MAE140 HW3 Solutions

Size: px
Start display at page:

Download "MAE140 HW3 Solutions"

Transcription

1 MAE40 HW Solutions.7) Method: Remove load resistor and find Thevenin equivalent circuit VOC To find Isc, use a voltage divider at a a Isc Isc 00 6*00 00 Amps Rt Voc / Isc / /00 600

2 MAE40 HW Solutions.7)Continued Thevenin Equivalent Now put RL back to find power delivered Without Attenuator: V V 600/400 = 9: Power decreases by /9 Power Power V 6 V R V R 6*600 4*600 Another voltage divider Watts 600 Watts 400 In db Log Log 9. 54dB For db calculation, use 0Log(Pa/Pb), not 0Log(/) (Because power is proportional to V^, we use 0 Log(A/B) for Voltage or Amplitude comparisons, and 0Log (A/B) for Power comparisons

3 MAE40 HW Solutions.7) Initial guess:50 Ohm Voltage Divider Check boundaries, Let RL = infinity. Then I = 0 which satisfies I<= 00 ma VL = *(50/50) = 4V which also satisfies VL<= 4V. Note any decrease in RL would only lower VL so the voltage requirement will remain satisfied. Let RL = 0 I = /00 = 0 ma>00ma. We need to reduce this current So add another series 50 Ohm to do this. This will also reduce our voltage across the load, maintaining VL<=4V Check: Vmax (when RL = infinity) = *(50/00) = V Imax (When RL = 0) = /50 = 0 ma

4 MAE40 HW Solutions.76) Team A I P P Loss Error 0V 4050 I R I Team B R 5.45mA k 7mW mW *00.4% It is sometimes convenient to convert to the Thevenin equivalent * 0* 4. 7V Find : P P Loss Error R R 6 5.4W.9 5.9mW *00.4% Team A clearly wins, they have ) A closer tolerance ) They use standard resistor values (6 Ohm isn t standard) ) They waste less power (or require less power from the source) 4

5 MAE40 HW Solutions.) (Refer to circuit drawing from HW, pg ) Note this circuit is linear with just resistors and independent current sources, allowing us to directly write the equations by inspection (see T,R &T pg 75) A)Node A: (/0 + /0 + /) / = A Node B: -/ + (/4+/) = A-A Simplifying and putting into matrix form we get Computing the determinant we get 40 0 * 40 *.075 B) Vx = = -V, Ix = /0 = 0/0 = 0.5 Amps

6 .) A) 4k k k 4k Vx Vx k k MAE40 HW Solutions 0mA Vx k 0 0mA 0mA 0 Vx B) To find and, we can Node A combine the two k resistors in series to remove a node equation, then once armed with, use a voltage divider equation to get Vx. Node B C) Vx Ix k * k k k k.* k V.6mA 4k k 0 4k k k 0mA 5 4k k 0mA 5 4k k 0mA 4.55V.V

7 MAE40 HW Solutions.4) See Figure -4 in HW for reference on page Node A Node C A) By inspection, (Note is known) /k + (-)/4k = ma Vc/4k + (Vc-)/4k = -ma B) Use given values to solve for and Vc (/k + /4k) = ma + 5V/4k = V Vc(/4K) = -ma + 5V/4k Vc = 0.5V C) Solve for Vx and Ix ( = 5V) Vx = -Vc =.5V Ix = (-5V)/4k + (Vc-5V)/4k = -.65mA

8 MAE40 HW Solutions A).5) Choose ground so one side of the voltage source is connected to it (in this case, let ground be connected to, yielding Vc known) Node A (-Vc)/R + (-)/R = Is Node B (-)/R4 + (Vc-)/R = /R A R4 = R = B C Since Vc is known, move it to the RHS and put node A and node B equations into matrix form R = R = B) (/R + /R4) /R4 = Is + Vc/R /R4 (/R4 + /R + /R) = -Vc/R V.V See solution - for help inverting a x matrix Vx = -Vc =.V 0V = -7.V Ix = (Vc-)/R = (0-6.6)/k =.4mA

