LECTURE VI: SELFADJOINT AND UNITARY OPERATORS MAT FALL 2006 PRINCETON UNIVERSITY


 Winifred Shelton
 1 years ago
 Views:
Transcription
1 LECTURE VI: SELFADJOINT AND UNITARY OPERATORS MAT FALL 2006 PRINCETON UNIVERSITY ALFONSO SORRENTINO 1 Adjoint of a linear operator Note: In these notes, V will denote a ndimensional euclidean vector space and we will denote the inner product by, Denition Let (V,, ) be a ndimensional euclidean vector space and T : V V a linear operator We will call the adjoint of T, the linear operator S : V V such that: T (u), v = u, S(v), for all u, v V Proposition 1 Let (V,, ) be a ndimensional euclidean vector space and T : V V a linear operator The adjoint of T exists and is unique Moreover, if E denotes an orthonormal basis of V (with respect to, ) and T has matrix B with respect to E (ie, T (E) = EB), then the adjoint of T is the linear operator S : V V, that has matrix B T with respect to E For this reason, the adjoint of T is sometimes called the transpose operator of T and denoted T T Proof Let E an arbitrary basis of V, let T (E) = EB, with B M n (R) and let A be the matrix of, (wrt E) Therefore: u, v = Ex, Ey = x T Ay for all u = Ex, v = Ey V [observe that A GL n (R), since, is an inner product] Let us denote with S : V V an arbitrary linear operator with matrix C M n (R) (wrt E), ie, S(E) = EC For any u, v V we have: Hence: T (u), v = T (Ex), Ey = EBx, Ey = (Bx) T Ay = x T (B T A)y u, S(v) = Ex, S(Ey) = Ex, ECy = x T A(Cy) = x T (AC)y S is the adjoint of T B T A = AC C = A 1 B T A Therefore, the adjoint of T exists and is unique (in fact, its matrix wrt E is uniquely determined by A and B) Moreover, if E is orthonormal, then A = I n and C = B T Denition Let (V,, ) be a ndimensional euclidean vector space and T : V V a linear operator T is said to be selfadjoint [or symmetric] if T = T T ; ie, T (u), v = u, T (v), for all u, v V Remark Let T : V V be a linear operator and E an orthonormal basis of V If T (E) = EB, then it follows from the previous proposition that: T is selfadjoint B = B T 1
2 2 ALFONSO SORRENTINO Hence, selfadjoint operators on V (with dim V = n) are in 1 1 correspondence with symmetric matrices in M n (R) In particular, they form a vector subspace of End(V ), that is isomorphic to the vector subspace of symmetric matrices in M n (R) Notice that if E is NOT orthonormal, then a selfadjoint operator might not have a symmetric matrix (wrt that basis); viceversa, an operator with a symmetric matrix (wrt a nonorthonormal basis) might not be selfadjoint Example Let V be a two dimensional euclidean vector space, with inner product, dened by ( ) 2 1 A = 1 1 with respect to a xed basis E Let T : V V a linear operator, dened by T (E) = EB, where ( ) 1 2 B = 2 1 Let us verify that T is not selfadjoint (although B is symmetric) and nd the matrix of its adjoint operator S (wrt E) Observe that, if T were selfadjoint, we would have from which T (Ex), Ey = Ex, T (Ey), for all Ex, Ey V ; x T (B T A)y = x T (AB)y for all x, y M n,1 (R) Therefore, we should have B T A = AB, but: ( ) B T 0 1 A = 3 1 The adjoint of T is dened by: ( S(E) = EC with C = A 1 B T A = ) ( ) 2 Spectral theorem for selfadjoint operators The main theorem of this section states that if T is a selfadjoint operator on an eucliden vector space, then there exists an orthonormal basis of V formed by eigenvectors of T Theorem 1 (Spectral theorem for selfadjoint operators) Let V be a n dimensional euclidean vector space and T : V V a selfadjoint linear operator Then, there exists an orthonormal basis of V formed by eigenvectors of T The proof of this theorem is based on the following preliminary results Proposition 2 Let A M n (R) be a symmetric matrix Then, its characteristic polynomial P = P A has n real roots (each counted with its algebraic multiplicity); hence, P can be factorized in the product of n linear polynomials in R[x] Proof From the Fundamental Theorem of Algebra, it follows that P can be always linearly factorized in C[x] We need only to show that each root λ C of P is indeed a real number; ie, λ R Let T : C n C n be the linear operator with matrix A, with respect to the canonical basis E of C n Since λ is an eigenvalue of T, then there exists a nonzero vector z such that T (z) = λz, ie, (1) Az = λz
