Block seminar Modeling and control of wind turbine systems: An introduction

Size: px
Start display at page:

Download "Block seminar Modeling and control of wind turbine systems: An introduction"

Transcription

1 Block seminar Modeling and control of wind turbine systems: An introduction Christoph Hackl (TUM) Munich School of Engineering (MSE) Lecture at Stellenbosch University: Modeling of core components on machine and grid side Christoph Hackl: Modeling and control of wind turbine systems: An introduction Page 1/23

2 Outline of the block course: Modeling and control of wind turbine systems: An introduction Date Time Content :00 15:30 Modeling of core components on machine and grid side :00 10:30 Controller design on machine and grid side :00 15:30 Controller design for the DC-link and power flow Modeling and control of wind turbine systems: An introduction, C. Hackl 2/23

3 Outline of 1. Lecture ( ) 1 Core components and motivation Overview What s inside a wind turbine system? Motivation: Why should we (also) focus on controls? 2 Modeling of core components Core components (electrical engineer s point of view) Regimes of operation Modeling of the turbine Modeling of grid-side electrical network Modeling of machine-side electrical network/generator Modeling of the inverter(s) Modeling of the DC link Modeling and control of wind turbine systems: An introduction, C. Hackl 3/23

4 Overview What core components do we have? Modeling and control of wind turbine systems: An introduction, C. Hackl 4/23

5 What s inside a wind turbine system? Inside a wind turbine (movie) ( Modeling and control of wind turbine systems: An introduction, C. Hackl 5/23

6 Distribution of failures in different sub-components control system electrical system sensors 10% 18% 23% 4% generator 4% 2% gearbox 6% 9% drive train mechanical break hydraulic system 8% 7% 5% rotor blades 4% rotor hub structural parts/housing yaw system Modeling and control of wind turbine systems: An introduction, C. Hackl 6/23

7 Failure rates and downtimes generator gearbox drive train rotor blades rotor hub structural parts mechanical break yaw system control system electrical system sensors hydraulic system failure rate turbine year Average down time (during life span of 20 years): Electrical system: 18.9 days Control system: 16.7 days Gear: 13.6 days downtime rdayss Modeling and control of wind turbine systems: An introduction, C. Hackl 7/23 ı

8 Core components (electrical engineer s point of view) Turbine Gear Generator Back-to-Back Converter Filter PCC Trafo Grid ω T ω M Rotor Stator β ref β ω M s abc M i abc M s abc N u DC i abc F u abc N,verk Control system β ref ω M,ref u DC,ref Q ref Q P ref P Operation management v W Q ref P ref Modeling and control of wind turbine systems: An introduction, C. Hackl 8/23

9 Regimes of operation of wind turbine systems I II III IV P N PT [W] v cut in v N v cut out v W [ Modeling and control of wind turbine systems: An introduction, C. Hackl 9/23

10 Modeling of the turbine Energy/power in wind Extractable power: Power coefficient Turbine torque Modeling and control of wind turbine systems: An introduction, C. Hackl 10/23

11 Power coefficient (without pitch control) Power coefficient cp [1] c P,1 p q c P,Betz Tip speed ratio λ r T ω T v W [1] Modeling and control of wind turbine systems: An introduction, C. Hackl 11/23

12 Power coefficient (with pitch control) 0.6 c P,1 p q c P,2 p, q 0.4 [1] λ r T ω T v W [1] β [ ] Modeling and control of wind turbine systems: An introduction, C. Hackl 12/23

13 Munich School of Engineering Wind turbine systems with synchronous generators Wind turbine SWT Direct drive (Permanent-magnet synchronous generator (PMSG)) Modeling and control of wind turbine systems: An introduction, C. Hackl 13/23

14 Overview: Electrical network of wind turbine systems Machine/generator-side grid-side (with ideal grid voltage) u a s u a F e a s R s L a s U i a s p G ` ` p N i a F U L F R F u a 0 o G e b s e c s R s R s L b s L c s V i b s W i c s i G u DC i i N DC C DC p DC i b F L F R F u b 0 V i c F L F R F u c 0 W o N o DC PCC Modeling and control of wind turbine systems: An introduction, C. Hackl 14/23

15 Modeling of grid-side electrical network in pa, b, cq u a F ` ` i a F U L F R F u a 0 i G u DC i DC CDC i N i b F L F R F u b 0 V o N i c F L F R F u c 0 W o DC PCC Using Kirchhoff s voltage and current law, we obtain goal: Model in pd, qq-coordinate system. How to achieve? Modeling and control of wind turbine systems: An introduction, C. Hackl 15/23

16 Space vector theory: A brief review u v w b q q 1 β ψ s r ω k 9 φ k d φ k d 1 ω r 9 φ r b r a r a b r b φ s a r a φ r α c r c c r c Modeling and control of wind turbine systems: An introduction, C. Hackl 16/23

17 Modeling of the (ideal) grid voltage u abc 0 u a 0 β ω k ω 0 u b 0 t u c 0 q u s 0 d φ k φ 0 u abc where 0 pu a 0, u b 0, u c 0q J cospω 0t ` α 0 q û 0 cospω 0 t 2{3π ` α 0 q cospω 0 t 4{3π ` α 0 q û 0? rvs ω 0 2π 50 rrad{ss (here: α 0 π{4 rrads) b c u s 0 û 0 φ 0 ş ω 0 dτ ` α 0 α a and φ 0 atan2 u α 0 u β Modeling and control of wind turbine systems: An introduction, C. Hackl 17/23

