Virtual prototyping for power diode and IGBT development

Size: px
Start display at page:

Download "Virtual prototyping for power diode and IGBT development"

Transcription

1 Virtual prototyping for power diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30 th Working Group Bipolar

2 Outline 1 Introduction 2 Virtual Prototyping Approach 3 Compact modelling for power devices 4 Assessment of Model Precision 5 Electro-thermal co-simulation in SPICE 6 Summary and Outlook 2

3 Outline 1 Introduction 2 Virtual Prototyping Approach 3 Compact modelling of power devices 4 Assessment of Model Precision 5 Electro-thermal co-simulation in SPICE 6 Summary and Outlook 3

4 Introduction IGBTs and power diodes are bipolar devices Losses are dominated by stored charges Development target: higher power density higher switching frequencies IGBT-modules: Chip development Package development Virtual Prototyping Group in Munich Why virtual prototyping in IGBT-module development? Reduce development costs and time by reducing learning cycles Target: accurately predict switching behavior Strategy: rollout on technology and package projects Model requirements: physics based models for IGBTs and diodes knowledge of parasitic elements and couplings fast model implementation and simulation 4

5 Introduction Not in focus Device triggered oscillation mechanisms Failure mechanisms Device reliability Outcome of VP activities Provide interfaces between different simulation levels (device simulation circuit simulation system simulation) Evaluate and enhance today s modeling precision of compact models to describe switching behavior of bipolar devices within SOA Consider electrical parasitics due to package design Assess current distribution in modules with several devices in parallel Investigate effect of manufacturing process tolerances in FE and BE Consider thermal couplings in modules and propose an electro-thermal co-simulation as full circuit-simulation approach 5

6 Outline 1 Introduction 2 Virtual Prototyping Approach 3 Compact modelling of power devices 4 Assessment of Model Precision 5 Electro-thermal co-simulation in SPICE 6 Summary and Outlook 6

7 Virtual Prototyping Approach Virtual chip-module development flow Virtual module development CAD layout FEM Model FEM Simulation Parasitics compact model Application circuits Design / Process Circuit Module switching characteristics System-level models simulation Chip layout POR Process simulation Device model Device simulation Device compact model Virtual chip development Virtual data sheet 7

8 Virtual Prototyping Approach General Concept behind the Idea Switching behavior switching conditions power circuit & driver power devices & packages inherent electrical & thermal couplings Considerations short time scale: high du/dt & di/dt large time scale: self-heating Simulation needs appropriate electro-thermal models for IGBTs and diodes electrical and thermal parasitics models modeling techniques accounting for 2D or 3D geometrical design tools capable of facilitating a rapid iterative virtual design process 8

9 Automated model generation Manual model generation and calibration Minimum loss of precision! Virtual Prototyping Approach Physics-based device compact model 2D-TCAD Electrical parasitics compact model Circuit simulation 3D-FEM P DC P AC Thermal network as compact model 9

10 Outline 1 Introduction 2 Virtual Prototyping Approach 3 Compact modelling of power devices 4 Assessment of Model Precision 5 Electro-thermal co-simulation in SPICE 6 Summary and Outlook 10

11 Compact modelling of power devices Description of charge dynamics in the drift region I tot = I p(0) 0 SCR I tot = I n(d) p+ n- n n+ Determined by implicit equation, derived from Poisson-Equation Charge dynamics in the base is described by the ambipolar diffusion equation (ADE): p t = p τ + D 2 p a x 2 with n p R Base, Q base Solution Methods for the local charge distribution: Fourier Transformation Kraus-Approximation using hyperbolic Functions Finite Element Method (FEM) Finite Difference Method (FDM) Advantages of FDM over Kraus-Ansatz FDM needs less approximations Example: p-i-n diode Approximation as a pure 1D problem! We need four boundary conditions Resistance modulation of small base-regions can be described Diode: no Fit-Parameter for ratio of plasma suspension points 11

12 Compact modelling of power devices Description of charge dynamics in the drift region I tot = I p(0) 0 SCR I tot = I n(d) p+ n- n n+ Determined by implicit equation, derived from Poisson-Equation Charge dynamics in the base is described by the ambipolar diffusion equation (ADE): p t = p τ + D 2 p a x 2 with n p R Base, Q base Solution Methods for the local charge distribution: Fourier Transformation Kraus-Approximation using hyperbolic Functions Finite Element Method (FEM) Finite Difference Method (FDM) Disadvantages of FDM over Kraus-Ansatz FDM has more unknowns and thus equations Example: p-i-n diode The SPICE code is significantly more complex! Approximation as a pure 1D problem! Convergence: Choose the correct boundary conditions We need four boundary conditions 12

13 Compact modelling of power devices Description of charge dynamics in the drift region Discretize base into equidistant points where the carrier concentration is calculated p i t = p i τ + D p i 1 2p i + p i+1 a x 2 Each point one equation Time integration directly calculated during transient analysis in SPICE Local integration for Q base (t) and R base (t) discrete sums with SPICE subcircuit Numerical Stable Boundary Conditions (BC) Note: Moving SCR boundary, thus x is changing with time High Injection at both junctions (anode & cathode): First 4 and last 4 points are used in Lagrange polynomials for local gradients at both junctions (anode & cathode): p 0 x = 1 6 x 11p p 1 9p 2 + 2p 3 =- μ n μ n +μ p 1 q A D I tot p n x = 1 6 x 2p n 3 + 9p n 2 18p n p n = μ p μ n +μ p 1 q A D I tot 13

14 out in OUT in3 in2 in1 Compact modelling of power devices Implementation of charge dynamics model in SPICE Vp P1 P2 P3 P4 P5 P6 P7 P8 P9 U8 relem2 dynamic charge and resistance U9 diffusion U10 diffusion U1 diffusion U2 diffusion U3 diffusion U4 diffusion U5 diffusion U6 diffusion U7 diffusion Iin p1 p2 p8 p9 U11 dgl_randbed ADE Submodel pl pr 1K R1 V1 1 boundary-conditions ARB1 H1 U2 time time + t dp dt i D ( p 2 i 1 pi 1) pi (2 D x ) 2 x integrator 14

15 Compact modelling of power devices Implementation of charge dynamics model in SPICE Plasma concentration in a diode during turn-off Unique feature of a SIMetrix model 15

16 Outline 1 Introduction 2 Virtual Prototyping Approach 3 Compact modelling for power devices 4 Assessment of Model Precision 5 Electro-thermal co-simulation in SPICE 6 Summary and Outlook 16

17 Assessment of modelling precision Work flow Calibration TCAD and compact chip models are calibrated on measurements of single chips mounted on DCBs Parasitics are extracted for the module and the test setup directly from the CAD layout (no C, DC and 100MHz) Parasitics of the driver are fitted from characterization measurements Precision assessment DoE for dynamic characterization in test circuit varying R g, V CC, I Load, T j and L s Measurements and simulations for at least 24 switching conditions Mounting as single-chip and in module package Evaluation of IGBT turn on and off + diode reverse recovery For each switching conditions extraction of up to 68 switching parameters from simulated and measured curves Qualitative assessment: overlay of simulated and measured switching transients for different switching conditions Quantitative assessment: simulation error (deviation) of extracted parameters for single-chip and module mounting 17

18 Assessment of modelling precision Switching curves Vce Turn on Turn off Vce Rg Ic TCAD Models (S-Device) Ic Rg Compact models (SIMetrix) 18

19 Assessment of modelling precision Extracted dynamic parameters [W] 19

20 Outline 1 Introduction 2 Virtual Prototyping Approach 3 Compact modelling for power devices 4 Assessment of Model Precision 5 Electro-thermal co-simulation in SPICE 6 Summary and Outlook 20

21 Electro-thermal co-simulation in SPICE Motivation Currently used thermal models: Foster model (partial-fraction network, data sheet parameters) Cauer model (continued-fraction network, physically correct) Matlab model (direct combination of step responses from FEM analysis with power signal via convolution integral) Serious draw back: amount of RC elements when considering thermal couplings in complex modules Good to have: thermal model that can be directly integrated in circuit simulation Coupling with electrical model that considers loss distribution 21

22 Electro-thermal co-simulation in SPICE Thermal model generation with MOR tool for ANSYS Generates reduced thermal model without calculation of a temperature field. MOR = Model Order Reduction (procedure) ROM = Reduced Order Model (result) 3D-CAD material data relevant devices FEM network definition boundary conditions (convection etc.) load (power loss) 22

23 Electro-thermal co-simulation in SPICE Thermal model generation with MOR tool for ANSYS Generates reduced thermal model without calculation of a temperature field. MOR = Model Order Reduction (procedure) ROM = Reduced Order Model (result) 3D-CAD material data relevant devices FEM network definition boundary conditions (convection etc.) load (power loss) 62mm module Foster model with 624 Rs & Cs: Fitting time=15.6h Working time=23.6h Total time = 29.2h ROM for 180 dimensions with 6840 elements: Working time=2.0h Total time = 2.1h PrimePack TM 3 module Foster model with 9408 Rs & Cs: Fitting time=235h Working time=262h Total time = 410h ROM for 1000 dimensions with 146k elements: Working time=3h Total time = 12h 23