9 -Vx+.) We have 4 unknown nodes MAE40 HW Solutions R = R = Ix A B C R4 = R = Node A: (-)/R - (-)/R = 0 Node B: (-)/R + (-Vc)/R = Is D R5 = Node C: (-Vc)/R - (Vc-Vd)/R4 = 0 Node D: (Vc-Vd)/R4 - Vd/R5 = 0 To solve this circuit for Vx and Ix, we don t need to put this into a 4x4 matrix form. Instead, all we really need to find is, and the whole thing will fall apart. To do this, combine R and R, and combine R, R4 and R5. Then we get (at node B) (-)/(R+R) + (-0)/(R+R4+R5) = Is We can now solve for directly (-5)/500 + /500 = 00mA = 7.5V Now we can compute Ix (It is flowing through R and R) as (-)/(R+R) = Ix (7.5-5)/500 = 5 ma = Ix To solve for Vx, note the current from B to C is Is-Ix = 75 ma. Now just compute the I*R voltage drop for each resistor starting from. Vc = (Is-Ix)R = mA*50 =.75V Vd = Vc (Is-Ix)R4 =.75-(75mA)*50 = 5V Vx = Vc-Vd =.75V *You can also see that Vx must be /, since half the voltage is dropped across R+R5 and the other half is dropped across R4

10 -Vx+.)continued MAE40 HW Solutions R = R = Ix A B C R = R4 = R5 = D To Find the total power dissipated in the circuit, sum the I R drops across each resistor plus the power dissipated by the voltage source (Current entering positive terminal means the voltage supply is dissipating power) Power = Ix (R+R) + (Is-Ix) (R+R4+R5) + Ix* =.05 * * *5 =.75 Watts

11 .) MAE40 HW Solutions Super Node Note that if we can either find or Vc, we automatically know the other one (ie Vc = +0V) Also, by placing the ground as shown, we know. This 4 node circuit will only require equations as there are only unknowns A R4 R B Is R R C D The super node: (the sum of all currents entering the super node must be zero), /R4 + (-)/R + (Vc-)/R + (Vc-Vd)/R = 0 Node D: (Vc-Vd)/R = is = ma Using = = V and Vc = +0 ( /R4 + /R + /R + /R ) - Vd( /R ) = ( /R +/R) - ( /R + /R ) /R - Vd/R = Is /R

12 .)continued MAE40 HW Solutions Ix Super Node A R4 R B R R C Put into matrix form and use values given Is D -Vx Vd Vd.4 Vd = Vx = 400mV Ix = -/R4 +(-)/R = 4.06mA Power supplied by = I*V = 0V*4mA = 40.6mW

13 .4) MAE40 HW Solutions Refer to circuit drawing in T,R&T pg Node Equations ) /R + (-Vd)/R6 = is ) -/R + (Vc-)/R5 = is ) -Vc/R + (-Vc)/R6 = is 4) Vd/R4 + (Vd-)/R6 = = is To find Vx we only need Vd (place reference at Vx) So use equations and 4 ( equations, unknowns, equations and don t have the node variables we are interested in, skip them) (/R + /R6) + Vd(-/R6) = Is (-/R6) + Vd(/R4 + /R6) = Is You should be able to put this into matrix form and solve it by now = 64V Vd = 56V = Vx

V x 4 V x. 2k = 5

V x 4 V x. 2k = 5 Review Problem: d) Dependent sources R3 V V R Vx - R2 Vx V2 ) Determine the voltage V5 when VV Need to find voltage Vx then multiply by dependent source multiplier () Node analysis 2 V x V x R R 2 V x

More information

CHAPTER FOUR CIRCUIT THEOREMS

CHAPTER FOUR CIRCUIT THEOREMS 4.1 INTRODUCTION CHAPTER FOUR CIRCUIT THEOREMS The growth in areas of application of electric circuits has led to an evolution from simple to complex circuits. To handle the complexity, engineers over

More information

ECE2262 Electric Circuits

ECE2262 Electric Circuits ECE2262 Electric Circuits Equivalence Chapter 5: Circuit Theorems Linearity Superposition Thevenin s and Norton s Theorems Maximum Power Transfer Analysis of Circuits Using Circuit Theorems 1 5. 1 Equivalence

More information

Chapter 5 Objectives

Chapter 5 Objectives Chapter 5 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 5 Objectives State and apply the property of linearity State and apply the property of superposition Investigate source transformations Define

More information

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above EE-201, Review Probs Test 1 page-1 Spring 98 EE-201 Review Exam I Multiple Choice (5 points each, no partial credit.) 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6)

More information

ECE2262 Electric Circuits. Chapter 5: Circuit Theorems

ECE2262 Electric Circuits. Chapter 5: Circuit Theorems ECE2262 Electric Circuits Chapter 5: Circuit Theorems 1 Equivalence Linearity Superposition Thevenin s and Norton s Theorems Maximum Power Transfer Analysis of Circuits Using Circuit Theorems 2 5. 1 Equivalence

More information

Series & Parallel Resistors 3/17/2015 1

Series & Parallel Resistors 3/17/2015 1 Series & Parallel Resistors 3/17/2015 1 Series Resistors & Voltage Division Consider the single-loop circuit as shown in figure. The two resistors are in series, since the same current i flows in both

More information

Let V1=12V, R1=50 ohms, R2=10K ohms, R3=2K ohms, and R4=500 ohms. RL represents the load placed on the circuit between points Aand B.