18 Modeling of grid-side electrical network in pd, qq Using voltage orientation, we end up with Modeling and control of wind turbine systems: An introduction, C. Hackl 18/23

19 Modeling of machine-side electrical network/generator u a s e a s R s L a s U i a s ` ` o G e b s R s L b s V i b s i G u DC i i N DC C DC e c s R s L c s W i c s o DC We only consider permanent-magnet synchronous generators (PMSG). Using Kirchhoff s voltage and current law, we obtain Goal: Model in pd, qq-coordinate system, i.e. rotor flux orientation. How to achieve? Modeling and control of wind turbine systems: An introduction, C. Hackl 19/23

20 Modeling of the inverter(s): Electrical network ` 2-Level-Inverter (ideal) i DC i N s a s b i a s c U u ab u DC s a s b i b s c i c V u bc W u ca o DC s abc : ps a, s b, s c q J What voltages can we apply? E.g. what happens for s abc p1, 0, 0q J? Modeling and control of wind turbine systems: An introduction, C. Hackl 20/23

21 Switching vectors and voltage hexagon b β u DC u u DC ps abc q J P t100,..., 111u u u DC u 011 1? 3 u DC 1 u 000 u2 111 u DC u 100 u DC 1 u 1 u 23 u 0 3 DC u 2 DC DC 3 DC 3 u DC α a 13 u DC u u u 101 DC Modeling and control of wind turbine systems: An introduction, C. Hackl 21/23

22 Delayed voltage response 600 u a ref u a (aus Umrichter) u a av (gefilterte Grundwelle) [V] Zeit t [s] (T PWM = 0,002 s) T dead T PWM ùñ F Inverter psq : ua,b,c psq u a,b,c ref psq e stdead «1 1 ` st dead Modeling and control of wind turbine systems: An introduction, C. Hackl 22/23

23 Modeling of the DC-link p G ` ` p N i G u DC i N i DC CDC p DC How may we model the DC-link dynamics? Modeling and control of wind turbine systems: An introduction, C. Hackl 23/23

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Control of Wind Turbine Generators James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Review from Day 1 Review Last time, we started with basic concepts from physics such as

More information

Lecture 8: Sensorless Synchronous Motor Drives

Lecture 8: Sensorless Synchronous Motor Drives 1 / 22 Lecture 8: Sensorless Synchronous Motor Drives ELEC-E8402 Control of Electric Drives and Power Converters (5 ECTS) Marko Hinkkanen Spring 2017 2 / 22 Learning Outcomes After this lecture and exercises

More information

Generators for wind power conversion

Generators for wind power conversion Generators for wind power conversion B. G. Fernandes Department of Electrical Engineering Indian Institute of Technology, Bombay Email : bgf@ee.iitb.ac.in Outline of The Talk Introduction Constant speed

More information

NONLINEAR MPPT CONTROL OF SQUIRREL CAGE INDUCTION GENERATOR-WIND TURBINE

NONLINEAR MPPT CONTROL OF SQUIRREL CAGE INDUCTION GENERATOR-WIND TURBINE NONLINEAR MPPT CONTROL OF SQUIRREL CAGE INDUCTION GENERATOR-WIND TURBINE 1 M. BENCHAGRA, 2 M. MAAROUFI. 3 M. OUASSAID 1, 2 Department of Electrical Engineering, Mohammadia School of Engineering- BP 767-Rabat-

More information

Simplified Analysis Technique for Double Layer Non-overlap Multiphase Slip Permanent Magnet Couplings in Wind Energy Applications

Simplified Analysis Technique for Double Layer Non-overlap Multiphase Slip Permanent Magnet Couplings in Wind Energy Applications Simplified Analysis Technique for Double Layer Non-overlap Multiphase Slip Permanent Magnet Couplings in Wind Energy Applications Petrus JJ van Wyk - Prof. Maarten J. Kamper Renewable Energy Postgraduate

More information

Simulations and Control of Direct Driven Permanent Magnet Synchronous Generator

Simulations and Control of Direct Driven Permanent Magnet Synchronous Generator Simulations and Control of Direct Driven Permanent Magnet Synchronous Generator Project Work Dmitry Svechkarenko Royal Institute of Technology Department of Electrical Engineering Electrical Machines and

More information

Permanent Magnet Wind Generator Technology for Battery Charging Wind Energy Systems

Permanent Magnet Wind Generator Technology for Battery Charging Wind Energy Systems Permanent Magnet Wind Generator Technology for Battery Charging Wind Energy Systems Casper J. J. Labuschagne, Maarten J. Kamper Electrical Machines Laboratory Dept of Electrical and Electronic Engineering

More information

Dynamic Analysis of Grid Connected Wind Farms Using ATP

Dynamic Analysis of Grid Connected Wind Farms Using ATP Dynamic Analysis of Grid Connected Wind Farms Using ATP A. Samuel Neto, F. A. S. Neves Universidade Federal de Pernambuco Department of Electrical Engineering and Power Systems 50740-50 Recife, PE - BRASIL

More information

Modeling of Permanent Magnet Synchronous Generator for Wind Energy Conversion System

Modeling of Permanent Magnet Synchronous Generator for Wind Energy Conversion System Modeling of Permanent Magnet Synchronous Generator for Wind Energy Conversion System T.SANTHANA KRISHNAN Assistant Professor (SG), Dept of Electrical & Electronics, Rajalakshmi Engineering College, Tamilnadu,

More information

Modeling and control of renewable energy systems

Modeling and control of renewable energy systems Modeling and control of renewable energy systems Christoph Hackl Technische Universität München (TUM) Munich School of Engineering (MSE) Research group Control of Renewable Energy Systems (CRES) www.cres.mse.tum.de

