted which leads to a much stronger sealing force reduction. At about -8 C the contact between seal and groove disappear and a gap results. Afterwards the forces at the rod increases due to thermal shrinkage. A more detailed discussion of the thermo-viscoelastic properties of sealing materials can be found in [6] Strain [-] Figure 7: Stress-strain relation for elastomers The hyperelastic material behaviour can be modelled by using a widely spread approach by Mooney and Rivlin

5 max. Contact Pressure [kpa] C Groove K T 6 s Rod T G p max, groove p max, rod -8 C Time [s] Figure 8: Cooling process The three introduced partial models (system simulation model, friction model and structural mechanics model) are integrated in a coupled simulation using MATLAB/Simulink, see Figure 9. Due to the reason that a finite element simulation would dominate the calculation time compared to the system simulation the structural mechanics is solved by using characteristic diagrams. These characteristic diagrams are generated in a pre-simulation. Chamber Pressure Stroke Low Load High Load Time Figure : Simulation at different loads VALIDATION Experimental investigations are necessary to parameterise and validate the friction model. For this purpose a test rig for pneumatic piston seals was used. The measurement principle is shown in Figure. The piston including the test seal is at rest and the tube is driven by a crank mechanism. To pressurise the test seal a second piston is applied. Measuring at different temperature levels is possible by heating the complete test assembly. Test Seal Tube Velocity System Simulation p Force Sensor Drive Figure : Measurement principle Friction Force Structural Mechanics Frictional State Variable Figure 9: Coupling of the partial models A result of a coupled simulation is shown in Figure. A differential cylinder where the friction is only located at the rod seal is controlled with a rectangular signal. The motion characteristic changes as well as the sealed pressure dependent on the loading with different temperature levels. At low temperature the piston reacts a little bit faster and more dynamic due to lower contact forces and in succession lower friction as shown before compared to a higher temperature. Comparisons between simulated and measured friction forces are shown in Figure 2 for room temperature and Figure 3 for a temperature of 55 C. The simulated friction forces are much smoother then the measured one. Reasons are small form deviations of the tube and vibrations of the test assembly caused by the crank mechanism. Friction Force [N] Simulated Measured Stroke[mm] Figure 2: Comparison at room temperature

6 Friction Force [N] Simulated Measured Stroke[mm] Figure 3: Comparison at 55 C CONCLUSION The motion characteristics of pneumatic cylinder devices are significantly influenced by seal friction. In present one-dimensional system simulation tools static friction models are state of the art. To consider rate- and state-dependent friction a dynamic friction model is presented. Coupling of system simulation with a powerful friction model and a structural mechanics model shows accurate results. Especially influences on the friction process (e.g. temperature and seal shape) can be considered with this novel method. Using measurements with different parameters of the tribosystem like different roughnesses will be necessary to expand the database which is used for parameterising the friction model. ACKNOWLEDGEMENT The IGF-project 6229 N/ of the Forschungsvereinigung Forschungskuratorium Maschinenbau e.v. FKM, Lyoner Straße 8, 6528 Frankfurt am Main is supported via the AiF in the context of the program to support the Joint Research and Development (IGF) by the Federal Ministry of Economics and Technology because of an enactment of the German Federal Parliament. In: Physical Review E 53 (996), No. 4, pp Dahl, P.: A solid friction model. In: Technical Report TOR-58, The Aerospace Corporation, El Segundo (968), pp Heipl, O. ; Murrenhoff, H. ; Achenbach, M.: Friction Modelling for Pneumatic Actuator Seals Regarding Structural Mechanics. In: Proceedings of the 6th International Sealing Conference (ISC), Stuttgart, 2, pp Hess, D. and Soom, A.: Friction at a Lubricated Line Contact Operating at Oscillating Operation Conditions. In: Journal of Tribology 2 (99), No., pp Olsson, H. ; Åström, K. ; Canudas de Wit, C. ; Gäfvert, M. and Lischinsky, P.: Friction Models and Friction Compensation. In: European Journal of Control 4 (998), No. 3, pp Persson, B. N.: Theory of friction: on the origin of the stick-slip motion of lubricated surfaces. In: Chemical Physics Letters 254 (996), No. -2, pp Rivlin, R. S., Saunders, D. N.: Large Elasticity Deformations of Isotropic Materials VII: Experience on the Deformation of rubber. In: Phil. Trans. Roy. Soc. Lond. Math. Phys. Sci. 243 (95), No. 865, pp Treloar, L. R.: The Physics of Rubber Elasticity. Third Edition. Oxford : Clarandon Press, Williams, M. L. ; Landel, R. F. and Ferry, J. D.: The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. In: Journal of the American Chemical Society 77 (955), No. 4, pp REFERENCES. Achenbach, M. and Papatheodorou, T.: Modeling of Friction Phenomena in Pneumatic Cylinders. In: Proceedings of the 6 th International Fluid Power Conference (IFK), Volume 2, 28, pp Al-Bender, F. ; Lampaert, V. and Swevers, J.: Modeling of dry sliding friction dynamics - From heuristic models to physically motivated models and back. In: Chaos 4 (24), No. 2, pp Canudas de Wit, C. ; Olsson, H. ; Åstrom, K. J. and Lischinsky, P.: A New Model for Control of Systems with Friction. In: IEEE Transations on Automatic Control 4 (995), No. 3, pp Carlson, J. M. and Batista, A. A.: Constitutive relation for the friction between lubricated surfaces.

