Distance between physical theories based on information theory

Size: px
Start display at page:

Download "Distance between physical theories based on information theory"

Transcription

1 Distance between physical theories based on information theory Jacques Calmet 1 and Xavier Calmet 2 Institute for Cryptography and Security (IKS) Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany Physics and Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH, UK Abstract We introduce a concept of distance between physical theories described by an action. The definition of the distance is based on the relative entropy. 1 calmet@ira.uka.de 2 x.calmet@sussex.ac.uk

2 1 Introduction Our understanding of nature is based on models which provide an approximation of the physical reality. In many areas of science, such as, for example, physics or some areas of chemistry, models are often defined in terms of an action which allows to derive the equations of motion of the model using the least action principle. A model is uniquely defined through its action which is a functional of the fields introduced in the model. It also depends on potential coupling constants and mass parameters. Equivalently, the model can be given in terms of a Hamiltonian which can be derived from to the action using a Legendre transformation. Building a Hamiltonian or equivalently an action requires to specify the symmetries (e.g. space-time or gauge symmetries) of the theory as well as the values of the parameters of the theory such as the number of fields, the spin-statistics of these fields and the value of the mass and coupling parameters at some energy scale. One also needs to impose boundary conditions on the fields in order to obtain the field equations of the theory and to fix the vacuum around which one develops the theory. However, once this has been done the theory is usually uniquely determined. Observables can then be computed within a certain approximation and compared to experiments. This allows to compare a theory to experiments and thus to determine if the theory under consideration is giving an adequate description of nature within the precision of the calculation done using the theory and of the performed experiments. One could however consider a different question and ask how different are two theories. In other words, we are interested in introducing the notion of a distance between two models described by an action. In the present work, we extend our considerations to quantum field theories. One option would be to compute all possible observables and to do a chi-square fit, but this would be an extremely cumbersome and for most practical cases impossible task. Furthermore, one might try to compare theories that do not even have the same number of observables in which case the method proposed previously would fail. We propose to introduce the notion of a distance between Hamiltonians, and thus physical theories, based on the Kullback-Leibler relative entropy which is frequently used in information theory as a concept of a distance. However, this is not a distance in the usual sense. A distance d(p 1, P 2 ) between two points P 1 and P 2 has to satisfy the following three axioms: 1. Positive definiteness: P 1, P 2 : d(p 1, P 2 ) 0 2. Symmetry d(p 1, P 2 ) = d(p 2, P 1 ) 3. Triangle inequality: P 1, P 2, P 3 : d(p 1, P 2 ) d(p 1, P 3 ) + d(p 2, P 3 ). 1

3 However, it is often useful to introduce a concept of distance between elements of more abstract sets in any field of knowledge as very well illustrated by the recently published encyclopedia [1]. An even more recent attempt is to define a distance between dialects in linguistics. In a domain closer to our interests, one could ask for example what is the distance between two distributions between e.g. the Gaussian and binomial distributions. It is useful to introduce the concept of entropy as a mean to define such distances. In information theory, Shannon entropy [2] represents the information content of a message or, from the receiver point of view, the uncertainty about the message the sender produced prior to its reception. It is defined as i p(i) log p(i), (1) where p(i) is the probability of receiving the message i. The unit used is the bit. The relative entropy can be used to define a distance between two distributions p(i) and g(i). The Kullback-Leibler [3] distance or relative entropy is defined as D(g p) = i g(i) log g(i) p(i) (2) where p(i) is the real distribution and g(i) is an assumed distribution. Clearly the Kullback- Leibler relative entropy is not a distance in the usual sense: it satisfies the positive definiteness axiom, but not the symmetry or the triangle inequality axioms. It is nevertheless useful to think of the relative entropy as a distance between distributions. The Kullback-Leibler distance is relevant to discrete sets. It can be generalized to the case of continuous sets. For our purposes, a probability distribution over some field (or set) X is a distribution p : X R, such that 1. X d4 x p(x) = 1 2. For any finite subset S X, S d4 x p(x) > 0. Let us now apply this definition to models described by an action or a Hamiltonian. For a given Hamiltonian there exists a density matrix ρ defined by ρ = n φ n w n φ n (3) where φ n, n {1...N} are the states of the system and w n is the probability of finding the system in the state φ n. The von Neumann entropy is then given by S = Tr(ρ log ρ). (4) 2

