Extreme events as a multi-point feature - Entropy production as a criterion for cascade process

Size: px
Start display at page:

Download "Extreme events as a multi-point feature - Entropy production as a criterion for cascade process"

Transcription

1 Extreme events as a multi-point feature - Entropy production as a criterion for cascade process J. P., Nico Reinke, Ali Hadjihosseni, Daniel Nickelsen and Andreas Engel Institute of Physics, Carl von Ossietzky University of Oldenburg,

2 - motivation wind energy rogue waves financial data - n-point statistics of turbulence - nonequilibrium thermodynamics and extrem

3 modern wind turbines WEC >5MW area = m2 energy resource Wind WPI Wien 2015 Center for Wind Energy Research

4 wind measurements and data analysis wind conditions after IEC measurement at hub height in front of a turbine measured time series Center for Wind Energy Research WPI Wien 2015

5 wind ressource reference wind speed annual mean wind speed V ref profile extreme events -gusts Center for Wind Energy Research WPI Wien 2015

6 ~ 10 m/s wind measurements and data analysis characterization after IEC norm - or what is a gust?? 10 min Mittelwerte Center for Wind Energy Research WPI Wien 2015

7 statistics of gusts P(u τ σ 1 ) τ = 4 s P rob(u ø > 6æ) º 10 4 º /day Boundary-Layer Meteorology 108 (2003) P rob(u ø > 6æ) º /3000 years Center for Wind Energy Research WPI Wien 2015

8 P WT = 1 2 c p( ) u 3 wind A dynamics of power conversion Center for Wind Energy Research WPI Wien 2015

9 increment statistics of power fluctuations highly intermittent and turbulent power dynamics from wind turbines and wind farms Wind τ= 1s Wind (farm) τ=10s, Wind (farm) τ=1000s, Wind (farm) Guassian PDF τ=1s Wind (single) τ=10s, Wind (single) τ=1000s, Wind (single) P(Xτ) (b) (b) X τ /σ τ P. MIlan et.al.prl 110, (2013) Center for Wind Energy Research WPI Wien 2015

10 finance scale dependent quantity for measuring the disorder x(t + τ ) Q(x,r) => r(t, τ ) = or R(t, τ ) = log r(t, τ ) x(t) p(r) [a.u.] return or log return for different time scales T h 4h 1h 15 min 4 min R/σ 0.5

11 rogue waves measurement Japan 8 6 Surface elevation [m] data from stoch. Time [s] model based in multi point statistics Surface elevation [m] Time [s] Time [s]

12 turbulent cascade

13 turbulent cascade: - large vortices are generating smaller multi scale analysis u r := u(x + r) u(x) L <u n r > r n Z <u n r >= u n r p(u r ) du r 10 4 L r r r η u / σ η

14 n-point statistics - expressed by increment statistics n-point statistics n- point statistics expressed by increment statistics p(u(x 1 ),...,u(x n+1 )) = p(u,...,u,u(x r1 rn 1 )) u ri = u(x + r i ) u(x i ) = p(u r1,...,u rn u(x 1 )) p(u(x 1 ) x 1 x n+1 " # $

15 p(u(x 1 ),...,u(x n+1 )) n-point statistics = p(u r1 u r2,u(x 1 ))... p(u rn 1 u rn,u(x 1 )) p(u(x 1 )) L r... η Markow prop & cascade with Fokker-Planck Equation j p(u rj u rk,u(x 1 )) rj D (1) (u rj,r j,u(x 1 2 j D (2) (u rj,r j,u(x 1 ))} p(u rj u rk,u(x 1 ))

16 n-point statistics... Markow prop & cascade with Fokker-Planck Equ j p(u rj u rk,u(x 1 )) rj D (1) (u rj,r j,u(x 1 2 j D (2) (u rj,r j,u(x 1 ))} p(u rj u rk,u(x 1 )) ' (#) #$ $ #$ %#%*%+%*%# +%,%%%$%%%-%" + &. +%,%" + %-%" + &. +%,%%%" + %-%" + &. " # $ # " %&%" # shi$%of%dri$%func-on, % * +", $%$ $%" $%& $%' (#(-(.(-(#.(/((($(((0(". )1.(/(". (0(". )'.(/(((". (0(". )' " # $ # " ()(" # %no%u/dependence%of%diffusion%func-on% Stresing et.al. New Journal of Physics 12 (2010)

17 how are the scaling and the process approaches connected multi scale analysis u r := u(x + r) u(x) <u n r > r n L r 2 r 1 stochastic cascade process evolving in r - multi r u r p r (u r ) r η u / σ

18 cascade process as stochastic process -2- stochastic process - stationary stochastic process - jump process stochastic process - jump process

19 thermodynamics of cascade L new approach to non- equilibrium thermodynamics by Seifert PRL 95 (2005) r 2 r 1 the evolution along cascade as thermodynamical process entropy production along a single trajectory trajectory obeys an integral fluctuation theorem - Jarzynski relation PRL 78 (1997) η

20 thermodynamics of cascade 1st law : energy balance of a single trajectory U = W (u r ) Q(u r ) U equilibrium energy difference W (u r ) work done on trajectory Q(u r ) heat transferred to system entropy production for different paths u r (Seifert 2005) S(u r )= Q(u r) k B T

21 thermodynamics of cascade : entropy balance 2nd law : entropy balance entropy production in the system (Seifert 2005) the potential S m (u r )= Z r u u '(u r,r)dr is the stationary solution of the Fokker-Planck equ. contribution of fluctuations relaxing to the steady state '(u r )=lnd (2) (u r,r) Z ur 1 D (1) (u 0,r) D (2) (u 0,r) du0 entropy production along trajectory S = ln p r(u r ) p r0 (u 0 ) contribution of the path along the steady state