MODELING AND SIMULATION OF HYDRAULIC ACTUATOR WITH VISCOUS FRICTION

MODELING AND SIMULATION OF HYDRAULIC ACTUATOR WITH VISCOUS FRICTION MODELING AND SIMULATION OF HYDRAULIC ACTUATOR WITH VISCOUS FRICTION Jitendra Yadav 1, Dr. Geeta Agnihotri 1 Assistant professor, Mechanical Engineering Department, University of petroleum and energy studies,

More information

Experimental study of the frictional heating phenomenon in elastomers

Experimental study of the frictional heating phenomenon in elastomers Surface and Contact Mechanics including Tribology XII 189 Experimental study of the frictional heating phenomenon in elastomers B. Pinedo 1, M. Hadfield 2, M. Conte 3 & A. Igartua 1 1 IK4 Tekniker, Tribology

More information

EXPERIMENTAL IDENTIFICATION OF HYPERELASTIC MATERIAL PARAMETERS FOR CALCULATIONS BY THE FINITE ELEMENT METHOD

EXPERIMENTAL IDENTIFICATION OF HYPERELASTIC MATERIAL PARAMETERS FOR CALCULATIONS BY THE FINITE ELEMENT METHOD Journal of KONES Powertrain and Transport, Vol. 7, No. EXPERIMENTAL IDENTIFICATION OF HYPERELASTIC MATERIAL PARAMETERS FOR CALCULATIONS BY THE FINITE ELEMENT METHOD Robert Czabanowski Wroclaw University

More information

Measurement Engineering Group, Paderborn University, Warburger Straße 100, Paderborn, Germany

Measurement Engineering Group, Paderborn University, Warburger Straße 100, Paderborn, Germany Nadine Feldmann 1, Fabian Bause 1, Bernd Henning 1 1 Measurement Engineering Group, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany feldmann@emt.uni-paderborn.de Abstract The present

More information

Friction identification in mechatronic systems

Friction identification in mechatronic systems ISA Transactions 43 2004 205 216 ISA TRANSACTIONS Friction identification in mechatronic systems Bashir M. Y. Nouri* Department of Mechatronics Engineering, Faculty of Engineering, The Hashemite University,

More information

Continuum Mechanics and Theory of Materials

Continuum Mechanics and Theory of Materials Peter Haupt Continuum Mechanics and Theory of Materials Translated from German by Joan A. Kurth Second Edition With 91 Figures, Springer Contents Introduction 1 1 Kinematics 7 1. 1 Material Bodies / 7

More information

Comparative Study of Variation of Mooney- Rivlin Hyperelastic Material Models under Uniaxial Tensile Loading

Comparative Study of Variation of Mooney- Rivlin Hyperelastic Material Models under Uniaxial Tensile Loading Comparative Study of Variation of Mooney- Rivlin Hyperelastic Material Models under Uniaxial Tensile Loading A. N. Jadhav 1, Dr. S.R. Bahulikar, N.H. Sapate 3 1 M Tech Design Engg, Mechanical Engineering,

More information

FRICTION MODELLING OF A LINEAR HIGH-PRECISION ACTUATOR. P.O. Box , D Ilmenau, Germany 2

FRICTION MODELLING OF A LINEAR HIGH-PRECISION ACTUATOR. P.O. Box , D Ilmenau, Germany 2 FRICTION MODELLING OF A LINEAR HIGH-PRECISION ACTUATOR J. Zimmermann, O. Sawodny, T. Hausotte 2, G. Jäger 2 Technische Universität Ilmenau, Institute for Automation and Systems Engineering, P.O. Box 565,

More information

CHAPTER 5 QUASI-STATIC TESTING OF LARGE-SCALE MR DAMPERS. To investigate the fundamental behavior of the 20-ton large-scale MR damper, a

CHAPTER 5 QUASI-STATIC TESTING OF LARGE-SCALE MR DAMPERS. To investigate the fundamental behavior of the 20-ton large-scale MR damper, a CHAPTER 5 QUASI-STATIC TESTING OF LARGE-SCALE MR DAMPERS To investigate the fundamental behavior of the 2-ton large-scale MR damper, a series of quasi-static experiments were conducted at the Structural

More information

Simulation of Thermomechanical Couplings of Viscoelastic Materials

Simulation of Thermomechanical Couplings of Viscoelastic Materials Simulation of Thermomechanical Couplings of Viscoelastic Materials Frank Neff 1, Thomas Miquel 2, Michael Johlitz 1, Alexander Lion 1 1 Institute of Mechanics Faculty for Aerospace Engineering Universität

More information

Theoretical prediction of hysteretic rubber friction in ball on plate configuration by finite element method

Theoretical prediction of hysteretic rubber friction in ball on plate configuration by finite element method express Polymer Letters Vol.3, No.11 (009) 713 73 Available online at www.expresspolymlett.com DOI: 10.3144/expresspolymlett.009.89 Theoretical prediction of hysteretic rubber friction in ball on plate

More information

CIRCUIT RACING, TRACK TEXTURE, TEMPERATURE AND RUBBER FRICTION. Robin Sharp, Patrick Gruber and Ernesto Fina

CIRCUIT RACING, TRACK TEXTURE, TEMPERATURE AND RUBBER FRICTION. Robin Sharp, Patrick Gruber and Ernesto Fina CIRCUIT RACING, TRACK TEXTURE, TEMPERATURE AND RUBBER FRICTION Robin Sharp, Patrick Gruber and Ernesto Fina Outline General observations Grosch's experiments Interpretation of Grosch s results Rubber properties

