Limitation of Applicability of Einstein s. Energy-Momentum Relationship

Size: px
Start display at page:

Download "Limitation of Applicability of Einstein s. Energy-Momentum Relationship"

Transcription

1 Limitatio of Applicability of Eistei s Eergy-Mometum Relatioship Koshu Suto Koshu_suto19@mbr.ifty.com Abstract Whe a particle moves through macroscopic space, for a isolated system, as its velocity icreases, the kietic eergy ad hece total eergy of the particle will icrease. However, accordig to classical quatum theory, whe the mometum ad kietic eergy of a electro iside a hydroge atom icreases, total eergy decreases. From this truth, it is evidet that the equatio E =c p +E for Eistei s eergy-mometum relatioship does ot hold true iside a hydroge atom. I this paper, we will draw the followig relatioship: (E +E ) +c p = E, (=1,,, E < ). Key words: Special Theory of Relativity, Eistei s eergy-mometum relatioship, Klei-Gordo equatio, Dirac equatio. PACS codes: 3.3.+p, 3.65.Sq 1. Itroductio Geerally, the physics theory that best describes the behavior of electros iside atoms is thought to be quatum mechaics. This paper does ot disagree with this theory, but further poses the questio of whether Eistei s eergy-mometum relatioship holds true eve i the space iside atoms, ad further attempts to aswer to this questio. (See Appedix A) This questio should have bee first posed ad aswered whe Eistei aouced the abovemetioed relatioship that is, whe quatum mechaics was still 1

2 icomplete (aroud the 19s). Based o this backgroud, we shall cosider the argumet set forth i this paper, which does ot rely upo complete quatum mechaics, as valid. Oe of the importat relatioships i the Special Theory of Relativity (STR) is as follows. E = c p + E. E is the total eergy of a object or a particle, ad E is the rest mass eergy m c. The followig equatio is presumed to be true whe derivig Eq. (1.1) [1]. de vdp. = () I classical mechaics, the icrease of kietic eergy correspods to the work doe by exteral forces, ad we have: dk = Fdx (3a) dp = dx (3b) dt = vdp. (3c) Also, i this situatio, the particle s total eergy ad kietic eergy K icrease, but the icreases are equal. That is, de = dk. (4) Eq. (1.) ca be subsequetly derived from Eq. (1.3c) ad Eq. (1.4).. Derived relatioship betwee eergy ad mometum whe cosiderig potetial eergy However, i the case of electros iside a atom, we must cosider Eq. (B.4) (See Appedix B) I the cetral force field iside a hydroge atom, the amout of reduced potetial eergy ca be thought to be equivalet to the sum of icrease i the kietic eergy of a electro ad the eergy of photos emitted by the electro. (See Appedix C) First we assume that the reduced amout of potetial eergy of a hydroge atom is -ΔV(r). (whe ΔV(r)< ) Accordig to the eergy-mometum law of coservatio, the icreased amout of kietic eergy of a electro ΔK is equal to the emitted photoic eergy sum of the two is -ΔV(r). Thus, the followig relatioship is true. Δ V() r = Δ K + h ω. h ω, ad the

3 ΔV( r) = ΔK. Here, half of the reductio i potetial eergy is used i the form of work to icrease the kietic eergy of the electro. Because the other half is emitted outside the atom as photoic eergy, total eergy decreases. Meawhile, based o Eq. (B.6), ΔV(r)/ is equal to the reductio i total eergy. Namely, ΔV() r =ΔE. (whe ΔE< ) Also, as evidet from Eq. (B.5), the followig relatioship ca be derived from Eq. (.) ad Eq. (.3). de = dk. (4) Whe work is performed agaist the electro iside a hydroge atom ad the kietic eergy of the electro icreases, total eergy decreases. The followig relatioship ca be subsequetly derived from Eq. (1.3c) ad Eq. (.4). de = vdp. (5) From this fact, we must revise Eistei s relatioship for the space iside a hydroge atom (1.1). () (3) 3. Relatioship betwee eergy ad mometum of a electro iside a hydroge atom Referrig to a STR textbook, we derive the eergy- mometum relatioship of a electro iside a hydroge atom []. I classical mechaics, p m =. v Ad, i STR, E m =. () c If, further, we suppose that Eq. (3.) describes a uiversal equivalece of eergy ad iertial mass, we ca combie Eqs. (3.1) ad (3.) ito a sigle statemet: c p E =. (3) v Next, by multiplyig the left ad right sides of Eqs. (.5) ad (3.3), we obtai: 3