24 Electro-thermal co-simulation in SPICE Electro-thermal simulations with ROM for PP3 Electro-thermal model in SIMetrix results from merging the thermal ROM and the electrical compact model of the PP3 (semiconductor models were modified for power calculation and thermal handling) thermal network Example: Compact model of a PrimePack TM 3 with 48 semiconductors Only electrical network Output Transient power loss distribution in the module at fixed temperature Period: 35µs Convergence fail after 48 pulses! Estimated analysis time for 10ms: 37.8h Estimated analysis time for 100s: 43y! Transient multi-pulse simulation Electro-thermal network Output Transient temperature and power loss distribution in the module until thermal steady state reached Period: 35µs Convergence fail after 11 pulses! Estimated analysis time for 10ms: 140.3h Estimated analysis time for 100s: 160y 24

25 Electro-thermal co-simulation in SPICE Approach Transient multi-pulse electro-thermal simulation: not viable because of analysis time and convergence stability Next approach: perform separated, but coupled iterative simulations with pure electrical and pure thermal model simulate stationary temperature and power loss distribution in the module at thermal steady state in a DC/DC converter simulate transient temperature and power loss distribution in the module during thermal ramp up with sinusoidal current load (emulates inverter operation)

26 Total loss per chip Plus G1_11 G1_21 G1_31 G1_41 G1_51 G1_61 G2_11 G2_21 G2_31 G2_41 G2_51 G2_61 Diode2_11M Diode2_21M Diode2_31M Diode2_41M Diode2_51M Diode2_61M HE2 IGBT2_12M IGBT2_22M IGBT2_32M IGBT2_42M IGBT2_52M IGBT2_62M Diode1_12P Diode1_22P Diode1_32P Diode1_42P Diode1_52P Diode1_62P IGBT1_11P IGBT1_21P IGBT1_31P IGBT1_41P IGBT1_51P IGBT1_61P Diode1_11W Diode1_21W Diode1_31W Diode1_41W Diode1_51W Diode1_61W Diode2_11W Diode2_21W Diode2_31W Diode2_41W Diode2_51W Diode2_61W HE1 IGBT1_12W IGBT1_22W IGBT1_32W IGBT1_42W IGBT1_52W IGBT1_62W IGBT2_12W IGBT2_22W IGBT2_32W IGBT2_42W IGBT2_52W IGBT2_62W HG2 IP1 IP2 G1_11 G1_21 G1_31 G1_41 G1_51 G1_61 G2_11 G2_21 G2_31 G2_41 G2_51 G2_61 Diode2_11M Diode2_12M Diode2_21M Diode2_22M Diode2_31M Diode2_32M Diode2_41M Diode2_42M Diode2_51M Diode2_52M Diode2_61M Diode2_62M HE2 IGBT2_12M IGBT2_22M IGBT2_32M IGBT2_42M IGBT2_52M IGBT2_62M Diode1_12P Diode1_22P Diode1_32P Diode1_42P Diode1_52P Diode1_62P IGBT1_11P IGBT1_21P IGBT1_31P IGBT1_41P IGBT1_51P IGBT1_61P Diode1_11WDiode1_12W Diode1_21WDiode1_22W Diode1_31WDiode1_32W Diode1_41WDiode1_42W Diode1_51WDiode1_52W Diode1_61WDiode1_62W Diode2_11WDiode2_12W Diode2_21WDiode2_22W Diode2_31WDiode2_32W Diode2_41WDiode2_42W Diode2_51WDiode2_52W Diode2_61WDiode2_62W HE1 IGBT1_12W IGBT1_22W IGBT1_32W IGBT1_42W IGBT1_52W IGBT1_62W IGBT2_12W IGBT2_22W IGBT2_32W IGBT2_42W IGBT2_52W IGBT2_62W HG2 Plus G1_12 G1_22 G1_32 G1_42 G1_52 G1_62 G2_12 G2_22 G2_32 G2_42 G2_52 G2_62 IGBT2_11M IGBT2_21M IGBT2_31M IGBT2_41M IGBT2_51M IGBT2_61M Diode1_11P Diode1_21P Diode1_31P Diode1_41P Diode1_51P Diode1_61P HC1 IGBT1_12P IGBT1_22P IGBT1_32P IGBT1_42P IGBT1_52P IGBT1_62P IGBT1_11W IGBT1_21W IGBT1_31W IGBT1_41W IGBT1_51W IGBT1_61W IGBT2_11W IGBT2_21W IGBT2_31W IGBT2_41W IGBT2_51W IGBT2_61W HG1 Minus Wechsler FF1400R12IP4_RdcLac100MHz U1 PIL1 G1_12 G1_22 G1_32 G1_42 G1_52 G1_62 G2_12 G2_22 G2_32 G2_42 G2_52 G2_62 Diode2_12M Diode2_22M Diode2_32M Diode2_42M Diode2_52M Diode2_62M IGBT2_11M IGBT2_21M IGBT2_31M IGBT2_41M IGBT2_51M IGBT2_61M Diode1_11P Diode1_21P Diode1_31P Diode1_41P Diode1_51P Diode1_61P HC1 IGBT1_12P IGBT1_22P IGBT1_32P IGBT1_42P IGBT1_52P IGBT1_62P Diode1_12W Diode1_22W Diode1_32W Diode1_42W Diode1_52W Diode1_62W Diode2_12W Diode2_22W Diode2_32W Diode2_42W Diode2_52W Diode2_62W IGBT1_11W IGBT1_21W IGBT1_31W IGBT1_41W IGBT1_51W IGBT1_61W IGBT2_11W IGBT2_21W IGBT2_31W IGBT2_41W IGBT2_51W IGBT2_61W HG1 Minus Wechsler PIL PIL PIL PIL PIL PDL PDL PDL PDL PDL PDL PIH1 PIH PIH PIH PIH PIH PDH PDH PDH5 PDH PDH PDH vjdl1 vjil1 vjdl5 vjil5 vjdl9 vjil9 DL1 P_IL DL9 IL9 R-L-Ersatzschaltung Aufbau Lastspule P_DL Plus 1.4k I1 Wechsler Diode2_51M Diode2_51W IGBT2_51M IGBT2_51W 500u R5 Diode2_11M Diode2_11W IGBT2_11M IL1 DL5 IGBT2_11W R4 Diode2_31M Diode2_31W IGBT2_31M IL5 IGBT2_31W R R17 C1 1n G2_11 G2_31 G2_51 IC vjil1 vjil3 vjil5 vjil7 vjil9 vjil11 vjdl1 vjdl3 vjdl5 vjdl7 vjdl9 vjdl11 vjih1 vjih3 vjih5 vjih7 vjih9 vjih11 vjdh1 vjdh3 vjdh5 vjdh7 vjdh9 vjdh11 IC I(in) OUT ARB1 I(in) vjdl2 vjil2 vjdl6 vjil6 vjdl10 vjil10 DL2 DL10 Diode2_52M Diode2_52W IL10 Plus IGBT2_52M IGBT2_52W Aufbau mit Quelle 36n L1 37.5m R1 Minus Diode2_12M Diode2_12W IGBT2_12M IL2 DL6 IGBT2_12W 600 V1 R6 Diode2_32M Diode2_32W IGBT2_32M IL6 IGBT2_32W R24 R16 Substrat 1 G2_12 Substrat 5 G2_52 G1_11 Substrat 3 G2_32 G1_31 G1_51 R8 R23 R15 170n L2 IGBT1_51P IH9 IGBT1_51W Diode1_51P Diode1_51W P_IH DH1 P_DH DH9 1.0 R2 Pulse( u 110n 110n 387u 669u) V2 10 R7-15 V3 1.3 R3 100n L5 IGBT1_11P IGBT1_11W Diode1_11P Diode1_11W Diode1_31P Ansteuerung IH1 IGBT1_31P IGBT1_31W Diode1_31W IH5 DH5 vjih1 vjdh1 vjih5 vjdh5 vjih9 vjdh9 G1_12 G1_32 G1_52 HG1 HE1 HG2 he g OUT ARB4 V(g)-V(he) HE2 R9 R22 R14 Vge IGBT1_12P IH2 IGBT1_12W Diode1_12P Diode1_12W IGBT1_32P IGBT1_32W Diode1_32P Diode1_32W IGBT1_52P IH10 IGBT1_52W Diode1_52P Diode1_52W DH2 IH6 DH6 DH10 Vge vjih2 vjdh2 vjih6 vjdh6 vjih10 vjdh10 U2 FF1400R12IP4_Therm_N100 vjil1 vjil3 vjil5 vjil7 vjil9 vjil11 vjdl1 vjdl3 vjdl5 vjdl7 vjdl9 vjdl11 vjih1 vjih3 vjih5 vjih7 vjih9 vjih11 vjdh1 vjdh3 vjdh5 vjdh7 vjdh9 vjdh11 gnd vjil2 vjil4 vjil6 vjil8 vjil10 vjil12 vjdl2 vjdl4 vjdl6 vjdl8 vjdl10 vjdl12 vjih2 vjih4 vjih6 vjih8 vjih10 vjih12 vjdh2 vjdh4 vjdh6 vjdh8 vjdh10 vjdh12 Vtambient IP1 IP2 HC1 HE1 HE2 HE1 I(in) OUT ARB2 I(in) k a OUT ARB3 V(A)-V(K) e c OUT ARB5 V(c)-V(e) VD ID Vce ID VD Vce vjdl3 vjil3 vjdl7 vjil7 vjdl11 vjil11 DL3 DL7 DL11 Diode2_21M Diode2_21W IGBT2_21M IL3 IGBT2_21W Diode2_41M Diode2_41W IGBT2_41M IL7 IGBT2_41W Diode2_61M Diode2_61W IL11 IGBT2_61M IGBT2_61W R13 R21 R29 G2_21 G2_41 G2_61 vjdl4 vjil4 vjdl8 vjil8 vjdl12 vjil12 DL4 DL8 DL12 Diode2_22M Diode2_22W IGBT2_22M IL4 IGBT2_22W Diode2_42M Diode2_42W IGBT2_42M IL8 IGBT2_42W Diode2_62M Diode2_62W IL12 vjil2 vjil4 vjil6 vjil8 vjil10 vjil12 vjdl2 vjdl4 vjdl6 vjdl8 vjdl10 vjdl12 vjih2 vjih4 vjih6 vjih8 vjih10 vjih12 vjdh2 vjdh4 vjdh6 vjdh8 vjdh12 vjdh10 IGBT2_62M IGBT2_62W R12 R20 R28 Substrat 2 G1_21 G2_22 Substrat 4 G1_41 G2_42 Substrat 6 G1_61 G2_62 R11 R19 R27 IGBT1_21P IH3 IGBT1_21W Diode1_21P Diode1_21W IGBT1_41P IH7 IGBT1_41W Diode1_41P Diode1_41W IGBT1_61P IH11 IGBT1_61W Diode1_61P Diode1_61W DH3 DH7 DH11 vjih3 vjdh3 vjih7 vjdh7 vjih11 vjdh11 G1_22 G1_42 G1_62 PIL2 R10 R18 R PIL PIL PIL PIL12 PIL PDL PDL PDL8 PDL PDL PDL PIH PIH PIH PIH PIH4 PIH PDH PDH PDH PDH PDH PDH IGBT1_22P IH4 IGBT1_22W Diode1_22P Diode1_22W IGBT1_42P IH8 IGBT1_42W Diode1_42P Diode1_42W IGBT1_62P IH12 IGBT1_62W Diode1_62P Diode1_62W DH4 DH8 DH12 vjih4 vjdh4 vjih8 vjdh8 vjih12 vjdh12 Electro-thermal co-simulation in SPICE Approach Transient multi-pulse electro-thermal simulation: not viable because of analysis time and convergence stability Next approach: perform separated, but coupled iterative simulations with pure electrical and pure thermal model simulate stationary temperature and power loss distribution in the module at thermal steady state in a DC/DC converter simulate transient temperature and power loss distribution in the module during thermal ramp up with sinusoidal current load (emulates inverter operation) Electrical model: transient doublepulse simulation at given f and D with updated T script linkage Thermal model: DCOP with updated losses Mean temperature per chip 26