22 thermodynamics of cascade : entropy balance 2nd law : entropy balance entropy production in the system (Seifert 2005) S m (u r )= entropy production along trajectory Z r u u '(u r,r)dr S = ln p(u L,L) p(u, ) stoch process ' (#) #$ $ #$ %#%*%+%*%# +%,%%%$%%%-%" + &. +%,%" + %-%" + &. +%,%%%" + %-%" + &. " # $ # " %&%" # shi$%of%dri$%func-on, % * +", $%$ $%" $%& $%' (#(-(.(-(#.(/((($(((0(". )1.(/(". (0(". )'.(/(((". (0(". )' " # $ # " ()(" # %no%u/dependence%of%diffusion%func-on%

23 thermodynamics of cascade : entropy balance 2nd law : entropy balance entropy production in the system (Seifert 2005) S m (u r )= entropy production along trajectory Z r u u '(u r,r)dr S = ln p(u L,L) p(u, ) stoch process experimental quantities r ' (#) #$ $ #$ %#%*%+%*%# +%,%%%$%%%-%" + &. +%,%" + %-%" + &. +%,%%%" + %-%" + &. " # $ # " %&%" # shi$%of%dri$%func-on, % * +", $%$ $%" $%& $%' (#(-(.(-(#.(/((($(((0(". )1.(/(". (0(". )'.(/(((". (0(". )' " # $ # " ()(" # %no%u/dependence%of%diffusion%func-on% u / σ

24 thermodynamics of cascade : entropy balance 2nd law : entropy balance entropy production in the system (Seifert 2005) S m (u r )= entropy production along trajectory Z r u u '(u r,r)dr S = total entropy production ln p(u L,L) p(u, ) experimental quantities stoch process S tot (u r )=S m (u r )+ S hs tot (u r )i 0 he S tot(u r ) i =1 2nd law integral fluctuation theorem Seifert (2005)

25 test of validity of the fluctuation theorem Renner et al JFM (2001) 1.5 exp [ Stot] N he S tot(u r ) i N N Nickelsen Engel PRL (2013)

26 results for turbulent cascade: - 1st fulfillment of fluctuation theorem he S tot(u r ) i =1 This integral fluctuation theorem - a generalized Jarzynski s relation - is truly universal since it holds for - any kind of initial condition, - any time dependence of force and potential, with and without detailed balance, - any length of trajectory without the need for waiting for relaxation. Seifert (2005)

27 - 1st fulfillment of fluctuation theorem he S tot(u r ) i =1-2nd test of the validity of turbulence models S = ln p(u L,L) p(u, ) S m (u r )= Z r u u '(u r,r)dr => IFT holds only for non - scaling stochastic processes

28 summary - nonequi. thermodynamics generalized 2nd law - (entropy maximization) fulfilled for cascade - non scaling process fits to data (?? => new window for blow up??>

29 extreme events and its entropy production S tot (u r ) to fulfill the IFT - there must be paths with positive and negative entropy production

30 extreme events and its entropy production S tot (u(r)) to fulfill the IFT - there must be paths with positive and negative entropy production 6 4 DS.pro d d S Row Index

31 1.) positive entropy production S tot (u r ) > 0 event: large small u L with low probability p(u L ) u with high probability p(u ) u L S tot (u r ) u L u

32 2.) extreme and negative entropy production S tot (u r ) < 0 event small u L with high probability 10 1 large u with low probability 10 3 extreme event S tot (u r ) u L u

33 3.) extreme and normal entropy production S tot (u r ) event 10 1 large u L with low probability 10 3 large u with low probability S tot (u r ) u L u

34 End concept of stochastic cascade - multipoint statistics - non- equilibrium thermodynamics Thank you

35 references U. Seifert: Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep. Prog. Phys. 75, (2012) D. Nickelsen, A. Engel: Probing small-scale intermittency with a fluctuation theorem; Phys. Rev. Lett. (2012) R. Stresing and J. Peinke : Towards a stochastic multi-point description of turbulence, New Journal of Physics 12, (2010). M. Wächter, et al: The turbulent nature of the atmospheric boundary layer and its impact on the wind energy conversion process, Journal of Turbulence 13, 1-21 (2012) P. Milan, M. Wächter, and J. Peinke : Turbulent character of wind energy, Phys. Rev. Lett. 110, (2013) A. Hadjihosseini, J. Peinke, N. Hoffmann : Stochastic analysis of ocean wave states with and without rogue waves, New Journal of Physics 16, (2014) N. Reinke, D. Nickelsen, A. Engel, and J. Peinke: Application of an Integral Fluctuation Theorem to Turbulent Flows (iti 2015)

stochastic models for turbulence and turbulent driven systems

stochastic models for turbulence and turbulent driven systems stochastic models for turbulence and turbulent driven systems Dank an Mitarbeiter J. Gottschall M. Hölling, M.R. Luhur St Lück P. MIlan A. Nawroth Ph. Rinn N. Reinke Ch. Renner R. Stresing M. Wächter Koopertionen

More information

On the impact of non-gaussian wind statistics on wind turbines - an experimental approach

On the impact of non-gaussian wind statistics on wind turbines - an experimental approach On the impact of non-gaussian wind statistics on wind turbines - an experimental approach Jannik Schottler, N. Reinke, A. Hölling, J. Peinke, M. Hölling ForWind, Center for Wind Energy Research University

More information

LANGEVIN EQUATION AND THERMODYNAMICS

LANGEVIN EQUATION AND THERMODYNAMICS LANGEVIN EQUATION AND THERMODYNAMICS RELATING STOCHASTIC DYNAMICS WITH THERMODYNAMIC LAWS November 10, 2017 1 / 20 MOTIVATION There are at least three levels of description of classical dynamics: thermodynamic,

More information

arxiv: v2 [physics.flu-dyn] 11 Apr 2018

arxiv: v2 [physics.flu-dyn] 11 Apr 2018 Under consideration for publication in J. Fluid Mech. 1 arxiv:172.3679v2 [physics.flu-dyn] 11 Apr 218 On universal features of the turbulent cascade in terms of non-equilibrium thermodynamics Nico Reinke