Let V1=12V, R1=50 ohms, R2=10K ohms, R3=2K ohms, and R4=500 ohms. RL represents the load placed on the circuit between points Aand B. Questions on Thevenin Equivalent Circuits Fall 2004 2. Thevenin Circuits (25 points) Let V1=12V, R1=50 ohms, R2=10K ohms, R3=2K ohms, and R4=500 ohms. RL represents the load placed on the circuit between

More information

OUTCOME 3 - TUTORIAL 2

OUTCOME 3 - TUTORIAL 2 Unit : Unit code: QCF evel: 4 Credit value: 15 SYABUS Engineering Science /601/1404 OUTCOME 3 - TUTORIA Be able to apply DC theory to solve electrical and electronic engineering problems DC electrical

More information

Midterm Exam (closed book/notes) Tuesday, February 23, 2010

Midterm Exam (closed book/notes) Tuesday, February 23, 2010 University of California, Berkeley Spring 2010 EE 42/100 Prof. A. Niknejad Midterm Exam (closed book/notes) Tuesday, February 23, 2010 Guidelines: Closed book. You may use a calculator. Do not unstaple

More information

Homework 3 Solution. Due Friday (5pm), Feb. 14, 2013

Homework 3 Solution. Due Friday (5pm), Feb. 14, 2013 University of California, Berkeley Spring 2013 EE 42/100 Prof. K. Pister Homework 3 Solution Due Friday (5pm), Feb. 14, 2013 Please turn the homework in to the drop box located next to 125 Cory Hall (labeled

More information

Chapter 5 Solution P5.2-2, 3, 6 P5.3-3, 5, 8, 15 P5.4-3, 6, 8, 16 P5.5-2, 4, 6, 11 P5.6-2, 4, 9

Chapter 5 Solution P5.2-2, 3, 6 P5.3-3, 5, 8, 15 P5.4-3, 6, 8, 16 P5.5-2, 4, 6, 11 P5.6-2, 4, 9 Chapter 5 Solution P5.2-2, 3, 6 P5.3-3, 5, 8, 15 P5.4-3, 6, 8, 16 P5.5-2, 4, 6, 11 P5.6-2, 4, 9 P 5.2-2 Consider the circuit of Figure P 5.2-2. Find i a by simplifying the circuit (using source transformations)

More information

Thevenin equivalent circuits

Thevenin equivalent circuits Thevenin equivalent circuits We have seen the idea of equivalency used in several instances already. 1 2 1 2 same as 1 2 same as 1 2 R 3 same as = 0 V same as 0 A same as same as = EE 201 Thevenin 1 The

More information

Operational amplifiers (Op amps)

Operational amplifiers (Op amps) Operational amplifiers (Op amps) Recall the basic two-port model for an amplifier. It has three components: input resistance, Ri, output resistance, Ro, and the voltage gain, A. v R o R i v d Av d v Also

More information

ELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current?

ELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current? ELECTRICITY What do you already know about it? Voltage? Resistance? Current? Do Smarty Demo 1 Electric Circuit A path over which electrons travel, out through the negative terminal, through the conductor,

More information

A tricky node-voltage situation

A tricky node-voltage situation A tricky node-voltage situation The node-method will always work you can always generate enough equations to determine all of the node voltages. The method we have outlined well in almost all cases, but

More information

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal

More information

ECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OP-AMP) Circuits

ECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OP-AMP) Circuits ECE2262 Electric Circuits Chapter 4: Operational Amplifier (OP-AMP) Circuits 1 4.1 Operational Amplifiers 2 4. Voltages and currents in electrical circuits may represent signals and circuits can perform

More information

2. The following diagram illustrates that voltage represents what physical dimension?

2. The following diagram illustrates that voltage represents what physical dimension? BioE 1310 - Exam 1 2/20/2018 Answer Sheet - Correct answer is A for all questions 1. A particular voltage divider with 10 V across it consists of two resistors in series. One resistor is 7 KΩ and the other

More information

Come & Join Us at VUSTUDENTS.net

Come & Join Us at VUSTUDENTS.net Come & Join Us at VUSTUDENTS.net For Assignment Solution, GDB, Online Quizzes, Helping Study material, Past Solved Papers, Solved MCQs, Current Papers, E-Books & more. Go to http://www.vustudents.net and

More information

Experiment #6. Thevenin Equivalent Circuits and Power Transfer

Experiment #6. Thevenin Equivalent Circuits and Power Transfer Experiment #6 Thevenin Equivalent Circuits and Power Transfer Objective: In this lab you will confirm the equivalence between a complicated resistor circuit and its Thevenin equivalent. You will also learn