4 EdE = c pdp. (4) We itegrate this: E = c p + cost. (5) 4. Discussio A. Determiatio of the costat of itegratio. As show by Eq. (1.1), a electro at rest has rest mass eergy E. Similarly, whe a electro at rest a ifiite distace from a hydroge atom is absorbed ito a atom, the origiatio eergy ca be assumed to be E. The costat of itegratio Eq. (3.5) should ormally determied through experimetatio. However, from the aalogy of Eq. (1.1) of this discussio, the costat of itegratio Eq. (3.5) ca be assumed to be E. Thus, E + c p = E. B. Total eergy of a electro as defied from a absolute viewpoit. Referrig to classical quatum theory ad Eq. (B.5c), the relatioship betwee the total eergy ad kietic eergy of a electro iside a hydroge atom is: E me 1 e 4πε = h (a) E1 = (b) K, ( 1,,. 1 = = ) (c) Here, is a pricipal quatum umber. I this case, the total eergy of the electro has a egative value. Thus, the total eergy of Eq. (4.a) is ot a value obtaied from a absolute measuremet. I classical mechaics, we emphasize the differece i eergy, ot the absolute eergy. However, i order to derive the eergy-mometum relatioship established iside a atom, we must defie the absolute quatity of total eergy of the electro. Fortuately, E of Eq. (C.4) defies a absolute quatity, which icludes the electro s rest mass eergy. Therefore, a defiitio of Eq. (C.4) is a importat guidelie for total eergy as defied i this paper. Accordig to existig theory, the total eergy of a electro is cosidered to be zero 4

5 whe the electro is separated from the atomic ucleus by a distace of ifiity ad remais at rest i that locatio. The total eergy of Eq. (4.a) is the value obtaied from this perspective. However, eve if we place a electro at rest a ifiite distace from its ucleus, the absolute eergy of the electro is fudametally ot zero. Accordig to Eistei, a electro i this state should have rest mass eergy E. The electro tries to eter the regio of the hydroge atom. Durig this time, whe the electro trasits to a lower eergy state ad kietic eergy icreases, a amout of eergy equalig the icreased kietic eergy is released outside the atom. From this fact, Eq. (C.4), ad Eq. (4.c), i this paper, total eergy i absolute terms, E ab, for a electro iside a hydroge atom is defied as below. E = E + E (whe, =1,,, E < ). (3), ab, Here, E ab, is the total eergy as defied i absolute terms whe the pricipal quatum umber is. This defiitio ca be used to rewrite Eq.(4.1) as: ( ) E E c p E + + = (whe, =1,,, E < ). (4), Eq. (4.3) is a o-relativistic equatio, although substitutig this equatio for oe that is relativistic (4.1) raises doubts cocerig the mixture of relativistic ad o-relativistic equatios. However, Eq. (1.1) is ormally cosidered a relativistic equatio, ad ca eve actually be derived without some kid of relativistic request beig required. This is the most geeral equatio that ca be applied to particles movig at o-relativistic speeds. However, whe describig those movig at o-relativistic speeds, sice the approximatio E(v) E +(1/)(E /c )v is substituted, thigs add up eve i the absece of Eq. (1.1). Also, i the case of Eq. (4.1), the same logic is materialized. Thus, from Eqs. (4.1) ad (4.3), we obtai Eq. (4.4). Eq. (4.4) is Eq. (4.1), which icludes the pricipal quatum umber. This equatio represets the relatioship betwee the eergy ad mometum of a electro i a system i which the eergy level is degeeratig. 5. New Relatioal Expressio Quatizatio This paper has fulfilled its objective i the precedig chapter, but for future expressio, we shall attempt to quatize the ewly obtaied relatioship (4.1). 5

6 The fact that whe we perform quatizatio for Eq. (1.1), E i h, p ih. t we obtai the followig Klei-Gordo equatio is evidet. h = ψ h c m ψ t x1 x x3 cψ. () This equatio described the wave fuctio i relativistic terms, but this iterpretatio was icosistet with the iterpretatio accordig to the more commoly used Schrödiger equatio. Dirac surmised that a correct equatio to resolve this shortcomig must take the followig form [3]. ih i c mc t x x x ψ= h α1 + α + α3 + β ψ. (3) 1 3 The, because this ew equatio must satisfy the Klei-Gordo equatio, Dirac thought that all that was left was to determie the ukow coefficiets α ad β. Now, whe we perform quatizatio o Eq. (4.1), we obtai the followig. 4 h ψ= h c + + ψ+ m cψ. (4) t x1 x x3 Extractig oly the operator from Eq. (5.3), ad makig a equatio by squarig both sides, we obtai h ψ= c h α1 + α + α3 t x1 x x 3 ihc α1 + α + α3 βmc x1 x x3 β h α α α β 4 ψ. (5) mc i c m c x1 x x3 Sice the left side of this equatio is the same as the Klei-Gordo equatio ad Eq. (5.4), the right side should fially be the same as the right side of Eq. (5.4). Next, expadig the right side of Eq. (5.5), we obtai the followig. h = h + + h + ψ c α1 α α 3 c ( αα 1 αα 1) t x1 x x3 x1 x i 6