27 Electro-thermal co-simulation in SPICE Example: PrimePack TM 3 Stationary pseudo electro-thermal simulation Circuit: buck converter, low-side IGBT is switched Design: converter layout calculation for T jmax =150 C T initial = C Convergence criterion < 0.05 C 10 iteration needed Total analysis time: 3.3h High-side diode (DH) Low-side IGBT (IL) Result: mean temperature of each chip in good agreement with full FEM simulation 27

28 every 32 switching periods Total loss per chip Plus G1_11 G1_21 G1_31 G1_41 G1_51 G1_61 G2_11 G2_21 G2_31 G2_41 G2_51 G2_61 Diode2_11M Diode2_21M Diode2_31M Diode2_41M Diode2_51M Diode2_61M HE2 IGBT2_12M IGBT2_22M IGBT2_32M IGBT2_42M IGBT2_52M IGBT2_62M Diode1_12P Diode1_22P Diode1_32P Diode1_42P Diode1_52P Diode1_62P IGBT1_11P IGBT1_21P IGBT1_31P IGBT1_41P IGBT1_51P IGBT1_61P Diode1_11W Diode1_21W Diode1_31W Diode1_41W Diode1_51W Diode1_61W Diode2_11W Diode2_21W Diode2_31W Diode2_41W Diode2_51W Diode2_61W HE1 IGBT1_12W IGBT1_22W IGBT1_32W IGBT1_42W IGBT1_52W IGBT1_62W IGBT2_12W IGBT2_22W IGBT2_32W IGBT2_42W IGBT2_52W IGBT2_62W HG2 IP1 IP2 G1_11 G1_21 G1_31 G1_41 G1_51 G1_61 G2_11 G2_21 G2_31 G2_41 G2_51 G2_61 Diode2_11M Diode2_12M Diode2_21M Diode2_22M Diode2_31M Diode2_32M Diode2_41M Diode2_42M Diode2_51M Diode2_52M Diode2_61M Diode2_62M HE2 IGBT2_12M IGBT2_22M IGBT2_32M IGBT2_42M IGBT2_52M IGBT2_62M Diode1_12P Diode1_22P Diode1_32P Diode1_42P Diode1_52P Diode1_62P IGBT1_11P IGBT1_21P IGBT1_31P IGBT1_41P IGBT1_51P IGBT1_61P Diode1_11WDiode1_12W Diode1_21WDiode1_22W Diode1_31WDiode1_32W Diode1_41WDiode1_42W Diode1_51WDiode1_52W Diode1_61WDiode1_62W Diode2_11WDiode2_12W Diode2_21WDiode2_22W Diode2_31WDiode2_32W Diode2_41WDiode2_42W Diode2_51WDiode2_52W Diode2_61WDiode2_62W HE1 IGBT1_12W IGBT1_22W IGBT1_32W IGBT1_42W IGBT1_52W IGBT1_62W IGBT2_12W IGBT2_22W IGBT2_32W IGBT2_42W IGBT2_52W IGBT2_62W HG2 Plus G1_12 G1_22 G1_32 G1_42 G1_52 G1_62 G2_12 G2_22 G2_32 G2_42 G2_52 G2_62 IGBT2_11M IGBT2_21M IGBT2_31M IGBT2_41M IGBT2_51M IGBT2_61M Diode1_11P Diode1_21P Diode1_31P Diode1_41P Diode1_51P Diode1_61P HC1 IGBT1_12P IGBT1_22P IGBT1_32P IGBT1_42P IGBT1_52P IGBT1_62P IGBT1_11W IGBT1_21W IGBT1_31W IGBT1_41W IGBT1_51W IGBT1_61W IGBT2_11W IGBT2_21W IGBT2_31W IGBT2_41W IGBT2_51W IGBT2_61W HG1 Minus Wechsler FF1400R12IP4_RdcLac100MHz U1 PIL1 G1_12 G1_22 G1_32 G1_42 G1_52 G1_62 G2_12 G2_22 G2_32 G2_42 G2_52 G2_62 Diode2_12M Diode2_22M Diode2_32M Diode2_42M Diode2_52M Diode2_62M IGBT2_11M IGBT2_21M IGBT2_31M IGBT2_41M IGBT2_51M IGBT2_61M Diode1_11P Diode1_21P Diode1_31P Diode1_41P Diode1_51P Diode1_61P HC1 IGBT1_12P IGBT1_22P IGBT1_32P IGBT1_42P IGBT1_52P IGBT1_62P Diode1_12W Diode1_22W Diode1_32W Diode1_42W Diode1_52W Diode1_62W Diode2_12W Diode2_22W Diode2_32W Diode2_42W Diode2_52W Diode2_62W IGBT1_11W IGBT1_21W IGBT1_31W IGBT1_41W IGBT1_51W IGBT1_61W IGBT2_11W IGBT2_21W IGBT2_31W IGBT2_41W IGBT2_51W IGBT2_61W HG1 Minus Wechsler PIL PIL PIL PIL PIL PDL PDL PDL PDL PDL PDL PIH1 PIH PIH PIH PIH PIH PDH PDH PDH5 PDH PDH PDH vjdl1 vjil1 vjdl5 vjil5 vjdl9 vjil9 DL1 P_IL DL9 IL9 R-L-Ersatzschaltung Aufbau Lastspule P_DL Plus Diode2_51M Diode2_51W IGBT2_51M IGBT2_51W 500u R5 1.4k I1 Wechsler Diode2_11M Diode2_11W IGBT2_11M IL1 DL5 IGBT2_11W R4 Diode2_31M Diode2_31W IGBT2_31M IL5 IGBT2_31W R R17 C1 1n G2_11 G2_31 G2_51 IC vjil1 vjil3 vjil5 vjil7 vjil9 vjil11 vjdl1 vjdl3 vjdl5 vjdl7 vjdl9 vjdl11 vjih1 vjih3 vjih5 vjih7 vjih9 vjih11 vjdh1 vjdh3 vjdh5 vjdh7 vjdh9 vjdh11 IC I(in) OUT ARB1 I(in) vjdl2 vjil2 vjdl6 vjil6 vjdl10 vjil10 DL2 DL10 Diode2_52M Diode2_52W IL10 Plus IGBT2_52M IGBT2_52W Aufbau mit Quelle 36n L1 37.5m R1 Minus Diode2_12M Diode2_12W IGBT2_12M IL2 DL6 IGBT2_12W 600 V1 R6 Diode2_32M Diode2_32W IGBT2_32M IL6 IGBT2_32W R24 R16 Substrat 1 G2_12 Substrat 5 G2_52 G1_11 Substrat 3 G2_32 G1_31 G1_51 R8 R23 R15 170n L2 IGBT1_51P IH9 IGBT1_51W Diode1_51P Diode1_51W P_IH DH1 P_DH DH9 1.0 R2 Pulse( u 110n 110n 387u 669u) V2 10 R7-15 V3 1.3 R3 100n L5 IGBT1_11P IGBT1_11W Diode1_11P Diode1_11W Diode1_31P Ansteuerung IH1 IGBT1_31P IGBT1_31W Diode1_31W IH5 DH5 vjih1 vjdh1 vjih5 vjdh5 vjih9 vjdh9 G1_12 G1_32 G1_52 HG1 HE1 HG2 he g OUT ARB4 V(g)-V(he) HE2 R9 R22 R14 Vge IGBT1_12P IH2 IGBT1_12W Diode1_12P Diode1_12W IGBT1_32P IGBT1_32W Diode1_32P Diode1_32W IGBT1_52P IH10 IGBT1_52W Diode1_52P Diode1_52W DH2 IH6 DH6 DH10 Vge vjih2 vjdh2 vjih6 vjdh6 vjih10 vjdh10 U2 FF1400R12IP4_Therm_N100 vjil1 vjil3 vjil5 vjil7 vjil9 vjil11 vjdl1 vjdl3 vjdl5 vjdl7 vjdl9 vjdl11 vjih1 vjih3 vjih5 vjih7 vjih9 vjih11 vjdh1 vjdh3 vjdh5 vjdh7 vjdh9 vjdh11 gnd vjil2 vjil4 vjil6 vjil8 vjil10 vjil12 vjdl2 vjdl4 vjdl6 vjdl8 vjdl10 vjdl12 vjih2 vjih4 vjih6 vjih8 vjih10 vjih12 vjdh2 vjdh4 vjdh6 vjdh8 vjdh10 vjdh12 Vtambient IP1 IP2 HC1 HE1 HE2 HE1 I(in) OUT ARB2 I(in) k a OUT ARB3 V(A)-V(K) e c OUT ARB5 V(c)-V(e) VD ID Vce ID VD Vce vjdl3 vjil3 vjdl7 vjil7 vjdl11 vjil11 DL3 DL7 DL11 Diode2_21M Diode2_21W IGBT2_21M IL3 IGBT2_21W Diode2_41M Diode2_41W IGBT2_41M IL7 IGBT2_41W Diode2_61M Diode2_61W IL11 IGBT2_61M IGBT2_61W R13 R21 R29 G2_21 G2_41 G2_61 vjdl4 vjil4 vjdl8 vjil8 vjdl12 vjil12 DL4 DL8 DL12 Diode2_22M Diode2_22W IGBT2_22M IL4 IGBT2_22W Diode2_42M Diode2_42W IGBT2_42M IL8 IGBT2_42W Diode2_62M Diode2_62W IL12 vjil2 vjil4 vjil6 vjil8 vjil10 vjil12 vjdl2 vjdl4 vjdl6 vjdl8 vjdl10 vjdl12 vjih2 vjih4 vjih6 vjih8 vjih10 vjih12 vjdh2 vjdh4 vjdh6 vjdh8 vjdh12 vjdh10 IGBT2_62M IGBT2_62W R12 R20 R28 Substrat 2 G1_21 G2_22 Substrat 4 G1_41 G2_42 Substrat 6 G1_61 G2_62 R11 R19 R27 IGBT1_21P IH3 IGBT1_21W Diode1_21P Diode1_21W IGBT1_41P IH7 IGBT1_41W Diode1_41P Diode1_41W IGBT1_61P IH11 IGBT1_61W Diode1_61P Diode1_61W DH3 DH7 DH11 vjih3 vjdh3 vjih7 vjdh7 vjih11 vjdh11 G1_22 G1_42 G1_62 PIL2 R10 R18 R PIL PIL PIL PIL12 PIL PDL PDL PDL8 PDL PDL PDL PIH PIH PIH PIH PIH4 PIH PDH PDH PDH PDH PDH PDH IGBT1_22P IH4 IGBT1_22W Diode1_22P Diode1_22W IGBT1_42P IH8 IGBT1_42W Diode1_42P Diode1_42W IGBT1_62P IH12 IGBT1_62W Diode1_62P Diode1_62W DH4 DH8 DH12 vjih4 vjdh4 vjih8 vjdh8 vjih12 vjdh12 Electro-thermal co-simulation in SPICE Approach Transient multi-pulse electro-thermal simulation: not viable because of analysis time and convergence stability Next approach: perform separated, but coupled iterative simulations with pure electrical and pure thermal model simulate stationary temperature and power loss distribution in the module at thermal steady state in a DC/DC converter simulate transient temperature and power loss distribution in the module during thermal ramp up with sinusoidal current load (emulates inverter operation) Electrical model: 1 double-pulse simulation at given f sw and D with updated T and Iload script linkage Thermal model: quasi-continuous transient simulation with updated losses Mean temperature per chip every 32 switching periods 28

