Identifying an Honest EXP NP Oracle Among Many

Size: px
Start display at page:

Download "Identifying an Honest EXP NP Oracle Among Many"

Transcription

1 Identifying an Honest EXP NP Oracle Among Many Shuichi Hirahara The University of Tokyo CCC 18/6/2015

2 Overview Dishonest oracle Honest oracle Queries Which is honest? Our Contributions Selector 1. We formulate the notion of selector. Selector Able to remove short advice 2. We prove the existence of a selector for EXP NP - complete languages.

3 Background: Instance checker Introduced by Blum & Kannan (1989). An instance checker for a function f checks if a given oracle correctly computes f x on input x in polynomial time. Instance checker for f Queries Given: input x Is the program buggy or correct on x? Answers Possibly buggy program (modeled by black-box access to an oracle)

4 Background: Instance checker There exist instance checkers for P #P -, PSPACE-, EXP-complete languages. [LFKN92, Sha92, BFL91] Any languages with an instance checker must be in NEXP conexp. (Note: NEXP EXP NP ) Instance checker for f Queries Given: input x Is the program buggy or correct on x? Answers Possibly buggy program (modeled by black-box access to an oracle)

5 (Probabilistic) Selector for SAT Given: 1. An input φ, and 2. access to two oracles one of which is honest. Task: compute SAT φ with the help of the oracles Given: input φ Selector for SAT Is φ satisfiable?

6 (Probabilistic) Selector for SAT ψ is not satisfiable! Queries: Is ψ satisfiable? ψ is satisfiable! Given: 1. An input φ, and 2. access to two oracles one of which is honest. Task: compute SAT φ with the help of the oracles Given: input φ Selector for SAT Is φ satisfiable?

7 (Probabilistic) Selector for SAT ψ is not satisfiable! Dishonest oracle Arbitrary answers Queries: Is ψ satisfiable? ψ is satisfiable! Honest oracle Correct answers Given: 1. An input φ, and 2. access to two oracles one of which is honest. Task: compute SAT φ with the help of the oracles Given: input φ Selector for SAT Is φ satisfiable?

8 Why is it called selector? YES Dishonest oracle Arbitrary answers Is φ satisfiable? YES Honest oracle Correct answers Given: 1. An input φ, and 2. access to two oracles one of which is honest. Task: compute SAT φ with the help of the oracles Given: input φ Selector for SAT

9 Why is it called selector? YES Dishonest oracle Arbitrary answers Is φ satisfiable? YES Honest oracle Correct answers Given: 1. An input φ, and 2. access to two oracles one of which is honest. Task: compute SAT φ with the help of the oracles Given: input φ Selector for SAT The answer must be YES!!

10 Why is it called selector? Dishonest oracle Arbitrary answers NO Is φ satisfiable? YES Honest oracle Correct answers Given: 1. An input φ, and 2. access to two oracles one of which is honest. Essential Task: determine which is honest when they disagree on φ. Given: input φ Selector for SAT Which is honest?

11 Definition of (Probabilistic) Selector Definition (Selector) A selector S for a language L is a polynomial-time probabilistic oracle machine such that A 0 = L or A 1 = L Pr S A 0,A 1 x = L x 0.99 Oracle A 0 Oracle A 1 (for any A 0, A 1 0,1, x 0,1 ) Arbitrary answers Queries: L q =? Correct answers (YES/NO) Selector S for a language L (polynomial-time probabilistic oracle TM)

12 Definition of Deterministic Selector Definition (Deterministic Selector) A deterministic selector S for a language L is a polynomialtime deterministic oracle machine such that A 0 = L or A 1 = L S A 0,A 1 x = L x Oracle A 0 Oracle A 1 (for any A 0, A 1 0,1, x 0,1 ) Arbitrary answers Queries: L q =? Correct answers (YES/NO) Selector S for a language L (polynomial-time deterministic oracle TM)

13 Selector for P NP -complete languages (1/2) Def. (Lexicographically Maximum Satisfying Assignment) Input: a Boolean formula φ: 0, 1 n 0, 1 and an index k Output: the k th bit of the lexicographically maximum satisfying assignment of φ. Goal: to construct a deterministic selector for this language. Given: an input φ, k and two oracles. [Krentel 1988]

14 Selector for P NP -complete languages (2/2) Make queries φ, 1,, (φ, n) to the oracles: The lexicographically maximum satisfying assignment of φ is... Show us the 1 st bit of the satisfying assignment! v 0 0, 1 n If v 0 = v 1, then output the k th bit of v 0 (= v 1 ). Else, we have v 0 v 1. We assume v 0 < v 1. Evaluate φ v 1. v 1 0, 1 n We trust if φ v 1 = 1 and trust otherwise. (i.e. output the k th bit of v 1 ) (i.e. output the k th bit of v 0 ) Q.E.D.

15 Identifying an Honest EXP NP oracle Theorem (Main Result) There exists a selector for EXP NP -complete languages. Proof sketch: Def. (An EXP NP -complete language) Input: a succinctly described Boolean formula Φ: 0, 1 2n 0, 1 and an index k Output: the k th bit of the lexicographically maximum satisfying assignment of Φ.

16 Proof Sketch of the Main Theorem Proof strategy: the same with P NP -complete languages We are given a (succinctly described) exponentialsized formula Φ and two oracles. V 0 0, 1 2n V 1 0, 1 2n Step 1: Which is the larger? (i.e. compute V 0 < V 1 ) Binary search & Polynomial identity testing Step 2: Is V 1 a satisfying assignment of Φ? Can be done in the same way with MIP = NEXP. [Babai, Fortnow, Lund (1991)].

17 Instance Checker vs. Selector Instance checker Counterexample: EXP NP -complete languages (unless EXP NP = NEXP) Selector The task of selectors is strictly easier than instance checking.

18 Motivation: Removing short advice [Karp & Lipton (1980)] SAT P/log SAT P [Trevisan & Vadhan (2002)] EXP BPP/log EXP BPP This follows from the instance checkability of EXP-complete languages. Q. When can we remove short advice? A. When we have a selector.