7 h c + + ( αα αα ) h c ( αα αα ) x x3 x3 x1 ihmc + + ( αβ βα) ihmc ( αβ βα ) x1 x 3 i h mc ( αβ 3 + βα 3) + m c x β 4 ψ. 3 (6) I order to make Eqs. (5.4) ad (5.6) the same, the coefficiets 4 4 matrix satisfyig the followig coditios. α i ad β must be a αi = 1 αα i j + αα j i =, αβ i + βα i = β = 1 i, j = 1,,3( i j). (7) The solutio which satisfies these coditios ad is a clea combiatio is as follows. 1 i 1 i α1 = α = 1 i 1 i α3 = β= (8) Dirac, however, obtaied the followig for coefficiets α i ad β. α α 1 i 1 i = α = 1 i 1 i = β= (9) ψ from the Klei-Gordo equatio was a sigle compoet, but i order to develop a equatio that icludes this sort of matrix, the wave guide fuctio ψ itself would 7

8 eed to have four compoets. Namely, ψ ψ1 ψ. = ψ 3 ψ 4 The equatio obtaied i this paper, as i the Dirac equatio, also is a equatio i which the 4 coditios are etagled. However, the goal of this paper is ot to discuss the sigificace of these coditios, ad so that discussio will ot be take up here. 6. Coclusio A. The result we obtaied differs from Eistei s eergy-mometum relatioship. I macroscopic space, we obtai Eq. (1.1): E = c p + E. However, i the space iside a hydroge atom, we fid that Eq. (4.4) holds true: ( ) E + E + c p = E, ( = 1,, ). There exists a limitatio to the applicability of Eistei s eergy-mometum relatioship. B. I this paper we obtaied differet values (5.8) for the coefficiets of Dirac s equatio. However, these are ot iteded to disaffirm Dirac s equatio, but istead equatios i this paper with these discovered coefficiets are thought to be aother form of Dirac s equatio. Ackowledgemet The Appedix B was borrowed ad traslated from the Japaese laguage physics textbook of Dr. H. Ezawa s. I wish to express my gratitude to Dr. H. Ezawa. Appedix A Traditioally, Eq. (1.1), or Eistei s eergy-mometum relatioship, was thought to hold true eve withi a atom ad was icluded i quatum mechaics theory. This was show by quatizig Eq. (1.1) to derive the Klei-Gordo equatio from ad subsequetly derivig the Dirac equatio from this equatio. 8

9 Appedix B Let us review the eergy of a electro iside a hydroge atom. Let us suppose that the atomic ucleus is at rest because it is heavy, ad cosider the situatio where a electro (electric charge e, mass m) is orbitig at speed v alog a orbit (radius r) with the atomic ucleus as its ceter. A equatio describig the motio is as follows: mv e =. r 4πε r From this, we obtai: mv 1 e =. () 4πε r Meawhile, the potetial eergy of the electro is: e V( r) =. (3) 4πε r Sice the right side of Eq. (B.) is 1/ times the potetial eergy, Eq. (B.) idicates: mv = V( r). (4) Therefore, the total electro eergy: mv E = + V( r) (5a) mv = (5b) = K, (5c) is equal to the value whe expressed as kietic eergy. Also, the total eergy of the electro is equal to half its potetial eergy. V( r) E =. (6) Appedix C Gasiorowicz discusses the relativistic aalog of Schrödiger for a boud (scalar) electro iside a hydroge atom, which does iclude the rest mass eergy of the electro i a attractive, cetral potetial [4]. This equatio is E Ze 1 mc, c + 4πε c r = ψ ψ+ ψ h h h 9

10 which is the operator versio of Eq. (1.1) whe a potetial is icluded, ( ) E V = c p + E. () The solutio by solvig for this Eq. (C.1) did ot agree with the actual eergy level of the hydroge atom. The reaso proposed is that electros are 1/ spi particles ad do ot follow the Klei-Gordo equatio. However, as a remaiig problem, the left side of Eq. (C.) is as follows. E V = ( K + V) V (3a) = K. (3b) Thus, K >E, or (p /m) >( m c ), but this kid of iequality should ormally ot be possible. e Here, let us surmise that E of Eq. (C.) is defied ot as the E of Eq. (B.5c) but istead as: E = E K. (4) By substitutig this E ito Eq. (C.) ad cosiderig the relatio to Eq. (B.4), we obtai: ( ) E + K = c p + E (5). This equatio is idetical to Eistei s relatio. I the ed, total eergy E of Eq. (C.) is the eergy as defied by Eq. (C.4). E of Eq. (C.) icludes the electro s rest mass eergy ad is defied o a absolute scale. This is strog evidece to validate Eq. (4.3) as has bee ewly defied i this paper. Refereces [1] A.P.Frech, Special Relativity: THE M.I.T INTRODUCTORY PHYSICS SERIES, W.W.NORTON&COMPANY, New York. Lodo, 1 (1968). [] A.P.Frech, Special Relativity: THE M.I.T INTRODUCTORY PHYSICS SERIES, W.W.NORTON&COMPANY, New York. Lodo, (1968). [3] P.A.M.Dirac, DERECTIONS IN PHYSICS (Joh Wiley&Sos, Ic., New York). [4] S. Gasiorowicz, Quatum Physics, Wiley Iteratioal Editio, 144 (3). 1

True Nature of Potential Energy of a Hydrogen Atom

True Nature of Potential Energy of a Hydrogen Atom True Nature of Potetial Eergy of a Hydroge Atom Koshu Suto Key words: Bohr Radius, Potetial Eergy, Rest Mass Eergy, Classical Electro Radius PACS codes: 365Sq, 365-w, 33+p Abstract I cosiderig the potetial

More information

Physics 324, Fall Dirac Notation. These notes were produced by David Kaplan for Phys. 324 in Autumn 2001.