More information

Lecture 4: Wind energy

Lecture 4: Wind energy ES427: The Natural Environment and Engineering Global warming and renewable energy Lecture 4: Wind energy Philip Davies Room A322 philip.davies@warwick.ac.uk 1 Overview of topic Wind resources Origin of

More information

Nonlinear control of renewable energy systems

Nonlinear control of renewable energy systems Nonlinear control of renewable energy systems Christoph Hackl Technische Universität München (TUM) Munich School of Engineering (MSE) Research group Control of Renewable Energy Systems (CRES) www.cres.mse.tum.de

More information

Introduction to Synchronous. Machines. Kevin Gaughan

Introduction to Synchronous. Machines. Kevin Gaughan Introduction to Synchronous Machines Kevin Gaughan The Synchronous Machine An AC machine (generator or motor) with a stator winding (usually 3 phase) generating a rotating magnetic field and a rotor carrying

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems by Dr. Guillaume Ducard Fall 2016 Institute for Dynamic Systems and Control ETH Zurich, Switzerland 1/22 Outline 1 Lecture 5: Hydraulic Systems Pelton Turbine:

More information

Predictive Control Strategy for DFIG Wind Turbines with Maximum Power Point Tracking Using Multilevel Converters

Predictive Control Strategy for DFIG Wind Turbines with Maximum Power Point Tracking Using Multilevel Converters Predictive Control Strategy for DFIG Wind Turbines with Maximum Power Point Tracking Using Multilevel Converters José Sayritupac 1, Eduardo Albánez 1, Johnny Rengifo 1, José Aller 1,2 and José Restrepo

More information

«EMR AND INVERSION-BASED CONTROL

«EMR AND INVERSION-BASED CONTROL EMR 17 ille June 2017 Summer School EMR 17 Energetic Macroscopic Representation «EMR AND INVERSION-BASED ONTRO OF RENEWABE ENERGY SYSTEMS» Prof. Betty EMAIRE-SEMAI, Dr. Walter HOMME, Dr. Philippe DEARUE,

More information

Synchronous Machines

Synchronous Machines Synchronous Machines Synchronous Machines n 1 Φ f n 1 Φ f I f I f I f damper (run-up) winding Stator: similar to induction (asynchronous) machine ( 3 phase windings that forms a rotational circular magnetic

More information

PERFORMANCE OF SENSORLESS CONTROL OF PERMANENT MAGNET SYNCHRONOUS GENERATOR IN WIND TURBINE SYSTEM*

PERFORMANCE OF SENSORLESS CONTROL OF PERMANENT MAGNET SYNCHRONOUS GENERATOR IN WIND TURBINE SYSTEM* Vol. 1(6), No. 2, 2016 POWER ELECTRONICS AND DRIVES DOI: 10.5277/PED160210 PERFORMANCE OF SENSORLESS CONTROL OF PERMANENT MAGNET SYNCHRONOUS GENERATOR IN WIND TURBINE SYSTEM OTR GAJEWSKI, KRZYSZTOF EŃKOWSKI

More information

Non-identifier based adaptive control in mechatronics

Non-identifier based adaptive control in mechatronics Non-identifier based adaptive control in mechatronics 2.5 Application: Speed and current control of electrical drives Christoph Hackl Munich School of Engineering (MSE) Research group Control of renewable

More information

Mini-project report. Modelling and control of a variablespeed subsea tidal turbine equipped with permanent magnet synchronous generator.

Mini-project report. Modelling and control of a variablespeed subsea tidal turbine equipped with permanent magnet synchronous generator. 1 Mini-project report Modelling and control of a variablespeed subsea tidal turbine equipped with permanent magnet synchronous generator. Shoan Mbabazi dtp09sm@sheffield.ac.uk August 2010 2 Modelling and

More information

Lecture 7: Synchronous Motor Drives

Lecture 7: Synchronous Motor Drives 1 / 46 Lecture 7: Synchronous Motor Drives ELEC-E8402 Control of Electric Drives and Power Converters (5 ECTS) Marko Hinkkanen Spring 2017 2 / 46 Learning Outcomes After this lecture and exercises you

More information

Advanced Control of a PMSG Wind Turbine

Advanced Control of a PMSG Wind Turbine International Journal of Modern Nonlinear Theory and Application, 16, 5, 1-1 Published Online March 16 in SciRes. http://www.scirp.org/journal/ijmnta http://dx.doi.org/1.436/ijmnta.16.511 Advanced Control

More information

Analysis, Modeling and Control Design of a Synchronous Generator with a Wind Turbine and a Multilevel Voltage Source Inverter

Analysis, Modeling and Control Design of a Synchronous Generator with a Wind Turbine and a Multilevel Voltage Source Inverter Analysis, Modeling and Control Design of a Synchronous Generator with a Wind Turbine and a Multilevel Voltage Source Inverter Walid Emar Faculty of Engineering, Electrical Department Isra University, Amman,

More information

Fault-tolerant Control of a Wind Turbine with a Squirrel-cage Induction Generator and Rotor Bar Defects

Fault-tolerant Control of a Wind Turbine with a Squirrel-cage Induction Generator and Rotor Bar Defects Fault-tolerant Control of a Wind Turbine with a Squirrel-cage Induction Generator and Rotor Bar Defects V. Lešić 1, M. Vašak 1, N. Perić 1, T. Wolbank 2 and G. Joksimović 3 vinko.lesic@fer.hr 1 University

More information

Chapter 4. Synchronous Generators. Basic Topology

Chapter 4. Synchronous Generators. Basic Topology Basic Topology Chapter 4 ynchronous Generators In stator, a three-phase winding similar to the one described in chapter 4. ince the main voltage is induced in this winding, it is also called armature winding.