19 Selector Able to remove 1-bit advice 1. Suppose L is computable with 1-bit advice. i.e. machine M such that, given advice 0 or 1, M computes L correctly. 2. Define two oracles as follows: def = Advice 0 Advice 1 M q, 0 (M q, 0 = L q or M q, 1 = L q for any q 0,1 l ) Queries q M q, 1 One of these oracles is honest! The selector can compute L correctly (without any advice). def = (We assume that L is paddable and q s are of the same length.)

20 Key Lemma: Among Many Identifying an honest oracle among two Identifying an honest oracle among polynomially many (Honest) (Honest) = On input x, outputs L(x) On input x, outputs L(x) Able to remove advice of 1 bit Able to remove advice of O log n bits

21 Our Results The notion of selector provides a general framework to remove short advice: Thm. ( Selector Able to remove short advice) For any paddable language L, the following are equivalent: 1. There exists a deterministic selector for L. 2. L P/log implies L P under any relativized world. In other words, L P R /log L P R R: oracle The converse direction (2 1) also holds in this sense!

22 Our Results The notion of selector provides a general framework to remove short advice: Thm. ( Selector Able to remove short advice) For any paddable language L, the following are equivalent: 1. There exists a probabilistic selector for L. 2. L BPP/log implies L BPP under any relativized world. In other words, L BPP R /log L BPP R R: oracle Technical Remark: This works for any type of advice for BPP, because we can remove the most powerful advice i. e. BPP//log.

23 Key Lemma to remove O log n advice Identifying an honest oracle among two Identifying an honest oracle among polynomially many (Honest) (Honest) = On input x, outputs L(x) On input x, outputs L(x) Able to remove advice of 1 bit Able to remove advice of O log n bits

24 Proof of the Key Lemma (1/2) We have a selector oracle among two. Given input x and many oracles Ask them about x: L x is Divide them into two teams: that identifies an honest (Honest) Idea: Tournament L x = 0. Which team should we trust? (Honest) L x = 1.

25 Proof of the Key Lemma (2/2) L x = 0. L x = 1. (Honest)

26 Proof of the Key Lemma (2/2) L x = 0. L x = 1. 0 (Honest)

27 Proof of the Key Lemma (2/2) L x = 0. L x = 1. 0 (Honest) I doubt!!

28 Proof of the Key Lemma (2/2) L x = 0. L x = 1. (Honest)

29 Proof of the Key Lemma (2/2) L x = 0. L x = 1. 1 (Honest)

30 Proof of the Key Lemma (2/2) L x = 0. L x = 1. 1 (Honest) I doubt!!

31 Proof of the Key Lemma (2/2) L x = 0. L x = 1. (Honest)

32 Proof of the Key Lemma (2/2) L x = 0. L x = 1. 1 (Honest)

33 Proof of the Key Lemma (2/2) L x = 0. L x = 1. 1 (Honest) I doubt!!

34 Proof of the Key Lemma (2/2) L x = 0. L x = 1. (Honest) I trust, so the answer is 1! The honest oracle always wins!

35 Proof of the Key Lemma (summary) I claim L x = 0. Pick arbitrary two oracles I claim L x = 1. from each team. Run the selector on input x. If outputs 0, then we doubt (the oracle loses!); otherwise we doubt. Continue it until one of the teams wins and trust the team. Q.E.D.

36 Removing advice of size O log n Advice 0 Advice 1 M q, 0 q q M q, 1

37 Removing advice of size O log n Advice 00 Advice 01 Advice 10 Advice 11 M q, 00 M q, 01 M q, 10 q q q q M q, 11 Able to remove advice of 2 bits Corollary (Selector Removing short advice) Suppose that there exists a selector for a paddable language L. Then, L P/log implies L P (under any relativized world).

38 selector Removing short advice Claim ( Selector Able to remove short advice) Suppose L P/log implies L P under any relativized world. Then, there exists a deterministic selector for L. We prove the contraposition: If no selector exists, then for some relativized world, even 1-bit advice cannot be removed: R s. t. L P R /1 & L P R Constructing such an oracle R by diagonalization. 1-bit advice can tell which is honest. (i.e. L P R /1)

39 Other Results: Deterministic Selector Theorem (Deterministic Selector) 1. There exists a deterministic selector for PSPACE-complete languages. 2. Any languages with a deterministic selector sit within PSPACE. Deterministic selectors are in PSPACE PSPACE complete deterministic selector PSPACE

40 Other Results: Probabilistic Selector Theorem (Upper Bound for Probabilistic Selector) Any languages with a selector sit within S 2 exp. Selectors are in S 2 exp selector S 2 exp EXP NP complete EXP NP

41 Conclusions The existence of a selector A property of removing short advice under any relativized world. There exists a selector for EXP NP -complete languages. We can efficiently identify an honest EXP NP -complete oracle among many.

42 Future Work Closing the gap between EXP NP and S 2 exp Does there exist a selector for promise-s 2 exp -complete languages? Does there exist a selector for NEXP-complete languages? Although NEXP EXP NP, the set of languages with a selector is not closed under downward reduction. What about removing advice of polynomial size? e.g. L R, L P R /poly L MA R

Rational Proofs with Multiple Provers. Jing Chen, Samuel McCauley, Shikha Singh Department of Computer Science

Rational Proofs with Multiple Provers. Jing Chen, Samuel McCauley, Shikha Singh Department of Computer Science Rational Proofs with Multiple Provers Jing Chen, Samuel McCauley, Shikha Singh Department of Computer Science Outline of the Talk RATIONAL INTERACTIVE PROOFS with MULTI-PROVERs Interactive Proofs [GMR,