Physics 324, Fall Dirac Notation. These notes were produced by David Kaplan for Phys. 324 in Autumn 2001. Physics 324, Fall 2002 Dirac Notatio These otes were produced by David Kapla for Phys. 324 i Autum 2001. 1 Vectors 1.1 Ier product Recall from liear algebra: we ca represet a vector V as a colum vector;

More information

17 Phonons and conduction electrons in solids (Hiroshi Matsuoka)

17 Phonons and conduction electrons in solids (Hiroshi Matsuoka) 7 Phoos ad coductio electros i solids Hiroshi Matsuoa I this chapter we will discuss a miimal microscopic model for phoos i a solid ad a miimal microscopic model for coductio electros i a simple metal.

More information

Name Solutions to Test 2 October 14, 2015

Name Solutions to Test 2 October 14, 2015 Name Solutios to Test October 4, 05 This test cosists of three parts. Please ote that i parts II ad III, you ca skip oe questio of those offered. The equatios below may be helpful with some problems. Costats

More information

) +m 0 c2 β K Ψ k (4)

) +m 0 c2 β K Ψ k (4) i ħ Ψ t = c ħ i α ( The Nature of the Dirac Equatio by evi Gibso May 18, 211 Itroductio The Dirac Equatio 1 is a staple of relativistic quatum theory ad is widely applied to objects such as electros ad

More information

PROBABILITY AMPLITUDE AND INTERFERENCE

PROBABILITY AMPLITUDE AND INTERFERENCE PROILITY MPLITUDE ND INTERFERENCE I. Probability amplitude Suppose that particle is placed i the ifiite square well potetial. Let the state of the particle be give by ϕ ad let the system s eergy eigestates

More information

Chapter 10: Power Series

Chapter 10: Power Series Chapter : Power Series 57 Chapter Overview: Power Series The reaso series are part of a Calculus course is that there are fuctios which caot be itegrated. All power series, though, ca be itegrated because

More information

The Heisenberg versus the Schrödinger picture in quantum field theory. Dan Solomon Rauland-Borg Corporation 3450 W. Oakton Skokie, IL USA

The Heisenberg versus the Schrödinger picture in quantum field theory. Dan Solomon Rauland-Borg Corporation 3450 W. Oakton Skokie, IL USA 1 The Heiseberg versus the chrödiger picture i quatum field theory by Da olomo Raulad-Borg Corporatio 345 W. Oakto kokie, IL 677 UA Phoe: 847-324-8337 Email: da.solomo@raulad.com PAC 11.1-z March 15, 24

More information

Math 113, Calculus II Winter 2007 Final Exam Solutions

Math 113, Calculus II Winter 2007 Final Exam Solutions Math, Calculus II Witer 7 Fial Exam Solutios (5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute x x + dx The check your aswer usig the Evaluatio Theorem Solutio: I this

More information

Math 116 Second Midterm November 13, 2017

Math 116 Second Midterm November 13, 2017 Math 6 Secod Midterm November 3, 7 EXAM SOLUTIONS. Do ot ope this exam util you are told to do so.. Do ot write your ame aywhere o this exam. 3. This exam has pages icludig this cover. There are problems.

More information

Probability, Expectation Value and Uncertainty

Probability, Expectation Value and Uncertainty Chapter 1 Probability, Expectatio Value ad Ucertaity We have see that the physically observable properties of a quatum system are represeted by Hermitea operators (also referred to as observables ) such

More information

Lecture 6. Semiconductor physics IV. The Semiconductor in Equilibrium

Lecture 6. Semiconductor physics IV. The Semiconductor in Equilibrium Lecture 6 Semicoductor physics IV The Semicoductor i Equilibrium Equilibrium, or thermal equilibrium No exteral forces such as voltages, electric fields. Magetic fields, or temperature gradiets are actig

More information

Principle Of Superposition

Principle Of Superposition ecture 5: PREIMINRY CONCEP O RUCUR NYI Priciple Of uperpositio Mathematically, the priciple of superpositio is stated as ( a ) G( a ) G( ) G a a or for a liear structural system, the respose at a give

More information

The Random Walk For Dummies

The Random Walk For Dummies The Radom Walk For Dummies Richard A Mote Abstract We look at the priciples goverig the oe-dimesioal discrete radom walk First we review five basic cocepts of probability theory The we cosider the Beroulli