More information

Phasor model of full scale converter wind turbine for small-signal stability analysis

Phasor model of full scale converter wind turbine for small-signal stability analysis The 6th International Conference on Renewable Power Generation (RPG) 19 20 October 2017 Phasor model of full scale converter wind turbine for small-signal stability analysis Radu Gihga, Qiuwei Wu, Arne

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVACES in ATURAL and APPLIED SCIECES ISS 1995772 Published BY AESI Publication EISS 199819 http//wwwaensiwebcom/aas 216 April 1(4) pages 233238 Open Access Journal Control of Doubly Fed Induction Generator

More information

Assessment of Power Coefficient of an Offline Wind Turbine Generator System

Assessment of Power Coefficient of an Offline Wind Turbine Generator System RESEARCH Assessment of Power Coefficient of an Offline Wind Turbine Generator System Parikshit G. Jamdade 1 *, Santosh V. Patil, Shrinivas G. Jamdade 1. Assistant Professor, PVG s College of Engineering

More information

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

More information

Drivetrains. Direct Drive Generators High Temperature Superconductor Based Machines. Daniel McGahn Senior Vice President

Drivetrains. Direct Drive Generators High Temperature Superconductor Based Machines. Daniel McGahn Senior Vice President Drivetrains Direct Drive Generators High Temperature Superconductor Based Machines Daniel McGahn Senior Vice President AGENDA Wind turbine power conversion Drivetrain evolution Market Driver: Cost of Electricity

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set 10 Issued November 11, 2013 Due November 20, 2013 Problem 1: Permanent

More information

PI/FL Based On PMSG for Wind Turbine Used in Wind Energy Conversion System

PI/FL Based On PMSG for Wind Turbine Used in Wind Energy Conversion System PI/FL Based On PMSG for Wind Turbine Used in Wind Energy Conversion System Aroua Slimen, Hatem Tlijani, Mehdi Dhaoui, Rached B.Younes. Abstract Nowadays, the use of electrical energy in the agricultural

More information

Comparative Analysis of an integration of a Wind Energy Conversion System of PMSG and DFIG Models Connected to Power Grid

Comparative Analysis of an integration of a Wind Energy Conversion System of PMSG and DFIG Models Connected to Power Grid International Journal of Electrical Engineering. ISSN 0974-2158 Volume 6, Number 3 (2013), pp. 231-248 International Research Publication House http://www.irphouse.com Comparative Analysis of an integration

More information

Torques 1.0 Two torques We have written the swing equation where speed is in rad/sec as:

Torques 1.0 Two torques We have written the swing equation where speed is in rad/sec as: Torques 1.0 Two torques We have written the swing equation where speed is in rad/sec as: 2H Re ( t) T au T mu T eu (1) and when speed is in per-unit as 2H u ( t) Tau Tmu Teu (2) We note that in both cases

More information

A NOVEL FLUX-SPACE-VECTOR-BASED DIRECT TORQUE CONTROL SCHEME FOR PMSG USED IN VARIABLE-SPEED DIRECT-DRIVE WECS

A NOVEL FLUX-SPACE-VECTOR-BASED DIRECT TORQUE CONTROL SCHEME FOR PMSG USED IN VARIABLE-SPEED DIRECT-DRIVE WECS A NOVEL FLUX-SPACE-VECTOR-BASED DIRECT TORQUE CONTROL SCHEME FOR PMSG USED IN VARIABLE-SPEED DIRECT-DRIVE WECS B.VENKATESWARARAJU 1, B. YELLA REDDY 2 1 Mtech Scholar, 2 Assistant Professor Department of

More information

Control and simulation of doubly fed induction generator for variable speed wind turbine systems based on an integrated Finite Element approach

Control and simulation of doubly fed induction generator for variable speed wind turbine systems based on an integrated Finite Element approach Control and simulation of doubly fed induction generator for variable speed wind turbine systems based on an integrated Finite Element approach Qiong zhong Chen*, Michel Defourny #, Olivier Brüls* *Department

More information

Digital Control of Electric Drives. Induction Motor Vector Control. Czech Technical University in Prague Faculty of Electrical Engineering

Digital Control of Electric Drives. Induction Motor Vector Control. Czech Technical University in Prague Faculty of Electrical Engineering Digital Control of Electric Drives Induction Motor Vector Control Czech Technical University in Prague Faculty of Electrical Engineering BE1M14DEP O. Zoubek, J. Zdenek 1 Induction Motor Control Methods

More information

Doubly-Fed Induction Generator Wind Turbine Model for Fault Ride-Through Investigation

Doubly-Fed Induction Generator Wind Turbine Model for Fault Ride-Through Investigation 32 ECTI TRANSACTIONS ON ELECTRICAL ENG., ELECTRONICS, AND COMMUNICATIONS VOL.11, NO.1 February 2013 Doubly-Fed Induction Generator Wind Turbine Model for Fault Ride-Through Investigation Yutana Chongjarearn

More information

Three Phase Circuits

Three Phase Circuits Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/ OUTLINE Previously on ELCN102 Three Phase Circuits Balanced

More information

Energy Generation and Electrical Machine Control Parameters of DFIG in Wind Turbine