4 Given two Hamiltonians H 1 and H 2 and the corresponding density matrices ρ 1 and ρ 2, we can introduce the relative entropy of ρ 1 with respect to ρ 2 : D(ρ 1 ρ 2 ) = Tr(ρ 1 (log ρ 1 log ρ 2 )) (5) This distance is clearly not a distance as understood in metric spaces but it is nevertheless useful to think of the relative entropy as a distance between density matrices and thus Hamiltonians. Let us illustrate how to use this new concept through a concrete example which comes from statistical mechanics. The density matrix can also be defined in terms of the partition function Z. In statistical mechanics the partition function is defined as ( Z = Tr exp H ), (6) kt where k = ev K matrix is then given by is the Boltzmann constant and T the temperature. The density ρ(t ) = 1 ( Z exp H ). (7) kt The Kullback-Leibler relative entropy can be expressed in terms of the partition functions. In that case eq.(5) reads D(ρ 1 ρ 2 ) = β 1 d dβ 1 ln Z 1 ln Z 1 + ln Z 2 β 2 Tr(ρ 1 H 2 ), (8) where β i = (kt i ) 1. We interpret this distance as a distance between the Hamiltonian H 1 corresponding to ρ 1 and the Hamiltonian H 2 corresponding to ρ 2. For models with no overlap, i.e., Tr(ρ 1 H 2 ) = Tr(H 2 ), the distance is just the entropy of the model (up to a factor k) determined by the Hamiltonian H 1. If H 1 = H 2 and for the same temperature then the distance is vanishing. We shall calculate the relative distance between one-dimensional harmonic oscillator and a one-dimensional free particle and compared it to the distance between an one-dimensional anharmonic oscillator and a one-dimensional free particle. All three theories are assumed to be in contact with a thermal bath having a temperature T and we shall assume that the overlap between the models is small and negligeable. The partition function of a onedimensional free particle in a system of length L is given by [4] mkt Z free = L 2π. (9) 3

5 The magnitude of L is of no particular importance as we shall use Z free as a comparator for both the harmonic and anharmonic oscillators. The partition function for a one-dimensional harmonic oscillator is given by [4] Z HO = 1 2 sinh ω 2kT (10) where ω is the frequency of the oscillator. Finally for an anharmonic oscillator (H = H 0 +λx 4, the partition function is given by [5] ( Z AHO Z HO 1 3λ ω ω 4m 2 ω 3 kt coth2 kt ). (11) The distance between the Hamiltonian of the one dimensional harmonic oscillator and that of the one-dimension free particle can now easily be computed. One finds: d(h HO H free ) = D(ρ HO ρ free ) (12) = 1 ( ) ( ( )) ωβ 1 ωβ 2 ωβ coth log 2 2 csch 2 In order to get numbers, we set all parameters of this distance to unity in their respective units. We find d(h HO H free ) = The distance between the Hamiltonian of the one dimensional anharmonic oscillator and that of the one-dimension free particle is then given by d(h AHO H free ) = 1 ( ) ( ( )) ωβ 1 ωβ 2 ωβ coth log 2 2 csch (13) 2 3λ( 2 ωβ 2 coth( ωβ) csch 2 ( ωβ) β coth 2 ( ωβ) 2m 2 ω 2 + O(λ) Setting again all parameters with the exception of λ to unity, we find d(h AHO H free ) = for λ = It is easy to see that one obtains d(h HO H free ) = d(h AHO H free ) in the limit λ 0. Our result matches the intuition that the anharmonic oscillator is further distant from the one dimensional free particle model than the harmonic oscillator is from the one dimensional free particle model. The same definition of a distance can be applied to any physical theory which can be defined in terms of an action. In particular it is particularly interesting to apply this notion to quantum field theories. Once an action I[fields] which is a functional of all the fields introduced in the model as well as a function of the coupling constants is known, one can introduce the partition function Z Z = D[fields] exp ( βi[fields, renormalized parameters]) (14) 4

6 where β is the imaginary time. Generally speaking, it is not always possible to calculate the partition function exactly for a quantum field theory, but this can often be done in perturbation theory. To the best of our knowledge, the concept of distance between physical theories described by an action has never been proposed. It fits well however into the present trend to quantify any sort of ontological knowledge [6]. Another potential application is that of the landscape scenario in string theory where the notion of a distance between theories could be important [7] to probe the separation from a given vacuum to that of the standard model of particle physics. Finally, note that we have considered here the case of the Kullback-Leibler entropy. We can easily extend our considerations to continuous sets of models. In other words, we can introduce Fisher s metric over a continuous space of physical models. This allows us to define a local metric on theory spaces with a physical distance ds 2 = g ij dx i dx j where x i are local coordinates. Furthermore, it has been shown that Fisher s metric can be derived from an action [8]. It would be interesting to see if imposing symmetries at the level of the action can lead to interesting relations between physical models. References [1] M.M. Deza and E. Deza, Encyclopedia of Distances, Springer, Heidelberg, [2] C. E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal 27: , , July and October [3] S. Kullback, Information Theory and Statistics, John Wiley, New York, [4] R. P. Feynman, Statistical Mechanics, Advanced Book Classics, ISBN [5] G. Parisi, Statistical Field Theory, Addison Wesley, [6] J. Calmet, An Introduction to the Quantification of Culture, Proc. of Advances in Multiagent Systems, Robotics and Cybernetics: Theory and Practice, Volume III, G. Lasker and J. Pfalzgraf eds., InterSym-2009, Baden-Baden, forthcoming, [7] M. R. Douglas, Spaces of Quantum Field Theories, arxiv: , [8] X. Calmet and J. Calmet, Phys. Rev. E 71, ,

Beyond the Second Law of Thermodynamics

Beyond the Second Law of Thermodynamics Beyond the Second Law of Thermodynamics C. Van den Broeck R. Kawai J. M. R. Parrondo Colloquium at University of Alabama, September 9, 2007 The Second Law of Thermodynamics There exists no thermodynamic