3 LECTURE VI: SELFADJOINT AND UNITARY OPERATORS 3 Let us remember some denitions and simple results about the complex numbers For any α = x + iy C, we dene its conjugate as α = x iy In particular, the following holds: αα = x 2 + y 2 [it is called norm of α ]; αα 0 and αα = 0 α = 0 ; α = α ; α = α α R ; α + β = α + β and αβ = αβ Let us consider a nonzero vector z = z 1 z n C n One can easily verify that z T z = z 1 z n C n and its conjugate z = n z i z i > 0 [at least one z i is dierent from zero] ; i=1 ( ) z T Az = z T Az = z T Az [since A is real] If we multiply (1) by z T (on the left), we get and consequently z T Az = z T λz = λ(z T z), λ = 1 z T z (zt Az) In order to show that λ R, it suces to verify that z T Az R or equivalently: In fact, using that A is symmetric: (z T Az) = z T Az) (z T Az) = z T Az = (z T Az) T = z T Az Proposition 3 Let T be a selfadjoint operator on a ndimensional euclidean vector space V and u an eigenvector Then, T (u ) u ; ie, T let the subspace u xed Proof Let T (u) = λu For any v u [ie, v, u = 0] we have: Therefore, T (v) u ; T (v), u = v, T (u) = v, λu = λ v, u = 0 We can now prove the Spectral Theorem Proof [Spectral Theorem] We proceed by induction on n = dim (V ) If dim V = 1, then the assertion is evident (it is sucient to choose any basis E = (e 1 ) with e 1 = 1) Suppose that n 2 and assume that the theorem is true for selfadjoint operators on euclidean vector spaces of dimension n 1 According to proposition 2, T has at least one real eigenvalue λ and call e 1 one of the corresponding eigenvectors We can assume that e 1 = 1 (otherwise, we just divide this vector by its norm)
4 4 ALFONSO SORRENTINO One can observe that e 1 is an euclidean vector subspace of V of dimension n 1 (see Lecture V, 2) From proposition 3, T (e 1 ) e 1, therefore we can restrict T to the subspace e 1 We obtain a new linear operator T : e 1 e 1, that is still selfadjoint (since it acts like T on the vectors in e 1 ) Using the inductive hypothesis, T has an orthonormal basis {e 2,, e n }, formed by eigenvectors Since e 1 e i (for all i = 1,, n), then the vectors e 1,, e n are pairwise orthogonal and therefore linearly independent These vectors form the desired basis Remark Let T be a selfadjoint operator and F an orthonormal basis of eigenvectors of T We want to point out that, with respect to this basis, T is represented by a diagonal matrix: λ λ 2 0 D =, 0 0 λ n where λ 1,, λ n are the eigenvalues of T They are not necessarily distinct: each of them appears h λi times on the diagonal (where h λi is its algebraic multiplicity = geometric multiplicity ) Proposition 4 Let T : V V be a selfadjoint operator If u, v are eigenvectors corresponding to distinct eigenvalues, then they are orthogonal Therefore, the eigenspaces of T are pairwise orthogonal Proof Let T (u) = λu and T (v) = µv, with λ, µ R and λ µ We have: T (u), v = λu, v = λ u, v and u, T (v) = u, µv = µ u, v Since T (u), v = u, T (v), then λ u, v = µ u, v and therefore (since λ µ) u, v = 0 It follows also that E λ Eµ and E µ Eλ (where E λ and E µ are the associated eigenspaces) Remark From the previous proposition, it follows that in order to compute an orthonormal basis F of eigenvectors of a selfadjoint operators, it is enough to nd the basis of each eigenspace E λ and orthonormalize it (using GramSchmidt, for instance) The union of such bases provides the desired one Example In R 4 with the canonical inner product, consider the linear operator dened (wrt the canonical basis of R 4 ) by: A = Determine an orthonormal basis F of eigenvectors of T and write the matrix of T with respect to F Solution: T has characteristic polynomial P = (x 1) 2 (x + 1) 2 and therefore its specturm is Λ(T ) = {1, 1}, with multiplicities h 1 = 2 and h 1 = 2 The eigenspace E 1 has equations: { 2x2 = 0 x 3 + x 4 = 0
5 LECTURE VI: SELFADJOINT AND UNITARY OPERATORS 5 and therefore: E 1 = (1, 0, 0, 0), (0, 0, 1, 1) This basis is already orthogonal, but we need to normalize the vectors, dividing by their norm: ( ) 1 1 E 1 = (1, 0, 0, 0), 0, 0,, 2 2 The eigenspace E 1 has equations: { 2x1 = 0 x 3 + x 4 = 0 and therefore: E 1 = (0, 1, 0, 0), (0, 0, 1, 1) This basis is already orthogonal, but we need to normalize the vectors, dividing by their norm: ( 1 E 1 = (0, 1, 0, 0), 0, 0,, 1 ) 2 2 Concluding, an orthonormal basis F for T is given by: F = EC, where C = The matrix of T with respect to this basis is: T (F) = FD, where D = C T AC = O 4(R) Unitary operators Denition Let (V,, ) be a ndimensional euclidean vector space and T : V V a linear operator We will say that is unitary if: T (u), T (v) = u, v, for all u, v V [ie, T preserves the inner product, in V ] Proposition 5 Let T be a linear operator on (V,, ) We have: Proof T is unitary T is invertible and T 1 = T T (= ) It is sucient to verify that T T T = Id, that is equivalent to T T (T (v)) = v for all v V In fact, from the denition above and that of adjoint of T, one can conclude: therefore, u, v = T (u), T (v) = u, T T (T (v)) ; u, v T T (T (v)) = 0 for all u V We can deduce from this (using the nondegeneracy of the inner product) that T T (T (v)) = v, for any v V ( =) We have that, for any u, v V : T (u), T (v) = u, T T (T (v)) = u, T 1 (T (v)) = u, v