More information

University of Alabama Department of Physics and Astronomy. Problem Set 4

University of Alabama Department of Physics and Astronomy. Problem Set 4 University of Alabama Department of Physics and Astronomy PH 26 LeClair Fall 20 Problem Set 4. A battery has an ideal voltage V and an internal resistance r. A variable load resistance R is connected to

More information

CIRCUITS AND ELECTRONICS. Dependent Sources and Amplifiers

CIRCUITS AND ELECTRONICS. Dependent Sources and Amplifiers 6.00 CIRCUITS AN ELECTRONICS ependent Sources and Amplifiers Review Nonlinear circuits can use the node method Small signal trick resulted in linear response Today ependent sources Amplifiers Reading:

More information

3.1 Superposition theorem

3.1 Superposition theorem Many electric circuits are complex, but it is an engineer s goal to reduce their complexity to analyze them easily. In the previous chapters, we have mastered the ability to solve networks containing independent

More information

Homework 2. Due Friday (5pm), Feb. 8, 2013

Homework 2. Due Friday (5pm), Feb. 8, 2013 University of California, Berkeley Spring 2013 EE 42/100 Prof. K. Pister Homework 2 Due Friday (5pm), Feb. 8, 2013 Please turn the homework in to the drop box located next to 125 Cory Hall (labeled EE

More information

CHAPTER 4. Circuit Theorems

CHAPTER 4. Circuit Theorems CHAPTER 4 Circuit Theorems The growth in areas of application of electrical circuits has led to an evolution from simple to complex circuits. To handle such complexity, engineers over the years have developed

More information

Sirindhorn International Institute of Technology Thammasat University at Rangsit

Sirindhorn International Institute of Technology Thammasat University at Rangsit Sirindhorn International Institute of Technology Thammasat University at Rangsit School of Information, Computer and Communication Technology COURSE : ECS 304 Basic Electrical Engineering Lab INSTRUCTOR

More information

Direct Current (DC): In a DC circuit the current and voltage are constant as a function of time. Power (P): Rate of doing work P = dw/dt units = Watts

Direct Current (DC): In a DC circuit the current and voltage are constant as a function of time. Power (P): Rate of doing work P = dw/dt units = Watts Lecture 1: Introduction Some Definitions: Current (I): Amount of electric charge (Q) moving past a point per unit time I dq/dt Coulombs/sec units Amps (1 Coulomb 6x10 18 electrons) oltage (): Work needed

More information

ECE 201 Fall 2009 Final Exam

ECE 201 Fall 2009 Final Exam ECE 01 Fall 009 Final Exam December 16, 009 Division 0101: Tan (11:30am) Division 001: Clark (7:30 am) Division 0301: Elliott (1:30 pm) Instructions 1. DO NOT START UNTIL TOLD TO DO SO.. Write your Name,

More information

Operational amplifiers (Op amps)

Operational amplifiers (Op amps) Operational amplifiers (Op amps) v R o R i v i Av i v View it as an ideal amp. Take the properties to the extreme: R i, R o 0, A.?!?!?!?! v v i Av i v A Consequences: No voltage dividers at input or output.

More information

Phy301- Circuit Theory

Phy301- Circuit Theory Phy301- Circuit Theory Solved Mid Term MCQS and Subjective with References. Question No: 1 ( Marks: 1 ) - Please choose one If we connect 3 capacitors in series, the combined effect of all these capacitors

More information

Chapter 5: Circuit Theorems

Chapter 5: Circuit Theorems Chapter 5: Circuit Theorems This chapter provides a new powerful technique of solving complicated circuits that are more conceptual in nature than node/mesh analysis. Conceptually, the method is fairly

More information

Thevenin Norton Equivalencies - GATE Study Material in PDF

Thevenin Norton Equivalencies - GATE Study Material in PDF Thevenin Norton Equivalencies - GATE Study Material in PDF In these GATE 2018 Notes, we explain the Thevenin Norton Equivalencies. Thevenin s and Norton s Theorems are two equally valid methods of reducing

More information

Electronics. Basics & Applications. group talk Daniel Biesinger

Electronics. Basics & Applications. group talk Daniel Biesinger Electronics Basics & Applications group talk 23.7.2010 by Daniel Biesinger 1 2 Contents Contents Basics Simple applications Equivalent circuit Impedance & Reactance More advanced applications - RC circuits

More information

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

E40M Review - Part 1

E40M Review - Part 1 E40M Review Part 1 Topics in Part 1 (Today): KCL, KVL, Power Devices: V and I sources, R Nodal Analysis. Superposition Devices: Diodes, C, L Time Domain Diode, C, L Circuits Topics in Part 2 (Wed): MOSFETs,