More information

PSEUDORANDOMNESS AND AVERAGE-CASE COMPLEXITY VIA UNIFORM REDUCTIONS

PSEUDORANDOMNESS AND AVERAGE-CASE COMPLEXITY VIA UNIFORM REDUCTIONS PSEUDORANDOMNESS AND AVERAGE-CASE COMPLEXITY VIA UNIFORM REDUCTIONS Luca Trevisan and Salil Vadhan Abstract. Impagliazzo and Wigderson (36th FOCS, 1998) gave the first construction of pseudorandom generators

More information

Lecture 26. Daniel Apon

Lecture 26. Daniel Apon Lecture 26 Daniel Apon 1 From IPPSPACE to NPPCP(log, 1): NEXP has multi-prover interactive protocols If you ve read the notes on the history of the PCP theorem referenced in Lecture 19 [3], you will already

More information

Pseudorandomness and Average-case Complexity via Uniform Reductions

Pseudorandomness and Average-case Complexity via Uniform Reductions Pseudorandomness and Average-case Complexity via Uniform Reductions Luca Trevisan Salil Vadhan January 19, 2006 Abstract Impagliazzo and Wigderson [IW2] gave the first construction of pseudorandom generators

More information

Umans Complexity Theory Lectures

Umans Complexity Theory Lectures Umans Complexity Theory Lectures Lecture 12: The Polynomial-Time Hierarchy Oracle Turing Machines Oracle Turing Machine (OTM): Deterministic multitape TM M with special query tape special states q?, q

More information

Exponential time vs probabilistic polynomial time

Exponential time vs probabilistic polynomial time Exponential time vs probabilistic polynomial time Sylvain Perifel (LIAFA, Paris) Dagstuhl January 10, 2012 Introduction Probabilistic algorithms: can toss a coin polynomial time (worst case) probability

More information

A Note on the Karp-Lipton Collapse for the Exponential Hierarchy

A Note on the Karp-Lipton Collapse for the Exponential Hierarchy A Note on the Karp-Lipton Collapse for the Exponential Hierarchy Chris Bourke Department of Computer Science & Engineering University of Nebraska Lincoln, NE 68503, USA Email: cbourke@cse.unl.edu January

More information

On the Power of Multi-Prover Interactive Protocols. Lance Fortnow. John Rompel y. Michael Sipser z. Massachusetts Institute of Technology

On the Power of Multi-Prover Interactive Protocols. Lance Fortnow. John Rompel y. Michael Sipser z. Massachusetts Institute of Technology On the Power of Multi-Prover Interactive Protocols Lance Fortnow John Rompel y Michael Sipser z { Laboratory for Computer Science Massachusetts Institute of Technology Cambridge, MA 02139 1 Introduction

More information

Limits of Minimum Circuit Size Problem as Oracle

Limits of Minimum Circuit Size Problem as Oracle Limits of Minimum Circuit Size Problem as Oracle Shuichi Hirahara(The University of Tokyo) Osamu Watanabe(Tokyo Institute of Technology) CCC 2016/05/30 Minimum Circuit Size Problem (MCSP) Input Truth table

More information

Polylogarithmic Round Arthur-Merlin Games and Random-Self-Reducibility

Polylogarithmic Round Arthur-Merlin Games and Random-Self-Reducibility Electronic Colloquium on Computational Complexity, Report No. 53 (2004) Polylogarithmic Round Arthur-Merlin Games and Random-Self-Reducibility A. Pavan N. V. Vinodchandran June 10, 2004 Abstract We consider

More information

Derandomizing from Random Strings

Derandomizing from Random Strings Derandomizing from Random Strings Harry Buhrman CWI and University of Amsterdam buhrman@cwi.nl Lance Fortnow Northwestern University fortnow@northwestern.edu Michal Koucký Institute of Mathematics, AS

More information

Beyond NP [HMU06,Chp.11a] Tautology Problem NP-Hardness and co-np Historical Comments Optimization Problems More Complexity Classes

Beyond NP [HMU06,Chp.11a] Tautology Problem NP-Hardness and co-np Historical Comments Optimization Problems More Complexity Classes Beyond NP [HMU06,Chp.11a] Tautology Problem NP-Hardness and co-np Historical Comments Optimization Problems More Complexity Classes 1 Tautology Problem & NP-Hardness & co-np 2 NP-Hardness Another essential

More information

: On the P vs. BPP problem. 30/12/2016 Lecture 12

: On the P vs. BPP problem. 30/12/2016 Lecture 12 03684155: On the P vs. BPP problem. 30/12/2016 Lecture 12 Time Hierarchy Theorems Amnon Ta-Shma and Dean Doron 1 Diagonalization arguments Throughout this lecture, for a TM M, we denote M t to be the machine

More information

Some Results on Circuit Lower Bounds and Derandomization of Arthur-Merlin Problems

Some Results on Circuit Lower Bounds and Derandomization of Arthur-Merlin Problems Some Results on Circuit Lower Bounds and Derandomization of Arthur-Merlin Problems D. M. Stull December 14, 2016 Abstract We prove a downward separation for Σ 2 -time classes. Specifically, we prove that

More information

arxiv: v1 [cs.cc] 30 Apr 2015

arxiv: v1 [cs.cc] 30 Apr 2015 Rational Proofs with Multiple Provers Jing Chen Stony Brook University jingchen@cs.stonybrook.edu Shikha Singh Stony Brook University shiksingh@cs.stonybrook.edu Samuel McCauley Stony Brook University

More information

Lecture 23: More PSPACE-Complete, Randomized Complexity

Lecture 23: More PSPACE-Complete, Randomized Complexity 6.045 Lecture 23: More PSPACE-Complete, Randomized Complexity 1 Final Exam Information Who: You On What: Everything through PSPACE (today) With What: One sheet (double-sided) of notes are allowed When:

More information

Lecture 19: Interactive Proofs and the PCP Theorem

Lecture 19: Interactive Proofs and the PCP Theorem Lecture 19: Interactive Proofs and the PCP Theorem Valentine Kabanets November 29, 2016 1 Interactive Proofs In this model, we have an all-powerful Prover (with unlimited computational prover) and a polytime