6 6 ALFONSO SORRENTINO Let us try to deduce some information about the matrices of these unitary operators Let E be a basis for (V,, ) and suppose that Ex, Ey = x T Ay If T is a linear operator on V, such that T (E) = EB, then: T is unitary T (Ex), T (Ey) = Ex, Ey, for all Ex, Ey V EBx, EBy = Ex, Ey, for all Ex, Ey V (Bx) T A(By) = x T Ay, for all x, y M n,1 (R) x T (B T AB)y = x T Ay, for all x, y M n,1 (R) B T AB = A Corollary 1 Let (V,, ) be a ndimensional euclidean vector space, with an orthonormal basis E and let T : V V a linear operator, such that T (E) = EB Then, T is unitary B O n (R) [ie, B is an orthogonal matrix] Proof For what observed above: T is unitary if and only if B T AB = A Since E is orthonormal, then A = I n and we get: T is unitary B T B = I n B O n (R) Remark i) Let T be a unitary operator If E is an orthonormal basis, then also T (E) is an orthonormal basis (see Lecture V, prop 8) Therefore, unitary operators send orthonormal bases into orthonormal bases ii) If T is a unitary operator, then det T = ±1 In fact, if T (E) = EB, with E orthonormal, then B O n (R) and det T = det B = ±1 In particular, unitary operators with det T = 1 are called special unitary operators (or rotations) of V iii) If T is unitary, then its spectrum Λ T {1, 1} In fact, if T (u) = λu, then: u, u = T (u), T (u) = λu, λu = λ 2 u, u ; therefore λ 2 = 1, that implies λ = ±1 iv) Let us point out that, in general, a unitary linear operator might not be diagonalizable Consider, for instance, R 2 with the canonical inner product and the operator that is dened (wrt the canonical basis) by ( ) R π 0 1 = SO (R) O 2 (R) This is a unitary operator and it has no eigenvalues, hence it is not diagonalizable v) If T is unitary and Λ T = {1, 1}, then the eigenspaces E 1 and E 1 are orthogonal to each other In fact, if T (u) = u and T (v) = v, then: u, v = T (u), T (v) = u, v = u, v ; this implies that u, v = 0 and therefore u, v = 0 vi) If T is unitary and u is one of its eigenvectors, then T (u ) u In fact, for any v u (remember that λ = ±1): T (v), u = 1 λ T (v), λu = 1 λ T (v), T (u) = 1 v, u = 0 ; λ hence, T (v) u Department of Mathematics, Princeton University address:
LECTURE VII: THE JORDAN CANONICAL FORM MAT FALL 2006 PRINCETON UNIVERSITY. [See also Appendix B in the book]
LECTURE VII: THE JORDAN CANONICAL FORM MAT 204  FALL 2006 PRINCETON UNIVERSITY ALFONSO SORRENTINO [See also Appendix B in the book] 1 Introduction In Lecture IV we have introduced the concept of eigenvalue
More informationMATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)
MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m
More informationMATH 304 Linear Algebra Lecture 34: Review for Test 2.
MATH 304 Linear Algebra Lecture 34: Review for Test 2. Topics for Test 2 Linear transformations (Leon 4.1 4.3) Matrix transformations Matrix of a linear mapping Similar matrices Orthogonality (Leon 5.1
More information22m:033 Notes: 7.1 Diagonalization of Symmetric Matrices
m:33 Notes: 7. Diagonalization of Symmetric Matrices Dennis Roseman University of Iowa Iowa City, IA http://www.math.uiowa.edu/ roseman May 3, Symmetric matrices Definition. A symmetric matrix is a matrix
More informationLinear algebra and applications to graphs Part 1
Linear algebra and applications to graphs Part 1 Written up by Mikhail Belkin and Moon Duchin Instructor: Laszlo Babai June 17, 2001 1 Basic Linear Algebra Exercise 1.1 Let V and W be linear subspaces
More informationDefinition (T invariant subspace) Example. Example
Eigenvalues, Eigenvectors, Similarity, and Diagonalization We now turn our attention to linear transformations of the form T : V V. To better understand the effect of T on the vector space V, we begin
More informationMATH 304 Linear Algebra Lecture 23: Diagonalization. Review for Test 2.