More information

On the statistics of wind gusts

On the statistics of wind gusts On the statistics of wind gusts F. Boettcher, Ch. Renner, H.-P. Waldl and J. Peinke Department of Physics, University of Oldenburg, D-26111 Oldenburg, Germany Phone: +49 (0)441 798-3007 +49 (0)441 798-3536

More information

Stochastic thermodynamics

Stochastic thermodynamics University of Ljubljana Faculty of Mathematics and Physics Seminar 1b Stochastic thermodynamics Author: Luka Pusovnik Supervisor: prof. dr. Primož Ziherl Abstract The formulation of thermodynamics at a

More information

Wind velocity measurements using a pulsed LIDAR system: first results

Wind velocity measurements using a pulsed LIDAR system: first results Wind velocity measurements using a pulsed LIDAR system: first results MWächter 1, A Rettenmeier 2,MKühn 3 and J Peinke 4 1,4 ForWind Center for Wind Energy Research, University of Oldenburg, Germany 2,3

More information

Fluctuation theorem in systems in contact with different heath baths: theory and experiments.

Fluctuation theorem in systems in contact with different heath baths: theory and experiments. Fluctuation theorem in systems in contact with different heath baths: theory and experiments. Alberto Imparato Institut for Fysik og Astronomi Aarhus Universitet Denmark Workshop Advances in Nonequilibrium

More information

Fragmentation under the scaling symmetry and turbulent cascade with intermittency

Fragmentation under the scaling symmetry and turbulent cascade with intermittency Center for Turbulence Research Annual Research Briefs 23 197 Fragmentation under the scaling symmetry and turbulent cascade with intermittency By M. Gorokhovski 1. Motivation and objectives Fragmentation

More information

and Joachim Peinke ForWind Center for Wind Energy Research Institute of Physics, Carl-von-Ossietzky University Oldenburg Oldenburg, Germany

and Joachim Peinke ForWind Center for Wind Energy Research Institute of Physics, Carl-von-Ossietzky University Oldenburg Oldenburg, Germany Stochastic data analysis for in-situ damage analysis Philip Rinn, 1, a) Hendrik Heißelmann, 1 Matthias Wächter, 1 1, b) and Joachim Peinke ForWind Center for Wind Energy Research Institute of Physics,

More information

Contrasting measures of irreversibility in stochastic and deterministic dynamics

Contrasting measures of irreversibility in stochastic and deterministic dynamics Contrasting measures of irreversibility in stochastic and deterministic dynamics Ian Ford Department of Physics and Astronomy and London Centre for Nanotechnology UCL I J Ford, New J. Phys 17 (2015) 075017

More information

Large-eddy simulations of the internal boundary layer and wake flow within large wind farms

Large-eddy simulations of the internal boundary layer and wake flow within large wind farms Large-eddy simulations of the internal boundary layer and wake flow within large wind farms Björn Witha G. Steinfeld, D. Heinemann ForWind Center for Wind Energy Research Research Group Energy Meteorology

More information

Introduction to Stochastic Thermodynamics: Application to Thermo- and Photo-electricity in small devices

Introduction to Stochastic Thermodynamics: Application to Thermo- and Photo-electricity in small devices Université Libre de Bruxelles Center for Nonlinear Phenomena and Complex Systems Introduction to Stochastic Thermodynamics: Application to Thermo- and Photo-electricity in small devices Massimiliano Esposito

More information

On the Asymptotic Convergence. of the Transient and Steady State Fluctuation Theorems. Gary Ayton and Denis J. Evans. Research School Of Chemistry

On the Asymptotic Convergence. of the Transient and Steady State Fluctuation Theorems. Gary Ayton and Denis J. Evans. Research School Of Chemistry 1 On the Asymptotic Convergence of the Transient and Steady State Fluctuation Theorems. Gary Ayton and Denis J. Evans Research School Of Chemistry Australian National University Canberra, ACT 0200 Australia

More information

Introduction to Fluctuation Theorems

Introduction to Fluctuation Theorems Hyunggyu Park Introduction to Fluctuation Theorems 1. Nonequilibrium processes 2. Brief History of Fluctuation theorems 3. Jarzynski equality & Crooks FT 4. Experiments 5. Probability theory viewpoint

More information

Derivation of the GENERIC form of nonequilibrium thermodynamics from a statistical optimization principle

Derivation of the GENERIC form of nonequilibrium thermodynamics from a statistical optimization principle Derivation of the GENERIC form of nonequilibrium thermodynamics from a statistical optimization principle Bruce Turkington Univ. of Massachusetts Amherst An optimization principle for deriving nonequilibrium

More information

arxiv: v1 [q-fin.gn] 1 Apr 2014

arxiv: v1 [q-fin.gn] 1 Apr 2014 Principal wind turbines for a conditional portfolio approach to wind farms arxiv:144.375v1 [q-fin.gn] 1 Apr 214 Vitor V. Lopes 1,2, Teresa Scholz 3,4, Frank Raischel 5, Pedro G. Lind 6 1 DEIO-CIO, Science

More information

Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence

Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence Rohit Dhariwal PI: Sarma L. Rani Department of Mechanical and Aerospace Engineering The

More information

Lagrangian intermittency in drift-wave turbulence. Wouter Bos

Lagrangian intermittency in drift-wave turbulence. Wouter Bos Lagrangian intermittency in drift-wave turbulence Wouter Bos LMFA, Ecole Centrale de Lyon, Turbulence & Stability Team Acknowledgments Benjamin Kadoch, Kai Schneider, Laurent Chevillard, Julian Scott,