More information

Constitutive Modelling of Elastomeric Seal Material under Compressive Loading

Constitutive Modelling of Elastomeric Seal Material under Compressive Loading Modeling and Numerical Simulation of Material Science, 206, 6, 28-40 Published Online April 206 in SciRes. http://www.scirp.org/journal/mnsms http://dx.doi.org/0.4236/mnsms.206.62004 Constitutive Modelling

More information

TE 75R RESEARCH RUBBER FRICTION TEST MACHINE

TE 75R RESEARCH RUBBER FRICTION TEST MACHINE TE 75R RESEARCH RUBBER FRICTION TEST MACHINE Background: The Research Rubber Friction Test Machine offers the ability to investigate fully the frictional behaviour of rubbery materials both in dry and

More information

Key words: Polymeric Composite Bearing, Clearance, FEM

Key words: Polymeric Composite Bearing, Clearance, FEM A study on the effect of the clearance on the contact stresses and kinematics of polymeric composite journal bearings under reciprocating sliding conditions Abstract The effect of the clearance on the

More information

FEM model of pneumatic spring assembly

FEM model of pneumatic spring assembly FEM model of pneumatic spring assembly Tien Tran Xuan 1, David Cirkl 2 Department of Applied Mechanics, Faculty of Mechanical Engineering, Technical University of Liberec, Liberec, Czech Republic 1 Corresponding

More information

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore Mechanical properties of polymers: an overview Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore UGC-NRCM Summer School on Mechanical Property Characterization- June 2012 Overview of polymer

More information

STICK-SLIP MOTION IN PNEUMATIC CYLINDERS DRIVEN BY METER-OUT CIRCUIT

STICK-SLIP MOTION IN PNEUMATIC CYLINDERS DRIVEN BY METER-OUT CIRCUIT STICK-SLIP MOTION IN PNEUMATIC CYLINDERS DRIVEN BY METER-OUT CIRCUIT Toshinori FUJITA*, Luis R. TOKASHIKI*, Toshiharu KAGAWA* * Tokyo Institute of Technology Precision and Intelligence Laboratory 4259,

More information

Contents. I Introduction 1. Preface. xiii

Contents. I Introduction 1. Preface. xiii Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

More information

2.1 Strain energy functions for incompressible materials

2.1 Strain energy functions for incompressible materials Chapter 2 Strain energy functions The aims of constitutive theories are to develop mathematical models for representing the real behavior of matter, to determine the material response and in general, to

More information

Online Calculation of Guide Rings for Hydraulic Cylinders

Online Calculation of Guide Rings for Hydraulic Cylinders Online Calculation of Guide Rings for Hydraulic Cylinders Fietz Roland Haraldsson Anna 1 Outline 1 2 3 4 5 6 7 Guide Rings General Information / Introduction Guide Rings Synthetic Materials Demarcation

More information

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Dynamic Mechanical Behavior MSE 383, Unit 3-3 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Scope Why DMA & TTS? DMA Dynamic Mechanical Behavior (DMA) Superposition Principles

More information

Lecture 6: Irreversible Processes

Lecture 6: Irreversible Processes Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP4, Thermodynamics and Phase Diagrams, H. K. D. H. Bhadeshia Lecture 6: Irreversible Processes Thermodynamics generally

More information

SIMULATION FOR INSTABLE FLOATING OF HYDRODYNAMIC GUIDES DURING ACCELERATION AND AT CONSTANT VELOCITY 1. INTRODUCTION

SIMULATION FOR INSTABLE FLOATING OF HYDRODYNAMIC GUIDES DURING ACCELERATION AND AT CONSTANT VELOCITY 1. INTRODUCTION Journal of Machine Engineering, 08, Vol. 8, No., 5 5 ISSN 895-7595 (Print) ISSN 9-807 (Online) Received: December 07 / Accepted: 0 August 08 / Published online: 8 September 08 Yingying ZHANG * Volker WITTSTOCK

More information

Mechanical Properties of Polymer Rubber Materials Based on a New Constitutive Model

Mechanical Properties of Polymer Rubber Materials Based on a New Constitutive Model Mechanical Properties of Polymer Rubber Materials Based on a New Constitutive Model Mechanical Properties of Polymer Rubber Materials Based on a New Constitutive Model J.B. Sang*, L.F. Sun, S.F. Xing,

More information

Modelling Rubber Bushings Using the Parallel Rheological Framework

Modelling Rubber Bushings Using the Parallel Rheological Framework Modelling Rubber Bushings Using the Parallel Rheological Framework Javier Rodríguez 1, Francisco Riera 1, and Jon Plaza 2 1 Principia, Spain; 2 Cikatek, Spain Abstract: Bushings are anti vibration components

More information

Notes on Rubber Friction

Notes on Rubber Friction Notes on Rubber Friction 2011 A G Plint Laws of Friction: In dry sliding between a given pair of materials under steady conditions, the coefficient of friction may be almost constant. This is the basis

More information

A novel fluid-structure interaction model for lubricating gaps of piston machines

A novel fluid-structure interaction model for lubricating gaps of piston machines Fluid Structure Interaction V 13 A novel fluid-structure interaction model for lubricating gaps of piston machines M. Pelosi & M. Ivantysynova Department of Agricultural and Biological Engineering and

More information

Plane Strain Test for Metal Sheet Characterization

Plane Strain Test for Metal Sheet Characterization Plane Strain Test for Metal Sheet Characterization Paulo Flores 1, Felix Bonnet 2 and Anne-Marie Habraken 3 1 DIM, University of Concepción, Edmundo Larenas 270, Concepción, Chile 2 ENS - Cachan, Avenue