More information

Exercises and Problems

Exercises and Problems HW Chapter 4: Oe-Dimesioal Quatum Mechaics Coceptual Questios 4.. Five. 4.4.. is idepedet of. a b c mu ( E). a b m( ev 5 ev) c m(6 ev ev) Exercises ad Problems 4.. Model: Model the electro as a particle

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

A statistical method to determine sample size to estimate characteristic value of soil parameters

A statistical method to determine sample size to estimate characteristic value of soil parameters A statistical method to determie sample size to estimate characteristic value of soil parameters Y. Hojo, B. Setiawa 2 ad M. Suzuki 3 Abstract Sample size is a importat factor to be cosidered i determiig

More information

x a x a Lecture 2 Series (See Chapter 1 in Boas)

x a x a Lecture 2 Series (See Chapter 1 in Boas) Lecture Series (See Chapter i Boas) A basic ad very powerful (if pedestria, recall we are lazy AD smart) way to solve ay differetial (or itegral) equatio is via a series expasio of the correspodig solutio

More information

1. Hydrogen Atom: 3p State

1. Hydrogen Atom: 3p State 7633A QUANTUM MECHANICS I - solutio set - autum. Hydroge Atom: 3p State Let us assume that a hydroge atom is i a 3p state. Show that the radial part of its wave fuctio is r u 3(r) = 4 8 6 e r 3 r(6 r).

More information

The time evolution of the state of a quantum system is described by the time-dependent Schrödinger equation (TDSE): ( ) ( ) 2m "2 + V ( r,t) (1.

The time evolution of the state of a quantum system is described by the time-dependent Schrödinger equation (TDSE): ( ) ( ) 2m 2 + V ( r,t) (1. Adrei Tokmakoff, MIT Departmet of Chemistry, 2/13/2007 1-1 574 TIME-DEPENDENT QUANTUM MECHANICS 1 INTRODUCTION 11 Time-evolutio for time-idepedet Hamiltoias The time evolutio of the state of a quatum system

More information

Algebra of Least Squares

Algebra of Least Squares October 19, 2018 Algebra of Least Squares Geometry of Least Squares Recall that out data is like a table [Y X] where Y collects observatios o the depedet variable Y ad X collects observatios o the k-dimesioal

More information

Diffusivity and Mobility Quantization. in Quantum Electrical Semi-Ballistic. Quasi-One-Dimensional Conductors

Diffusivity and Mobility Quantization. in Quantum Electrical Semi-Ballistic. Quasi-One-Dimensional Conductors Advaces i Applied Physics, Vol., 014, o. 1, 9-13 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/aap.014.3110 Diffusivity ad Mobility Quatizatio i Quatum Electrical Semi-Ballistic Quasi-Oe-Dimesioal

More information

The Born-Oppenheimer approximation

The Born-Oppenheimer approximation The Bor-Oppeheimer approximatio 1 Re-writig the Schrödiger equatio We will begi from the full time-idepedet Schrödiger equatio for the eigestates of a molecular system: [ P 2 + ( Pm 2 + e2 1 1 2m 2m m

More information

U8L1: Sec Equations of Lines in R 2

U8L1: Sec Equations of Lines in R 2 MCVU U8L: Sec. 8.9. Equatios of Lies i R Review of Equatios of a Straight Lie (-D) Cosider the lie passig through A (-,) with slope, as show i the diagram below. I poit slope form, the equatio of the lie

More information

PHYS-3301 Lecture 10. Wave Packet Envelope Wave Properties of Matter and Quantum Mechanics I CHAPTER 5. Announcement. Sep.

PHYS-3301 Lecture 10. Wave Packet Envelope Wave Properties of Matter and Quantum Mechanics I CHAPTER 5. Announcement. Sep. Aoucemet Course webpage http://www.phys.ttu.edu/~slee/3301/ PHYS-3301 Lecture 10 HW3 (due 10/4) Chapter 5 4, 8, 11, 15, 22, 27, 36, 40, 42 Sep. 27, 2018 Exam 1 (10/4) Chapters 3, 4, & 5 CHAPTER 5 Wave

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES 9 SEQUENCES AND SERIES INTRODUCTION Sequeces have may importat applicatios i several spheres of huma activities Whe a collectio of objects is arraged i a defiite order such that it has a idetified first

More information

Question 1: The magnetic case

Question 1: The magnetic case September 6, 018 Corell Uiversity, Departmet of Physics PHYS 337, Advace E&M, HW # 4, due: 9/19/018, 11:15 AM Questio 1: The magetic case I class, we skipped over some details, so here you are asked to

More information

Analytic Theory of Probabilities

Analytic Theory of Probabilities Aalytic Theory of Probabilities PS Laplace Book II Chapter II, 4 pp 94 03 4 A lottery beig composed of umbered tickets of which r exit at each drawig, oe requires the probability that after i drawigs all