More information

Kolmogorov spectrum of renewable wind and solar power fluctuations

Kolmogorov spectrum of renewable wind and solar power fluctuations Eur. Phys. J. Special Topics c EDP Sciences, Springer-Verlag 2014 DOI: 10.1140/epjst/e2014-02217-8 THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS Regular Article Kolmogorov spectrum of renewable wind and

More information

-MASTER THESIS- ADVANCED ACTIVE POWER AND FREQUENCY CONTROL OF WIND POWER PLANTS

-MASTER THESIS- ADVANCED ACTIVE POWER AND FREQUENCY CONTROL OF WIND POWER PLANTS -MASTER THESIS- ADVANCED ACTIVE POWER AND FREQUENCY CONTROL OF WIND POWER PLANTS C L AU D I U I O N I TA 1, 2, A L I N G EO R G E R A D U C U 1, F LO R I N I OV 2 1 V A T T E N F A L L W I N D P O W E

More information

arxiv: v1 [physics.data-an] 5 Nov 2015

arxiv: v1 [physics.data-an] 5 Nov 2015 Langevin power curve analysis for numerical WEC models with new insights on high frequency power performance Tanja A. Mücke, Matthias Wächter, Patrick Milan, and Joachim Peinke ForWind Center for Wind

More information

arxiv: v2 [cond-mat.stat-mech] 16 Mar 2012

arxiv: v2 [cond-mat.stat-mech] 16 Mar 2012 arxiv:119.658v2 cond-mat.stat-mech] 16 Mar 212 Fluctuation theorems in presence of information gain and feedback Sourabh Lahiri 1, Shubhashis Rana 2 and A. M. Jayannavar 3 Institute of Physics, Bhubaneswar

More information

Entropy Production and Fluctuation Relations in NonMarkovian Systems

Entropy Production and Fluctuation Relations in NonMarkovian Systems Entropy Production and Fluctuation Relations in NonMarkovian Systems Tapio Ala-Nissilä Department of Applied Physics and COMP CoE, Aalto University School of Science (formerly Helsinki University of Technology),

More information

Lecture 3. Design Wind Speed. Tokyo Polytechnic University The 21st Century Center of Excellence Program. Yukio Tamura

Lecture 3. Design Wind Speed. Tokyo Polytechnic University The 21st Century Center of Excellence Program. Yukio Tamura Lecture 3 Design Wind Speed Tokyo Polytechnic University The 21st Century Center of Excellence Program Yukio Tamura Wind Climates Temperature Gradient due to Differential Solar Heating Density Difference

More information

Information Theory in Statistical Mechanics: Equilibrium and Beyond... Benjamin Good

Information Theory in Statistical Mechanics: Equilibrium and Beyond... Benjamin Good Information Theory in Statistical Mechanics: Equilibrium and Beyond... Benjamin Good Principle of Maximum Information Entropy Consider the following problem: we have a number of mutually exclusive outcomes

More information

Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence

Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence Rohit Dhariwal and Vijaya Rani PI: Sarma L. Rani Department of Mechanical and Aerospace

More information

Non-equilibrium phenomena and fluctuation relations

Non-equilibrium phenomena and fluctuation relations Non-equilibrium phenomena and fluctuation relations Lamberto Rondoni Politecnico di Torino Beijing 16 March 2012 http://www.rarenoise.lnl.infn.it/ Outline 1 Background: Local Thermodyamic Equilibrium 2

More information

Optimal Thermodynamic Control and the Riemannian Geometry of Ising magnets

Optimal Thermodynamic Control and the Riemannian Geometry of Ising magnets Optimal Thermodynamic Control and the Riemannian Geometry of Ising magnets Gavin Crooks Lawrence Berkeley National Lab Funding: Citizens Like You! MURI threeplusone.com PRE 92, 060102(R) (2015) NSF, DOE

More information

Preferred spatio-temporal patterns as non-equilibrium currents

Preferred spatio-temporal patterns as non-equilibrium currents Preferred spatio-temporal patterns as non-equilibrium currents Escher Jeffrey B. Weiss Atmospheric and Oceanic Sciences University of Colorado, Boulder Arin Nelson, CU Baylor Fox-Kemper, Brown U Royce

More information

Lagrangian Statistics. of 3D MHD Convection. J. Pratt, W.-C. Müller. Boussinesq Simulation. Lagrangian. simulation. March 1, 2011

Lagrangian Statistics. of 3D MHD Convection. J. Pratt, W.-C. Müller. Boussinesq Simulation. Lagrangian. simulation. March 1, 2011 March 1, 2011 Our approach to the Dynamo Problem dynamo action: amplification of magnetic fields by turbulent flows, generation of large scale structures collaboration with the group of Schüssler et al.

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 1 Aug 2001

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 1 Aug 2001 Financial Market Dynamics arxiv:cond-mat/0108017v1 [cond-mat.stat-mech] 1 Aug 2001 Fredrick Michael and M.D. Johnson Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (May 23,

More information

Dissipative nuclear dynamics

Dissipative nuclear dynamics Dissipative nuclear dynamics Curso de Reacciones Nucleares Programa Inter universitario de Fisica Nuclear Universidad de Santiago de Compostela March 2009 Karl Heinz Schmidt Collective dynamical properties

More information

AGAT 2016, Cargèse a point-vortex toy model

AGAT 2016, Cargèse a point-vortex toy model AGAT 2016, Cargèse a point-vortex toy model Jean-François Pinton CNRS & ENS de Lyon M.P. Rast, JFP, PRE 79 (2009) M.P. Rast, JFP, PRL 107 (2011) M.P. Rast, JFP, P.D. Mininni, PRE 93 (2009) Motivations

More information

The effect of turbulence and gust on sand erosion and dust entrainment during sand storm Xue-Ling Cheng, Fei Hu and Qing-Cun Zeng