Energy Generation and Electrical Machine Control Parameters of DFIG in Wind Turbine Eng. &Tech.Journal, Vol.34,Part (A), No.110,2016 Energy Generation and Electrical Machine Control Parameters of DFIG in Wind Turbine Dr. Wamidh Dhyaa Eldeen Bahaa Eldeen Electromechanical Engineering Department,

More information

Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3

Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3 Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3 P.G Scholar, Sri Subramanya College of Engg & Tech, Palani, Tamilnadu, India

More information

Engineering Tripos Part IB. Part IB Paper 8: - ELECTIVE (2)

Engineering Tripos Part IB. Part IB Paper 8: - ELECTIVE (2) Engineering Tripos Part IB SECOND YEAR Part IB Paper 8: - ELECTIVE (2) MECHANICAL ENGINEERING FOR RENEWABLE ENERGY SYSTEMS Examples Paper 2 Wind Turbines, Materials, and Dynamics All questions are of Tripos

More information

Design and implementation of a sliding-mode observer of the rotor flux and rotor speed in induction machines

Design and implementation of a sliding-mode observer of the rotor flux and rotor speed in induction machines 1 Design and implementation of a sliding-mode observer of the rotor flux and rotor speed in induction machines João Ferraz, Paulo Branco Phd. Abstract A sliding-mode observer for the rotor flux and speed

More information

CZASOPISMO TECHNICZNE TECHNICAL TRANSACTIONS ELECTRICAL ENGINEERING ELEKTROTECHNIKA 1-E/2015

CZASOPISMO TECHNICZNE TECHNICAL TRANSACTIONS ELECTRICAL ENGINEERING ELEKTROTECHNIKA 1-E/2015 TECHNICAL TRANSACTIONS ELECTRICAL ENGINEERING CZASOPISMO TECHNICZNE ELEKTROTECHNIKA 1-E/2015 Piotr Gajewski, Krzysztof Pieńkowski Analysis of A WIND ENERGY CONVERTER SYSTEM with PMSG generator Analiza

More information

Generators. What its all about

Generators. What its all about Generators What its all about How do we make a generator? Synchronous Operation Rotor Magnetic Field Stator Magnetic Field Forces and Magnetic Fields Force Between Fields Motoring Generators & motors are

More information

CONTROL ASPECTS OF WIND TURBINES. Faizal Hafiz, Wind Energy Research Group, SET Center

CONTROL ASPECTS OF WIND TURBINES. Faizal Hafiz, Wind Energy Research Group, SET Center CONTROL ASPECTS OF WIND TURBINES Faizal Hafiz, Wind Energy Research Group, SET Center Presentation Outline 2 Power in Wind Maximum Power Point Tracking Connection Topologies Active Power Control How? Grid

More information

Control of an Induction Motor Drive

Control of an Induction Motor Drive Control of an Induction Motor Drive 1 Introduction This assignment deals with control of an induction motor drive. First, scalar control (or Volts-per-Hertz control) is studied in Section 2, where also

More information

Lecture 1: Induction Motor

Lecture 1: Induction Motor 1 / 22 Lecture 1: Induction Motor ELEC-E8402 Control of Electric Drives and Power Converters (5 ECTS) Marko Hinkkanen Aalto University School of Electrical Engineering Spring 2016 2 / 22 Learning Outcomes

More information

A New Predictive Control Strategy Dedicated to Salient Pole Synchronous Machines

A New Predictive Control Strategy Dedicated to Salient Pole Synchronous Machines A New Predictive Control Strategy Dedicated to Salient Pole Synchronous Machines Nicolas Patin Member IEEE University of Technology of Compiègne Laboratoire d Electromécanique de Compiègne Rue Personne

More information

Fuzzy optimum opertaing of a wind power pumping system

Fuzzy optimum opertaing of a wind power pumping system Fuzzy optimum opertaing of a wind power pumping system Olfa Gam, Riadh Abdelati, Mohamed Faouzi Mimouni Research Unit of Industrial Systems and Renewable Energy (ESIER), National Engineering School of

More information

Adaptive Control of Variable-Speed Variable-Pitch Wind Turbines Using RBF Neural Network

Adaptive Control of Variable-Speed Variable-Pitch Wind Turbines Using RBF Neural Network Schulich School of Engineering Department of Mechanical and Manufacturing Engineering Adaptive Control of Variable-Speed Variable-Pitch Wind Turbines Using RBF Neural Network By: Hamidreza Jafarnejadsani,

More information

Performance analysis of voltage regulation in diesel-wind generation

Performance analysis of voltage regulation in diesel-wind generation MultiCraft International Journal of Engineering, Science and Technology INTERNATIONAL JOURNAL OF ENGINEERING, SCIENCE AND TECHNOLOGY www.ijest-ng.com 2011 MultiCraft Limited. All rights reserved Performance

More information

MODIFIED SCHEME OF PREDICTIVE TORQUE CONTROL FOR THREE-PHASE FOUR-SWITCH INVERTER-FED MOTOR DRIVE WITH ADAPTIVE DC-LINK VOLTAGE IMBALANCE SUPPRESSION

MODIFIED SCHEME OF PREDICTIVE TORQUE CONTROL FOR THREE-PHASE FOUR-SWITCH INVERTER-FED MOTOR DRIVE WITH ADAPTIVE DC-LINK VOLTAGE IMBALANCE SUPPRESSION POWER ELECTRONICS AND DRIVES 2(37), No. 2, 217 DOI: 1.5277/PED1728 MODIFIED SCHEME OF PREDICTIVE TORQUE CONTROL FOR THREE-PHASE FOUR-SWITCH INVERTER-FED MOTOR DRIVE WITH ADAPTIVE DC-LINK VOLTAGE IMBALANCE

More information

Behaviour of synchronous machine during a short-circuit (a simple example of electromagnetic transients)

Behaviour of synchronous machine during a short-circuit (a simple example of electromagnetic transients) ELEC0047 - Power system dynamics, control and stability (a simple example of electromagnetic transients) Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 25 Objectives

More information

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy An Introduction to Electrical Machines P. Di Barba, University of Pavia, Italy Academic year 0-0 Contents Transformer. An overview of the device. Principle of operation of a single-phase transformer 3.