More information

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = 10 10 4. Section Break Difficulty: Easy Learning Objective: Understand how real operational

More information

MAE140 - Linear Circuits - Fall 14 Midterm, November 6

MAE140 - Linear Circuits - Fall 14 Midterm, November 6 MAE140 - Linear Circuits - Fall 14 Midterm, November 6 Instructions (i) This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may use a

More information

Basic Electrical Circuits Analysis ECE 221

Basic Electrical Circuits Analysis ECE 221 Basic Electrical Circuits Analysis ECE 221 PhD. Khodr Saaifan http://trsys.faculty.jacobs-university.de k.saaifan@jacobs-university.de 1 2 Reference: Electric Circuits, 8th Edition James W. Nilsson, and

More information

This addendum describes the use of new termination actions in the Arbitrary Control Experiment in FuelCell Version 3.8d and later.

This addendum describes the use of new termination actions in the Arbitrary Control Experiment in FuelCell Version 3.8d and later. FuelCell Addendum Arbitrary Control Termination D. Johnson, Scribner Associates, Inc. 4/16/2007, Ver. 2 Introduction This addendum describes the use of new termination actions in the Arbitrary Control

More information

DC STEADY STATE CIRCUIT ANALYSIS

DC STEADY STATE CIRCUIT ANALYSIS DC STEADY STATE CIRCUIT ANALYSIS 1. Introduction The basic quantities in electric circuits are current, voltage and resistance. They are related with Ohm s law. For a passive branch the current is: I=

More information

Some Important Electrical Units

Some Important Electrical Units Some Important Electrical Units Quantity Unit Symbol Current Charge Voltage Resistance Power Ampere Coulomb Volt Ohm Watt A C V W W These derived units are based on fundamental units from the meterkilogram-second

More information

D C Circuit Analysis and Network Theorems:

D C Circuit Analysis and Network Theorems: UNIT-1 D C Circuit Analysis and Network Theorems: Circuit Concepts: Concepts of network, Active and passive elements, voltage and current sources, source transformation, unilateral and bilateral elements,

More information

Chapter 5. Department of Mechanical Engineering

Chapter 5. Department of Mechanical Engineering Source Transformation By KVL: V s =ir s + v By KCL: i s =i + v/r p is=v s /R s R s =R p V s /R s =i + v/r s i s =i + v/r p Two circuits have the same terminal voltage and current Source Transformation

More information

Basic RL and RC Circuits R-L TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri

Basic RL and RC Circuits R-L TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri st Class Basic RL and RC Circuits The RL circuit with D.C (steady state) The inductor is short time at Calculate the inductor current for circuits shown below. I L E R A I L E R R 3 R R 3 I L I L R 3 R

More information

Fundamentals of Electric Circuits, Second Edition - Alexander/Sadiku

Fundamentals of Electric Circuits, Second Edition - Alexander/Sadiku Chapter 3, Problem 9(8). Find V x in the network shown in Fig. 3.78. Figure 3.78 Chapter 3, Solution 9(8). Consider the circuit below. 2 Ω 2 Ω -j 8 30 o I j 4 j 4 I 2 -j2v For loop, 8 30 = (2 j4)i ji 2

More information

Errors in Electrical Measurements

Errors in Electrical Measurements 1 Errors in Electrical Measurements Systematic error every times you measure e.g. loading or insertion of the measurement instrument Meter error scaling (inaccurate marking), pointer bending, friction,

More information

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer J. McNames Portland State University ECE 221 Circuit Theorems Ver. 1.36 1

More information

Physics 102: Lecture 05 Circuits and Ohm s Law

Physics 102: Lecture 05 Circuits and Ohm s Law Physics 102: Lecture 05 Circuits and Ohm s Law Physics 102: Lecture 5, Slide 1 Summary of Last Time Capacitors Physical C = ke 0 A/d C=Q/V Series 1/C eq = 1/C 1 + 1/C 2 Parallel C eq = C 1 + C 2 Energy

More information

Current and Resistance

Current and Resistance Current and Resistance 1 Define the current. Understand the microscopic description of current. Discuss the rat at which the power transfer to a device in an electric current. 2 2-1 Electric current 2-2

More information

MAE140 Linear Circuits Fall 2016 Final, December 6th Instructions

MAE140 Linear Circuits Fall 2016 Final, December 6th Instructions MAE40 Linear Circuits Fall 206 Final, December 6th Instructions. This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may use a handheld