More information

PhD in Theoretical Particle Physics Academic Year 2017/2018

PhD in Theoretical Particle Physics Academic Year 2017/2018 July 10, 017 SISSA Entrance Examination PhD in Theoretical Particle Physics Academic Year 017/018 S olve two among the four problems presented. Problem I Consider a quantum harmonic oscillator in one spatial

More information

Lecture 18: Quantum Information Theory and Holevo s Bound

Lecture 18: Quantum Information Theory and Holevo s Bound Quantum Computation (CMU 1-59BB, Fall 2015) Lecture 1: Quantum Information Theory and Holevo s Bound November 10, 2015 Lecturer: John Wright Scribe: Nicolas Resch 1 Question In today s lecture, we will

More information

Geometric Entropy: Black Hole Background

Geometric Entropy: Black Hole Background Geometric Entropy: Black Hole Background Frank Wilczek Center for Theoretical Physics, MIT, Cambridge MA 02139 USA March 13, 2014 Abstract I review the derivation of Hawking temperature and entropy through

More information

Lecture 19 October 28, 2015

Lecture 19 October 28, 2015 PHYS 7895: Quantum Information Theory Fall 2015 Prof. Mark M. Wilde Lecture 19 October 28, 2015 Scribe: Mark M. Wilde This document is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike

More information

Entanglement: concept, measures and open problems

Entanglement: concept, measures and open problems Entanglement: concept, measures and open problems Division of Mathematical Physics Lund University June 2013 Project in Quantum information. Supervisor: Peter Samuelsson Outline 1 Motivation for study

More information

Lecture 2: Perfect Secrecy and its Limitations

Lecture 2: Perfect Secrecy and its Limitations CS 4501-6501 Topics in Cryptography 26 Jan 2018 Lecture 2: Perfect Secrecy and its Limitations Lecturer: Mohammad Mahmoody Scribe: Mohammad Mahmoody 1 Introduction Last time, we informally defined encryption

More information

Lecture: Quantum Information

Lecture: Quantum Information Lecture: Quantum Information Transcribed by: Crystal Noel and Da An (Chi Chi) November 10, 016 1 Final Proect Information Find an issue related to class you are interested in and either: read some papers

More information

Universal Quantum Simulator, Local Convertibility and Edge States in Many-Body Systems Fabio Franchini

Universal Quantum Simulator, Local Convertibility and Edge States in Many-Body Systems Fabio Franchini New Frontiers in Theoretical Physics XXXIV Convegno Nazionale di Fisica Teorica - Cortona Universal Quantum Simulator, Local Convertibility and Edge States in Many-Body Systems Fabio Franchini Collaborators:

More information

Kyle Reing University of Southern California April 18, 2018

Kyle Reing University of Southern California April 18, 2018 Renormalization Group and Information Theory Kyle Reing University of Southern California April 18, 2018 Overview Renormalization Group Overview Information Theoretic Preliminaries Real Space Mutual Information

More information

A Holevo-type bound for a Hilbert Schmidt distance measure

A Holevo-type bound for a Hilbert Schmidt distance measure Journal of Quantum Information Science, 205, *,** Published Online **** 204 in SciRes. http://www.scirp.org/journal/**** http://dx.doi.org/0.4236/****.204.***** A Holevo-type bound for a Hilbert Schmidt

More information

AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013

AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013 AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013 Lecturer: Dr. Mark Tame Introduction With the emergence of new types of information, in this case

More information

Lecture 5 - Information theory

Lecture 5 - Information theory Lecture 5 - Information theory Jan Bouda FI MU May 18, 2012 Jan Bouda (FI MU) Lecture 5 - Information theory May 18, 2012 1 / 42 Part I Uncertainty and entropy Jan Bouda (FI MU) Lecture 5 - Information

More information

Basics on quantum information

Basics on quantum information Basics on quantum information Mika Hirvensalo Department of Mathematics and Statistics University of Turku mikhirve@utu.fi Thessaloniki, May 2014 Mika Hirvensalo Basics on quantum information 1 of 49 Brief

More information

1 Equal-time and Time-ordered Green Functions

1 Equal-time and Time-ordered Green Functions 1 Equal-time and Time-ordered Green Functions Predictions for observables in quantum field theories are made by computing expectation values of products of field operators, which are called Green functions

More information

Shunlong Luo. Academy of Mathematics and Systems Science Chinese Academy of Sciences

Shunlong Luo. Academy of Mathematics and Systems Science Chinese Academy of Sciences Superadditivity of Fisher Information: Classical vs. Quantum Shunlong Luo Academy of Mathematics and Systems Science Chinese Academy of Sciences luosl@amt.ac.cn Information Geometry and its Applications

More information

Basics on quantum information

Basics on quantum information Basics on quantum information Mika Hirvensalo Department of Mathematics and Statistics University of Turku mikhirve@utu.fi Thessaloniki, May 2016 Mika Hirvensalo Basics on quantum information 1 of 52 Brief

More information

1 The Quantum Anharmonic Oscillator

1 The Quantum Anharmonic Oscillator 1 The Quantum Anharmonic Oscillator Perturbation theory based on Feynman diagrams can be used to calculate observables in Quantum Electrodynamics, like the anomalous magnetic moment of the electron, and