More information

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque.

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque. Exam Electrical Machines and Drives (ET4117) 11 November 011 from 14.00 to 17.00. This exam consists of 5 problems on 4 pages. Page 5 can be used to answer problem 4 question b. The number before a question

More information

ELECTRICALMACHINES-I QUESTUION BANK

ELECTRICALMACHINES-I QUESTUION BANK ELECTRICALMACHINES-I QUESTUION BANK UNIT-I INTRODUCTION OF MAGNETIC MATERIAL PART A 1. What are the three basic rotating Electric machines? 2. Name the three materials used in machine manufacture. 3. What

More information

Online Model Predictive Torque Control for Permanent Magnet Synchronous Motors

Online Model Predictive Torque Control for Permanent Magnet Synchronous Motors Online Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini, Daniele Bernardini, Alberto Bemporad and Stephen Levijoki ODYS Srl General Motors Company 2015 IEEE International

More information

Linearizing control input-output of a wind turbine permanent magnet synchronous Riad AISSOU #1, Toufik REKIOUA #2

Linearizing control input-output of a wind turbine permanent magnet synchronous Riad AISSOU #1, Toufik REKIOUA #2 Linearizing control input-output of a wind turbine permanent magnet synchronous Riad AISSOU #1, Toufik REKIOUA #2 1,2 Laboratory of Industrial Technology and the Information «LT2I», Faculty of Technology,

More information

EE155/255 Green Electronics

EE155/255 Green Electronics EE155/255 Green Electronics Electric Motors 10/16/17 Prof. William Dally Computer Systems Laboratory Stanford University Course Logistics Solar day is Monday 10/23 HW 3 is due today HW 4 out, due next

More information

ECEN 667 Power System Stability Lecture 11: Exciter Models

ECEN 667 Power System Stability Lecture 11: Exciter Models CN 667 Power System Stability Lecture : xciter Models Prof. Tom Overbye Dept. of lectrical and Computer ngineering Texas A&M University, overbye@tamu.edu Announcements Read Chapter 4 Homework 3 is due

More information

Robust Control For Variable-Speed Two-Bladed Horizontal-Axis Wind Turbines Via ChatteringControl

Robust Control For Variable-Speed Two-Bladed Horizontal-Axis Wind Turbines Via ChatteringControl Robust Control For Variable-Speed Two-Bladed Horizontal-Axis Wind Turbines Via ChatteringControl Leonardo Acho, Yolanda Vidal, Francesc Pozo CoDAlab, Escola Universitària d'enginyeria Tècnica Industrial

More information

Single-Phase Synchronverter for DC Microgrid Interface with AC Grid

Single-Phase Synchronverter for DC Microgrid Interface with AC Grid The First Power Electronics and Renewable Energy Workshop (PEREW 2017) March 1-2, 2017- Aswan Faculty of Engineering, Aswan Egypt Single-Phase Synchronverter for Microgrid Interface with AC Grid Presenter:

More information

JRE SCHOOL OF Engineering

JRE SCHOOL OF Engineering JRE SCHOOL OF Engineering Class Test-1 Examinations September 2014 Subject Name Electromechanical Energy Conversion-II Subject Code EEE -501 Roll No. of Student Max Marks 30 Marks Max Duration 1 hour Date

More information

Maximum Power Point Tracking Control of the Permanent Magnet Synchronous Generator based Wind Turbine

Maximum Power Point Tracking Control of the Permanent Magnet Synchronous Generator based Wind Turbine Maximum Power Point Tracking Control of the Permanent Magnet Synchronous Generator based Wind Turbine Mengqi Zhang Supervisor: Dr L. Jiang Co-supervisor: Professor Q.H. Wu Electrical Engineering and Electronics

More information

Name: Set: Date: Pliers SKU Go on your own scavenger hunt to find these items. Try creating with all kinds of materials!

Name: Set: Date: Pliers SKU Go on your own scavenger hunt to find these items. Try creating with all kinds of materials! Name: Set: Date: Perfect for Grades: 5+ Difficulty: Intermediate The Lab Download Documents at teachergeek.com This lab can begin after you complete the basic mini turbine build. During this lab you will

More information

Wind Turbines under Power-Grid Partial Islanding

Wind Turbines under Power-Grid Partial Islanding European Association for the Development of Renewable Energies, Environment and Power Quality (EAEPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 1) Santiago de Compostela

More information

Aerodynamic Performance 1. Figure 1: Flowfield of a Wind Turbine and Actuator disc. Table 1: Properties of the actuator disk.

Aerodynamic Performance 1. Figure 1: Flowfield of a Wind Turbine and Actuator disc. Table 1: Properties of the actuator disk. Aerodynamic Performance 1 1 Momentum Theory Figure 1: Flowfield of a Wind Turbine and Actuator disc. Table 1: Properties of the actuator disk. 1. The flow is perfect fluid, steady, and incompressible.