More information

Proving SAT does not have Small Circuits with an Application to the Two Queries Problem

Proving SAT does not have Small Circuits with an Application to the Two Queries Problem Proving SAT does not have Small Circuits with an Application to the Two Queries Problem Lance Fortnow A. Pavan Samik Sengupta Abstract We show that if SAT does not have small circuits, then there must

More information

In Search of an Easy Witness: Exponential Time vs. Probabilistic Polynomial Time

In Search of an Easy Witness: Exponential Time vs. Probabilistic Polynomial Time In Search of an Easy Witness: Exponential Time vs. Probabilistic Polynomial Time Russell Impagliazzo Department of Computer Science University of California, San Diego La Jolla, CA 92093-0114 russell@cs.ucsd.edu

More information

Introduction to Interactive Proofs & The Sumcheck Protocol

Introduction to Interactive Proofs & The Sumcheck Protocol CS294: Probabilistically Checkable and Interactive Proofs January 19, 2017 Introduction to Interactive Proofs & The Sumcheck Protocol Instructor: Alessandro Chiesa & Igor Shinkar Scribe: Pratyush Mishra

More information

1 On Proofs and Interactive Proofs

1 On Proofs and Interactive Proofs On IP = PSPACE and Theorems with Narrow Proofs Juris Hartmanis Richard Chang Desh Ranjan Pankaj Rohatgi Department of Computer Science, Cornell University Ithaca, New York 14853, USA Abstract It has been

More information

Circuit Lower Bounds for Merlin-Arthur Classes

Circuit Lower Bounds for Merlin-Arthur Classes Circuit Lower Bounds for Merlin-Arthur Classes Rahul Santhanam Simon Fraser University rsanthan@cs.sfu.ca January 16, 2007 Abstract We show that for each k > 0, MA/1 (MA with 1 bit of advice) doesn t have

More information

Non-Approximability Results (2 nd part) 1/19

Non-Approximability Results (2 nd part) 1/19 Non-Approximability Results (2 nd part) 1/19 Summary - The PCP theorem - Application: Non-approximability of MAXIMUM 3-SAT 2/19 Non deterministic TM - A TM where it is possible to associate more than one

More information

Circuit Lower Bounds for Nondeterministic Quasi-Polytime: An Easy Witness Lemma for NP and NQP

Circuit Lower Bounds for Nondeterministic Quasi-Polytime: An Easy Witness Lemma for NP and NQP Electronic Colloquium on Computational Complexity, Report No. 188 (2017) Circuit Lower Bounds for Nondeterministic Quasi-Polytime: An Easy Witness Lemma for NP and NQP Cody D. Murray MIT R. Ryan Williams

More information

6.841/18.405J: Advanced Complexity Wednesday, April 2, Lecture Lecture 14

6.841/18.405J: Advanced Complexity Wednesday, April 2, Lecture Lecture 14 6.841/18.405J: Advanced Complexity Wednesday, April 2, 2003 Lecture Lecture 14 Instructor: Madhu Sudan In this lecture we cover IP = PSPACE Interactive proof for straightline programs. Straightline program

More information

Stanford University CS254: Computational Complexity Handout 8 Luca Trevisan 4/21/2010

Stanford University CS254: Computational Complexity Handout 8 Luca Trevisan 4/21/2010 Stanford University CS254: Computational Complexity Handout 8 Luca Trevisan 4/2/200 Counting Problems Today we describe counting problems and the class #P that they define, and we show that every counting

More information

6.896 Quantum Complexity Theory 30 October Lecture 17

6.896 Quantum Complexity Theory 30 October Lecture 17 6.896 Quantum Complexity Theory 30 October 2008 Lecturer: Scott Aaronson Lecture 17 Last time, on America s Most Wanted Complexity Classes: 1. QMA vs. QCMA; QMA(2). 2. IP: Class of languages L {0, 1} for

More information

Almost transparent short proofs for NP R

Almost transparent short proofs for NP R Brandenburgische Technische Universität, Cottbus, Germany From Dynamics to Complexity: A conference celebrating the work of Mike Shub Toronto, May 10, 2012 Supported by DFG under GZ:ME 1424/7-1 Outline

More information

CS 151 Complexity Theory Spring Solution Set 5

CS 151 Complexity Theory Spring Solution Set 5 CS 151 Complexity Theory Spring 2017 Solution Set 5 Posted: May 17 Chris Umans 1. We are given a Boolean circuit C on n variables x 1, x 2,..., x n with m, and gates. Our 3-CNF formula will have m auxiliary

More information

An Axiomatic Approach to Algebrization

An Axiomatic Approach to Algebrization An Axiomatic Approach to Algebrization Russell Impagliazzo Valentine Kabanets Antonina Kolokolova January 21, 2009 Abstract Non-relativization of complexity issues can be interpreted as giving some evidence

More information

Lecture 20: conp and Friends, Oracles in Complexity Theory

Lecture 20: conp and Friends, Oracles in Complexity Theory 6.045 Lecture 20: conp and Friends, Oracles in Complexity Theory 1 Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode:

More information

Lecture 24: Randomized Complexity, Course Summary

Lecture 24: Randomized Complexity, Course Summary 6.045 Lecture 24: Randomized Complexity, Course Summary 1 1/4 1/16 1/4 1/4 1/32 1/16 1/32 Probabilistic TMs 1/16 A probabilistic TM M is a nondeterministic TM where: Each nondeterministic step is called

More information

Kernel-Size Lower Bounds. The Evidence from Complexity Theory

Kernel-Size Lower Bounds. The Evidence from Complexity Theory : The Evidence from Complexity Theory IAS Worker 2013, Warsaw Part 2/3 Note These slides are a slightly revised version of a 3-part tutorial given at the 2013 Workshop on Kernelization ( Worker ) at the