More information

SNAP Centre Workshop. Basic Algebraic Manipulation

SNAP Centre Workshop. Basic Algebraic Manipulation SNAP Cetre Workshop Basic Algebraic Maipulatio 8 Simplifyig Algebraic Expressios Whe a expressio is writte i the most compact maer possible, it is cosidered to be simplified. Not Simplified: x(x + 4x)

More information

The Growth of Functions. Theoretical Supplement

The Growth of Functions. Theoretical Supplement The Growth of Fuctios Theoretical Supplemet The Triagle Iequality The triagle iequality is a algebraic tool that is ofte useful i maipulatig absolute values of fuctios. The triagle iequality says that

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t =

Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t = Mathematics Summer Wilso Fial Exam August 8, ANSWERS Problem 1 (a) Fid the solutio to y +x y = e x x that satisfies y() = 5 : This is already i the form we used for a first order liear differetial equatio,

More information

PHYS-3301 Lecture 7. CHAPTER 4 Structure of the Atom. Rutherford Scattering. Sep. 18, 2018

PHYS-3301 Lecture 7. CHAPTER 4 Structure of the Atom. Rutherford Scattering. Sep. 18, 2018 CHAPTER 4 Structure of the Atom PHYS-3301 Lecture 7 4.1 The Atomic Models of Thomso ad Rutherford 4.2 Rutherford Scatterig 4.3 The Classic Atomic Model 4.4 The Bohr Model of the Hydroge Atom 4.5 Successes

More information

Appendix: The Laplace Transform

Appendix: The Laplace Transform Appedix: The Laplace Trasform The Laplace trasform is a powerful method that ca be used to solve differetial equatio, ad other mathematical problems. Its stregth lies i the fact that it allows the trasformatio

More information

Ma 530 Introduction to Power Series

Ma 530 Introduction to Power Series Ma 530 Itroductio to Power Series Please ote that there is material o power series at Visual Calculus. Some of this material was used as part of the presetatio of the topics that follow. What is a Power

More information

Similarity between quantum mechanics and thermodynamics: Entropy, temperature, and Carnot cycle

Similarity between quantum mechanics and thermodynamics: Entropy, temperature, and Carnot cycle Similarity betwee quatum mechaics ad thermodyamics: Etropy, temperature, ad Carot cycle Sumiyoshi Abe 1,,3 ad Shiji Okuyama 1 1 Departmet of Physical Egieerig, Mie Uiversity, Mie 514-8507, Japa Istitut

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam 4 will cover.-., 0. ad 0.. Note that eve though. was tested i exam, questios from that sectios may also be o this exam. For practice problems o., refer to the last review. This

More information

Kinetics of Complex Reactions

Kinetics of Complex Reactions Kietics of Complex Reactios by Flick Colema Departmet of Chemistry Wellesley College Wellesley MA 28 wcolema@wellesley.edu Copyright Flick Colema 996. All rights reserved. You are welcome to use this documet

More information

The Wave Function and Quantum Reality

The Wave Function and Quantum Reality The Wave Fuctio ad Quatum Reality Sha Gao Uit for History ad Philosophy of Sciece & Cetre for Time, SOPHI Uiversity of Sydey, Sydey, NSW 006, Australia Abstract. We ivestigate the meaig of the wave fuctio

More information

The Riemann Zeta Function

The Riemann Zeta Function Physics 6A Witer 6 The Riema Zeta Fuctio I this ote, I will sketch some of the mai properties of the Riema zeta fuctio, ζ(x). For x >, we defie ζ(x) =, x >. () x = For x, this sum diverges. However, we

More information

Notes on the GSW function gsw_geostrophic_velocity (geo_strf,long,lat,p)

Notes on the GSW function gsw_geostrophic_velocity (geo_strf,long,lat,p) Notes o gsw_geostrophic_velocity Notes o the GSW fuctio gsw_geostrophic_velocity (geo_strf,log,lat,p) Notes made 7 th October 2, ad updated 8 th April 2. This fuctio gsw_geostrophic_velocity(geo_strf,log,lat,p)

More information

Sequences of Definite Integrals, Factorials and Double Factorials

Sequences of Definite Integrals, Factorials and Double Factorials 47 6 Joural of Iteger Sequeces, Vol. 8 (5), Article 5.4.6 Sequeces of Defiite Itegrals, Factorials ad Double Factorials Thierry Daa-Picard Departmet of Applied Mathematics Jerusalem College of Techology

More information

Optimally Sparse SVMs

Optimally Sparse SVMs A. Proof of Lemma 3. We here prove a lower boud o the umber of support vectors to achieve geeralizatio bouds of the form which we cosider. Importatly, this result holds ot oly for liear classifiers, but

More information

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and MATH01 Real Aalysis (2008 Fall) Tutorial Note #7 Sequece ad Series of fuctio 1: Poitwise Covergece ad Uiform Covergece Part I: Poitwise Covergece Defiitio of poitwise covergece: A sequece of fuctios f

More information

[ 11 ] z of degree 2 as both degree 2 each. The degree of a polynomial in n variables is the maximum of the degrees of its terms.