MATH 304 Linear Algebra Lecture 23: Diagonalization. Review for Test 2. Diagonalization Let L be a linear operator on a finitedimensional vector space V. Then the following conditions are equivalent:
More informationThe Spectral Theorem for normal linear maps
MAT067 University of California, Davis Winter 2007 The Spectral Theorem for normal linear maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (March 14, 2007) In this section we come back to the question
More information4. Linear transformations as a vector space 17
4 Linear transformations as a vector space 17 d) 1 2 0 0 1 2 0 0 1 0 0 0 1 2 3 4 32 Let a linear transformation in R 2 be the reflection in the line = x 2 Find its matrix 33 For each linear transformation
More informationReal symmetric matrices/1. 1 Eigenvalues and eigenvectors
Real symmetric matrices 1 Eigenvalues and eigenvectors We use the convention that vectors are row vectors and matrices act on the right. Let A be a square matrix with entries in a field F; suppose that
More information1. General Vector Spaces
1.1. Vector space axioms. 1. General Vector Spaces Definition 1.1. Let V be a nonempty set of objects on which the operations of addition and scalar multiplication are defined. By addition we mean a rule
More informationIr O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v )
Section 3.2 Theorem 3.6. Let A be an m n matrix of rank r. Then r m, r n, and, by means of a finite number of elementary row and column operations, A can be transformed into the matrix ( ) Ir O D = 1 O
More informationMath 396. An application of GramSchmidt to prove connectedness
Math 396. An application of GramSchmidt to prove connectedness 1. Motivation and background Let V be an ndimensional vector space over R, and define GL(V ) to be the set of invertible linear maps V V
More informationQuadratic forms. Here. Thus symmetric matrices are diagonalizable, and the diagonalization can be performed by means of an orthogonal matrix.
Quadratic forms 1. Symmetric matrices An n n matrix (a ij ) n ij=1 with entries on R is called symmetric if A T, that is, if a ij = a ji for all 1 i, j n. We denote by S n (R) the set of all n n symmetric
More informationEigenvalues and Eigenvectors
Eigenvalues and Eigenvectors week 2 Fall 26 Eigenvalues and eigenvectors The most simple linear transformation from R n to R n may be the transformation of the form: T (x,,, x n ) (λ x, λ 2,, λ n x n
More informationMath Linear Algebra II. 1. Inner Products and Norms
Math 342  Linear Algebra II Notes 1. Inner Products and Norms One knows from a basic introduction to vectors in R n Math 254 at OSU) that the length of a vector x = x 1 x 2... x n ) T R n, denoted x,
More informationSupplementary Notes on Linear Algebra
Supplementary Notes on Linear Algebra Mariusz Wodzicki May 3, 2015 1 Vector spaces 1.1 Coordinatization of a vector space 1.1.1 Given a basis B = {b 1,..., b n } in a vector space V, any vector v V can
More informationMATH 304 Linear Algebra Lecture 20: The GramSchmidt process (continued). Eigenvalues and eigenvectors.
MATH 304 Linear Algebra Lecture 20: The GramSchmidt process (continued). Eigenvalues and eigenvectors. Orthogonal sets Let V be a vector space with an inner product. Definition. Nonzero vectors v 1,v
More informationGeneralized Eigenvectors and Jordan Form
Generalized Eigenvectors and Jordan Form We have seen that an n n matrix A is diagonalizable precisely when the dimensions of its eigenspaces sum to n. So if A is not diagonalizable, there is at least
More information2. Review of Linear Algebra
2. Review of Linear Algebra ECE 83, Spring 217 In this course we will represent signals as vectors and operators (e.g., filters, transforms, etc) as matrices. This lecture reviews basic concepts from linear
More informationVector Space Basics. 1 Abstract Vector Spaces. 1. (commutativity of vector addition) u + v = v + u. 2. (associativity of vector addition)
Vector Space Basics (Remark: these notes are highly formal and may be a useful reference to some students however I am also posting Ray Heitmann's notes to Canvas for students interested in a direct computational
More informationLinear Algebra Final Exam Review
Linear Algebra Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.
More informationReview of some mathematical tools
MATHEMATICAL FOUNDATIONS OF SIGNAL PROCESSING Fall 2016 Benjamín Béjar Haro, Mihailo Kolundžija, Reza Parhizkar, Adam Scholefield Teaching assistants: Golnoosh Elhami, Hanjie Pan Review of some mathematical
More informationLinear algebra 2. Yoav Zemel. March 1, 2012
Linear algebra 2 Yoav Zemel March 1, 2012 These notes were written by Yoav Zemel. The lecturer, Shmuel Berger, should not be held responsible for any mistake. Any comments are welcome at zamsh7@gmail.com.
More informationIMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET
IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each
More informationMath 443 Differential Geometry Spring Handout 3: Bilinear and Quadratic Forms This handout should be read just before Chapter 4 of the textbook.