More information

: On the P vs. BPP problem. 30/12/2016 Lecture 11

: On the P vs. BPP problem. 30/12/2016 Lecture 11 03684155: On the P vs. BPP problem. 30/12/2016 Lecture 11 Promise problems Amnon Ta-Shma and Dean Doron 1 Definitions and examples In a promise problem, we are interested in solving a problem only on a

More information

1 PSPACE-Completeness

1 PSPACE-Completeness CS 6743 Lecture 14 1 Fall 2007 1 PSPACE-Completeness Recall the NP-complete problem SAT: Is a given Boolean formula φ(x 1,..., x n ) satisfiable? The same question can be stated equivalently as: Is the

More information

Algebrization: A New Barrier in Complexity Theory

Algebrization: A New Barrier in Complexity Theory Algebrization: A New Barrier in Complexity Theory Scott Aaronson MIT Avi Wigderson Institute for Advanced Study Abstract Any proof of P NP will have to overcome two barriers: relativization and natural

More information

Probabilistic Autoreductions

Probabilistic Autoreductions Probabilistic Autoreductions Liyu Zhang University of Texas Rio Grande Valley Joint Work with Chen Yuan and Haibin Kan SOFSEM 2016 1 Overview Introduction to Autoreducibility Previous Results Main Result

More information

CS154, Lecture 17: conp, Oracles again, Space Complexity

CS154, Lecture 17: conp, Oracles again, Space Complexity CS154, Lecture 17: conp, Oracles again, Space Complexity Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode: Guess string

More information

Advanced Algorithms (XIII) Yijia Chen Fudan University

Advanced Algorithms (XIII) Yijia Chen Fudan University Advanced Algorithms (XIII) Yijia Chen Fudan University The PCP Theorem Theorem NP = PCP(log n, 1). Motivation Approximate solutions Definition (Approximation of MAX-3SAT) For every 3CNF formula ϕ, the

More information

On the Average-case Complexity of MCSP and Its Variants. Shuichi Hirahara (The University of Tokyo) Rahul Santhanam (University of Oxford)

On the Average-case Complexity of MCSP and Its Variants. Shuichi Hirahara (The University of Tokyo) Rahul Santhanam (University of Oxford) On the Average-case Complexity of MCSP and Its Variants Shuichi Hirahara (The University of Tokyo) Rahul Santhanam (University of Oxford) CCC 2017 @Latvia, Riga July 6, 2017 Minimum Circuit Size Problem

More information

Theory of Computer Science to Msc Students, Spring Lecture 2

Theory of Computer Science to Msc Students, Spring Lecture 2 Theory of Computer Science to Msc Students, Spring 2007 Lecture 2 Lecturer: Dorit Aharonov Scribe: Bar Shalem and Amitai Gilad Revised: Shahar Dobzinski, March 2007 1 BPP and NP The theory of computer

More information

Meta-Algorithms vs. Circuit Lower Bounds Valentine Kabanets

Meta-Algorithms vs. Circuit Lower Bounds Valentine Kabanets Meta-Algorithms vs. Circuit Lower Bounds Valentine Kabanets Tokyo Institute of Technology & Simon Fraser University Understanding Efficiency Better understanding of Efficient Computation Good Algorithms

More information

Autoreducibility of NP-Complete Sets under Strong Hypotheses

Autoreducibility of NP-Complete Sets under Strong Hypotheses Autoreducibility of NP-Complete Sets under Strong Hypotheses John M. Hitchcock and Hadi Shafei Department of Computer Science University of Wyoming Abstract We study the polynomial-time autoreducibility

More information

Lecture 16 November 6th, 2012 (Prasad Raghavendra)

Lecture 16 November 6th, 2012 (Prasad Raghavendra) 6.841: Advanced Complexity Theory Fall 2012 Lecture 16 November 6th, 2012 (Prasad Raghavendra) Prof. Dana Moshkovitz Scribe: Geng Huang 1 Overview In this lecture, we will begin to talk about the PCP Theorem

More information

Lecture 8 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak;

Lecture 8 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak; Topics in Theoretical Computer Science April 18, 2016 Lecturer: Ola Svensson Lecture 8 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

SPACE HIERARCHY RESULTS FOR RANDOMIZED AND OTHER SEMANTIC MODELS

SPACE HIERARCHY RESULTS FOR RANDOMIZED AND OTHER SEMANTIC MODELS SPACE HIERARCHY RESULTS FOR RANDOMIZED AND OTHER SEMANTIC MODELS Jeff Kinne and Dieter van Melkebeek Abstract. We prove space hierarchy and separation results for randomized and other semantic models of

More information

Constructing Hard Functions from Learning Algorithms

Constructing Hard Functions from Learning Algorithms Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 129 (2013) Constructing Hard Functions from Learning Algorithms Adam Klivans klivans@cs.utexas.edu Pravesh Kothari kothari@cs.utexas.edu

More information

PCP Theorem and Hardness of Approximation

PCP Theorem and Hardness of Approximation PCP Theorem and Hardness of Approximation An Introduction Lee Carraher and Ryan McGovern Department of Computer Science University of Cincinnati October 27, 2003 Introduction Assuming NP P, there are many

More information

Unconditional Lower Bounds Against Advice

Unconditional Lower Bounds Against Advice Unconditional Lower Bounds Against Advice Harry Buhrman Lance Fortnow Rahul Santhanam Abstract We show several unconditional lower bounds for exponential time classes against polynomial time classes with

More information

Notes on Complexity Theory Last updated: November, Lecture 10

Notes on Complexity Theory Last updated: November, Lecture 10 Notes on Complexity Theory Last updated: November, 2015 Lecture 10 Notes by Jonathan Katz, lightly edited by Dov Gordon. 1 Randomized Time Complexity 1.1 How Large is BPP? We know that P ZPP = RP corp

More information

Input-Oblivious Proof Systems and a Uniform Complexity Perspective on P/poly

Input-Oblivious Proof Systems and a Uniform Complexity Perspective on P/poly Electronic Colloquium on Computational Complexity, Report No. 23 (2011) Input-Oblivious Proof Systems and a Uniform Complexity Perspective on P/poly Oded Goldreich and Or Meir Department of Computer Science