More information

Thermo-mechanical Modelling of the Aircraft Tyre Cornering

Thermo-mechanical Modelling of the Aircraft Tyre Cornering Machine Dynamics Research 2013, Vol. 37, No 1, 27 34 Thermo-mechanical Modelling of the Aircraft Tyre Cornering Lama Elias-Birembaux, Iulian Rosu, Frederic Lebon LMA CNRS UPR 7051, Université Aix-Marseille,

More information

Friction. Modeling, Identification, & Analysis

Friction. Modeling, Identification, & Analysis Friction Modeling, Identification, & Analysis Objectives Understand the friction phenomenon as it relates to motion systems. Develop a control-oriented model with appropriate simplifying assumptions for

More information

Multi-mode revisited

Multi-mode revisited Multi-mode revisited Testing the application of shift factors S.J.M Hellenbrand 515217 MT 7.29 Coaches: Ir. L.C.A. van Breemen Dr. Ir. L.E. Govaert 2-7- 7 Contents Contents 1 Introduction 2 I Polymers

More information

FRICTION. Friction: FRICARE = to rub (Latin)

FRICTION. Friction: FRICARE = to rub (Latin) FRICTION 1 Friction: FRICARE = to rub (Latin) Resisting force (F) tangential to the interface between two bodies when, under the action of an external force, one body moves or tends to move relative to

More information

Improved stress prediction in adhesive bonded optical components

Improved stress prediction in adhesive bonded optical components Improved stress prediction in adhesive bonded optical components J. de Vreugd 1a, M.J.A. te Voert a, J.R. Nijenhuis a, J.A.C.M. Pijnenburg a, E. Tabak a a TNO optomechatronics, Stieltjesweg 1, 2628 CK,

More information

Theoretical and Experimental Study of the Frictional Losses of Radial Shaft Seals for Industrial Gearbox

Theoretical and Experimental Study of the Frictional Losses of Radial Shaft Seals for Industrial Gearbox TECHNICAL Theoretical and Experimental Study of the Frictional Losses of Radial Shaft Seals for Industrial Gearbox Michel Organisciak, Pieter Baart, Stellario Barbera, Alex Paykin and Matthew Schweig The

More information

Design and Modeling of Fluid Power Systems ME 597/ABE Lecture 7

Design and Modeling of Fluid Power Systems ME 597/ABE Lecture 7 Systems ME 597/ABE 591 - Lecture 7 Dr. Monika Ivantysynova MAHA Professor Fluid Power Systems MAHA Fluid Power Research Center Purdue University Content of 6th lecture The lubricating gap as a basic design

More information

TORQUE CAPACITY ENHANCEMENT OF A MAGNETORHEOLOGICAL FLUID CLUTCH USING THE SQUEEZE-STRENGTHEN EFFECT

TORQUE CAPACITY ENHANCEMENT OF A MAGNETORHEOLOGICAL FLUID CLUTCH USING THE SQUEEZE-STRENGTHEN EFFECT International Workshop SMART MATERIALS, STRUCTURES & NDT in AEROSPACE Conference NDT in Canada 2011 2-4 November 2011, Montreal, Quebec, Canada TORQUE CAPACITY ENHANCEMENT OF A MAGNETORHEOLOGICAL FLUID

More information

On Relationship between PVT and Rheological Measurements of Polymer Melts

On Relationship between PVT and Rheological Measurements of Polymer Melts ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 3, 2005 On Relationship between PVT and Rheological Measurements of Polymer Melts Tomas Sedlacek, Peter Filip 2, Peter Saha Polymer Centre, Faculty

More information

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002 student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity

More information

Fundamental Concepts Associated with Hydraulic Seals for High Bandwidth Actuation

Fundamental Concepts Associated with Hydraulic Seals for High Bandwidth Actuation Fundamental Concepts Associated with Hydraulic Seals for High Bandwidth Actuation submitted by Arthur Bullock for the degree of Doctor of Philosophy of the University of Bath Department of Mechanical Engineering

More information

Numerical and Experimental Studies on Thermoforming Process. Sogang University

Numerical and Experimental Studies on Thermoforming Process. Sogang University Numerical and Experimental Studies on Thermoforming Process Thermoforming Process Hot plate Atmosphere Seal Mold Air on Air on Vacuum or atmosphere Introduction Thermoforming Process Advantage Low forming

More information

Friction of Extensible Strips: an Extended Shear Lag Model with Experimental Evaluation

Friction of Extensible Strips: an Extended Shear Lag Model with Experimental Evaluation Friction of Extensible Strips: an Extended Shear Lag Model with Experimental Evaluation Ahmad R. Mojdehi 1, Douglas P. Holmes 2, Christopher B. Williams 3, Timothy E. Long 4, David A. Dillard 1 1 Department

More information

VISCOELASTIC PROPERTIES OF POLYMERS

VISCOELASTIC PROPERTIES OF POLYMERS VISCOELASTIC PROPERTIES OF POLYMERS John D. Ferry Professor of Chemistry University of Wisconsin THIRD EDITION JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore Contents 1. The Nature of

More information

TRELLEBORG SEALING SOLUTIONS. The Stick-Slip Solution THE IMPORTANCE OF DAMPER INTEGRATION IN DYNAMIC SEALING

TRELLEBORG SEALING SOLUTIONS. The Stick-Slip Solution THE IMPORTANCE OF DAMPER INTEGRATION IN DYNAMIC SEALING The Stick-Slip Solution THE IMPORTANCE OF DAMPER INTEGRATION IN DYNAMIC SEALING Introduction The force of friction Friction is a universally important and everpresent force. It makes possible the sound