More information

The Modelling, Simulation and Control of a 50 kw Vertical Axis Wind Turbine

The Modelling, Simulation and Control of a 50 kw Vertical Axis Wind Turbine The Modelling, Simulation and Control of a 50 kw Vertical Axis Wind Turbine Bati A. F., Brennan F. Abstract This paper presents the modelling, Simulation and control of the APP 50 kw vertical axis wind

More information

Limited Angle Torque Motors Having High Torque Density, Used in Accurate Drive Systems

Limited Angle Torque Motors Having High Torque Density, Used in Accurate Drive Systems Limited Angle Torque Motors Having High Torque Density, Used in Accurate Drive Systems R.Obreja,I.R.Edu Abstract A torque motor is a special electric motor that is able to develop the highest possible

More information

EE155/255 Green Electronics

EE155/255 Green Electronics EE155/255 Green Electronics Electric Motors 10/19/16 Prof. William Dally Computer Systems Laboratory Stanford University This week is flipped Course Logistics Discussion on 10/17, Motors on 10/19, Isolated

More information

Speed funnel control with disturbance observer for wind turbine systems with elastic shaft

Speed funnel control with disturbance observer for wind turbine systems with elastic shaft Speed funnel control with disturbance observer for wind turbine systems with elastic shaft Christoph Hackl (TUM) Munich School of Engineering (MSE) Research group Control of Renewable Energy Systems (CRES)

More information

Monitoring Wind Turbine Loading Using Power Converter Signals

Monitoring Wind Turbine Loading Using Power Converter Signals Journal of Physics: Conference Series PAPER OPEN ACCESS Monitoring Wind Turbine Loading Using Power Converter Signals To cite this article: C A Rieg et al 216 J. Phys.: Conf. Ser. 749 1218 View the article

More information

Lecture 9: Space-Vector Models

Lecture 9: Space-Vector Models 1 / 30 Lecture 9: Space-Vector Models ELEC-E8405 Electric Drives (5 ECTS) Marko Hinkkanen Autumn 2017 2 / 30 Learning Outcomes After this lecture and exercises you will be able to: Include the number of

More information

Industrial Electrical Engineering and Automation

Industrial Electrical Engineering and Automation Industrial Electrical Engineering and Automation CODEN:LUTEDX/(TEIE-5290)/1-194(2011) Modeling and Simulation of a Vertical Wind Power Plant in Dymola/Simulink Joel Petersson Pär Isaksson Division of Industrial

More information

STAR-CCM+ and SPEED for electric machine cooling analysis

STAR-CCM+ and SPEED for electric machine cooling analysis STAR-CCM+ and SPEED for electric machine cooling analysis Dr. Markus Anders, Dr. Stefan Holst, CD-adapco Abstract: This paper shows how two well established software programs can be used to determine the

More information

A Power System Dynamic Simulation Program Using MATLAB/ Simulink

A Power System Dynamic Simulation Program Using MATLAB/ Simulink A Power System Dynamic Simulation Program Using MATLAB/ Simulink Linash P. Kunjumuhammed Post doctoral fellow, Department of Electrical and Electronic Engineering, Imperial College London, United Kingdom

More information

State Estimation of DFIG using an Extended Kalman Filter with an Augmented State Model

State Estimation of DFIG using an Extended Kalman Filter with an Augmented State Model State Estimation of DFIG using an Extended Kalman Filter with an Augmented State Model Mridul Kanti Malaar Department of Electronics and Electrical Engineering Indian Institute of Technology Guwahati,

More information

MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES

MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES JOHN CHIASSON IEEE PRESS ü t SERIES ON POWER ENGINEERING IEEE Press Series on Power Engineering Mohamed E. El-Hawary, Series Editor The Institute

More information

Feasibility Studies on Integrating Offshore Wind Power with Oil Platforms

Feasibility Studies on Integrating Offshore Wind Power with Oil Platforms Feasibility Studies on Integrating Offshore Wind Power with Oil Platforms Atle Rygg Årdal Master of Science in Energy and Environment Submission date: June 2011 Supervisor: Tore Marvin Undeland, ELKRAFT

More information

SPEED CONTROL OF THE DOUBLY FED INDUCTION GENERATOR APPLIED TO A WIND SYSTEM

SPEED CONTROL OF THE DOUBLY FED INDUCTION GENERATOR APPLIED TO A WIND SYSTEM SPEED CONTROL OF THE DOUBLY FED INDUCTION GENERATOR APPLIED TO A WIND SYSTEM HALA ALAMI AROUSSI,ELMOSTAFA ZIANI, BADRE BOSSOUFI Laboratory of Electrical Engineering and Maintenance (LGEM), Higher School

More information

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application 797 Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application Ritu Tak 1, Sudhir Y Kumar 2, B.S.Rajpurohit 3 1,2 Electrical Engineering, Mody University of Science & Technology,

More information

PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION

PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION Journal of ELECTRICAL ENGINEERING, VOL. 55, NO. 5-6, 24, 138 143 PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION Martin Lipták This paper

More information

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi AC Machines Operating Principles: Synchronous Motor In synchronous motors, the stator of the motor has a rotating magnetic

More information

Alexander M. Weinger CONTROLLED AC DRIVES

Alexander M. Weinger CONTROLLED AC DRIVES Alexander M. Weinger CONTROLLED AC DRIVES Shortened introductory course Moscow 28 CONTENTS 1. MAIN REQUIREMENTS TO CONTROLLED ELECTRIC DRIVES AND THEIR MAIN FEATURES... 5 1.1. Definition of a controlled