[ 11 ] z of degree 2 as both degree 2 each. The degree of a polynomial in n variables is the maximum of the degrees of its terms. [ 11 ] 1 1.1 Polyomial Fuctios 1 Algebra Ay fuctio f ( x) ax a1x... a1x a0 is a polyomial fuctio if ai ( i 0,1,,,..., ) is a costat which belogs to the set of real umbers ad the idices,, 1,...,1 are atural

More information

Proof of Fermat s Last Theorem by Algebra Identities and Linear Algebra

Proof of Fermat s Last Theorem by Algebra Identities and Linear Algebra Proof of Fermat s Last Theorem by Algebra Idetities ad Liear Algebra Javad Babaee Ragai Youg Researchers ad Elite Club, Qaemshahr Brach, Islamic Azad Uiversity, Qaemshahr, Ira Departmet of Civil Egieerig,

More information

1 Approximating Integrals using Taylor Polynomials

1 Approximating Integrals using Taylor Polynomials Seughee Ye Ma 8: Week 7 Nov Week 7 Summary This week, we will lear how we ca approximate itegrals usig Taylor series ad umerical methods. Topics Page Approximatig Itegrals usig Taylor Polyomials. Defiitios................................................

More information

Zeros of Polynomials

Zeros of Polynomials Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree

More information

Physics Oct Reading

Physics Oct Reading Physics 301 21-Oct-2002 17-1 Readig Fiish K&K chapter 7 ad start o chapter 8. Also, I m passig out several Physics Today articles. The first is by Graham P. Collis, August, 1995, vol. 48, o. 8, p. 17,

More information

Roger Apéry's proof that zeta(3) is irrational

Roger Apéry's proof that zeta(3) is irrational Cliff Bott cliffbott@hotmail.com 11 October 2011 Roger Apéry's proof that zeta(3) is irratioal Roger Apéry developed a method for searchig for cotiued fractio represetatios of umbers that have a form such

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES Sequeces ad 6 Sequeces Ad SEQUENCES AND SERIES Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives rise to what is called a sequece. Sequeces

More information

Lesson 10: Limits and Continuity

Lesson 10: Limits and Continuity www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals

More information

Assignment 2 Solutions SOLUTION. ϕ 1 Â = 3 ϕ 1 4i ϕ 2. The other case can be dealt with in a similar way. { ϕ 2 Â} χ = { 4i ϕ 1 3 ϕ 2 } χ.

Assignment 2 Solutions SOLUTION. ϕ 1  = 3 ϕ 1 4i ϕ 2. The other case can be dealt with in a similar way. { ϕ 2 Â} χ = { 4i ϕ 1 3 ϕ 2 } χ. PHYSICS 34 QUANTUM PHYSICS II (25) Assigmet 2 Solutios 1. With respect to a pair of orthoormal vectors ϕ 1 ad ϕ 2 that spa the Hilbert space H of a certai system, the operator  is defied by its actio

More information

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations ECE-S352 Itroductio to Digital Sigal Processig Lecture 3A Direct Solutio of Differece Equatios Discrete Time Systems Described by Differece Equatios Uit impulse (sample) respose h() of a DT system allows

More information

NUMERICAL METHODS COURSEWORK INFORMAL NOTES ON NUMERICAL INTEGRATION COURSEWORK

NUMERICAL METHODS COURSEWORK INFORMAL NOTES ON NUMERICAL INTEGRATION COURSEWORK NUMERICAL METHODS COURSEWORK INFORMAL NOTES ON NUMERICAL INTEGRATION COURSEWORK For this piece of coursework studets must use the methods for umerical itegratio they meet i the Numerical Methods module

More information

CHAPTER 10 INFINITE SEQUENCES AND SERIES

CHAPTER 10 INFINITE SEQUENCES AND SERIES CHAPTER 10 INFINITE SEQUENCES AND SERIES 10.1 Sequeces 10.2 Ifiite Series 10.3 The Itegral Tests 10.4 Compariso Tests 10.5 The Ratio ad Root Tests 10.6 Alteratig Series: Absolute ad Coditioal Covergece

More information

Section 1.1. Calculus: Areas And Tangents. Difference Equations to Differential Equations

Section 1.1. Calculus: Areas And Tangents. Difference Equations to Differential Equations Differece Equatios to Differetial Equatios Sectio. Calculus: Areas Ad Tagets The study of calculus begis with questios about chage. What happes to the velocity of a swigig pedulum as its positio chages?

More information

6.003 Homework #3 Solutions

6.003 Homework #3 Solutions 6.00 Homework # Solutios Problems. Complex umbers a. Evaluate the real ad imagiary parts of j j. π/ Real part = Imagiary part = 0 e Euler s formula says that j = e jπ/, so jπ/ j π/ j j = e = e. Thus the

More information

Lecture #1 Nasser S. Alzayed.