More information

Modification of the Leuven Integrated Friction Model Structure

Modification of the Leuven Integrated Friction Model Structure IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 4, APRIL 2002 683 Modification of the Leuven Integrated Friction Model Structure Vincent Lampaert, Jan Swevers, and Farid Al-Bender Abstract This note

More information

Stability of Thick Spherical Shells

Stability of Thick Spherical Shells Continuum Mech. Thermodyn. (1995) 7: 249-258 Stability of Thick Spherical Shells I-Shih Liu 1 Instituto de Matemática, Universidade Federal do Rio de Janeiro Caixa Postal 68530, Rio de Janeiro 21945-970,

More information

The Non-Linear Field Theories of Mechanics

The Non-Linear Field Theories of Mechanics С. Truesdell-W.Noll The Non-Linear Field Theories of Mechanics Second Edition with 28 Figures Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Hong Kong Barcelona Budapest Contents. The Non-Linear

More information

Introduction to Marine Hydrodynamics

Introduction to Marine Hydrodynamics 1896 1920 1987 2006 Introduction to Marine Hydrodynamics (NA235) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering First Assignment The first

More information

DYNAMICS OF PNEUMATIC CYLINDER SYSTEMS

DYNAMICS OF PNEUMATIC CYLINDER SYSTEMS DYNAMICS OF PNEUMATIC CYLINDER SYSTEMS Toshinori FUJITA*, Jiseong JANG*, Toshiharu KAGAWA* and Masaaki TAKEUCHI** *Department of Control & Systems Engineering, Faculty of Engineering Tokyo Institute of

More information

Regular and chaotic oscillations of friction force

Regular and chaotic oscillations of friction force Regular and chaotic oscillations of friction force A Stefański 1, J Wojewoda 1, M Wiercigroch 2, and T Kapitaniak 1 1 Division of Dynamics, Technical University of Łódź, Łódź, Poland 2 Centre for Applied

More information

F7. Characteristic behavior of solids

F7. Characteristic behavior of solids F7. Characteristic behavior of solids F7a: Deformation and failure phenomena: Elasticity, inelasticity, creep, fatigue. à Choice of constitutive model: Issues to be considered è Relevance? Physical effect

More information

Experimental and numerical evaluation of lubricated friction of EPDM rubber

Experimental and numerical evaluation of lubricated friction of EPDM rubber Ŕ periodica polytechnica Mechanical Engineering 53/2 (29) 69 73 doi: 1.3311/pp.me.29-2.3 web: http:// www.pp.bme.hu/ me c Periodica Polytechnica 29 Experimental and numerical evaluation of lubricated friction

More information

Piezoelectric Multilayer Beam Bending Actuators

Piezoelectric Multilayer Beam Bending Actuators R.G. Bailas Piezoelectric Multilayer Beam Bending Actuators Static and Dynamic Behavior and Aspects of Sensor Integration With 143 Figures and 17 Tables Sprin ger List of Symbols XV Part I Focus of the

More information

Elastohydrodynamic Model of Hydraulic Rod Seals with. Various Rod Surfaces

Elastohydrodynamic Model of Hydraulic Rod Seals with. Various Rod Surfaces Elastohydrodynamic Model of Hydraulic Rod Seals with Various Rod Surfaces A Ph.D. Dissertation Presented to The Academic Faculty By Yuli Huang In Partial Fulfillment of the Requirements for the Degree

More information

MECHANICAL AND RHEOLOGICAL PROPERTIES

MECHANICAL AND RHEOLOGICAL PROPERTIES MECHANICAL AND RHEOLOGICAL PROPERTIES MECHANICAL PROPERTIES OF SOLIDS Extension Shear δ τ xy l 0 l l 0 θ σ Hooke's law σ = Eε Hooke's law τ = G γ xy xy MECHANICAL AND RHEOLOGICAL PROPERTIES RHEOLOGICAL

More information

LITERATURE SURVEY SUMMARY OF HYPERELASTIC MODELS FOR PDMS

LITERATURE SURVEY SUMMARY OF HYPERELASTIC MODELS FOR PDMS LITERATURE SURVEY SUMMARY OF HYPERELASTIC MODELS FOR PDMS ZHAO Feihu feihu.zhao@tut.fi 0 P age CONTENT 1. Mooney- Rivlin Model-----------------------------------------------------------------------------------------

More information

Estimation of damping capacity of rubber vibration isolators under harmonic excitation

Estimation of damping capacity of rubber vibration isolators under harmonic excitation Estimation of damping capacity of rubber vibration isolators under harmonic excitation Svetlana Polukoshko Ventspils University College, Engineering Research Institute VSRC, Ventspils, Latvia E-mail: pol.svet@inbox.lv

More information

Influence of a DLC Coating on the Temperature and Friction in a Helical Tooth Flank Contact

Influence of a DLC Coating on the Temperature and Friction in a Helical Tooth Flank Contact Influence of a DLC Coating on the Temperature and Friction in a Helical Tooth Flank Contact, Lars Bobach, Dirk Bartel Institute of Machine Design Chair of Machine Elements and Tribology Otto von Guericke