Math 443 Differential Geometry Spring 2013 Handout 3: Bilinear and Quadratic Forms This handout should be read just before Chapter 4 of the textbook. Endomorphisms of a Vector Space This handout discusses
More informationBASIC ALGORITHMS IN LINEAR ALGEBRA. Matrices and Applications of Gaussian Elimination. A 2 x. A T m x. A 1 x A T 1. A m x
BASIC ALGORITHMS IN LINEAR ALGEBRA STEVEN DALE CUTKOSKY Matrices and Applications of Gaussian Elimination Systems of Equations Suppose that A is an n n matrix with coefficents in a field F, and x = (x,,
More informationMA 265 FINAL EXAM Fall 2012
MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators
More informationLinear Algebra. Workbook
Linear Algebra Workbook Paul Yiu Department of Mathematics Florida Atlantic University Last Update: November 21 Student: Fall 2011 Checklist Name: A B C D E F F G H I J 1 2 3 4 5 6 7 8 9 10 xxx xxx xxx
More informationALGEBRA 8: Linear algebra: characteristic polynomial
ALGEBRA 8: Linear algebra: characteristic polynomial Characteristic polynomial Definition 8.1. Consider a linear operator A End V over a vector space V. Consider a vector v V such that A(v) = λv. This
More informationIMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET
IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each
More informationJordan Canonical Form Homework Solutions
Jordan Canonical Form Homework Solutions For each of the following, put the matrix in Jordan canonical form and find the matrix S such that S AS = J. [ ]. A = A λi = λ λ = ( λ) = λ λ = λ =, Since we have
More informationLinear Algebra using Dirac Notation: Pt. 2
Linear Algebra using Dirac Notation: Pt. 2 PHYS 476Q  Southern Illinois University February 6, 2018 PHYS 476Q  Southern Illinois University Linear Algebra using Dirac Notation: Pt. 2 February 6, 2018
More information5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.
Linear Algebra  Test File  Spring Test # For problems  consider the following system of equations. x + y  z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the
More informationALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA
ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA Kent State University Department of Mathematical Sciences Compiled and Maintained by Donald L. White Version: August 29, 2017 CONTENTS LINEAR ALGEBRA AND
More informationFinal Exam. Linear Algebra Summer 2011 Math S2010X (3) Corrin Clarkson. August 10th, Solutions
Final Exam Linear Algebra Summer Math SX (3) Corrin Clarkson August th, Name: Solutions Instructions: This is a closed book exam. You may not use the textbook, notes or a calculator. You will have 9 minutes
More informationand let s calculate the image of some vectors under the transformation T.
Chapter 5 Eigenvalues and Eigenvectors 5. Eigenvalues and Eigenvectors Let T : R n R n be a linear transformation. Then T can be represented by a matrix (the standard matrix), and we can write T ( v) =
More informationLecture 3: Review of Linear Algebra
ECE 83 Fall 2 Statistical Signal Processing instructor: R Nowak Lecture 3: Review of Linear Algebra Very often in this course we will represent signals as vectors and operators (eg, filters, transforms,
More informationReview of Linear Algebra Definitions, Change of Basis, Trace, Spectral Theorem
Review of Linear Algebra Definitions, Change of Basis, Trace, Spectral Theorem Steven J. Miller June 19, 2004 Abstract Matrices can be thought of as rectangular (often square) arrays of numbers, or as
More informationLecture 3: Review of Linear Algebra
ECE 83 Fall 2 Statistical Signal Processing instructor: R Nowak, scribe: R Nowak Lecture 3: Review of Linear Algebra Very often in this course we will represent signals as vectors and operators (eg, filters,
More informationMath 4153 Exam 3 Review. The syllabus for Exam 3 is Chapter 6 (pages ), Chapter 7 through page 137, and Chapter 8 through page 182 in Axler.