More information

3-Phase PMSM FOC Control

3-Phase PMSM FOC Control 3-Phase PMSM FOC Control 32-BIT MICROCONTROLLER FM3 Family APPLICATION NOTE Publication Number FM3_AN709-00015 Revision 1.0 Issue Date Feb 26, 2015 2 FM3_ AN709-00015-1v0-E, Feb 26, 2015 Target products

More information

CHAPTER 2 MODELLING OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR

CHAPTER 2 MODELLING OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR 21 CHAPTER 2 MODELLING OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR 2.1 INTRODUCTION The need for adjustable speed drives in industrial applications has been increasing progressively. The variable speed

More information

Three phase induction motor using direct torque control by Matlab Simulink

Three phase induction motor using direct torque control by Matlab Simulink Three phase induction motor using direct torque control by Matlab Simulink Arun Kumar Yadav 1, Dr. Vinod Kumar Singh 2 1 Reaserch Scholor SVU Gajraula Amroha, U.P. 2 Assistant professor ABSTRACT Induction

More information

IEC Work on modelling Generic Model development IEC expected outcome & timeline

IEC Work on modelling Generic Model development IEC expected outcome & timeline IEC Work on modelling Generic Model development IEC 64-7 expected outcome & timeline Jens Fortmann, REpower Systems, Germany Poul Sørensen, DTU, Denmark IEC 64-7 Generic Model development Overview Overview

More information

Control of Wind Energy Conversion Systems for Large-Scale Integration with the Power System

Control of Wind Energy Conversion Systems for Large-Scale Integration with the Power System Western University Scholarship@Western Electronic Thesis and Dissertation Repository March 2014 Control of Wind Energy Conversion Systems for Large-Scale Integration with the Power System Omid Alizadeh

More information

«EMR AND INVERSION-BASED CONTROL OF RENEWABLE ENERGY SYSTEMS»

«EMR AND INVERSION-BASED CONTROL OF RENEWABLE ENERGY SYSTEMS» EMR 16 UeS - Longueuil June 016 Summer School EMR 16 Energetic Macroscopic Representation «EMR AND INVERSION-BASED CONTROL OF RENEWABLE ENERGY SYSTEMS» Dr. Walter LHOMME 1, Pr. Loïc BOULON, Dr. Philippe

More information

The POG Modeling Technique Applied to Electrical Systems

The POG Modeling Technique Applied to Electrical Systems The POG Modeling Technique Applied to Electrical Systems Roberto ZANASI Computer Science Engineering Department (DII) University of Modena and Reggio Emilia Italy E-mail: roberto.zanasi@unimo.it Outline

More information

Industrial Electrical Engineering and Automation

Industrial Electrical Engineering and Automation Industrial Electrical Engineering and Automation CODEN:LUTEDX/(TEIE-5275)/1-52/(21) TORQUE ESTIMATION OF DOUBLE FED INDUCTION GENERATOR USING A DYNAMIC MODEL AND MEASURED DATA Master Thesis November 21

More information

Generation, transmission and distribution, as well as power supplied to industrial and commercial customers uses a 3 phase system.

Generation, transmission and distribution, as well as power supplied to industrial and commercial customers uses a 3 phase system. Three-phase Circuits Generation, transmission and distribution, as well as power supplied to industrial and commercial customers uses a 3 phase system. Where 3 voltages are supplied of equal magnitude,

More information

AC Induction Motor Stator Resistance Estimation Algorithm

AC Induction Motor Stator Resistance Estimation Algorithm 7th WSEAS International Conference on Electric Power Systems, High Voltages, Electric Machines, Venice, Italy, November 21-23, 27 86 AC Induction Motor Stator Resistance Estimation Algorithm PETR BLAHA

More information

DIRECT TORQUE CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING TWO LEVEL INVERTER- SURVEY PAPER

DIRECT TORQUE CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING TWO LEVEL INVERTER- SURVEY PAPER DIRECT TORQUE CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING TWO LEVEL INVERTER- SURVEY PAPER 1 PREETI SINGH, BHUPAL SINGH 1 M.Tech (scholar) Electrical Power & Energy System, lecturer Ajay Kumar

More information

Current PI-funnel control with anti-windup for reluctance synchronous machines (RSMs)

Current PI-funnel control with anti-windup for reluctance synchronous machines (RSMs) Current PI-funnel control with anti-windup for reluctance synchronous machines (RSMs) Christoph Hackl 12.2.216 Colloquium on the occasion of the 6th birthday of Achim Ilchmann 12.2.216 Christoph Hackl:

More information

You know for EE 303 that electrical speed for a generator equals the mechanical speed times the number of poles, per eq. (1).

You know for EE 303 that electrical speed for a generator equals the mechanical speed times the number of poles, per eq. (1). Stability 1 1. Introduction We now begin Chapter 14.1 in your text. Our previous work in this course has focused on analysis of currents during faulted conditions in order to design protective systems

More information

Modelling of Closed Loop Speed Control for Pmsm Drive

Modelling of Closed Loop Speed Control for Pmsm Drive Modelling of Closed Loop Speed Control for Pmsm Drive Vikram S. Sathe, Shankar S. Vanamane M. Tech Student, Department of Electrical Engg, Walchand College of Engineering, Sangli. Associate Prof, Department

More information

Mathematical analysis of tip speed ratio of a wind turbine and its effects on power coefficient

Mathematical analysis of tip speed ratio of a wind turbine and its effects on power coefficient International Journal of Mathematics and Soft Computing Vol.4, No.1 (014), 61-66. ISSN Print : 49-8 ISSN Online: 19-515 Mathematical analysis of tip speed ratio of a wind turbine and its effects on power

More information