The effect of turbulence and gust on sand erosion and dust entrainment during sand storm Xue-Ling Cheng, Fei Hu and Qing-Cun Zeng The effect of turbulence and gust on sand erosion and dust entrainment during sand storm Xue-Ling Cheng, Fei Hu and Qing-Cun Zeng State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric

More information

Information Thermodynamics on Causal Networks

Information Thermodynamics on Causal Networks 1/39 Information Thermodynamics on Causal Networks FSPIP 2013, July 12 2013. Sosuke Ito Dept. of Phys., the Univ. of Tokyo (In collaboration with T. Sagawa) ariv:1306.2756 The second law of thermodynamics

More information

Statistical Mechanics of Active Matter

Statistical Mechanics of Active Matter Statistical Mechanics of Active Matter Umberto Marini Bettolo Marconi University of Camerino, Italy Naples, 24 May,2017 Umberto Marini Bettolo Marconi (2017) Statistical Mechanics of Active Matter 2017

More information

The Kawasaki Identity and the Fluctuation Theorem

The Kawasaki Identity and the Fluctuation Theorem Chapter 6 The Kawasaki Identity and the Fluctuation Theorem This chapter describes the Kawasaki function, exp( Ω t ), and shows that the Kawasaki function follows an identity when the Fluctuation Theorem

More information

On the (multi)scale nature of fluid turbulence

On the (multi)scale nature of fluid turbulence On the (multi)scale nature of fluid turbulence Kolmogorov axiomatics Laurent Chevillard Laboratoire de Physique, ENS Lyon, CNRS, France Laurent Chevillard, Laboratoire de Physique, ENS Lyon, CNRS, France

More information

Mixing at the External Boundary of a Submerged Turbulent Jet

Mixing at the External Boundary of a Submerged Turbulent Jet Mixing at the External Boundary of a Submerged Turbulent Jet A. Eidelman, T. Elperin, N. Kleeorin, I. Rogachevskii, I. Sapir-Katiraie The Ben-Gurion University of the Negev, Beer-Sheva, Israel G. Hazak

More information

The physics of information: from Maxwell s demon to Landauer. Eric Lutz University of Erlangen-Nürnberg

The physics of information: from Maxwell s demon to Landauer. Eric Lutz University of Erlangen-Nürnberg The physics of information: from Maxwell s demon to Landauer Eric Lutz University of Erlangen-Nürnberg Outline 1 Information and physics Information gain: Maxwell and Szilard Information erasure: Landauer

More information

Measures of irreversibility in quantum phase space

Measures of irreversibility in quantum phase space SISSA, Trieste Measures of irreversibility in quantum phase space Gabriel Teixeira Landi University of São Paulo In collaboration with Jader P. Santos (USP), Raphael Drummond (UFMG) and Mauro Paternostro

More information

Scaling forecast models for wind turbulence and wind turbine power intermittency

Scaling forecast models for wind turbulence and wind turbine power intermittency Scaling forecast models for wind turbulence and wind turbine power intermittency Olmo Duran Medina a, François G. Schmitt a, Rudy Calif b a. Univ. Lille, CNRS, Univ. Littoral Côte d Opale, UMR 8187, LOG,

More information

Role of polymers in the mixing of Rayleigh-Taylor turbulence

Role of polymers in the mixing of Rayleigh-Taylor turbulence Physics Department University of Genova Italy Role of polymers in the mixing of Rayleigh-Taylor turbulence Andrea Mazzino andrea.mazzino@unige.it Guido Boffetta: University of Torino (Italy) Stefano Musacchio:

More information

Analysis of Nonstationary Stochastic Processes with. Application to the Fluctuations in the Oil Price

Analysis of Nonstationary Stochastic Processes with. Application to the Fluctuations in the Oil Price Analysis of Nonstationary Stochastic Processes with Application to the Fluctuations in the Oil Price Fatemeh Ghasemi, a Muhammad Sahimi, b J. Peinke, c R. Friedrich, d G. Reza Jafari, e and M. Reza Rahimi

More information

Different approaches to model wind speed based on stochastic differential equations

Different approaches to model wind speed based on stochastic differential equations 1 Universidad de Castilla La Mancha Different approaches to model wind speed based on stochastic differential equations Rafael Zárate-Miñano Escuela de Ingeniería Minera e Industrial de Almadén Universidad

More information

Model error and parameter estimation

Model error and parameter estimation Model error and parameter estimation Chiara Piccolo and Mike Cullen ECMWF Annual Seminar, 11 September 2018 Summary The application of interest is atmospheric data assimilation focus on EDA; A good ensemble

More information

2 Lyapunov Exponent exponent number. Lyapunov spectrum for colour conductivity of 8 WCA disks.

2 Lyapunov Exponent exponent number. Lyapunov spectrum for colour conductivity of 8 WCA disks. 3 2 Lyapunov Exponent 1-1 -2-3 5 1 15 exponent number Lyapunov spectrum for colour conductivity of 8 WCA disks. 2 3 Lyapunov exponent 2 1-1 -2-3 5 1 15 exponent number Lyapunov spectrum for shear flow

More information

Melting of Ultrathin Lubricant Film Due to Dissipative Heating of Friction Surfaces

Melting of Ultrathin Lubricant Film Due to Dissipative Heating of Friction Surfaces ISSN 6-78, Technical Physics, 7, Vol. 5, No. 9, pp. 9. Pleiades Publishing, Ltd., 7. Original Russian Text.V. Khomenko, I.. Lyashenko, 7, published in Zhurnal Tekhnicheskoœ Fiziki, 7, Vol. 77, No. 9, pp.