More information

On the NP-Completeness of the Minimum Circuit Size Problem

On the NP-Completeness of the Minimum Circuit Size Problem On the NP-Completeness of the Minimum Circuit Size Problem John M. Hitchcock Department of Computer Science University of Wyoming A. Pavan Department of Computer Science Iowa State University Abstract

More information

An Axiomatic Approach to Algebrization

An Axiomatic Approach to Algebrization An Axiomatic Approach to Algebrization Russell Impagliazzo UC San Diego, La Jolla, CA & Institute for Advanced Study Princeton, NJ, USA russell@cs.ucsd.edu Valentine Kabanets Simon Fraser University Burnaby,

More information

Lecture 26: QIP and QMIP

Lecture 26: QIP and QMIP Quantum Computation (CMU 15-859BB, Fall 2015) Lecture 26: QIP and QMIP December 9, 2015 Lecturer: John Wright Scribe: Kumail Jaffer 1 Introduction Recall QMA and QMA(2), the quantum analogues of MA and

More information

Definition: conp = { L L NP } What does a conp computation look like?

Definition: conp = { L L NP } What does a conp computation look like? Space Complexity 28 Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode: Guess string y of x k length and the machine accepts

More information

Is Valiant Vazirani s Isolation Probability Improvable?

Is Valiant Vazirani s Isolation Probability Improvable? Is Valiant Vazirani s Isolation Probability Improvable? Holger Dell Valentine Kabanets Dieter van Melkebeek Osamu Watanabe Department of Computer Sciences University of Wisconsin Madison, WI 53711, USA

More information

2-LOCAL RANDOM REDUCTIONS TO 3-VALUED FUNCTIONS

2-LOCAL RANDOM REDUCTIONS TO 3-VALUED FUNCTIONS 2-LOCAL RANDOM REDUCTIONS TO 3-VALUED FUNCTIONS A. Pavan and N. V. Vinodchandran Abstract. Yao (in a lecture at DIMACS Workshop on structural complexity and cryptography, 1990) showed that if a language

More information

1 Agenda. 2 History. 3 Probabilistically Checkable Proofs (PCPs). Lecture Notes Definitions. PCPs. Approximation Algorithms.

1 Agenda. 2 History. 3 Probabilistically Checkable Proofs (PCPs). Lecture Notes Definitions. PCPs. Approximation Algorithms. CS 221: Computational Complexity Prof. Salil Vadhan Lecture Notes 20 April 12, 2010 Scribe: Jonathan Pines 1 Agenda. PCPs. Approximation Algorithms. PCPs = Inapproximability. 2 History. First, some history

More information

Notes on Complexity Theory Last updated: October, Lecture 6

Notes on Complexity Theory Last updated: October, Lecture 6 Notes on Complexity Theory Last updated: October, 2015 Lecture 6 Notes by Jonathan Katz, lightly edited by Dov Gordon 1 PSPACE and PSPACE-Completeness As in our previous study of N P, it is useful to identify

More information

Length-Increasing Reductions for PSPACE-Completeness

Length-Increasing Reductions for PSPACE-Completeness Length-Increasing Reductions for PSPACE-Completeness John M. Hitchcock 1 and A. Pavan 2 1 Department of Computer Science, University of Wyoming. jhitchco@cs.uwyo.edu 2 Department of Computer Science, Iowa

More information

Pseudorandom Generators and Typically-Correct Derandomization

Pseudorandom Generators and Typically-Correct Derandomization Pseudorandom Generators and Typically-Correct Derandomization Jeff Kinne 1, Dieter van Melkebeek 1, and Ronen Shaltiel 2 1 Department of Computer Sciences, University of Wisconsin-Madison, USA {jkinne,dieter}@cs.wisc.edu

More information

Computational Complexity of Bayesian Networks

Computational Complexity of Bayesian Networks Computational Complexity of Bayesian Networks UAI, 2015 Complexity theory Many computations on Bayesian networks are NP-hard Meaning (no more, no less) that we cannot hope for poly time algorithms that

More information

Lecture 24: Approximate Counting

Lecture 24: Approximate Counting CS 710: Complexity Theory 12/1/2011 Lecture 24: Approximate Counting Instructor: Dieter van Melkebeek Scribe: David Guild and Gautam Prakriya Last time we introduced counting problems and defined the class

More information

B(w, z, v 1, v 2, v 3, A(v 1 ), A(v 2 ), A(v 3 )).

B(w, z, v 1, v 2, v 3, A(v 1 ), A(v 2 ), A(v 3 )). Lecture 13 PCP Continued Last time we began the proof of the theorem that PCP(poly, poly) = NEXP. May 13, 2004 Lecturer: Paul Beame Notes: Tian Sang We showed that IMPLICIT-3SAT is NEXP-complete where

More information

CSC 5170: Theory of Computational Complexity Lecture 9 The Chinese University of Hong Kong 15 March 2010

CSC 5170: Theory of Computational Complexity Lecture 9 The Chinese University of Hong Kong 15 March 2010 CSC 5170: Theory of Computational Complexity Lecture 9 The Chinese University of Hong Kong 15 March 2010 We now embark on a study of computational classes that are more general than NP. As these classes

More information

Review of Basic Computational Complexity

Review of Basic Computational Complexity Lecture 1 Review of Basic Computational Complexity March 30, 2004 Lecturer: Paul Beame Notes: Daniel Lowd 1.1 Preliminaries 1.1.1 Texts There is no one textbook that covers everything in this course. Some

More information

Technische Universität München Summer term 2010 Theoretische Informatik August 2, 2010 Dr. J. Kreiker / Dr. M. Luttenberger, J. Kretinsky SOLUTION