Math 453 Exam 3 Review The syllabus for Exam 3 is Chapter 6 (pages 2), Chapter 7 through page 37, and Chapter 8 through page 82 in Axler.. You should be sure to know precise definition of the terms we
More informationMATH 369 Linear Algebra
Assignment # Problem # A father and his two sons are together 00 years old. The father is twice as old as his older son and 30 years older than his younger son. How old is each person? Problem # 2 Determine
More informationEigenvectors and Hermitian Operators
7 71 Eigenvalues and Eigenvectors Basic Definitions Let L be a linear operator on some given vector space V A scalar λ and a nonzero vector v are referred to, respectively, as an eigenvalue and corresponding
More informationLecture 11: Eigenvalues and Eigenvectors
Lecture : Eigenvalues and Eigenvectors De nition.. Let A be a square matrix (or linear transformation). A number λ is called an eigenvalue of A if there exists a nonzero vector u such that A u λ u. ()
More information1 Planar rotations. Math Abstract Linear Algebra Fall 2011, section E1 Orthogonal matrices and rotations
Math 46  Abstract Linear Algebra Fall, section E Orthogonal matrices and rotations Planar rotations Definition: A planar rotation in R n is a linear map R: R n R n such that there is a plane P R n (through
More informationMath 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam
Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system
More informationELEMENTARY LINEAR ALGEBRA WITH APPLICATIONS. 1. Linear Equations and Matrices
ELEMENTARY LINEAR ALGEBRA WITH APPLICATIONS KOLMAN & HILL NOTES BY OTTO MUTZBAUER 11 Systems of Linear Equations 1 Linear Equations and Matrices Numbers in our context are either real numbers or complex
More informationMath 110 Linear Algebra Midterm 2 Review October 28, 2017
Math 11 Linear Algebra Midterm Review October 8, 17 Material Material covered on the midterm includes: All lectures from Thursday, Sept. 1st to Tuesday, Oct. 4th Homeworks 9 to 17 Quizzes 5 to 9 Sections
More informationProblems in Linear Algebra and Representation Theory
Problems in Linear Algebra and Representation Theory (Most of these were provided by Victor Ginzburg) The problems appearing below have varying level of difficulty. They are not listed in any specific
More informationPseudoinverse & MoorePenrose Conditions
ECE 275AB Lecture 7 Fall 2008 V1.0 c K. KreutzDelgado, UC San Diego p. 1/1 Lecture 7 ECE 275A Pseudoinverse & MoorePenrose Conditions ECE 275AB Lecture 7 Fall 2008 V1.0 c K. KreutzDelgado, UC San Diego
More informationEigenvalues and Eigenvectors
Chapter 1 Eigenvalues and Eigenvectors Among problems in numerical linear algebra, the determination of the eigenvalues and eigenvectors of matrices is second in importance only to the solution of linear
More informationNONCOMMUTATIVE POLYNOMIAL EQUATIONS. Edward S. Letzter. Introduction
NONCOMMUTATIVE POLYNOMIAL EQUATIONS Edward S Letzter Introduction My aim in these notes is twofold: First, to briefly review some linear algebra Second, to provide you with some new tools and techniques
More informationDiagonalization by a unitary similarity transformation
Physics 116A Winter 2011 Diagonalization by a unitary similarity transformation In these notes, we will always assume that the vector space V is a complex ndimensional space 1 Introduction A semisimple
More informationLinear Algebra: Characteristic Value Problem
Linear Algebra: Characteristic Value Problem . The Characteristic Value Problem Let < be the set of real numbers and { be the set of complex numbers. Given an n n real matrix A; does there exist a number
More informationA linear algebra proof of the fundamental theorem of algebra
A linear algebra proof of the fundamental theorem of algebra Andrés E. Caicedo May 18, 2010 Abstract We present a recent proof due to Harm Derksen, that any linear operator in a complex finite dimensional
More informationNo books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fillintheblank question.
Math 304 Final Exam (May 8) Spring 206 No books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fillintheblank question. Name: Section: Question Points
More informationI. Multiple Choice Questions (Answer any eight)
Name of the student : Roll No : CS65: Linear Algebra and Random Processes Exam  Course Instructor : Prashanth L.A. Date : Sep24, 27 Duration : 5 minutes INSTRUCTIONS: The test will be evaluated ONLY
More informationLinear Algebra Massoud Malek
CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product
More informationc c c c c c c c c c a 3x3 matrix C= has a determinant determined by
Linear Algebra Determinants and Eigenvalues Introduction: Many important geometric and algebraic properties of square matrices are associated with a single real number revealed by what s known as the determinant.
More informationMath 314/ Exam 2 Blue Exam Solutions December 4, 2008 Instructor: Dr. S. Cooper. Name:
Math 34/84  Exam Blue Exam Solutions December 4, 8 Instructor: Dr. S. Cooper Name: Read each question carefully. Be sure to show all of your work and not just your final conclusion. You may not use your
More informationMath 25a Practice Final #1 Solutions
Math 25a Practice Final #1 Solutions Problem 1. Suppose U and W are subspaces of V such that V = U W. Suppose also that u 1,..., u m is a basis of U and w 1,..., w n is a basis of W. Prove that is a basis
More informationSUMMARY OF MATH 1600
SUMMARY OF MATH 1600 Note: The following list is intended as a study guide for the final exam. It is a continuation of the study guide for the midterm. It does not claim to be a comprehensive list. You
More informationAgenda: Understand the action of A by seeing how it acts on eigenvectors.