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 25 Sep 2000

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 25 Sep 2000 technical note, cond-mat/0009244 arxiv:cond-mat/0009244v2 [cond-mat.stat-mech] 25 Sep 2000 Jarzynski Relations for Quantum Systems and Some Applications Hal Tasaki 1 1 Introduction In a series of papers

More information

Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method. Justyna Czerwinska

Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method. Justyna Czerwinska Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method Justyna Czerwinska Scales and Physical Models years Time hours Engineering Design Limit Process Design minutes Continious Mechanics

More information

Emergent Fluctuation Theorem for Pure Quantum States

Emergent Fluctuation Theorem for Pure Quantum States Emergent Fluctuation Theorem for Pure Quantum States Takahiro Sagawa Department of Applied Physics, The University of Tokyo 16 June 2016, YITP, Kyoto YKIS2016: Quantum Matter, Spacetime and Information

More information

Weak Ergodicity Breaking WCHAOS 2011

Weak Ergodicity Breaking WCHAOS 2011 Weak Ergodicity Breaking Eli Barkai Bar-Ilan University Bel, Burov, Korabel, Margolin, Rebenshtok WCHAOS 211 Outline Single molecule experiments exhibit weak ergodicity breaking. Blinking quantum dots,

More information

Optimal quantum driving of a thermal machine

Optimal quantum driving of a thermal machine Optimal quantum driving of a thermal machine Andrea Mari Vasco Cavina Vittorio Giovannetti Alberto Carlini Workshop on Quantum Science and Quantum Technologies ICTP, Trieste, 12-09-2017 Outline 1. Slow

More information

Ana María Cetto, Luis de la Peña and Andrea Valdés Hernández

Ana María Cetto, Luis de la Peña and Andrea Valdés Hernández Ana María Cetto, Luis de la Peña and Andrea Valdés Hernández Instituto de Física, UNAM EmQM13, Vienna, 3-6 October 2013 1 Planck's law as a consequence of the zero-point field Equilibrium radiation field

More information

Irreversibility and the arrow of time in a quenched quantum system. Eric Lutz Department of Physics University of Erlangen-Nuremberg

Irreversibility and the arrow of time in a quenched quantum system. Eric Lutz Department of Physics University of Erlangen-Nuremberg Irreversibility and the arrow of time in a quenched quantum system Eric Lutz Department of Physics University of Erlangen-Nuremberg Outline 1 Physics far from equilibrium Entropy production Fluctuation

More information

Emergence of complex structure through co-evolution:

Emergence of complex structure through co-evolution: Emergence of complex structure through co-evolution: The Tangled Nature model of evolutionary ecology Institute for Mathematical Sciences & Department of Mathematics Collaborators: Paul Anderson, Kim Christensen,

More information

Anomalous Transport and Fluctuation Relations: From Theory to Biology

Anomalous Transport and Fluctuation Relations: From Theory to Biology Anomalous Transport and Fluctuation Relations: From Theory to Biology Aleksei V. Chechkin 1, Peter Dieterich 2, Rainer Klages 3 1 Institute for Theoretical Physics, Kharkov, Ukraine 2 Institute for Physiology,

More information

Fluctuation theorems. Proseminar in theoretical physics Vincent Beaud ETH Zürich May 11th 2009

Fluctuation theorems. Proseminar in theoretical physics Vincent Beaud ETH Zürich May 11th 2009 Fluctuation theorems Proseminar in theoretical physics Vincent Beaud ETH Zürich May 11th 2009 Outline Introduction Equilibrium systems Theoretical background Non-equilibrium systems Fluctuations and small

More information

Locality of Energy Transfer

Locality of Energy Transfer (E) Locality of Energy Transfer See T & L, Section 8.2; U. Frisch, Section 7.3 The Essence of the Matter We have seen that energy is transferred from scales >`to scales

More information

(Dynamical) quantum typicality: What is it and what are its physical and computational implications?

(Dynamical) quantum typicality: What is it and what are its physical and computational implications? (Dynamical) : What is it and what are its physical and computational implications? Jochen Gemmer University of Osnabrück, Kassel, May 13th, 214 Outline Thermal relaxation in closed quantum systems? Typicality

More information

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is 1 I. BROWNIAN MOTION The dynamics of small particles whose size is roughly 1 µmt or smaller, in a fluid at room temperature, is extremely erratic, and is called Brownian motion. The velocity of such particles

More information

THREE-BODY INTERACTIONS DRIVE THE TRANSITION TO POLAR ORDER IN A SIMPLE FLOCKING MODEL

THREE-BODY INTERACTIONS DRIVE THE TRANSITION TO POLAR ORDER IN A SIMPLE FLOCKING MODEL THREE-BODY INTERACTIONS DRIVE THE TRANSITION TO POLAR ORDER IN A SIMPLE FLOCKING MODEL Purba Chatterjee and Nigel Goldenfeld Department of Physics University of Illinois at Urbana-Champaign Flocking in

More information

Theory of fractional Lévy diffusion of cold atoms in optical lattices

Theory of fractional Lévy diffusion of cold atoms in optical lattices Theory of fractional Lévy diffusion of cold atoms in optical lattices, Erez Aghion, David Kessler Bar-Ilan Univ. PRL, 108 230602 (2012) PRX, 4 011022 (2014) Fractional Calculus, Leibniz (1695) L Hospital:

More information

Experimental Rectification of Entropy Production by Maxwell s Demon in a Quantum System

Experimental Rectification of Entropy Production by Maxwell s Demon in a Quantum System Experimental Rectification of Entropy Production by Maxwell s Demon in a Quantum System Tiago Barbin Batalhão SUTD, Singapore Work done while at UFABC, Santo André, Brazil Singapore, January 11th, 2017

More information

TURBULENCE IN STRATIFIED ROTATING FLUIDS Joel Sommeria, Coriolis-LEGI Grenoble

TURBULENCE IN STRATIFIED ROTATING FLUIDS Joel Sommeria, Coriolis-LEGI Grenoble TURBULENCE IN STRATIFIED ROTATING FLUIDS Joel Sommeria, Coriolis-LEGI Grenoble Collaborations: Olivier Praud, Toulouse P.H Chavanis, Toulouse F. Bouchet, INLN Nice A. Venaille, PhD student LEGI OVERVIEW