More information

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur Module 2 DC Circuit Lesson 5 Node-voltage analysis of resistive circuit in the context of dc voltages and currents Objectives To provide a powerful but simple circuit analysis tool based on Kirchhoff s

More information

TUTORIAL Solar Module Physical Model

TUTORIAL Solar Module Physical Model TUTORIAL Solar Module Physical Model OCTOBER 2016 1 The physical model of the solar module can take into account variations of the light intensity and ambient temperature. However, it requires many parameter

More information

Electrical Circuits I Lecture 8

Electrical Circuits I Lecture 8 Electrical Circuits I Lecture 8 Thevenin and Norton theorems Thevenin theorem tells us that we can replace the entire network, exclusive of the load resistor, by an equivalent circuit

More information

4/27 Friday. I have all the old homework if you need to collect them.

4/27 Friday. I have all the old homework if you need to collect them. 4/27 Friday Last HW: do not need to turn it. Solution will be posted on the web. I have all the old homework if you need to collect them. Final exam: 7-9pm, Monday, 4/30 at Lambert Fieldhouse F101 Calculator

More information

Chapter 7. Chapter 7

Chapter 7. Chapter 7 Chapter 7 Combination circuits Most practical circuits have combinations of series and parallel components. You can frequently simplify analysis by combining series and parallel components. An important

More information

Section 1 Electric Charge and Force

Section 1 Electric Charge and Force CHAPTER OUTLINE Section 1 Electric Charge and Force Key Idea questions > What are the different kinds of electric charge? > How do materials become charged when rubbed together? > What force is responsible

More information

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Op-amps in Negative Feedback

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Op-amps in Negative Feedback EECS 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 18 18.1 Introduction: Op-amps in Negative Feedback In the last note, we saw that can use an op-amp as a comparator. However,

More information

mywbut.com Mesh Analysis

mywbut.com Mesh Analysis Mesh Analysis 1 Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide more general and powerful circuit analysis tool based on Kirchhoff s voltage law (KVL) only.

More information

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points): ENGR43 Test 2 Spring 29 ENGR43 Spring 29 Test 2 Name: SOLUTION Section: 1(MR 8:) 2(TF 2:) 3(MR 6:) (circle one) Question I (2 points): Question II (2 points): Question III (17 points): Question IV (2 points):

More information

One-Port Networks. One-Port. Network

One-Port Networks. One-Port. Network TwoPort s Definitions Impedance Parameters dmittance Parameters Hybrid Parameters Transmission Parameters Cascaded TwoPort s Examples pplications OnePort s v i' 1 OnePort pair of terminals at which a signal

More information

Chapter 4. Chapter 4

Chapter 4. Chapter 4 Chapter 4 Energy 1 n Energy, W, is the ability to do work and is measured in joules. One joule is the work done when a force of one newton is applied through a distance of one meter. The symbol for energy,

More information

Physics 3150, Laboratory X January 22, 2014 Ann Onymous (lab partner: John Doe)

Physics 3150, Laboratory X January 22, 2014 Ann Onymous (lab partner: John Doe) A. Procedure and Results Physics 150, Laboratory X January, 01 Ann Onymous (lab partner: John Doe) A.1. Voltage and current for a resistor bridge We constructed a resistor bridge circuit as indicated in

More information

ES250: Electrical Science. HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws

ES250: Electrical Science. HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws ES250: Electrical Science HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws Introduction Engineers use electric circuits to solve problems that are important to modern society, such as: 1.

More information

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems Modified for Physics 18, Brooklyn College I. Overview of Experiment In this

More information

Solutions to Systems of Linear Equations

Solutions to Systems of Linear Equations Solutions to Systems of Linear Equations 5 Overview In this chapter we studying the solution of sets of simultaneous linear equations using matrix methods. The first section considers the graphical interpretation

More information

A tricky node-voltage situation

A tricky node-voltage situation A tricky node-voltage situation The node-method will always work you can always generate enough equations to determine all of the node voltages. The prescribed method quite well, but there is one situation

More information

Chapter 19 Lecture Notes

Chapter 19 Lecture Notes Chapter 19 Lecture Notes Physics 2424 - Strauss Formulas: R S = R 1 + R 2 +... C P = C 1 + C 2 +... 1/R P = 1/R 1 + 1/R 2 +... 1/C S = 1/C 1 + 1/C 2 +... q = q 0 [1-e -t/(rc) ] q = q 0 e -t/(rc τ = RC

More information

Today in Physics 217: circuits

Today in Physics 217: circuits Today in Physics 217: circuits! Review of DC circuits: Kirchhoff s rules! Solving equations from Kirchhoff s rules for simple DC circuits 2 December 2002 Physics 217, Fall 2002 1 Lumped circuit elements:

More information

EE301 RESISTANCE AND OHM S LAW

EE301 RESISTANCE AND OHM S LAW Learning Objectives a. Describe the concept of resistance b. Use Ohm s law to calculate current, voltage, and resistance values in a circuit c. Discuss the difference between an open circuit and a short

More information

Chapter 18. Direct Current Circuits

Chapter 18. Direct Current Circuits Chapter 18 Direct Current Circuits Sources of emf The source that maintains the current in a closed circuit is called a source of emf Any devices that increase the potential energy of charges circulating

More information

Prepare for this experiment!