More information

31st Jerusalem Winter School in Theoretical Physics: Problem Set 2

31st Jerusalem Winter School in Theoretical Physics: Problem Set 2 31st Jerusalem Winter School in Theoretical Physics: Problem Set Contents Frank Verstraete: Quantum Information and Quantum Matter : 3 : Solution to Problem 9 7 Daniel Harlow: Black Holes and Quantum Information

More information

5 Mutual Information and Channel Capacity

5 Mutual Information and Channel Capacity 5 Mutual Information and Channel Capacity In Section 2, we have seen the use of a quantity called entropy to measure the amount of randomness in a random variable. In this section, we introduce several

More information

S.K. Saikin May 22, Lecture 13

S.K. Saikin May 22, Lecture 13 S.K. Saikin May, 007 13 Decoherence I Lecture 13 A physical qubit is never isolated from its environment completely. As a trivial example, as in the case of a solid state qubit implementation, the physical

More information

An Axiomatic Approach to Quantum Mechanics

An Axiomatic Approach to Quantum Mechanics Available online at www.worldscientificnews.com WSN 116 (019) 09-1 EISSN 39-19 An Axiomatic Approach to Quantum Mechanics M. A. I. S. Rajakaruna 1,a, K. A. I. L. Wijewardena Gamalath,b 1 178/A, Sri Wimalarama

More information

Concentration of Measure Effects in Quantum Information. Patrick Hayden (McGill University)

Concentration of Measure Effects in Quantum Information. Patrick Hayden (McGill University) Concentration of Measure Effects in Quantum Information Patrick Hayden (McGill University) Overview Superdense coding Random states and random subspaces Superdense coding of quantum states Quantum mechanical

More information

Information in Biology

Information in Biology Information in Biology CRI - Centre de Recherches Interdisciplinaires, Paris May 2012 Information processing is an essential part of Life. Thinking about it in quantitative terms may is useful. 1 Living

More information

A new approach to quantum metrics. Nik Weaver. (joint work with Greg Kuperberg, in progress)

A new approach to quantum metrics. Nik Weaver. (joint work with Greg Kuperberg, in progress) A new approach to quantum metrics Nik Weaver (joint work with Greg Kuperberg, in progress) Definition. A dual operator system is a linear subspace V of B(H) such that I V A V implies A V V is weak*-closed.

More information

Density Matrices. Chapter Introduction

Density Matrices. Chapter Introduction Chapter 15 Density Matrices 15.1 Introduction Density matrices are employed in quantum mechanics to give a partial description of a quantum system, one from which certain details have been omitted. For

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 25 Sep 2000

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 25 Sep 2000 technical note, cond-mat/0009244 arxiv:cond-mat/0009244v2 [cond-mat.stat-mech] 25 Sep 2000 Jarzynski Relations for Quantum Systems and Some Applications Hal Tasaki 1 1 Introduction In a series of papers

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 4 May 1997

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 4 May 1997 Coupled Harmonic Oscillators and Feynman s Rest of the arxiv:cond-mat/9705029v [cond-mat.stat-mech] 4 May 997 Universe D. Han National Aeronautics and Space Administration, Goddard Space Flight Center,

More information

Lecture 35: December The fundamental statistical distances

Lecture 35: December The fundamental statistical distances 36-705: Intermediate Statistics Fall 207 Lecturer: Siva Balakrishnan Lecture 35: December 4 Today we will discuss distances and metrics between distributions that are useful in statistics. I will be lose

More information

The Measure of Information Uniqueness of the Logarithmic Uncertainty Measure

The Measure of Information Uniqueness of the Logarithmic Uncertainty Measure The Measure of Information Uniqueness of the Logarithmic Uncertainty Measure Almudena Colacito Information Theory Fall 2014 December 17th, 2014 The Measure of Information 1 / 15 The Measurement of Information

More information

Information Theory in Intelligent Decision Making

Information Theory in Intelligent Decision Making Information Theory in Intelligent Decision Making Adaptive Systems and Algorithms Research Groups School of Computer Science University of Hertfordshire, United Kingdom June 7, 2015 Information Theory

More information

221A Lecture Notes Convergence of Perturbation Theory

221A Lecture Notes Convergence of Perturbation Theory A Lecture Notes Convergence of Perturbation Theory Asymptotic Series An asymptotic series in a parameter ɛ of a function is given in a power series f(ɛ) = f n ɛ n () n=0 where the series actually does

More information

Problem Set 1 Classical Worldsheet Dynamics

Problem Set 1 Classical Worldsheet Dynamics MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics String Theory (8.821) Prof. J. McGreevy Fall 2007 Problem Set 1 Classical Worldsheet Dynamics Reading: GSW 2.1, Polchinski 1.2-1.4. Try 3.2-3.3.