Technische Universität München Summer term 2010 Theoretische Informatik August 2, 2010 Dr. J. Kreiker / Dr. M. Luttenberger, J. Kretinsky SOLUTION Technische Universität München Summer term 2010 Theoretische Informatik August 2, 2010 Dr. J. Kreiker / Dr. M. Luttenberger, J. Kretinsky SOLUTION Complexity Theory Final Exam Please note : If not stated

More information

conp, Oracles, Space Complexity

conp, Oracles, Space Complexity conp, Oracles, Space Complexity 1 What s next? A few possibilities CS161 Design and Analysis of Algorithms CS254 Complexity Theory (next year) CS354 Topics in Circuit Complexity For your favorite course

More information

Polylogarithmic-round Interactive Proofs for conp Collapse the Exponential Hierarchy

Polylogarithmic-round Interactive Proofs for conp Collapse the Exponential Hierarchy Polylogarithmic-round Interactive Proofs for conp Collapse the Exponential Hierarchy A. Pavan Alan L. Selman Sami Sengupta N. V. Vinodchandran March 2, 2006 Abstract If every language in conp has constant

More information

Quantum Information and the PCP Theorem

Quantum Information and the PCP Theorem Quantum Information and the PCP Theorem arxiv:quant-ph/0504075v1 10 Apr 2005 Ran Raz Weizmann Institute ran.raz@weizmann.ac.il Abstract We show how to encode 2 n (classical) bits a 1,...,a 2 n by a single

More information

Lecture 3: Circuits and Karp-Lipton. Scribe: Anonymous Student Prof. Dana Moshkovitz

Lecture 3: Circuits and Karp-Lipton. Scribe: Anonymous Student Prof. Dana Moshkovitz Advanced Complexity Theory Spring 2016 Lecture 3: Circuits and Karp-Lipton Scribe: Anonymous Student Prof. Dana Moshkovitz Scribe Date: Fall 2012 1 Overview In the last lecture we examined relativization.

More information

Notes on Computer Theory Last updated: November, Circuits

Notes on Computer Theory Last updated: November, Circuits Notes on Computer Theory Last updated: November, 2015 Circuits Notes by Jonathan Katz, lightly edited by Dov Gordon. 1 Circuits Boolean circuits offer an alternate model of computation: a non-uniform one

More information

Some Results on Average-Case Hardness within the Polynomial Hierarchy

Some Results on Average-Case Hardness within the Polynomial Hierarchy Some Results on Average-Case Hardness within the Polynomial Hierarchy A. Pavan 1, Rahul Santhanam 2, and N. V. Vinodchandran 3 1 Department of Computer Science, Iowa State University 2 Department of Computer

More information

The Black-Box Query Complexity of Polynomial Summation

The Black-Box Query Complexity of Polynomial Summation The Black-Box Query Complexity of Polynomial Summation Ali Juma Department of Computer Science University of Toronto Toronto, Canada ajuma@cs.toronto.edu Charles Rackoff Department of Computer Science

More information

Finish K-Complexity, Start Time Complexity

Finish K-Complexity, Start Time Complexity 6.045 Finish K-Complexity, Start Time Complexity 1 Kolmogorov Complexity Definition: The shortest description of x, denoted as d(x), is the lexicographically shortest string such that M(w) halts

More information

Notes for Lecture 2. Statement of the PCP Theorem and Constraint Satisfaction

Notes for Lecture 2. Statement of the PCP Theorem and Constraint Satisfaction U.C. Berkeley Handout N2 CS294: PCP and Hardness of Approximation January 23, 2006 Professor Luca Trevisan Scribe: Luca Trevisan Notes for Lecture 2 These notes are based on my survey paper [5]. L.T. Statement

More information

The Complexity of Optimization Problems

The Complexity of Optimization Problems The Complexity of Optimization Problems Summary Lecture 1 - Complexity of algorithms and problems - Complexity classes: P and NP - Reducibility - Karp reducibility - Turing reducibility Uniform and logarithmic

More information

On Basing Lower-Bounds for Learning on Worst-Case Assumptions

On Basing Lower-Bounds for Learning on Worst-Case Assumptions On Basing Lower-Bounds for Learning on Worst-Case Assumptions Benny Applebaum Boaz Barak David Xiao Abstract We consider the question of whether P NP implies that there exists some concept class that is

More information

IS VALIANT VAZIRANI S ISOLATION PROBABILITY IMPROVABLE? Holger Dell, Valentine Kabanets, Dieter van Melkebeek, and Osamu Watanabe December 31, 2012

IS VALIANT VAZIRANI S ISOLATION PROBABILITY IMPROVABLE? Holger Dell, Valentine Kabanets, Dieter van Melkebeek, and Osamu Watanabe December 31, 2012 IS VALIANT VAZIRANI S ISOLATION PROBABILITY IMPROVABLE? Holger Dell, Valentine Kabanets, Dieter van Melkebeek, and Osamu Watanabe December 31, 2012 Abstract. The Isolation Lemma of Valiant & Vazirani (1986)

More information

2 Natural Proofs: a barrier for proving circuit lower bounds

2 Natural Proofs: a barrier for proving circuit lower bounds Topics in Theoretical Computer Science April 4, 2016 Lecturer: Ola Svensson Lecture 6 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

Randomized Computation

Randomized Computation Randomized Computation Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Ahto Buldas Ahto.Buldas@ut.ee We do not assume anything about the distribution of the instances of the problem

More information

DRAFT. Diagonalization. Chapter 4

DRAFT. Diagonalization. Chapter 4 Chapter 4 Diagonalization..the relativized P =?NP question has a positive answer for some oracles and a negative answer for other oracles. We feel that this is further evidence of the difficulty of the

More information

On Interactive Proofs with a Laconic Prover

On Interactive Proofs with a Laconic Prover On Interactive Proofs with a Laconic Prover Oded Goldreich Salil Vadhan Avi Wigderson February 11, 2003 Abstract We continue the investigation of interactive proofs with bounded communication, as initiated

More information

Questions Pool. Amnon Ta-Shma and Dean Doron. January 2, Make sure you know how to solve. Do not submit.