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 21 May 2001 with E. A. Spiegel

More information

Thermodynamics for small devices: From fluctuation relations to stochastic efficiencies. Massimiliano Esposito

Thermodynamics for small devices: From fluctuation relations to stochastic efficiencies. Massimiliano Esposito Thermodynamics for small devices: From fluctuation relations to stochastic efficiencies Massimiliano Esposito Beijing, August 15, 2016 Introduction Thermodynamics in the 19th century: Thermodynamics in

More information

Data Science in Academic Research & Physics of Wind Energy

Data Science in Academic Research & Physics of Wind Energy Data Science in Academic Research & Physics of Wind Energy Dr. Junling Huang Philomathia Research Fellow Berkeley Energy & Climate Institute University of California Berkeley Data Science in Academic Research

More information

Shape of the return probability density function and extreme value statistics

Shape of the return probability density function and extreme value statistics Shape of the return probability density function and extreme value statistics 13/09/03 Int. Workshop on Risk and Regulation, Budapest Overview I aim to elucidate a relation between one field of research

More information

Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences

Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences PHYSICAL REVIEW E VOLUME 60, NUMBER 3 SEPTEMBER 1999 Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences Gavin E. Crooks* Department of Chemistry, University

More information

Thermodynamics of histories: application to systems with glassy dynamics

Thermodynamics of histories: application to systems with glassy dynamics Thermodynamics of histories: application to systems with glassy dynamics Vivien Lecomte 1,2, Cécile Appert-Rolland 1, Estelle Pitard 3, Kristina van Duijvendijk 1,2, Frédéric van Wijland 1,2 Juan P. Garrahan

More information

Thermodynamics and Phase Coexistence in Nonequilibrium Steady States

Thermodynamics and Phase Coexistence in Nonequilibrium Steady States Thermodynamics and Phase Coexistence in Nonequilibrium Steady States Ronald Dickman Universidade Federal de Minas Gerais R.D. & R. Motai, Phys Rev E 89, 032134 (2014) R.D., Phys Rev E 90, 062123 (2014)

More information

Nonlinear Analysis: Modelling and Control, Vilnius, IMI, 1998, No 3 KINK-EXCITATION OF N-SYSTEM UNDER SPATIO -TEMPORAL NOISE. R.

Nonlinear Analysis: Modelling and Control, Vilnius, IMI, 1998, No 3 KINK-EXCITATION OF N-SYSTEM UNDER SPATIO -TEMPORAL NOISE. R. Nonlinear Analysis: Modelling and Control Vilnius IMI 1998 No 3 KINK-EXCITATION OF N-SYSTEM UNDER SPATIO -TEMPORAL NOISE R. Bakanas Semiconductor Physics Institute Go štauto 11 6 Vilnius Lithuania Vilnius

More information

Fokker-Planck calculation of spintorque switching rates: comparison with telegraph-noise data

Fokker-Planck calculation of spintorque switching rates: comparison with telegraph-noise data Fokker-Planck calculation of spintorque switching rates: comparison with telegraph-noise data P. B.Visscher and D. M. Apalkov Department of Physics and Astronomy The University of Alabama This project

More information

arxiv: v1 [physics.data-an] 3 Aug 2015

arxiv: v1 [physics.data-an] 3 Aug 2015 Capturing rogue waves by multi-point statistics arxiv:8.399v [physics.data-an] 3 Aug 2 Ali Hadjihosseini, Matthias Wächter, Norbert P. Hoffmann, 2, 3 and Joachim Peinke, 4 ForWind - Center for Wind Energy

More information

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale Miguel Rubi References S.R. de Groot and P. Mazur, Non equilibrium Thermodynamics, Dover, New York, 1984 J.M. Vilar and

More information

CHAPTER 9 LECTURE NOTES

CHAPTER 9 LECTURE NOTES CHAPTER 9 LECTURE NOTES 9.1, 9.2: Rate of a reaction For a general reaction of the type A + 3B 2Y, the rates of consumption of A and B, and the rate of formation of Y are defined as follows: Rate of consumption

More information

Metropolis, 2D Ising model

Metropolis, 2D Ising model Metropolis, 2D Ising model You can get visual understanding from the java applets available, like: http://physics.ucsc.edu/~peter/ising/ising.html Average value of spin is magnetization. Abs of this as

More information

Monte Carlo Methods in Statistical Mechanics

Monte Carlo Methods in Statistical Mechanics Monte Carlo Methods in Statistical Mechanics Mario G. Del Pópolo Atomistic Simulation Centre School of Mathematics and Physics Queen s University Belfast Belfast Mario G. Del Pópolo Statistical Mechanics

More information

Order and Disorder in Open Systems

Order and Disorder in Open Systems Order and Disorder in Open Systems Alfred Hubler and James P. Crutchfield Alfred Hubler is the director of the Center for Complex Systems Research at the University of Illinois at Urbana-Champaign (hubler.alfred@gmail.com,

More information

Non equilibrium thermodynamic transformations. Giovanni Jona-Lasinio

Non equilibrium thermodynamic transformations. Giovanni Jona-Lasinio Non equilibrium thermodynamic transformations Giovanni Jona-Lasinio Kyoto, July 29, 2013 1. PRELIMINARIES 2. RARE FLUCTUATIONS 3. THERMODYNAMIC TRANSFORMATIONS 1. PRELIMINARIES Over the last ten years,

More information

Variational data assimilation

Variational data assimilation Background and methods NCEO, Dept. of Meteorology, Univ. of Reading 710 March 2018, Univ. of Reading Bayes' Theorem Bayes' Theorem p(x y) = posterior distribution = p(x) p(y x) p(y) prior distribution

More information

From time series to superstatistics

From time series to superstatistics From time series to superstatistics Christian Beck School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E 4NS, United Kingdom Ezechiel G. D. Cohen The Rockefeller University,