More information

Mechanics of Viscoelastic Solids

Mechanics of Viscoelastic Solids Mechanics of Viscoelastic Solids Aleksey D. Drozdov Institute for Industrial Mathematics, Beersheba, Israel JOHN WILEY & SONS Chichester New York Weinheim Brisbane Toronto Singapore Contents Preface xi

More information

Case study: molecular dynamics of solvent diffusion in polymers

Case study: molecular dynamics of solvent diffusion in polymers Course MP3 Lecture 11 29/11/2006 Case study: molecular dynamics of solvent diffusion in polymers A real-life research example to illustrate the use of molecular dynamics Dr James Elliott 11.1 Research

More information

A CRITERION OF TENSILE FAILURE FOR HYPERELASTIC MATERIALS AND ITS APPLICATION TO VISCOELASTIC-VISCOPLASTIC MATERIALS

A CRITERION OF TENSILE FAILURE FOR HYPERELASTIC MATERIALS AND ITS APPLICATION TO VISCOELASTIC-VISCOPLASTIC MATERIALS MTS ADHESIVES PROGRAMME 1996-1999 PERFORMANCE OF ADHESIVE JOINTS Project: PAJ1; Failure Criteria and their Application to Visco-Elastic/Visco-Plastic Materials Report 2 A CRITERION OF TENSILE FAILURE FOR

More information

INFLUENCE OF NORMAL FORCE AND HUMIDITY ON FRICTION AND WEAR OF UNLUBRICATED STEEL/ STEEL COUPLES

INFLUENCE OF NORMAL FORCE AND HUMIDITY ON FRICTION AND WEAR OF UNLUBRICATED STEEL/ STEEL COUPLES INFLUENCE OF NORMAL FORCE AND HUMIDITY ON FRICTION AND WEAR OF UNLUBRICATED STEEL/ STEEL COUPLES D. KLAFFKE Federal Institute for Materials Research and Testing (BAM), Lab. VIII.2, Unter den Eichen 87,

More information

VISION-BASED MICROTRIBOLOGICAL CHARACTERIZATION OF LINEAR MICROBALL BEARINGS. Department of Electrical and Computer Engineering b

VISION-BASED MICROTRIBOLOGICAL CHARACTERIZATION OF LINEAR MICROBALL BEARINGS. Department of Electrical and Computer Engineering b Proceedings of TRIB2004 2004 ASME/STLE International Joint Tribology Conference Long Beach, California USA, October 24-27, 2004 TRIB2004-64334 VISION-BASED MICROTRIBOLOGICAL CHARACTERIZATION OF LINEAR

More information

3.22 Mechanical Properties of Materials Spring 2008

3.22 Mechanical Properties of Materials Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 3.22 Mechanical Properties of Materials Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Quiz #1 Example

More information

The elastic behavior of a rubber-like material for composite glass

The elastic behavior of a rubber-like material for composite glass The elastic behavior of a rubber-like material for composite glass Silvia Briccoli Bati 1, Mario Fagone 1, Giovanna Ranocchiai 1 1 Department of Costruzioni, University of Florence, Italy E-mail: silvia.briccolibati@unifi.it

More information

Effect of Angular movement of Lifting Arm on Natural Frequency of Container Lifting Mechanism using Finite Element Modal Analysis

Effect of Angular movement of Lifting Arm on Natural Frequency of Container Lifting Mechanism using Finite Element Modal Analysis Effect of Angular movement of Lifting Arm on Natural Frequency of Container Lifting Mechanism using Finite Element Modal Analysis Khodu M Dhameliya, 2 Utpal V Shah, 3 Dhaval Makwana, 4 Mansi Yadav, 5 Ishankumar

More information

EVALUATION OF NONLINEAR DIFFERENTIAL MODELS FOR THE SIMULATION OF POLYMER MELTS

EVALUATION OF NONLINEAR DIFFERENTIAL MODELS FOR THE SIMULATION OF POLYMER MELTS 1 th Fall Rubber Colloquium EVALUATION OF NONLINEAR DIFFERENTIAL MODELS FOR THE SIMULATION OF POLYMER MELTS Jochen Kroll, Stefan Turek, Patrick Westervoß Institute of Applied Mathematics (LS III), TU Dortmund

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction This thesis is concerned with the behaviour of polymers in flow. Both polymers in solutions and polymer melts will be discussed. The field of research that studies the flow behaviour

More information

Available online at ScienceDirect. Procedia Engineering 106 (2015 ) Dynamics and Vibroacoustics of Machines (DVM2014)

Available online at  ScienceDirect. Procedia Engineering 106 (2015 ) Dynamics and Vibroacoustics of Machines (DVM2014) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering (5 ) 49 57 Dynamics and Vibroacoustics of Machines (DVM4) Process simulation of energy behaviour of pneumatic drives Elvira

More information

Foundations of Ultraprecision Mechanism Design

Foundations of Ultraprecision Mechanism Design Foundations of Ultraprecision Mechanism Design S.T. Smith University of North Carolina at Charlotte, USA and D.G. Chetwynd University of Warwick, UK GORDON AND BREACH SCIENCE PUBLISHERS Switzerland Australia

More information

Simulation of process of hot pilgrim rolling

Simulation of process of hot pilgrim rolling Simulation of process of hot pilgrim rolling YURY B. CHECHULIN, Doctor of Engineering Science, Professor EVGENY U. RASKATOV, Doctor of Engineering Science, Professor YURY A. POPOV, post-graduate student

More information

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers Abvanced Lab Course Dynamical-Mechanical Analysis (DMA) of Polymers M211 As od: 9.4.213 Aim: Determination of the mechanical properties of a typical polymer under alternating load in the elastic range