29 Electro-thermal co-simulation in SPICE Example: PrimePack TM 3 Results for transient pseudo electro-thermal simulation Switching: high-side IGBT, D=0.5, f sw =1500Hz Load: sinusoidal current source, f=1hz, I max =1240A T initial = T ambient = C Dt for thermal model update: ms Simulated time range: 9,6336s Total analysis time: 77h Mean T in IGBTs and diodes Chip-specific T in high-side IGBT Low-side diode (DH) High-side IGBT (IL) T IGBT T Diode 29

30 Outline 1 Introduction 2 Virtual Prototyping Approach 3 Compact modelling for power devices 4 Assessment of Model Precision 5 Electro-thermal co-simulation in SPICE 6 Summary and Outlook 30

31 Summary Virtual prototyping flow for device and package development Detailed evaluation of simulation precision Current distribution in modules for design optimization Investigation of impact of main FE and BE tolerances Simulation-based system-level models for thermal converter design Enhanced IGBT and diode compact models Electro-thermal co-simulation at circuit level 31

32 Outlook Compact chip models: Equivalent circuits Verilog-A Extraction of compact chip models from TCAD flow Automated generation of compact chip models Vision Establish MOR technique to predict temp. distribution Establish automated calibration routine Extend VP to discrete IGBTs in evaluation boards 32

33 33

34 34

DC and AC modeling of minority carriers currents in ICs substrate

DC and AC modeling of minority carriers currents in ICs substrate DC and AC modeling of minority carriers currents in ICs substrate Camillo Stefanucci, Pietro Buccella, Maher Kayal and Jean-Michel Sallese Swiss Federal Institute of Technology Lausanne, Switzerland MOS-AK

More information

IRGB4056DPbF. n-channel Lead Free Package INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE

IRGB4056DPbF. n-channel Lead Free Package INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE 1 www.irf.com 4/11/8 PD - 97188A INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low V CE (ON) Trench IGBT Technology C Low switching losses Maximum Junction temperature 17

More information

Absolute Maximum Ratings Parameter Max. Units

Absolute Maximum Ratings Parameter Max. Units PD - 97397A INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low V CE (ON) Trench IGBT Technology Low switching losses 5 µs short circuit SOA Square RBSOA % of the parts tested

More information

Modeling and Analysis of Full-Chip Parasitic Substrate Currents

Modeling and Analysis of Full-Chip Parasitic Substrate Currents Modeling and Analysis of Full-Chip Parasitic Substrate Currents R. Gillon, W. Schoenmaker September 11, 2017 Rev. 2.0 1 Outline Objectives Challenges SPX solver Solutions l Compact Modeling (ONSEMI) l

More information

IRGS4062DPbF IRGSL4062DPbF

IRGS4062DPbF IRGSL4062DPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low V CE (ON) Trench IGBT Technology Low switching losses Maximum Junction temperature 175 C 5 µs short circuit SOA Square

More information

n-channel Solar Inverter Induction Heating G C E Gate Collector Emitter

n-channel Solar Inverter Induction Heating G C E Gate Collector Emitter INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features C Low V CE (ON) trench IGBT technology Low switching losses Square RBSOA 1% of the parts tested for I LM Positive V CE (ON)

More information

ABB HiPak TM. IGBT Module 5SNA 1200E V CE = 2500 V I C = 1200 A

ABB HiPak TM. IGBT Module 5SNA 1200E V CE = 2500 V I C = 1200 A V CE = 25 V I C = 2 A ABB HiPak TM IGBT Module 5SNA 2E25 Doc. No. 5SYA 557-2 July 4 Low-loss, rugged SPT chip-set Smooth switching SPT chip-set for good EMC Industry standard package High power deity AlSiC

More information

ABB HiPak TM. IGBT Module 5SNA 0800N V CE = 3300 V I C = 800 A

ABB HiPak TM. IGBT Module 5SNA 0800N V CE = 3300 V I C = 800 A V CE = 33 V I C = 8 A ABB HiPak TM IGBT Module 5SNA 8N33 Doc. No. 5SYA 59- Jan 7 Low-loss, rugged SPT chip-set Smooth switching SPT chip-set for good EMC Industry standard package High power deity AlSiC