Eigenvalues and Eigenvectors If Av=λv with v nonzero, then λ is called an eigenvalue of A and v is called an eigenvector of A corresponding to eigenvalue λ. Agenda: Understand the action of A by seeing
More informationTopics in linear algebra
Chapter 6 Topics in linear algebra 6.1 Change of basis I want to remind you of one of the basic ideas in linear algebra: change of basis. Let F be a field, V and W be finite dimensional vector spaces over
More informationLinear Algebra Final Exam Study Guide Solutions Fall 2012
. Let A = Given that v = 7 7 67 5 75 78 Linear Algebra Final Exam Study Guide Solutions Fall 5 explain why it is not possible to diagonalize A. is an eigenvector for A and λ = is an eigenvalue for A diagonalize
More informationLinear Algebra 2 Final Exam, December 7, 2015 SOLUTIONS. a + 2b = x a + 3b = y. This solves to a = 3x 2y, b = y x. Thus
Linear Algebra 2 Final Exam, December 7, 2015 SOLUTIONS 1. (5.5 points) Let T : R 2 R 4 be a linear mapping satisfying T (1, 1) = ( 1, 0, 2, 3), T (2, 3) = (2, 3, 0, 0). Determine T (x, y) for (x, y) R
More informationLinear Algebra & Geometry why is linear algebra useful in computer vision?
Linear Algebra & Geometry why is linear algebra useful in computer vision? References: Any book on linear algebra! [HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia
More informationHonors Linear Algebra, Spring Homework 8 solutions by Yifei Chen
.. Honors Linear Algebra, Spring 7. Homework 8 solutions by Yifei Chen 8... { { W {v R 4 v α v β } v x, x, x, x 4 x x + x 4 x + x x + x 4 } Solve the linear system above, we get a basis of W is {v,,,,
More informationLecture 11: Finish Gaussian elimination and applications; intro to eigenvalues and eigenvectors (1)
Lecture 11: Finish Gaussian elimination and applications; intro to eigenvalues and eigenvectors (1) Travis Schedler Tue, Oct 18, 2011 (version: Tue, Oct 18, 6:00 PM) Goals (2) Solving systems of equations
More informationMATH 304 Linear Algebra Lecture 33: Bases of eigenvectors. Diagonalization.
MATH 304 Linear Algebra Lecture 33: Bases of eigenvectors. Diagonalization. Eigenvalues and eigenvectors of an operator Definition. Let V be a vector space and L : V V be a linear operator. A number λ
More informationLinear Algebra review Powers of a diagonalizable matrix Spectral decomposition
Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2016 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing
More informationBasic Concepts in Matrix Algebra
Basic Concepts in Matrix Algebra An column array of p elements is called a vector of dimension p and is written as x p 1 = x 1 x 2. x p. The transpose of the column vector x p 1 is row vector x = [x 1
More informationEigenvalues and Eigenvectors 7.2 Diagonalization
Eigenvalues and Eigenvectors 7.2 Diagonalization November 8 Goals Suppose A is square matrix of order n. Provide necessary and sufficient condition when there is an invertible matrix P such that P 1 AP
More informationLinear Algebra: Graduate Level Problems and Solutions. Igor Yanovsky
Linear Algebra: Graduate Level Problems and Solutions Igor Yanovsky Linear Algebra Igor Yanovsky, 5 Disclaimer: This handbook is intended to assist graduate students with qualifying examination preparation.
More information1 9/5 Matrices, vectors, and their applications
1 9/5 Matrices, vectors, and their applications Algebra: study of objects and operations on them. Linear algebra: object: matrices and vectors. operations: addition, multiplication etc. Algorithms/Geometric
More informationMTH50 Spring 07 HW Assignment 7 {From [FIS0]}: Sec 44 #4a h 6; Sec 5 #ad ac 4ae 4 7 The due date for this assignment is 04/05/7 Sec 44 #4a h Evaluate the erminant of the following matrices by any legitimate
More informationREPRESENTATION THEORY WEEK 7
REPRESENTATION THEORY WEEK 7 1. Characters of L k and S n A character of an irreducible representation of L k is a polynomial function constant on every conjugacy class. Since the set of diagonalizable
More informationThen since v is an eigenvector of T, we have (T λi)v = 0. Then
Problem F02.10. Let T be a linear operator on a finite dimensional complex inner product space V such that T T = T T. Show that there is an orthonormal basis of V consisting of eigenvectors of B. Solution.
More informationTHE MINIMAL POLYNOMIAL AND SOME APPLICATIONS
THE MINIMAL POLYNOMIAL AND SOME APPLICATIONS KEITH CONRAD. Introduction The easiest matrices to compute with are the diagonal ones. The sum and product of diagonal matrices can be computed componentwise
More informationLecture 12: Diagonalization
Lecture : Diagonalization A square matrix D is called diagonal if all but diagonal entries are zero: a a D a n 5 n n. () Diagonal matrices are the simplest matrices that are basically equivalent to vectors
More informationLinear Algebra in Actuarial Science: Slides to the lecture
Linear Algebra in Actuarial Science: Slides to the lecture Fall Semester 2010/2011 Linear Algebra is a ToolBox Linear Equation Systems Discretization of differential equations: solving linear equations
More informationGroup Theory. 1. Show that Φ maps a conjugacy class of G into a conjugacy class of G.