More information

Predeformation and frequency-dependence : Experiment and FE analysis

Predeformation and frequency-dependence : Experiment and FE analysis Predeformation and frequency-dependence : Experiment and FE analysis Nidhal Jridi 1,2,*, Michelle Salvia 2, Adel Hamdi 1, Olivier Bareille 2, Makrem Arfaoui 1, Mohammed Ichchou 2, Jalel Ben Abdallah 1

More information

Influence of electric potentials on friction of sliding contacts lubricated by an ionic liquid

Influence of electric potentials on friction of sliding contacts lubricated by an ionic liquid Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Influence of electric potentials on friction of sliding contacts lubricated by

More information

COMPUTATION OF THE COMPLIANCE MATRIX FOR ROTARY LIP SEAL

COMPUTATION OF THE COMPLIANCE MATRIX FOR ROTARY LIP SEAL COMPUTATION OF THE COMPLIANCE MATRIX FOR ROTARY LIP SEAL Elgadari M a, Fatu A b, Hajjam M b, Belhaq M c a Université Moulay Ismail, ENSAM, Meknès, Morocco. b InstitutPprime, Département Génie Mécanique

More information

Contents. Dynamics and control of mechanical systems. Focus on

Contents. Dynamics and control of mechanical systems. Focus on Dynamics and control of mechanical systems Date Day 1 (01/08) Day 2 (03/08) Day 3 (05/08) Day 4 (07/08) Day 5 (09/08) Day 6 (11/08) Content Review of the basics of mechanics. Kinematics of rigid bodies

More information

ADVANCED DYNAMIC MECHANICAL ANALYSIS OF A TIRE SAMPLE BY NANOINDENTATION

ADVANCED DYNAMIC MECHANICAL ANALYSIS OF A TIRE SAMPLE BY NANOINDENTATION ADVANCED DYNAMIC MECHANICAL ANALYSIS OF A TIRE SAMPLE BY NANOINDENTATION Duanjie Li and Pierre Leroux, Nanovea, Irvine, CA Abstract The viscoelastic properties of a tire sample are comprehensively studied

More information

Lecture 6 Friction. Friction Phenomena Types of Friction

Lecture 6 Friction. Friction Phenomena Types of Friction Lecture 6 Friction Tangential forces generated between contacting surfaces are called friction forces and occur to some degree in the interaction between all real surfaces. whenever a tendency exists for

More information

O-Ring Design Guide REGISTERED QMS. ISD

O-Ring Design Guide REGISTERED QMS. ISD O-Ring Design Guide ISO 9001 REGISTERED QMS ISD Table of Contents O-Ring Design Guide Hi-Tech Seals Inc. Compound Specifications 3 Machining Specifications 4 O-Ring -Section 4 O-Ring Gland Types 4 ID Stretch/OD

More information

Development and Validation of the FAT Finite Element Model for the Side Impact Dummy EUROSID-1

Development and Validation of the FAT Finite Element Model for the Side Impact Dummy EUROSID-1 Development and Validation of the FAT Finite Element Model for the Side Impact Dummy EUROSID-1 Thomas Pyttel* *ESI GmbH, 65760 Eschborn, Frankfurter Str. 13-15, Germany ABSTRACT A new deformable model

More information

For an imposed stress history consisting of a rapidly applied step-function jump in

For an imposed stress history consisting of a rapidly applied step-function jump in Problem 2 (20 points) MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 0239 2.002 MECHANICS AND MATERIALS II SOLUTION for QUIZ NO. October 5, 2003 For

More information

Testing and Analysis

Testing and Analysis Testing and Analysis Testing Elastomers for Hyperelastic Material Models in Finite Element Analysis 2.6 2.4 2.2 2.0 1.8 1.6 1.4 Biaxial Extension Simple Tension Figure 1, A Typical Final Data Set for Input

More information

EXPERIMENTAL INVESTIGATION OF THE FRICTIONAL CONTACT IN PRE-SLIDING REGIME

EXPERIMENTAL INVESTIGATION OF THE FRICTIONAL CONTACT IN PRE-SLIDING REGIME U.P.B. Sci. Bull., Series D, Vol. 7, Iss., 1 ISSN 1-3 EXPERIMENTAL INVESTIGATION OF THE FRICTIONAL CONTACT IN PRE-SLIDING REGIME Iuliana PISCAN 1 În această lucrare sunt investigate din punct de vedere

More information

Finite Element Analysis of Silicone Rubber Spacers Used in Automotive Engine Control Modules

Finite Element Analysis of Silicone Rubber Spacers Used in Automotive Engine Control Modules Finite Element Analysis of Silicone Rubber Spacers Used in Automotive Engine Control Modules Fereydoon Dadkhah Arlene Zahiri Delphi Electronics and Safety Kokomo, IN Abstract Silicone Rubber Spacers in

More information

The strain response of silicone dielectric elastomer actuators

The strain response of silicone dielectric elastomer actuators The strain response of silicone dielectric elastomer actuators G. Yang a, G. Yao b, W. Ren a, G. Akhras b, J.P. Szabo c and B.K. Mukherjee a* a Department of Physics, Royal Military College of Canada,

More information

The performance of a magnetorheological fluid in squeeze mode

The performance of a magnetorheological fluid in squeeze mode The performance of a magnetorheological fluid in squeeze mode Abstract. In a magnetorheological (MR) fluid, the rheological properties can be changed in a controlled way, the changes being reversible and