More information

Information in Biology

Information in Biology Lecture 3: Information in Biology Tsvi Tlusty, tsvi@unist.ac.kr Living information is carried by molecular channels Living systems I. Self-replicating information processors Environment II. III. Evolve

More information

Physics 4022 Notes on Density Matrices

Physics 4022 Notes on Density Matrices Physics 40 Notes on Density Matrices Definition: For a system in a definite normalized state ψ > the density matrix ρ is ρ = ψ >< ψ 1) From Eq 1 it is obvious that in the basis defined by ψ > and other

More information

ds/cft Contents Lecturer: Prof. Juan Maldacena Transcriber: Alexander Chen August 7, Lecture Lecture 2 5

ds/cft Contents Lecturer: Prof. Juan Maldacena Transcriber: Alexander Chen August 7, Lecture Lecture 2 5 ds/cft Lecturer: Prof. Juan Maldacena Transcriber: Alexander Chen August 7, 2011 Contents 1 Lecture 1 2 2 Lecture 2 5 1 ds/cft Lecture 1 1 Lecture 1 We will first review calculation of quantum field theory

More information

Holographic Entanglement Entropy

Holographic Entanglement Entropy Motivation Time-dependent Multi-region Summary Holographic entanglement entropy for time dependent states and disconnected regions Durham University INT08: From Strings to Things, April 3, 2008 VH, M.

More information

ECE 4400:693 - Information Theory

ECE 4400:693 - Information Theory ECE 4400:693 - Information Theory Dr. Nghi Tran Lecture 8: Differential Entropy Dr. Nghi Tran (ECE-University of Akron) ECE 4400:693 Lecture 1 / 43 Outline 1 Review: Entropy of discrete RVs 2 Differential

More information

(Again, this quantity is the correlation function of the two spins.) With z chosen along ˆn 1, this quantity is easily computed (exercise):

(Again, this quantity is the correlation function of the two spins.) With z chosen along ˆn 1, this quantity is easily computed (exercise): Lecture 30 Relevant sections in text: 3.9, 5.1 Bell s theorem (cont.) Assuming suitable hidden variables coupled with an assumption of locality to determine the spin observables with certainty we found

More information

Entanglement Entropy in Extended Quantum Systems

Entanglement Entropy in Extended Quantum Systems Entanglement Entropy in Extended Quantum Systems John Cardy University of Oxford STATPHYS 23 Genoa Outline A. Universal properties of entanglement entropy near quantum critical points B. Behaviour of entanglement

More information

Variational Calculation of Eective Classical. November 12, Abstract

Variational Calculation of Eective Classical. November 12, Abstract Variational Calculation of Eective Classical Potential at T to Higher Orders H.Kleinert H.Meyer November, 99 Abstract Using the new variational approach proposed recently for a systematic improvement of

More information

The general reason for approach to thermal equilibrium of macroscopic quantu

The general reason for approach to thermal equilibrium of macroscopic quantu The general reason for approach to thermal equilibrium of macroscopic quantum systems 10 May 2011 Joint work with S. Goldstein, J. L. Lebowitz, C. Mastrodonato, and N. Zanghì. Claim macroscopic quantum

More information

Verschränkung versus Stosszahlansatz: The second law rests on low correlation levels in our cosmic neighborhood

Verschränkung versus Stosszahlansatz: The second law rests on low correlation levels in our cosmic neighborhood Verschränkung versus Stosszahlansatz: The second law rests on low correlation levels in our cosmic neighborhood Talk presented at the 2012 Anacapa Society Meeting Hamline University, Saint Paul, Minnesota

More information

PHYS 352 Homework 2 Solutions

PHYS 352 Homework 2 Solutions PHYS 352 Homework 2 Solutions Aaron Mowitz (, 2, and 3) and Nachi Stern (4 and 5) Problem The purpose of doing a Legendre transform is to change a function of one or more variables into a function of variables

More information

Quantum Entanglement and Measurement

Quantum Entanglement and Measurement Quantum Entanglement and Measurement Haye Hinrichsen in collaboration with Theresa Christ University of Würzburg, Germany 2nd Workhop on Quantum Information and Thermodynamics Korea Institute for Advanced

More information

Path Integrals. Andreas Wipf Theoretisch-Physikalisches-Institut Friedrich-Schiller-Universität, Max Wien Platz Jena

Path Integrals. Andreas Wipf Theoretisch-Physikalisches-Institut Friedrich-Schiller-Universität, Max Wien Platz Jena Path Integrals Andreas Wipf Theoretisch-Physikalisches-Institut Friedrich-Schiller-Universität, Max Wien Platz 1 07743 Jena 5. Auflage WS 2008/09 1. Auflage, SS 1991 (ETH-Zürich) I ask readers to report

More information

Chapter 2 Learning with Boltzmann Gibbs Statistical Mechanics

Chapter 2 Learning with Boltzmann Gibbs Statistical Mechanics Chapter 2 Learning with Boltzmann Gibbs Statistical Mechanics o, o [78] Kleoboulos of Lindos (6th century B.C.) 2. Boltzmann Gibbs Entropy 2.. Entropic Forms The entropic forms (.) and (.3) that we have

More information

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 We are directly observing the history of the universe as we look deeply into the sky. JUN 30, 2016 ZZXianyu (CMSA) 2 At ~10 4 yrs the universe becomes

More information

Quantum Thermodynamics

Quantum Thermodynamics Quantum Thermodynamics In this chapter we wish to give some insights to quantum thermodynamics. It can be seen as an introduction to the topic, however not a broad one but rather an introduction by examples.