More information

Wir schaffen Wissen heute für morgen

Wir schaffen Wissen heute für morgen Wir schaffen Wissen heute für morgen Paul Scherrer Institut René Künzi Thermal Design of Power Electronic Circuits CERN Accelerator School 2014, Baden, Switzerland 12.5.2014 Motivation Statement in a meeting:

More information

GT10Q301 GT10Q301. High Power Switching Applications Motor Control Applications. Maximum Ratings (Ta = 25 C) Equivalent Circuit. Marking

GT10Q301 GT10Q301. High Power Switching Applications Motor Control Applications. Maximum Ratings (Ta = 25 C) Equivalent Circuit. Marking GTQ TOSHIBA Insulated Gate Bipolar Transistor Silicon N Channel IGBT GTQ High Power Switching Applications Motor Control Applications Unit: mm Third-generation IGBT Enhancement mode type High speed: tf

More information

IRGP4263PbF IRGP4263-EPbF

IRGP4263PbF IRGP4263-EPbF IRGP3PbF IRGP3-EPbF Insulated Gate Bipolar Transistor V CES = 5V I C = 5A, T C =1 C C G G t SC 5.5µs, T J(max) = 175 C V CE(ON) typ. = 1.7V @ IC = A Applications Industrial Motor Drive Inverters UPS Welding

More information

7-9 October 2009, Leuven, Belgium Electro-Thermal Simulation of Multi-channel Power Devices on PCB with SPICE

7-9 October 2009, Leuven, Belgium Electro-Thermal Simulation of Multi-channel Power Devices on PCB with SPICE Electro-Thermal Simulation of Multi-channel Power Devices on PCB with SPICE Torsten Hauck*, Wim Teulings*, Evgenii Rudnyi ** * Freescale Semiconductor Inc. ** CADFEM GmbH Abstract In this paper we will

More information

NTE74HC109 Integrated Circuit TTL High Speed CMOS, Dual J K Positive Edge Triggered Flip Flop w/set & Reset

NTE74HC109 Integrated Circuit TTL High Speed CMOS, Dual J K Positive Edge Triggered Flip Flop w/set & Reset NTE74HC109 Integrated Circuit TTL High Speed CMOS, Dual J K Positive Edge Triggered Flip Flop w/set & Reset Description: The NTE74HC109 is a dual J K flip flip with set and reset in a 16 Lead plastic DIP

More information

Transient thermal measurements and thermal equivalent circuit models

Transient thermal measurements and thermal equivalent circuit models AN 2015-10 Transient thermal measurements and thermal equivalent circuit Replaces AN2008-03 About this document Scope and purpose The basis of a power electronic design is the interaction of power losses

More information

5SNA 2000K StakPak IGBT Module

5SNA 2000K StakPak IGBT Module Data Sheet, Doc. No. 5SYA 143-1-213 5SNA K4513 StakPak IGBT Module = 45 V = A Low-loss, rugged SPT+ chip-set Smooth switching SPT+ chip-set for good EMC High tolerance to uneven mounting pressure Explosion

More information

IRGB8B60KPbF IRGS8B60KPbF IRGSL8B60KPbF C

IRGB8B60KPbF IRGS8B60KPbF IRGSL8B60KPbF C INSULATED GATE BIPOLAR TRANSISTOR Features Low VCE (on) Non Punch Through IGBT Technology. 1µs Short Circuit Capability. Square RBSOA. Positive VCE (on) Temperature Coefficient. Lead-Free. Benefits Benchmark

More information

IRGIB15B60KD1P INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE. n-channel. Absolute Maximum Ratings

IRGIB15B60KD1P INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE. n-channel. Absolute Maximum Ratings INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low VCE (on) Non Punch Through IGBT Technology. Low Diode VF. µs Short Circuit Capability. Square RBSOA. Ultrasoft Diode Reverse

More information

IRGPC40UD2 UltraFast CoPack IGBT

IRGPC40UD2 UltraFast CoPack IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT REOVERY DIODE PD - 9.88A UltraFast opack IGBT Features Switching-loss rating includes all "tail" losses HEXFRED TM soft ultrafast diodes Optimized

More information

5SNA 2400E HiPak IGBT Module

5SNA 2400E HiPak IGBT Module Data Sheet, Doc. No. 5SYA 1417-4 2-214 5SNA 24E1735 HiPak IGBT Module VCE = 17 V IC = 24 A Ultra low-loss, rugged SPT+ chip-set Smooth switching SPT+ chip-set for good EMC AlSiC base-plate for high power

More information

5SNE 1000E HiPak Chopper IGBT Module

5SNE 1000E HiPak Chopper IGBT Module Data Sheet, Doc. No. 5SYA 457-8-27 5SNE E333 HiPak Chopper IGBT Module VCE = 33 V IC = A Ultra low-loss, rugged SPT+ chip-set Smooth switching SPT+ chip-set for good EMC AlSiC base-plate for high power

More information

5SNA 1500E HiPak IGBT Module

5SNA 1500E HiPak IGBT Module Data Sheet, Doc. No. 5SYA 47-7 2-24 5SNA 5E3335 HiPak IGBT Module VCE = 33 V IC = 5 A Ultra low-loss, rugged SPT+ chip-set Smooth switching SPT+ chip-set for good EMC AlSiC base-plate for high power cycling

More information

SiC. 2nd Generation thinq! Data Sheet. Industrial & Multimarket. Silicon Carbide Diode. 2nd Generation thinq! SiC Schottky Diode IDY10S120

SiC. 2nd Generation thinq! Data Sheet. Industrial & Multimarket. Silicon Carbide Diode. 2nd Generation thinq! SiC Schottky Diode IDY10S120 SiC Silicon Carbide Diode 2nd Generation thinq! 2nd Generation thinq! SiC Schottky Diode Data Sheet Rev. 2.1, 2011-05-25 Final Industrial & Multimarket 1 Description The second generation of Infineon SiC

More information

IRGR3B60KD2PbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE. n-channel. Absolute Maximum Ratings Parameter Max.

IRGR3B60KD2PbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE. n-channel. Absolute Maximum Ratings Parameter Max. INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low VCE (on) Non Punch Through IGBT Technology. Low Diode VF. µs Short Circuit Capability. Square RBSOA. Ultrasoft Diode Reverse

More information

IRGB4062DPbF IRGP4062DPbF

IRGB4062DPbF IRGP4062DPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low V CE (ON) Trench IGBT Technology Low switching losses Maximum Junction temperature 75 C 5 µs short circuit SOA Square RBSOA

More information

250 P C = 25 C Power Dissipation 160 P C = 100 C Power Dissipation Linear Derating Factor

250 P C = 25 C Power Dissipation 160 P C = 100 C Power Dissipation Linear Derating Factor PDP TRENCH IGBT PD - 9634 IRG6B33UDPbF Features l Advanced Trench IGBT Technology l Optimized for Sustain and Energy Recovery Circuits in PDP Applications l Low V CE(on) and Energy per Pulse (E PULSE TM

More information

AUTOMOTIVE GRADE. Standard Pack

AUTOMOTIVE GRADE. Standard Pack AUTOMOTIVE GRADE INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low V CE (on) Trench IGBT Technology Low Switching Losses 6µs SCSOA Square RBSOA % of the parts tested for

More information

) unless otherwise specified Symbol Description Values Units

) unless otherwise specified Symbol Description Values Units IGBT Modules VCES IC 10V A Applicatio Industrial Inverters Servo Applicatio SMPS UPS Induction Heating Circuit Features Short Circuit Rated 10μs Low Stray Inductance Low Saturation Voltage Ultra Low loss

More information

5SNG 0150Q Pak phase leg IGBT Module

5SNG 0150Q Pak phase leg IGBT Module Data Sheet, Doc. No. 5SYA 1447-216-9 5SNG 15Q173 62Pak phase leg IGBT Module VCE = 17 V IC = 15 A Ultra low-loss, rugged SPT++ chip-set Smooth switching SPT++ chip-set for good EMC Cu base-plate for low

More information

IRGB4B60K IRGS4B60K IRGSL4B60K

IRGB4B60K IRGS4B60K IRGSL4B60K INSULATED GATE BIPOLAR TRANSISTOR PD - 9633A IRGBB6K IRGSB6K IRGSLB6K Features Low VCE (on) Non Punch Through IGBT Technology. 1µs Short Circuit Capability. Square RBSOA. Positive VCE (on) Temperature

More information

5SNA 1300K StakPak IGBT Module

5SNA 1300K StakPak IGBT Module Data Sheet, Doc. No. 5SYA 1432-1 1-216 5SNA 13K453 StakPak IGBT Module VCE = 45 V IC = 13 A Fails into stable shorted state Low-loss, rugged SPT+ chip-set Smooth switching SPT+ chip-set for good EMC High

More information

KDG25R12KE3. Symbol Description Value Units V CES Collector-Emitter Blocking Voltage 1200 V V GES Gate-Emitter Voltage ±20 V

KDG25R12KE3. Symbol Description Value Units V CES Collector-Emitter Blocking Voltage 1200 V V GES Gate-Emitter Voltage ±20 V KDGR12KE3 IGBT Module KDGR12KE3 Features: IGBT Inverter Short Circuit Rated μs IGBT Inverter Low Saturation Voltage Low Switching Loss Low Stray Inductance Lead Free, Compliant With RoHS Requirement Applications:

More information

5SNG 1000X PRELIMINARY LinPak phase leg IGBT module

5SNG 1000X PRELIMINARY LinPak phase leg IGBT module Data Sheet, Doc. No. 5SYA 1449- Aug 16 5SNG 1X173 PRELIMINARY LinPak phase leg IGBT module VCE = 17 V IC = 2 x 1 A Ultra low inductance phase-leg module Compact design with very high current density Paralleling

More information

MMIX4B22N300 V CES. = 3000V = 22A V CE(sat) 2.7V I C90

MMIX4B22N300 V CES. = 3000V = 22A V CE(sat) 2.7V I C90 Advance Technical Information High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor (Electrically Isolated Tab) C G EC3 Symbol Test Conditions Maximum Ratings G3 C2 G2 E2C V CES = 25 C

More information

Parameter Max. Units V CES Collector-to-Emitter Breakdown Voltage 600 I T C = 25 C Continuous Collector Current

Parameter Max. Units V CES Collector-to-Emitter Breakdown Voltage 600 I T C = 25 C Continuous Collector Current INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low V CE (on) Trench IGBT Technology Low Switching Losses 5μs SCSOA Square RBSOA % of The Parts Tested for I LM Positive V

More information

5SNA 1000G HiPak IGBT module

5SNA 1000G HiPak IGBT module Datasheet 5SYA 1465-02, Nov. 2018 5SNA 1000G650300 HiPak IGBT module VCE = 6500 V IC = 1000 A Ultra-low-loss, rugged SPT ++ chip-set Exceptional ruggedness and highest current rating High insulation package

More information

10 23, 24 21, 22 19, , 14

10 23, 24 21, 22 19, , 14 MWI -T7T Six-Pack Trench IGBT = S = (sat) typ. = 1.7 Part name (Marking on product) MWI -T7T, 1, 1 1 9 17 NTC 1 3, 1, 19, E773 1 3 7 11 Pin configuration see outlines. 7, 13, 1 Features: Trench IGBT technology

More information

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 3.5 Turn off safe operating area V CE 1200V, T j 150 C - 3.

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 3.5 Turn off safe operating area V CE 1200V, T j 150 C - 3. HighSpeed 2-Technology Designed for frequency inverters for washing machines, fans, pumps and vacuum cleaners 2 nd generation HighSpeed-Technology for 1200V applications offers: - loss reduction in resonant

More information

D1 D2 D3 T1 T2 T3 5 D4 D5 D6 T4 T5 T6 7

D1 D2 D3 T1 T2 T3 5 D4 D5 D6 T4 T5 T6 7 MIX 11WEH Six-Pack XPT IGBT CES 5 = = 155 CE(sat) = 1. Part name (Marking on product) MIX11WEH 13, 1 1 D1 D D3 T1 T T3 5 9 1 19 17 15 E773 3 D D5 D T T5 T 7 11 1, Features: Easy paralleling due to the

More information

ABB HiPak. IGBT Module 5SNE 0800G VCE = 4500 V IC = 800 A

ABB HiPak. IGBT Module 5SNE 0800G VCE = 4500 V IC = 800 A VCE = 45 V IC = 8 A ABB HiPak IGBT Module 5SNE 8G453 Ultra low-loss, rugged SPT + chip-set Smooth switching SPT + chip-set for good EMC Industry standard package High power deity AlSiC base-plate for high

More information

IRGPS40B120UP INSULATED GATE BIPOLAR TRANSISTOR UltraFast IGBT

IRGPS40B120UP INSULATED GATE BIPOLAR TRANSISTOR UltraFast IGBT PD- 95899A IRGPS4B12UP INSULATED GATE BIPOLAR TRANSISTOR UltraFast IGBT Features Non Punch Through IGBT Technology. 1µs Short Circuit Capability. Square RBSOA. Positive VCE (on) Temperature Coefficient.

More information

IRGB30B60KPbF IRGS30B60KPbF IRGSL30B60KPbF

IRGB30B60KPbF IRGS30B60KPbF IRGSL30B60KPbF PD - 973 INSULATED GATE BIPOLAR TRANSISTOR Features Low VCE (on) Non Punch Through IGBT Technology 1µs Short Circuit Capability Square RBSOA G Positive VCE (on) Temperature Coefficient Maximum Junction

More information

SGB02N120. Fast IGBT in NPT-technology. Power Semiconductors 1 Rev. 2_3 Jan 07

SGB02N120. Fast IGBT in NPT-technology. Power Semiconductors 1 Rev. 2_3 Jan 07 Fast IGBT in NPT-technology Lower E off compared to previous generation Short circuit withstand time 10 µs Designed for: - Motor controls - Inverter - SMPS NPT-Technology offers: - very tight parameter

More information

ABB HiPak. IGBT Module 5SNA 0800N VCE = 3300 V IC = 800 A

ABB HiPak. IGBT Module 5SNA 0800N VCE = 3300 V IC = 800 A VCE = 33 V IC = 8 A ABB HiPak IGBT Module 5SNA 8N331 Doc. No. 5SYA 1591-2 4-214 Low-loss, rugged SPT chip-set Smooth switching SPT chip-set for good EMC Industry standard package High power deity AlSiC

More information

IRG7PH42UDPbF IRG7PH42UD-EP

IRG7PH42UDPbF IRG7PH42UD-EP INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low V CE (ON) trench IGBT technology Low switching losses Square RBSOA 1% of the parts tested for I LM Positive V CE (ON) temperature

More information

ABB HiPak. IGBT Module 5SNA 1600N VCE = 1700 V IC = 1600 A

ABB HiPak. IGBT Module 5SNA 1600N VCE = 1700 V IC = 1600 A VCE = 17 V IC = 16 A ABB HiPak IGBT Module 5SNA 16N171 Doc. No. 5SYA1564-2 Apr 14 Low-loss, rugged SPT chip-set Smooth switching SPT chip-set for good EMC Industry standard package High power deity AlSiC

More information

Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions

Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions Author manuscript, published in "Microelectronics Reliability vol.47 (7) pp.173-1734" Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions

More information

MMIX4B12N300 V CES = 3000V. = 11A V CE(sat) 3.2V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor

MMIX4B12N300 V CES = 3000V. = 11A V CE(sat) 3.2V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor Preliminary Technical Information V CES = 3V 11 = 11A V CE(sat) 3.2V C1 C2 (Electrically Isolated Tab) G1 E1C3 G2 E2C G3 G E3E C1 C2

More information

IRGB30B60K IRGS30B60K IRGSL30B60K

IRGB30B60K IRGS30B60K IRGSL30B60K INSULATED GATE BIPOLAR TRANSISTOR Features Low VCE on) Non Punch Through IGBT Technology. µs Short Circuit Capability. Square RBSOA. Positive VCE on) Temperature Coefficient. Maximum Junction Temperature

More information

PS12038 Intellimod Module Application Specific IPM 25 Amperes/1200 Volts

PS12038 Intellimod Module Application Specific IPM 25 Amperes/1200 Volts D M SQ PINS G L A F H K E J D VV QQ PP C 24 2 9 6 3 9 7 8 7 4 2 8 RR (4 PLACES) B N P Q R S Y EE XX V T LL DD GG TT SS X 2 3 4 GG T C FF LABEL T C 6 DD GG GG U P 2 N 3 NC 4 U V 6 W TERMINAL CODE 9 GND

More information

ABB HiPak. IGBT Module 5SNE 0800M VCE = 1700 V IC = 800 A

ABB HiPak. IGBT Module 5SNE 0800M VCE = 1700 V IC = 800 A VCE = 17 V IC = 8 A ABB HiPak IGBT Module 5SNE 8M171 Low-loss, rugged SPT chip-set Smooth switching SPT chip-set for good EMC Industry standard package High power deity AlSiC base-plate for high power

More information

2 nd Generation thinq! TM SiC Schottky Diode

2 nd Generation thinq! TM SiC Schottky Diode IDH12S6C 2 nd Generation thinq! TM SiC Schottky Diode Features Revolutionary semiconductor material - Silicon Carbide Switching behavior benchmark No reverse recovery/ No forward recovery Product Summary

More information

2 nd Generation thinq! TM SiC Schottky Diode

2 nd Generation thinq! TM SiC Schottky Diode IDH8S6C 2 nd Generation thinq! TM SiC Schottky Diode Features Revolutionary semiconductor material - Silicon Carbide Switching behavior benchmark No reverse recovery/ No forward recovery Product Summary

More information

CMOS Logic Gates. University of Connecticut 172

CMOS Logic Gates. University of Connecticut 172 CMOS Logic Gates University of Connecticut 172 Basic CMOS Inverter Operation V IN P O N O p-channel enhancementtype MOSFET; V T < 0 n-channel enhancementtype MOSFET; V T > 0 If V IN 0, N O is cut off and

More information

MP6901 MP6901. High Power Switching Applications. Hammer Drive, Pulse Motor Drive and Inductive Load Switching. Maximum Ratings (Ta = 25 C)