Group Theory Jan 2012 #6 Prove that if G is a nonabelian group, then G/Z(G) is not cyclic. Aug 2011 #9 (Jan 2010 #5) Prove that any group of order p 2 is an abelian group. Jan 2012 #7 G is nonabelian nite
More informationwhich arises when we compute the orthogonal projection of a vector y in a subspace with an orthogonal basis. Hence assume that P y = A ij = x j, x i
MODULE 6 Topics: GramSchmidt orthogonalization process We begin by observing that if the vectors {x j } N are mutually orthogonal in an inner product space V then they are necessarily linearly independent.
More informationCalculating determinants for larger matrices
Day 26 Calculating determinants for larger matrices We now proceed to define det A for n n matrices A As before, we are looking for a function of A that satisfies the product formula det(ab) = det A det
More informationAlgebra I Fall 2007
MIT OpenCourseWare http://ocw.mit.edu 18.701 Algebra I Fall 007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.701 007 Geometry of the Special Unitary
More informationPh.D. Katarína Bellová Page 1 Mathematics 2 (10PHYBIPMA2) EXAM  Solutions, 20 July 2017, 10:00 12:00 All answers to be justified.
PhD Katarína Bellová Page 1 Mathematics 2 (10PHYBIPMA2 EXAM  Solutions, 20 July 2017, 10:00 12:00 All answers to be justified Problem 1 [ points]: For which parameters λ R does the following system
More informationIntroduction to Matrix Algebra
Introduction to Matrix Algebra August 18, 2010 1 Vectors 1.1 Notations A pdimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the line. When p
More informationEigenvalues and Eigenvectors
LECTURE 3 Eigenvalues and Eigenvectors Definition 3.. Let A be an n n matrix. The eigenvalueeigenvector problem for A is the problem of finding numbers λ and vectors v R 3 such that Av = λv. If λ, v are
More informationRecall the convention that, for us, all vectors are column vectors.
Some linear algebra Recall the convention that, for us, all vectors are column vectors. 1. Symmetric matrices Let A be a real matrix. Recall that a complex number λ is an eigenvalue of A if there exists
More informationBoolean InnerProduct Spaces and Boolean Matrices
Boolean InnerProduct Spaces and Boolean Matrices Stan Gudder Department of Mathematics, University of Denver, Denver CO 80208 Frédéric Latrémolière Department of Mathematics, University of Denver, Denver
More informationTravis Schedler. Thurs, Oct 27, 2011 (version: Thurs, Oct 27, 1:00 PM)
Lecture 13: Proof of existence of uppertriangular matrices for complex linear transformations; invariant subspaces and block uppertriangular matrices for real linear transformations (1) Travis Schedler
More informationVectors and Matrices Statistics with Vectors and Matrices
Vectors and Matrices Statistics with Vectors and Matrices Lecture 3 September 7, 005 Analysis Lecture #39/7/005 Slide 1 of 55 Today s Lecture Vectors and Matrices (Supplement A  augmented with SAS proc
More information1. Elements of linear algebra
Elements of linear algebra Contents Solving systems of linear equations 2 Diagonal form of a square matrix 3 The Jordan normal form of a square matrix 4 The GramSchmidt orthogonalization process 5 The
More informationMATH Linear Algebra
MATH 304  Linear Algebra In the previous note we learned an important algorithm to produce orthogonal sequences of vectors called the GrammSchmidt orthogonalization process. GrammSchmidt orthogonalization
More informationChapter Two Elements of Linear Algebra
Chapter Two Elements of Linear Algebra Previously, in chapter one, we have considered single first order differential equations involving a single unknown function. In the next chapter we will begin to
More informationTopic 2 Quiz 2. choice C implies B and B implies C. correctchoice C implies B, but B does not imply C
Topic 1 Quiz 1 text A reduced rowechelon form of a 3 by 4 matrix can have how many leading one s? choice must have 3 choice may have 1, 2, or 3 correctchoice may have 0, 1, 2, or 3 choice may have 0,
More informationSingular Value Decomposition (SVD) and Polar Form
Chapter 2 Singular Value Decomposition (SVD) and Polar Form 2.1 Polar Form In this chapter, we assume that we are dealing with a real Euclidean space E. Let f: E E be any linear map. In general, it may
More informationStat 159/259: Linear Algebra Notes
Stat 159/259: Linear Algebra Notes Jarrod Millman November 16, 2015 Abstract These notes assume you ve taken a semester of undergraduate linear algebra. In particular, I assume you are familiar with the
More information1 Invariant subspaces
MATH 2040 Linear Algebra II Lecture Notes by Martin Li Lecture 8 Eigenvalues, eigenvectors and invariant subspaces 1 In previous lectures we have studied linear maps T : V W from a vector space V to another
More informationJordan Canonical Form
Jordan Canonical Form Massoud Malek Jordan normal form or Jordan canonical form (named in honor of Camille Jordan) shows that by changing the basis, a given square matrix M can be transformed into a certain
More information