Prepare for this experiment! Notes on Experiment #8 Theorems of Linear Networks Prepare for this experiment! If you prepare, you can finish in 90 minutes. If you do not prepare, you will not finish even half of this experiment. So,

More information

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur Module DC Circuit Lesson 4 Loop Analysis of resistive circuit in the context of dc voltages and currents Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide

More information

EXPERIMENT 12 OHM S LAW

EXPERIMENT 12 OHM S LAW EXPERIMENT 12 OHM S LAW INTRODUCTION: We will study electricity as a flow of electric charge, sometimes making analogies to the flow of water through a pipe. In order for electric charge to flow a complete

More information

1 Phasors and Alternating Currents

1 Phasors and Alternating Currents Physics 4 Chapter : Alternating Current 0/5 Phasors and Alternating Currents alternating current: current that varies sinusoidally with time ac source: any device that supplies a sinusoidally varying potential

More information

ECE Circuit Theory. Final Examination. December 5, 2008

ECE Circuit Theory. Final Examination. December 5, 2008 ECE 212 H1F Pg 1 of 12 ECE 212 - Circuit Theory Final Examination December 5, 2008 1. Policy: closed book, calculators allowed. Show all work. 2. Work in the provided space. 3. The exam has 3 problems

More information

Design Engineering MEng EXAMINATIONS 2016

Design Engineering MEng EXAMINATIONS 2016 IMPERIAL COLLEGE LONDON Design Engineering MEng EXAMINATIONS 2016 For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination

More information

ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer

ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer Michael W. Marcellin Please follow all rules, procedures and report requirements as described at the beginning of the document entitled ECE 220 Laboratory

More information

Electrical Engineering Fundamentals for Non-Electrical Engineers

Electrical Engineering Fundamentals for Non-Electrical Engineers Electrical Engineering Fundamentals for Non-Electrical Engineers by Brad Meyer, PE Contents Introduction... 3 Definitions... 3 Power Sources... 4 Series vs. Parallel... 9 Current Behavior at a Node...

More information

ECE2262 Electric Circuit

ECE2262 Electric Circuit ECE2262 Electric Circuit Chapter 7: FIRST AND SECOND-ORDER RL AND RC CIRCUITS Response to First-Order RL and RC Circuits Response to Second-Order RL and RC Circuits 1 2 7.1. Introduction 3 4 In dc steady

More information

ELEC273 Lecture Notes Set 11 AC Circuit Theorems

ELEC273 Lecture Notes Set 11 AC Circuit Theorems ELEC273 Lecture Notes Set C Circuit Theorems The course web site is: http://users.encs.concordia.ca/~trueman/web_page_273.htm Final Exam (confirmed): Friday December 5, 207 from 9:00 to 2:00 (confirmed)

More information

D is the voltage difference = (V + - V - ).

D is the voltage difference = (V + - V - ). 1 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V -, and one output terminal Y. It provides a gain A, which is usually

More information

Lecture 1. Electrical Transport

Lecture 1. Electrical Transport Lecture 1. Electrical Transport 1.1 Introduction * Objectives * Requirements & Grading Policy * Other information 1.2 Basic Circuit Concepts * Electrical l quantities current, voltage & power, sign conventions

More information

E1.1 Analysis of Circuits ( ) Revision Lecture 1 1 / 13

E1.1 Analysis of Circuits ( ) Revision Lecture 1 1 / 13 RevisionLecture 1: E1.1 Analysis of Circuits (2014-4530) Revision Lecture 1 1 / 13 Format Question 1 (40%): eight short parts covering the whole syllabus. Questions 2 and 3: single topic questions (answer

More information

Physics 102: Lecture 06 Kirchhoff s Laws

Physics 102: Lecture 06 Kirchhoff s Laws Physics 102: Lecture 06 Kirchhoff s Laws Physics 102: Lecture 6, Slide 1 Today Last Lecture Last Time Resistors in series: R eq = R 1 R 2 R 3 Current through each is same; Voltage drop is IR i Resistors