MP6901 MP6901. High Power Switching Applications. Hammer Drive, Pulse Motor Drive and Inductive Load Switching. Maximum Ratings (Ta = 25 C) TOSHIBA Power Transistor Module Silicon Epitaxial Type (Darlington power transistor in ) High Power Switching Applications. Hammer Drive, Pulse Motor Drive and Inductive Load Switching. Industrial Applications

More information

EE155/255 Green Electronics

EE155/255 Green Electronics EE155/255 Green Electronics Power Circuits 10/4/17 Prof. William Dally Computer Systems Laboratory Stanford University HW2 due Monday 10/9 Lab groups have been formed Lab1 signed off this week Lab2 out

More information

SiC. 2nd Generation thinq! Data Sheet. Industrial & Multimarket. Silicon Carbide Diode. 2nd Generation thinq! SiC Schottky Diode IDV05S60C

SiC. 2nd Generation thinq! Data Sheet. Industrial & Multimarket. Silicon Carbide Diode. 2nd Generation thinq! SiC Schottky Diode IDV05S60C SiC Silicon Carbide Diode 2nd Generation thinq! 2nd Generation thinq! SiC Schottky Diode Data Sheet Rev. 2.0, 2010-01-08 Final Industrial & Multimarket 1 Description The second generation of Infineon SiC

More information

IRGP30B60KD-EP V CES = 600V I C = 30A, T C =100 C. t sc > 10µs, T J =150 C. V CE(on) typ. = 1.95V. Absolute Maximum Ratings. Thermal Resistance

IRGP30B60KD-EP V CES = 600V I C = 30A, T C =100 C. t sc > 10µs, T J =150 C. V CE(on) typ. = 1.95V. Absolute Maximum Ratings. Thermal Resistance INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low V CE (on) Non Punch Through IGBT Technology. Low Diode V F. 1µs Short Circuit Capability. Square RBSOA. Ultrasoft Diode

More information

IRGP20B60PDPbF SMPS IGBT. n-channel WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE

IRGP20B60PDPbF SMPS IGBT. n-channel WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE WARP SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE SMPS IGBT PD - 9 IRGPB6PDPbF Applications Telecom and Server SMPS PFC and ZVS SMPS Circuits Uninterruptable Power Supplies Consumer Electronics Power

More information

IXBK55N300 IXBX55N300

IXBK55N300 IXBX55N300 High Voltage, High Gain BiMOSFET TM Monolithic Bipolar MOS Transistor V CES = V 11 = 55A V CE(sat) 3.2V TO-264 (IXBK) Symbol Test Conditions Maximum Ratings V CES = 25 C to 15 C V V CGR = 25 C to 15 C,

More information

IGP03N120H2 IGW03N120H2

IGP03N120H2 IGW03N120H2 HighSpeed 2Technology Designed for: SMPS Lamp Ballast ZVSConverter optimised for softswitching / resonant topologies G C E 2 nd generation HighSpeedTechnology for 1200V applications offers: loss reduction

More information

5. CMOS Gate Characteristics CS755

5. CMOS Gate Characteristics CS755 5. CMOS Gate Characteristics Last module: CMOS Transistor theory This module: DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Transistor ehavior 1) If the width of a transistor

More information

SKP06N60 SKA06N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

SKP06N60 SKA06N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode Fast IGBT in NPTtechnology with soft, fast recovery antiparallel Emitter Controlled Diode 75% lower E off compared to previous generation combined with low conduction losses Short circuit withstand time

More information

P4C164 ULTRA HIGH SPEED 8K X 8 STATIC CMOS RAMS FEATURES DESCRIPTION. Full CMOS, 6T Cell. Common Data I/O

P4C164 ULTRA HIGH SPEED 8K X 8 STATIC CMOS RAMS FEATURES DESCRIPTION. Full CMOS, 6T Cell. Common Data I/O FEATURES Full CMOS, 6T Cell High Speed (Equal Access and Cycle Times) 8/10/12/15/20/25/35/70/100 ns (Commercial) 10/12/15/20/25/35/70/100 ns(industrial) 12/15/20/25/35/45/70/100 ns (Military) Low Power

More information

IKW50N60TA q. Low Loss DuoPack : IGBT in TRENCHSTOP TM and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

IKW50N60TA q. Low Loss DuoPack : IGBT in TRENCHSTOP TM and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode Low Loss DuoPack : IGBT in TRENCHSTOP TM and Fieldstop technology with soft, fast recovery antiparallel Emitter Controlled HE diode C G E Features: Automotive AEC Q101 ualified Designed for DC/AC converters

More information

SGP30N60HS SGW30N60HS

SGP30N60HS SGW30N60HS High Speed IGBT in NPT-technology 30% lower E off compared to previous generation Short circuit withstand time 10 µs Designed for operation above 30 khz G C E NPT-Technology for 600V applications offers:

More information

5SDF 08H6005 PRELIMINARY

5SDF 08H6005 PRELIMINARY V RRM = 5500 V (AV)M = 585 A SM = 18 10 3 A V (T0) = 4.5 V r T = 1.3 mw V DClink = 3300 V Fast Recovery Diode 5SDF 08H6005 PRELIMINARY Patented free-floating technology Industry standard housing Cosmic

More information

Silicon Carbide Schottky Diode IDH05G120C5. 5 th Generation thinq! 1200 V SiC Schottky Diode. Rev

Silicon Carbide Schottky Diode IDH05G120C5. 5 th Generation thinq! 1200 V SiC Schottky Diode. Rev Diode Silicon Carbide Schottky Diode IDH05G120C5 Final Datasheet Rev. 2.0 20150828 Industrial Power Control thinq! TM SiC Schottky Diode Features: Revolutionary semiconductor material Silicon Carbide No

More information

TrenchStop Series I C

TrenchStop Series I C Low Loss IGBT in TrenchStop and Fieldstop technology Very low V CE(sat) 1.5 V (typ.) Maximum Junction Temperature 175 C Short circuit withstand time 5µs Designed for : Freuency Converters Uninterrupted

More information

IXBK55N300 IXBX55N300

IXBK55N300 IXBX55N300 High Voltage, High Gain BiMOSFET TM Monolithic Bipolar MOS Transistor IXBK55N3 IXBX55N3 V CES = 3V 11 = 55A V CE(sat) 3.2V TO-264 (IXBK) Symbol Test Conditions Maximum Ratings V CES = 25 C to 15 C 3 V

More information

DETAIL "A" #110 TAB (8 PLACES) X (4 PLACES) Y (3 PLACES) TH1 TH2 F O 1 F O 2 DETAIL "A"

DETAIL A #110 TAB (8 PLACES) X (4 PLACES) Y (3 PLACES) TH1 TH2 F O 1 F O 2 DETAIL A MG6Q2YS6A Powerex, Inc., 2 E. Hillis Street, Youngwood, Pennsylvania 15697-1 (72) 925-7272 Compact IGBT Series Module 6 Amperes/ olts A D H J K DETAIL "A" C2E1 E2 C1 B E F W M F Outline Drawing and Circuit

More information

IGW25T120. TrenchStop Series

IGW25T120. TrenchStop Series Low Loss IGBT in TrenchStop and Fieldstop technology Short circuit withstand time 10µs Designed for : Frequency Converters Uninterrupted Power Supply TrenchStop and Fieldstop technology for 1200 V applications

More information

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode Fast IGBT in NPTtechnology with soft, fast recovery antiparallel Emitter Controlled Diode 75% lower E off compared to previous generation combined with low conduction losses Short circuit withstand time

More information

XPT TM 600V IGBT GenX3 TM w/diode MMIX1X200N60B3H1 = 600V I C110 V CES. = 72A V CE(sat) 1.7V t fi(typ) = 110ns. Preliminary Technical Information

XPT TM 600V IGBT GenX3 TM w/diode MMIX1X200N60B3H1 = 600V I C110 V CES. = 72A V CE(sat) 1.7V t fi(typ) = 110ns. Preliminary Technical Information XPT TM 6V IGBT GenX3 TM w/diode (Electrically Isolated Tab) Preliminary Technical Information MMIXXN6B3H S = 6V = 7A (sat).7v t fi(typ) = ns Extreme Light Punch Through IGBT for -3kHz Switching Symbol

More information

IGBT Module H Bridge MIXA81H1200EH. = 1200 V = 120 A V CE(sat) = 1.8 V V CES I C25. Part name (Marking on product) MIXA81H1200EH.

IGBT Module H Bridge MIXA81H1200EH. = 1200 V = 120 A V CE(sat) = 1.8 V V CES I C25. Part name (Marking on product) MIXA81H1200EH. MIX1H1EH IGBT Module H Bridge CES 5 = 1 = 1 CE(sat) = 1. Part name (Marking on product) MIX1H1EH 13, 1 1 9 1 19 15 E773 3 11 1 1, Features: pplication: Package: Easy paralleling due to the positive temperature

More information

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode Fast IGBT in NPTtechnology with soft, fast recovery antiparallel Emitter Controlled Diode 75% lower E off compared to previous generation combined with low conduction losses Short circuit withstand time

More information

Six-Pack XPT IGBT MIXA80W1200TEH V CES I C25 = 1200 V. Part name (Marking on product) MIXA80W1200TEH

Six-Pack XPT IGBT MIXA80W1200TEH V CES I C25 = 1200 V. Part name (Marking on product) MIXA80W1200TEH MIXW1TEH Six-Pack XPT IGBT CES = 1 = 1 CE(sat) = 1. Part name (Marking on product) MIXW1TEH 3, 31, 3 1, 17, 1 1 T1 D1 T3 D3 9 T D 19 NTC 3 T D 7 9 7 T D 1 11 T D 1 3 E773 Pin configuration see outlines.