More information

Mathematical Structures of Statistical Mechanics: from equilibrium to nonequilibrium and beyond Hao Ge

Mathematical Structures of Statistical Mechanics: from equilibrium to nonequilibrium and beyond Hao Ge Mathematical Structures of Statistical Mechanics: from equilibrium to nonequilibrium and beyond Hao Ge Beijing International Center for Mathematical Research and Biodynamic Optical Imaging Center Peking

More information

Maxwell's Demon in Biochemical Signal Transduction

Maxwell's Demon in Biochemical Signal Transduction Maxwell's Demon in Biochemical Signal Transduction Takahiro Sagawa Department of Applied Physics, University of Tokyo New Frontiers in Non-equilibrium Physics 2015 28 July 2015, YITP, Kyoto Collaborators

More information

Quantum Molecular Dynamics Basics

Quantum Molecular Dynamics Basics Quantum Molecular Dynamics Basics Aiichiro Nakano Collaboratory for Advanced Computing & Simulations Depts. of Computer Science, Physics & Astronomy, Chemical Engineering & Materials Science, and Biological

More information

arxiv: v1 [cond-mat.stat-mech] 15 Jan 2012

arxiv: v1 [cond-mat.stat-mech] 15 Jan 2012 arxiv:2.32v [cond-mat.stat-mech] 5 Jan 22 The nonextensive entropy approach versus the stochastic in describing subdiffusion Tadeusz Koszto lowicz Institute of Physics, Jan Kochanowski University, ul.

More information

Exactly solvable model of continuous stationary 1/ f noise

Exactly solvable model of continuous stationary 1/ f noise PHYSICAL REVIEW E 7, 006 005 Exactly solvable model of continuous stationary / f noise James P. Gleeson* Applied Mathematics, University College Cork, Cork, Ireland Received 6 December 004; published 8

More information

arxiv: v4 [cond-mat.stat-mech] 17 Dec 2015

arxiv: v4 [cond-mat.stat-mech] 17 Dec 2015 Decision Making in the Arrow of Time arxiv:158.218v4 [cond-mat.stat-mech] 17 Dec 215 Édgar Roldán 1,5, Izaak Neri 1,2,5, Meik Dörpinghaus 3,5, Heinrich Meyr 3,4,5, and Frank Jülicher 1,5 1 Max Planck Institute

More information

J. Stat. Mech. (2011) P07008

J. Stat. Mech. (2011) P07008 Journal of Statistical Mechanics: Theory and Experiment On thermodynamic and microscopic reversibility Gavin E Crooks Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA

More information

T s change via collisions at boundary (not mechanical interaction)

T s change via collisions at boundary (not mechanical interaction) Lecture 14 Interaction of 2 systems at different temperatures Irreversible processes: 2nd Law of Thermodynamics Chapter 19: Heat Engines and Refrigerators Thermal interactions T s change via collisions

More information

Stochastic equations for thermodynamics

Stochastic equations for thermodynamics J. Chem. Soc., Faraday Trans. 93 (1997) 1751-1753 [arxiv 1503.09171] Stochastic equations for thermodynamics Roumen Tsekov Department of Physical Chemistry, University of Sofia, 1164 Sofia, ulgaria The

More information

Fractional Laplacian

Fractional Laplacian Fractional Laplacian Grzegorz Karch 5ème Ecole de printemps EDP Non-linéaire Mathématiques et Interactions: modèles non locaux et applications Ecole Supérieure de Technologie d Essaouira, du 27 au 30 Avril

More information

Nonequilibrium Thermodynamics of Small Systems: Classical and Quantum Aspects. Massimiliano Esposito

Nonequilibrium Thermodynamics of Small Systems: Classical and Quantum Aspects. Massimiliano Esposito Nonequilibrium Thermodynamics of Small Systems: Classical and Quantum Aspects Massimiliano Esposito Paris May 9-11, 2017 Introduction Thermodynamics in the 19th century: Thermodynamics in the 21th century:

More information

The Jarzynski Equation and the Fluctuation Theorem

The Jarzynski Equation and the Fluctuation Theorem The Jarzynski Equation and the Fluctuation Theorem Kirill Glavatskiy Trial lecture for PhD degree 24 September, NTNU, Trondheim The Jarzynski equation and the fluctuation theorem Fundamental concepts Statiscical

More information

Fluctuation theorem between non-equilibrium states in an RC circuit

Fluctuation theorem between non-equilibrium states in an RC circuit arxiv:1502.00571v3 [cond-mat.stat-mech] 20 Apr 2015 Fluctuation theorem between non-equilibrium states in an RC circuit Léo Granger 1,5, Jumna Mehlis 2,3, Édgar Roldán3,5, Sergio Ciliberto 4, and Holger

More information

The Hopf equation. The Hopf equation A toy model of fluid mechanics

The Hopf equation. The Hopf equation A toy model of fluid mechanics The Hopf equation A toy model of fluid mechanics 1. Main physical features Mathematical description of a continuous medium At the microscopic level, a fluid is a collection of interacting particles (Van

More information

Francesco Califano. Physics Department, University of Pisa. The role of the magnetic field in the interaction of the solar wind with a magnetosphere

Francesco Califano. Physics Department, University of Pisa. The role of the magnetic field in the interaction of the solar wind with a magnetosphere Francesco Califano Physics Department, University of Pisa The role of the magnetic field in the interaction of the solar wind with a magnetosphere Collaboration with M. Faganello & F. Pegoraro Vien na,

More information

Major Concepts Kramers Turnover

Major Concepts Kramers Turnover Major Concepts Kramers Turnover Low/Weak -Friction Limit (Energy Diffusion) Intermediate Regime bounded by TST High/Strong -Friction Limit Smoluchovski (Spatial Diffusion) Fokker-Planck Equation Probability

More information