More information

Useful Concepts from Information Theory

Useful Concepts from Information Theory Chapter 2 Useful Concepts from Information Theory 2.1 Quantifying Information 2.1.1 The entropy It turns out that there is a way to quantify the intuitive notion that some messages contain more information

More information

Introduction to Quantum Key Distribution

Introduction to Quantum Key Distribution Fakultät für Physik Ludwig-Maximilians-Universität München January 2010 Overview Introduction Security Proof Introduction What is information? A mathematical concept describing knowledge. Basic unit is

More information

Typicality paradigm in Quantum Statistical Thermodynamics Barbara Fresch, Giorgio Moro Dipartimento Scienze Chimiche Università di Padova

Typicality paradigm in Quantum Statistical Thermodynamics Barbara Fresch, Giorgio Moro Dipartimento Scienze Chimiche Università di Padova Typicality paradigm in Quantum Statistical Thermodynamics Barbara Fresch, Giorgio Moro Dipartimento Scienze Chimiche Università di Padova Outline 1) The framework: microcanonical statistics versus the

More information

Warming Up to Finite-Temperature Field Theory

Warming Up to Finite-Temperature Field Theory Warming Up to Finite-Temperature Field Theory Michael Shamma UC Santa Cruz March 2016 Overview Motivations Quantum statistical mechanics (quick!) Path integral representation of partition function in quantum

More information

9. Distance measures. 9.1 Classical information measures. Head Tail. How similar/close are two probability distributions? Trace distance.

9. Distance measures. 9.1 Classical information measures. Head Tail. How similar/close are two probability distributions? Trace distance. 9. Distance measures 9.1 Classical information measures How similar/close are two probability distributions? Trace distance Fidelity Example: Flipping two coins, one fair one biased Head Tail Trace distance

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechanics Rajdeep Sensarma! sensarma@theory.tifr.res.in Lecture #22 Path Integrals and QM Recap of Last Class Statistical Mechanics and path integrals in imaginary time Imaginary time

More information

Random Bit Generation

Random Bit Generation .. Random Bit Generation Theory and Practice Joshua E. Hill Department of Mathematics, University of California, Irvine Math 235B January 11, 2013 http://bit.ly/xwdbtv v. 1 / 47 Talk Outline 1 Introduction

More information

Symmetry of the Dielectric Tensor

Symmetry of the Dielectric Tensor Symmetry of the Dielectric Tensor Curtis R. Menyuk June 11, 2010 In this note, I derive the symmetry of the dielectric tensor in two ways. The derivations are taken from Landau and Lifshitz s Statistical

More information

...Thermodynamics. Lecture 15 November 9, / 26

...Thermodynamics. Lecture 15 November 9, / 26 ...Thermodynamics Conjugate variables Positive specific heats and compressibility Clausius Clapeyron Relation for Phase boundary Phase defined by discontinuities in state variables Lecture 15 November

More information

Entropy and Lorentz Transformations

Entropy and Lorentz Transformations published in Phys. Lett. A, 47 343 (990). Entropy and Lorentz Transformations Y. S. Kim Department of Physics, University of Maryland, College Par, Maryland 074 E. P. Wigner Department of Physics, Princeton

More information

Information Theory and Predictability Lecture 6: Maximum Entropy Techniques

Information Theory and Predictability Lecture 6: Maximum Entropy Techniques Information Theory and Predictability Lecture 6: Maximum Entropy Techniques 1 Philosophy Often with random variables of high dimensional systems it is difficult to deduce the appropriate probability distribution

More information

PHYSICS 219 Homework 2 Due in class, Wednesday May 3. Makeup lectures on Friday May 12 and 19, usual time. Location will be ISB 231 or 235.

PHYSICS 219 Homework 2 Due in class, Wednesday May 3. Makeup lectures on Friday May 12 and 19, usual time. Location will be ISB 231 or 235. PHYSICS 219 Homework 2 Due in class, Wednesday May 3 Note: Makeup lectures on Friday May 12 and 19, usual time. Location will be ISB 231 or 235. No lecture: May 8 (I m away at a meeting) and May 29 (holiday).

More information

An Inverse Mass Expansion for Entanglement Entropy. Free Massive Scalar Field Theory

An Inverse Mass Expansion for Entanglement Entropy. Free Massive Scalar Field Theory in Free Massive Scalar Field Theory NCSR Demokritos National Technical University of Athens based on arxiv:1711.02618 [hep-th] in collaboration with Dimitris Katsinis March 28 2018 Entanglement and Entanglement

More information

Recursive Speed-up in Partition Function Evaluation

Recursive Speed-up in Partition Function Evaluation Recursive Speed-up in Partition Function Evaluation A. Balaž, A. Belić and A. Bogojević Institute of Physics, P.O.B. 57, Belgrade, Yugoslavia Abstract We present a simple recursive relation that leads

More information

arxiv: v2 [quant-ph] 17 Nov 2016

arxiv: v2 [quant-ph] 17 Nov 2016 Improved Uncertainty Relation in the Presence of Quantum Memory Yunlong Xiao, 1, Naihuan Jing, 3,4 Shao-Ming Fei, 5, and Xianqing Li-Jost 1 School of Mathematics, South China University of Technology,

More information

Statistical physics models belonging to the generalised exponential family

Statistical physics models belonging to the generalised exponential family Statistical physics models belonging to the generalised exponential family Jan Naudts Universiteit Antwerpen 1. The generalized exponential family 6. The porous media equation 2. Theorem 7. The microcanonical