More information

AUTOMOTIVE GRADE. Standard Pack

AUTOMOTIVE GRADE. Standard Pack AUTOMOTIVE GRADE AUIRGPS47D INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low V CE (on) Trench IGBT Technology Low Switching Losses 6µs SCSOA Square RBSOA 1% of the parts

More information

Converter - Brake - Inverter Module (CBI 1) Trench IGBT

Converter - Brake - Inverter Module (CBI 1) Trench IGBT Converter - Brake - Inverter Module (CBI 1) Trench IGBT Preliminary data Three Phase Rectifier Brake Chopper Three Phase Inverter RRM = 16 CES = 12 CES = 12 I DM25 = 151 I C25 = 19 I C25 = 43 I FSM = 32

More information

SKP15N60 SKW15N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

SKP15N60 SKW15N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode Fast IGBT in NPTtechnology with soft, fast recovery antiparallel Emitter Controlled Diode 75% lower E off compared to previous generation combined with low conduction losses Short circuit withstand time

More information

TrenchStop Series. Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TrenchStop Series. Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery antiparallel Emitter Controlled HE diode C G E Automotive AEC Q101 qualified Designed for DC/AC converters for Automotive

More information

IRG7PH35UDPbF IRG7PH35UD-EP

IRG7PH35UDPbF IRG7PH35UD-EP INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low V CE (ON) trench IGBT technology Low switching losses Square RBSOA % of the parts tested for I LM Positive V CE (ON) temperature

More information

Soft Switching Series

Soft Switching Series Reverse Conducting IGBT with monolithic body diode Features: 1.5V Forward voltage of monolithic body Diode Full Current Rating of monolithic body Diode Specified for T Jmax = 175 C Trench and Fieldstop

More information

IGW15T120. TrenchStop Series

IGW15T120. TrenchStop Series Low Loss IGBT in TrenchStop and Fieldstop technology Approx. 1.0V reduced V CE(sat) compared to BUP313 Short circuit withstand time 10µs Designed for : Frequency Converters Uninterrupted Power Supply TrenchStop

More information

IXGR72N60B3H1. GenX3 TM 600V IGBT w/ Diode = 600V = 40A. 1.80V t fi(typ) = 92ns. (Electrically Isolated Tab)

IXGR72N60B3H1. GenX3 TM 600V IGBT w/ Diode = 600V = 40A. 1.80V t fi(typ) = 92ns. (Electrically Isolated Tab) GenX TM V IGBT w/ Diode (Electrically Isolated Tab) IXGRNBH S = V = A (sat).8v t fi(typ) = 9ns Medium Speed Low Vsat PT IGBT for - khz Switching ISOPLUS TM Symbol Test Conditions Maximum Ratings S = C

More information

SGP20N60 SGW20N60. Fast IGBT in NPT-technology

SGP20N60 SGW20N60. Fast IGBT in NPT-technology Fast IGBT in NPTtechnology 75% lower E off compared to previous generation combined with low conduction losses Short circuit withstand time 10 µs Designed for: Motor controls Inverter NPTTechnology for

More information

MITSUBISHI ELECTRIC CORPORATION Prepared by S.Iura A S.Iura B S.Iura

MITSUBISHI ELECTRIC CORPORATION Prepared by S.Iura A S.Iura B S.Iura SECURITY CODE Spec. NME Customer s Std. Spec. MITSUBISHI ELECTRIC CORP. PRELIMINRY MITSUBISHI ELECTRIC CORPORTION Prepared by S.Iura S.Iura B S.Iura Checked by H.Yamaguchi R I.Umezaki I.Umezaki E pproved

More information

Transient Thermal Measurement and Behavior of Integrated Circuits

Transient Thermal Measurement and Behavior of Integrated Circuits Transient Thermal Measurement and Behavior of Integrated Circuits Dustin Kendig¹*, Kazuaki Kazawa 1,2, and Ali Shakouri 2 ¹Microsanj LLC 3287 Kifer Rd, Santa Clara, CA 95051, USA ² Birck Nanotechnology

More information

Converter - Brake - Inverter Module (CBI3) with Trench IGBT technology

Converter - Brake - Inverter Module (CBI3) with Trench IGBT technology MUBW 5-17 T8 Converter - Brake - Inverter Module (CBI3) with Trench IGBT technology 21 22 NTC 8 D11 D13 D15 7 D7 16 15 T1 T3 T5 D1 D3 D5 18 2 17 19 1 2 3 6 5 4 9 D12 D14 D16 14 T7 11 T2 T4 T6 D2 D4 D6

More information

60 30 Pulsed collector current, t p limited by T jmax I Cpuls 90 Turn off safe operating area V CE 900V, T j 175 C - 90 Diode forward current

60 30 Pulsed collector current, t p limited by T jmax I Cpuls 90 Turn off safe operating area V CE 900V, T j 175 C - 90 Diode forward current Reverse Conducting IGBT with monolithic body diode Features: 1.5V typical saturation voltage of IGBT Trench and Fieldstop technology for 900 V applications offers : very tight parameter distribution high

More information

SMPS IGBT. n-channel. Thermal Resistance Parameter Min. Typ. Max. Units

SMPS IGBT. n-channel. Thermal Resistance Parameter Min. Typ. Max. Units SMPS IGBT PD - 94625B IRGP5B6PD WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE Applications Telecom and Server SMPS PFC and ZVS SMPS Circuits Uninterruptable Power Supplies Consumer Electronics Power

More information

IRGP50B60PDPbF. n-channel SMPS IGBT WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE

IRGP50B60PDPbF. n-channel SMPS IGBT WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE SMPS IGBT PD - 9968 IRGPB6PDPbF WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE Applications Telecom and Server SMPS PFC and ZVS SMPS Circuits Uninterruptable Power Supplies Consumer Electronics Power

More information

50MT060ULS V CES = 600V I C = 100A, T C = 25 C. I27123 rev. C 02/03. Features. Benefits. Absolute Maximum Ratings Parameters Max Units.

50MT060ULS V CES = 600V I C = 100A, T C = 25 C. I27123 rev. C 02/03. Features. Benefits. Absolute Maximum Ratings Parameters Max Units. "LOW SIDE CHOPPER" IGBT MTP Ultrafast Speed IGBT Features Gen. 4 Ultrafast Speed IGBT Technology HEXFRED TM Diode with UltraSoft Reverse Recovery Very Low Conduction and Switching Losses Optional SMT Thermistor

More information

CMOS Logic Gates. University of Connecticut 181

CMOS Logic Gates. University of Connecticut 181 CMOS Logic Gates University of Connecticut 181 Basic CMOS Inverter Operation V IN P O N O p-channel enhancementtype MOSFET; V T < 0 n-channel enhancementtype MOSFET; V T > 0 If V IN 0, N O is cut off and

More information

Maria Carmela Di Piazza. Gianpaolo Vitale. Photovoltaic Sources. Modeling and Emulation. ^ Springer

Maria Carmela Di Piazza. Gianpaolo Vitale. Photovoltaic Sources. Modeling and Emulation. ^ Springer Maria Carmela Di Piazza Gianpaolo Vitale Photovoltaic Sources Modeling and Emulation ^ Springer Part I 1 From the Nuclear Fusion to the Radiated Energy on the Earth... 3 1.1 Inside the Universe 3 1.2 The

More information

EM Simulations using the PEEC Method - Case Studies in Power Electronics

EM Simulations using the PEEC Method - Case Studies in Power Electronics EM Simulations using the PEEC Method - Case Studies in Power Electronics Andreas Müsing Swiss Federal Institute of Technology (ETH) Zürich Power Electronic Systems www.pes.ee.ethz.ch 1 Outline Motivation:

More information

5SNG 0200Q Pak phase leg IGBT Module

5SNG 0200Q Pak phase leg IGBT Module Data Sheet, Doc. No. 5SYA 1448-216-9 5SNG Q17 62Pak phase leg IGBT Module VCE = 17 V IC = A Ultra low-loss, rugged SPT++ chip-set Smooth switching SPT++ chip-set for good EMC Cu base-plate for low thermal

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (Ultra-High-Speed U-MOSIII) TPC8017-H

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (Ultra-High-Speed U-MOSIII) TPC8017-H TPC7-H TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (Ultra-High-Speed U-MOSIII) TPC7-H High-Efficiency DC/DC Converter Applications Notebook PC Applications Portable-Equipment Applications

More information

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery antiparallel Emitter Controlled HE diode Features: Very low V CE(sat) 1.5V (typ.) Maximum Junction Temperature 175

More information

Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions

Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions Adel Benmansour, Stephane Azzopardi, Jean-Christophe Martin, Eric Woirgard To cite this

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS Logic Family Specificatio The IC06 74HC/HCT/HCU/HCMOS Logic Package Information The IC06 74HC/HCT/HCU/HCMOS

More information