More information

Quiz 1 Introduction to Polymers

Quiz 1 Introduction to Polymers 090109 Quiz 1 Introduction to Polymers In class we discussed the definition of a polymer first by comparing polymers with metals and ceramics and then by noting certain properties of polymers that distinguish

More information

Mathematical Model for Pressure-Deformation Relationship of Miniaturized McKibben Actuators. {ashwinkp,

Mathematical Model for Pressure-Deformation Relationship of Miniaturized McKibben Actuators.   {ashwinkp, Mathematical Model for Pressure-Deformation Relationship of Miniaturized McKibben Actuators Ashwin K.P 1 and Ashitava Ghosal 1 1 Indian Institute of Science, Bangalore Email: {ashwinkp, asitava}@iisc.ac.in

More information

The Rheology Handbook

The Rheology Handbook Thomas G. Mezger The Rheology Handbook For users of rotational and oscillatory rheometers 2nd revised edition 10 Contents Contents 1 Introduction 16 1.1 Rheology, rheometry and viscoelasticity 16 1.2 Deformation

More information

MECHANICAL CHARACTERIZATION OF BRAIN TISSUE

MECHANICAL CHARACTERIZATION OF BRAIN TISSUE ROLE OF MOISTURE CONTENT IN MECHANICAL CHARACTERIZATION OF BRAIN TISSUE HENRY W. HASLACH, JR. DEPARTMENT OF MECHANICAL ENGINEERING CENTER for ENERGETICS CONCEPTS DEVELOPMENT UNIVERSITY OF MARYLAND COLLEGE

More information

Dynamic Mechanical Analysis of Solid Polymers and Polymer Melts

Dynamic Mechanical Analysis of Solid Polymers and Polymer Melts Polymer Physics 2015 Matilda Larsson Dynamic Mechanical Analysis of Solid Polymers and Polymer Melts Polymer & Materials Chemistry Introduction Two common instruments for dynamic mechanical thermal analysis

More information

Nonlinear Analysis Of An EPDM Hydraulic Accumulator Bladder. Richard Kennison, Race-Tec

Nonlinear Analysis Of An EPDM Hydraulic Accumulator Bladder. Richard Kennison, Race-Tec Nonlinear Analysis Of An EPDM Hydraulic Accumulator Bladder Richard Kennison, Race-Tec Agenda Race-Tec Overview Accumulator Experimental Testing Material Testing Numerical Analysis: 1. Linear Buckling

More information

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko RHEOLOGY Principles, Measurements, and Applications I -56081-5'79~5 1994 VCH Publishers. Inc. New York Part I. CONSTITUTIVE RELATIONS 1 1 l Elastic Solid 5 1.1 Introduction 5 1.2 The Stress Tensor 8 1.2.1

More information

NUMERICAL INVESTIGATION OF A THREE-DIMENSIONAL DISC-PAD MODEL WITH AND WITHOUT THERMAL EFFECTS

NUMERICAL INVESTIGATION OF A THREE-DIMENSIONAL DISC-PAD MODEL WITH AND WITHOUT THERMAL EFFECTS THERMAL SCIENCE: Year 2015, Vol. 19, No. 6, pp. 2195-2204 2195 NUMERICAL INVESTIGATION OF A THREE-DIMENSIONAL DISC-PAD MODEL WITH AND WITHOUT THERMAL EFFECTS by Ali BELHOCINE * Faculty of Mechanical Engineering,

More information

Benchmarkingfiniteelement simulation of rigid indenters in elastomers S.J. Jerrams, N. Reece-Pinchin

Benchmarkingfiniteelement simulation of rigid indenters in elastomers S.J. Jerrams, N. Reece-Pinchin Benchmarkingfiniteelement simulation of rigid indenters in elastomers S.J. Jerrams, N. Reece-Pinchin Abstract Verifications of finite element techniques applied to elastomers are difficult to achieve since

More information

Analysis of forming - Slab Method

Analysis of forming - Slab Method Analysis of forming - Slab Method Forming of materials is a complex process, involving either biaxial or triaxial state of stress on the material being formed. Analysis of the forming process, therefore

More information

Dynamics and control of mechanical systems

Dynamics and control of mechanical systems Dynamics and control of mechanical systems Date Day 1 (03/05) - 05/05 Day 2 (07/05) Day 3 (09/05) Day 4 (11/05) Day 5 (14/05) Day 6 (16/05) Content Review of the basics of mechanics. Kinematics of rigid

More information

CHAPTER 6 FRICTION AND WEAR ANALYSIS FOR BUSHING

CHAPTER 6 FRICTION AND WEAR ANALYSIS FOR BUSHING CHAPTER 6 FRICTION AND WEAR ANALYSIS FOR BUSHING 6.1 TEST RIG SETUP FOR THE FRICTION AND WEAR ANALYSIS Knowing the frictional coefficient is important for the determination of wear loss and power loss

More information

Study of Friction Force Model Parameters in Multibody Dynamics

Study of Friction Force Model Parameters in Multibody Dynamics he 4 th Joint International Conference on Multibody System Dynamics Study of Friction Force Model Parameters in Multibody Dynamics Filipe Marques 1, Paulo Flores 1 and Hamid M. Lankarani 2 May 29 June

More information

Lecture 11 Friction Lubrication, and Wear

Lecture 11 Friction Lubrication, and Wear Lecture 11 Friction, Lubrication and Wear Definitions Friction force between the interacting surfaces that resists or hinders their relative movement Static friction force to overcome to start movement

More information