Questions Pool. Amnon Ta-Shma and Dean Doron. January 2, Make sure you know how to solve. Do not submit. Questions Pool Amnon Ta-Shma and Dean Doron January 2, 2017 General guidelines The questions fall into several categories: (Know). (Mandatory). (Bonus). Make sure you know how to solve. Do not submit.

More information

DRAFT. PCP and Hardness of Approximation. Chapter 19

DRAFT. PCP and Hardness of Approximation. Chapter 19 Chapter 19 PCP and Hardness of Approximation...most problem reductions do not create or preserve such gaps...to create such a gap in the generic reduction (cf. Cook)...also seems doubtful. The intuitive

More information

Lecture 4 : Quest for Structure in Counting Problems

Lecture 4 : Quest for Structure in Counting Problems CS6840: Advanced Complexity Theory Jan 10, 2012 Lecture 4 : Quest for Structure in Counting Problems Lecturer: Jayalal Sarma M.N. Scribe: Dinesh K. Theme: Between P and PSPACE. Lecture Plan:Counting problems

More information

Complexity Upper Bounds for Classical Locally Random Reductions Using a Quantum Computational Argument

Complexity Upper Bounds for Classical Locally Random Reductions Using a Quantum Computational Argument Complexity Upper Bounds for Classical Locally Random Reductions Using a Quantum Computational Argument Rahul Tripathi Department of Computer Science and Engineering, University of South Florida, Tampa,

More information

Complexity Theory Final Exam

Complexity Theory Final Exam Technische Universität München Summer term 2010 Theoretische Informatik August 2, 2010 Dr. J. Kreiker / Dr. M. Luttenberger, J. Kretinsky Complexity Theory Final Exam Please note : If not stated otherwise,

More information

Interactive Proof System

Interactive Proof System Interactive Proof System We have seen interactive proofs, in various disguised forms, in the definitions of NP, OTM, Cook reduction and PH. We will see that interactive proofs have fundamental connections

More information

Nondeterministic Circuit Lower Bounds from Mildly Derandomizing Arthur-Merlin Games

Nondeterministic Circuit Lower Bounds from Mildly Derandomizing Arthur-Merlin Games Nondeterministic Circuit Lower Bounds from Mildly Derandomizing Arthur-Merlin Games Barış Aydınlıo glu Department of Computer Sciences University of Wisconsin Madison, WI 53706, USA baris@cs.wisc.edu Dieter

More information

On Bounded Queries and Approximation

On Bounded Queries and Approximation On Bounded Queries and Approximation Richard Chang Department of Computer Science University of Maryland Baltimore County Baltimore, MD 18 chang@cs.umbc.edu William I. Gasarch Department of Computer Science

More information

On Worst-Case to Average-Case Reductions for NP Problems

On Worst-Case to Average-Case Reductions for NP Problems On Worst-Case to Average-Case Reductions for NP Problems Andrej Bogdanov Luca Trevisan January 27, 2005 Abstract We show that if an NP-complete problem has a non-adaptive self-corrector with respect to

More information

Towards NEXP versus BPP?

Towards NEXP versus BPP? Towards NEXP versus BPP? Ryan Williams Stanford University Abstract. We outline two plausible approaches to improving the miserable state of affairs regarding lower bounds against probabilistic polynomial

More information

α x x 0 α x x f(x) α x x α x ( 1) f(x) x f(x) x f(x) α x = α x x 2

α x x 0 α x x f(x) α x x α x ( 1) f(x) x f(x) x f(x) α x = α x x 2 Quadratic speedup for unstructured search - Grover s Al- CS 94- gorithm /8/07 Spring 007 Lecture 11 01 Unstructured Search Here s the problem: You are given an efficient boolean function f : {1,,} {0,1},

More information

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 157-168 www.stacs-conf.org FINDING IRREFUTABLE CERTIFICATES FOR S p 2 ARTHUR AND MERLIN VIA VENKATESAN T. CHAKARAVARTHY AND SAMBUDDHA

More information

Definition 1. NP is a class of language L such that there exists a poly time verifier V with

Definition 1. NP is a class of language L such that there exists a poly time verifier V with Lecture 9: MIP=NEXP Topics in Pseudorandomness and Complexity Theory (Spring 2017) Rutgers University Swastik Kopparty Scribe: Jinyoung Park 1 Introduction Definition 1. NP is a class of language L such

More information

: Computational Complexity Lecture 3 ITCS, Tsinghua Univesity, Fall October 2007

: Computational Complexity Lecture 3 ITCS, Tsinghua Univesity, Fall October 2007 80240233: Computational Complexity Lecture 3 ITCS, Tsinghua Univesity, Fall 2007 16 October 2007 Instructor: Andrej Bogdanov Notes by: Jialin Zhang and Pinyan Lu In this lecture, we introduce the complexity

More information

Reducibility in polynomialtime computable analysis. Akitoshi Kawamura (U Tokyo) Wadern, Germany, September 24, 2015

Reducibility in polynomialtime computable analysis. Akitoshi Kawamura (U Tokyo) Wadern, Germany, September 24, 2015 Reducibility in polynomialtime computable analysis Akitoshi Kawamura (U Tokyo) Wadern, Germany, September 24, 2015 Computable Analysis Applying computability / complexity theory to problems involving real

More information

The Random Oracle Hypothesis is False

The Random Oracle Hypothesis is False The Random Oracle Hypothesis is False Richard Chang 1,2 Benny Chor,4 Oded Goldreich,5 Juris Hartmanis 1 Johan Håstad 6 Desh Ranjan 1,7 Pankaj Rohatgi 1 July 7, 1992 Abstract The Random Oracle Hypothesis,

More information

The Polynomial Hierarchy

The Polynomial Hierarchy The Polynomial Hierarchy Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Ahto Buldas Ahto.Buldas@ut.ee Motivation..synthesizing circuits is exceedingly difficulty. It is even

More information