More information

Matrix Product States

Matrix Product States Matrix Product States Ian McCulloch University of Queensland Centre for Engineered Quantum Systems 28 August 2017 Hilbert space (Hilbert) space is big. Really big. You just won t believe how vastly, hugely,

More information

arxiv:quant-ph/ v5 10 Feb 2003

arxiv:quant-ph/ v5 10 Feb 2003 Quantum entanglement of identical particles Yu Shi Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom and Theory of

More information

Entropy measures of physics via complexity

Entropy measures of physics via complexity Entropy measures of physics via complexity Giorgio Kaniadakis and Flemming Topsøe Politecnico of Torino, Department of Physics and University of Copenhagen, Department of Mathematics 1 Introduction, Background

More information

Entropy in Classical and Quantum Information Theory

Entropy in Classical and Quantum Information Theory Entropy in Classical and Quantum Information Theory William Fedus Physics Department, University of California, San Diego. Entropy is a central concept in both classical and quantum information theory,

More information

PHY305: Notes on Entanglement and the Density Matrix

PHY305: Notes on Entanglement and the Density Matrix PHY305: Notes on Entanglement and the Density Matrix Here follows a short summary of the definitions of qubits, EPR states, entanglement, the density matrix, pure states, mixed states, measurement, and

More information

Biology as Information Dynamics

Biology as Information Dynamics Biology as Information Dynamics John Baez Stanford Complexity Group April 20, 2017 What is life? Self-replicating information! Information about what? How to self-replicate! It is clear that biology has

More information

Part I. Entropy. Information Theory and Networks. Section 1. Entropy: definitions. Lecture 5: Entropy

Part I. Entropy. Information Theory and Networks. Section 1. Entropy: definitions. Lecture 5: Entropy and Networks Lecture 5: Matthew Roughan http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/InformationTheory/ Part I School of Mathematical Sciences, University

More information

Quantum Momentum Distributions

Quantum Momentum Distributions Journal of Low Temperature Physics, Vol. 147, Nos. 5/6, June 2007 ( 2007) DOI: 10.1007/s10909-007-9344-7 Quantum Momentum Distributions Benjamin Withers and Henry R. Glyde Department of Physics and Astronomy,

More information

Measures of irreversibility in quantum phase space

Measures of irreversibility in quantum phase space SISSA, Trieste Measures of irreversibility in quantum phase space Gabriel Teixeira Landi University of São Paulo In collaboration with Jader P. Santos (USP), Raphael Drummond (UFMG) and Mauro Paternostro

More information

Second quantization: where quantization and particles come from?

Second quantization: where quantization and particles come from? 110 Phys460.nb 7 Second quantization: where quantization and particles come from? 7.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system? 7.1.1.Lagrangian Lagrangian

More information

Quantum Fisher Information. Shunlong Luo Beijing, Aug , 2006

Quantum Fisher Information. Shunlong Luo Beijing, Aug , 2006 Quantum Fisher Information Shunlong Luo luosl@amt.ac.cn Beijing, Aug. 10-12, 2006 Outline 1. Classical Fisher Information 2. Quantum Fisher Information, Logarithm 3. Quantum Fisher Information, Square

More information

Lecture contents. A few concepts from Quantum Mechanics. Tight-binding model Solid state physics review

Lecture contents. A few concepts from Quantum Mechanics. Tight-binding model Solid state physics review Lecture contents A few concepts from Quantum Mechanics Particle in a well Two wells: QM perturbation theory Many wells (atoms) BAND formation Tight-binding model Solid state physics review Approximations

More information

The statistical origins of quantum mechanics

The statistical origins of quantum mechanics The statistical origins of quantum mechanics U. Klein Universitity of Linz Institute for Theoretical Physics A-4040 Linz, Austria September 3, 2010 Abstract It is shown that Schrödinger s equation may

More information

Entropies & Information Theory

Entropies & Information Theory Entropies & Information Theory LECTURE I Nilanjana Datta University of Cambridge,U.K. See lecture notes on: http://www.qi.damtp.cam.ac.uk/node/223 Quantum Information Theory Born out of Classical Information

More information

Phase space in classical physics

Phase space in classical physics Pase space in classical pysics Quantum mecanically, we can actually COU te number of microstates consistent wit a given macrostate, specified (for example) by te total energy. In general, eac microstate

More information

Ensembles and incomplete information

Ensembles and incomplete information p. 1/32 Ensembles and incomplete information So far in this course, we have described quantum systems by states that are normalized vectors in a complex Hilbert space. This works so long as (a) the system

More information

Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement

Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement Karol Życzkowski in collaboration with Lukasz Rudnicki (Warsaw) Pawe l Horodecki (Gdańsk) Jagiellonian University, Cracow,

More information

Physics 239/139 Spring 2018 Assignment 2 Solutions

Physics 239/139 Spring 2018 Assignment 2 Solutions University of California at San Diego Department of Physics Prof. John McGreevy Physics 39/139 Spring 018 Assignment Solutions Due 1:30pm Monday, April 16, 018 1. Classical circuits brain-warmer. (a) Show

More information

An Introduction to Quantum Computation and Quantum Information

An Introduction to Quantum Computation and Quantum Information An to and Graduate Group in Applied Math University of California, Davis March 13, 009 A bit of history Benioff 198 : First paper published mentioning quantum computing Feynman 198 : Use a quantum computer