More information

Creating Impedances with Behavioral Modeling

Creating Impedances with Behavioral Modeling Creating Impedances with Behavioral Modeling This application note will illustrate the method of creating nonlinear resistors using Analog Behavioral Modeling by creating the transfer function for a linear

More information

Midterm Exam 2. Prof. Miloš Popović

Midterm Exam 2. Prof. Miloš Popović Midterm Exam 2 Prof. Miloš Popović 100 min timed, closed book test. Write your name at top of every page (or initials on later pages) Aids: single page (single side) of notes, handheld calculator Work

More information

SOME USEFUL NETWORK THEOREMS

SOME USEFUL NETWORK THEOREMS APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem

More information

2/25/2014. Circuits. Properties of a Current. Conservation of Current. Definition of a Current A. I A > I B > I C B. I B > I A C. I C D. I A E.

2/25/2014. Circuits. Properties of a Current. Conservation of Current. Definition of a Current A. I A > I B > I C B. I B > I A C. I C D. I A E. Circuits Topics: Current Conservation of current Batteries Resistance and resistivity Simple circuits 0.1 Electromotive Force and Current Conventional current is the hypothetical flow of positive charges

More information

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Resistive Touchscreen - expanding the model

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Resistive Touchscreen - expanding the model EECS 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 13 13.1 Resistive Touchscreen - expanding the model Recall the physical structure of the simple resistive touchscreen given

More information

Chapter 10 AC Analysis Using Phasors

Chapter 10 AC Analysis Using Phasors Chapter 10 AC Analysis Using Phasors 10.1 Introduction We would like to use our linear circuit theorems (Nodal analysis, Mesh analysis, Thevenin and Norton equivalent circuits, Superposition, etc.) to

More information

meas (1) calc calc I meas 100% (2) Diff I meas

meas (1) calc calc I meas 100% (2) Diff I meas Lab Experiment No. Ohm s Law I. Introduction In this lab exercise, you will learn how to connect the to network elements, how to generate a VI plot, the verification of Ohm s law, and the calculation of

More information

ECE Spring 2017 Final Exam

ECE Spring 2017 Final Exam ECE 20100 Spring 2017 Final Exam May 2, 2017 Section (circle below) Qi (12:30) 0001 Tan (10:30) 0004 Hosseini (7:30) 0005 Cui (1:30) 0006 Jung (11:30) 0007 Lin (9:30) 0008 Peleato-Inarrea (2:30) 0009 Name

More information

Voltage Dividers, Nodal, and Mesh Analysis

Voltage Dividers, Nodal, and Mesh Analysis Engr228 Lab #2 Voltage Dividers, Nodal, and Mesh Analysis Name Partner(s) Grade /10 Introduction This lab exercise is designed to further your understanding of the use of the lab equipment and to verify

More information

and in a simple circuit Part 2

and in a simple circuit Part 2 Current, Resistance, and Voltage in a simple circuit Part 2 Electric Current Whenever electric charges of like signs move, an electric current is said to exist. Look at the charges flowing perpendicularly

More information

1.7 Delta-Star Transformation

1.7 Delta-Star Transformation S Electronic ircuits D ircuits 8.7 Delta-Star Transformation Fig..(a) shows three resistors R, R and R connected in a closed delta to three terminals, and, their numerical subscripts,, and, being opposite

More information

Note 11: Alternating Current (AC) Circuits

Note 11: Alternating Current (AC) Circuits Note 11: Alternating Current (AC) Circuits V R No phase difference between the voltage difference and the current and max For alternating voltage Vmax sin t, the resistor current is ir sin t. the instantaneous

More information

Operational Amplifiers

Operational Amplifiers NDSU Operational Amplifiers ECE 06 JSG Operational Amplifiers An operational amplifier is a input device with V o k(v V ) where k is a large number. For short, the following symbol is used for an differential

More information

Ch 28-DC Circuits! 1.) EMF & Terminal Voltage! 9.0 V 8.7 V 8.7 V. V =! " Ir. Terminal Open circuit internal! voltage voltage (emf) resistance" 2.

Ch 28-DC Circuits! 1.) EMF & Terminal Voltage! 9.0 V 8.7 V 8.7 V. V =!  Ir. Terminal Open circuit internal! voltage voltage (emf) resistance 2. Ch 28-DC Circuits! 1.) EMF & Terminal Voltage! 9.0 V 8.7 V 8.7 V V =! " Ir Terminal Open circuit internal! voltage voltage (emf) resistance" 2.) Resistors in series! One of the bits of nastiness about

More information

Electricity

Electricity Electricity Electric Charge There are two fundamental charges in the universe. Positive (proton) has a charge of +1.60 x 10-19 C Negative (electron) has a charge of 1.60 x 10-19 C There is one general

More information