More information

The Partition Function for the Anharmonic Oscillator in the Strong-Coupling Regime

The Partition Function for the Anharmonic Oscillator in the Strong-Coupling Regime The Partition Function for the Anharmonic Oscillator in the Strong-Coupling Regime Centro Brasileiro de Pesquisas Fisicas - CBPF Rua Dr. Xavier Sigaud 5, Rio de Janeiro, RJ, 2229-8, Brazil E-mail: nfuxsvai@cbpf.br

More information

Biology as Information Dynamics

Biology as Information Dynamics Biology as Information Dynamics John Baez Biological Complexity: Can It Be Quantified? Beyond Center February 2, 2017 IT S ALL RELATIVE EVEN INFORMATION! When you learn something, how much information

More information

Mean-field equations for higher-order quantum statistical models : an information geometric approach

Mean-field equations for higher-order quantum statistical models : an information geometric approach Mean-field equations for higher-order quantum statistical models : an information geometric approach N Yapage Department of Mathematics University of Ruhuna, Matara Sri Lanka. arxiv:1202.5726v1 [quant-ph]

More information

Asymptotic series in quantum mechanics: anharmonic oscillator

Asymptotic series in quantum mechanics: anharmonic oscillator Asymptotic series in quantum mechanics: anharmonic oscillator Facultat de Física, Universitat de Barcelona, Diagonal 645, 0808 Barcelona, Spain Thesis supervisors: Dr Bartomeu Fiol Núñez, Dr Alejandro

More information

Black hole thermodynamics

Black hole thermodynamics Black hole thermodynamics Daniel Grumiller Institute for Theoretical Physics Vienna University of Technology Spring workshop/kosmologietag, Bielefeld, May 2014 with R. McNees and J. Salzer: 1402.5127 Main

More information

Notes on Renormalization Group: Berezinskii-Kosterlitz-Thouless (BKT) transition and Sine-Gordon model

Notes on Renormalization Group: Berezinskii-Kosterlitz-Thouless (BKT) transition and Sine-Gordon model Notes on Renormalization Group: Berezinskii-Kosterlitz-Thouless (BKT) transition and Sine-Gordon model Yi Zhou (Dated: December 4, 05) We shall discuss BKT transition based on +D sine-gordon model. I.

More information

Quantum Information Types

Quantum Information Types qitd181 Quantum Information Types Robert B. Griffiths Version of 6 February 2012 References: R. B. Griffiths, Types of Quantum Information, Phys. Rev. A 76 (2007) 062320; arxiv:0707.3752 Contents 1 Introduction

More information

Entanglement in Many-Body Fermion Systems

Entanglement in Many-Body Fermion Systems Entanglement in Many-Body Fermion Systems Michelle Storms 1, 2 1 Department of Physics, University of California Davis, CA 95616, USA 2 Department of Physics and Astronomy, Ohio Wesleyan University, Delaware,

More information

Thermal quantum discord in Heisenberg models with Dzyaloshinski Moriya interaction

Thermal quantum discord in Heisenberg models with Dzyaloshinski Moriya interaction Thermal quantum discord in Heisenberg models with Dzyaloshinski Moriya interaction Wang Lin-Cheng(), Yan Jun-Yan(), and Yi Xue-Xi() School of Physics and Optoelectronic Technology, Dalian University of

More information

Fractional Quantum Mechanics and Lévy Path Integrals

Fractional Quantum Mechanics and Lévy Path Integrals arxiv:hep-ph/9910419v2 22 Oct 1999 Fractional Quantum Mechanics and Lévy Path Integrals Nikolai Laskin Isotrace Laboratory, University of Toronto 60 St. George Street, Toronto, ON M5S 1A7 Canada Abstract

More information

Quantum Mechanics II

Quantum Mechanics II Quantum Mechanics II Prof. Boris Altshuler March 8, 011 1 Lecture 19 1.1 Second Quantization Recall our results from simple harmonic oscillator. We know the Hamiltonian very well so no need to repeat here.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble The object of this endeavor is to impose a simple probability

More information

3 Dimensional String Theory

3 Dimensional String Theory 3 Dimensional String Theory New ideas for interactions and particles Abstract...1 Asymmetry in the interference occurrences of oscillators...1 Spontaneously broken symmetry in the Planck distribution law...3

More information

Recursive calculation of effective potential and variational resummation

Recursive calculation of effective potential and variational resummation JOURNAL OF MATHEMATICAL PHYSICS 46, 032101 2005 Recursive calculation of effective potential and variational resummation Sebastian F. Brandt and Hagen Kleinert Freie Universität Berlin, Institut für Theoretische

More information

The first law of general quantum resource theories

The first law of general quantum resource theories The first law of general quantum resource theories Carlo Sparaciari 1, Lídia del Rio 2, Carlo Maria Scandolo 3, Philippe Faist 4, and Jonathan Oppenheim 1 1 Department of Physics and Astronomy, University

More information

14 Renormalization 1: Basics

14 Renormalization 1: Basics 4 Renormalization : Basics 4. Introduction Functional integrals over fields have been mentioned briefly in Part I devoted to path integrals. In brief, time ordering properties and Gaussian properties generalize

More information