Lecture #1 Nasser S. Alzayed. Lecture #1 Nasser S. Alzayed alzayed@ksu.edu.sa Chapter 6: Free Electro Fermi Gas Itroductio We ca uderstad may physical properties of metals, ad ot oly of the simple metals, i terms of the free electro

More information

Math 1314 Lesson 16 Area and Riemann Sums and Lesson 17 Riemann Sums Using GeoGebra; Definite Integrals

Math 1314 Lesson 16 Area and Riemann Sums and Lesson 17 Riemann Sums Using GeoGebra; Definite Integrals Math 1314 Lesso 16 Area ad Riema Sums ad Lesso 17 Riema Sums Usig GeoGebra; Defiite Itegrals The secod questio studied i calculus is the area questio. If a regio coforms to a kow formula from geometry,

More information

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) =

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) = AN INTRODUCTION TO SCHRÖDER AND UNKNOWN NUMBERS NICK DUFRESNE Abstract. I this article we will itroduce two types of lattice paths, Schröder paths ad Ukow paths. We will examie differet properties of each,

More information

Physics 232 Gauge invariance of the magnetic susceptibilty

Physics 232 Gauge invariance of the magnetic susceptibilty Physics 232 Gauge ivariace of the magetic susceptibilty Peter Youg (Dated: Jauary 16, 2006) I. INTRODUCTION We have see i class that the followig additioal terms appear i the Hamiltoia o addig a magetic

More information

INCURSION OF THE GOLDEN RATIO Φ INTO THE SCHRÖDINGER WAVE FUNCTION USING THE Φ RECURSIVE HETERODYNING SET

INCURSION OF THE GOLDEN RATIO Φ INTO THE SCHRÖDINGER WAVE FUNCTION USING THE Φ RECURSIVE HETERODYNING SET INCURSION OF THE GOLDEN RATIO Φ INTO THE SCHRÖDINGER WAVE FUNCTION USING THE Φ RECURSIVE HETERODYNING SET S. Giadioto *, R. L. Amoroso & E.A. Rauscher * Advaced Laser Quatum Dyamics Research Istitute (ALQDRI)

More information

Quantum Mechanics I. 21 April, x=0. , α = A + B = C. ik 1 A ik 1 B = αc.

Quantum Mechanics I. 21 April, x=0. , α = A + B = C. ik 1 A ik 1 B = αc. Quatum Mechaics I 1 April, 14 Assigmet 5: Solutio 1 For a particle icidet o a potetial step with E < V, show that the magitudes of the amplitudes of the icidet ad reflected waves fuctios are the same Fid

More information

Taylor Series (BC Only)

Taylor Series (BC Only) Studet Study Sessio Taylor Series (BC Oly) Taylor series provide a way to fid a polyomial look-alike to a o-polyomial fuctio. This is doe by a specific formula show below (which should be memorized): Taylor

More information

Measurement uncertainty of the sound absorption

Measurement uncertainty of the sound absorption Measuremet ucertaity of the soud absorptio coefficiet Aa Izewska Buildig Research Istitute, Filtrowa Str., 00-6 Warsaw, Polad a.izewska@itb.pl 6887 The stadard ISO/IEC 705:005 o the competece of testig

More information

Section 11.8: Power Series

Section 11.8: Power Series Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i

More information

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS MIDTERM 3 CALCULUS MATH 300 FALL 08 Moday, December 3, 08 5:5 PM to 6:45 PM Name PRACTICE EXAM S Please aswer all of the questios, ad show your work. You must explai your aswers to get credit. You will

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

5.61 Fall 2013 Problem Set #3

5.61 Fall 2013 Problem Set #3 5.61 Fall 013 Problem Set #3 1. A. McQuarrie, page 10, #3-3. B. McQuarrie, page 10, #3-4. C. McQuarrie, page 18, #4-11.. McQuarrie, pages 11-1, #3-11. 3. A. McQuarrie, page 13, #3-17. B. McQuarrie, page

More information

Section 13.3 Area and the Definite Integral

Section 13.3 Area and the Definite Integral Sectio 3.3 Area ad the Defiite Itegral We ca easily fid areas of certai geometric figures usig well-kow formulas: However, it is t easy to fid the area of a regio with curved sides: METHOD: To evaluate

More information

x 2 x x x x x + x x +2 x

x 2 x x x x x + x x +2 x Math 5440: Notes o particle radom walk Aaro Fogelso September 6, 005 Derivatio of the diusio equatio: Imagie that there is a distributio of particles spread alog the x-axis ad that the particles udergo

More information

A Simplified Binet Formula for k-generalized Fibonacci Numbers

A Simplified Binet Formula for k-generalized Fibonacci Numbers A Simplified Biet Formula for k-geeralized Fiboacci Numbers Gregory P. B. Dresde Departmet of Mathematics Washigto ad Lee Uiversity Lexigto, VA 440 dresdeg@wlu.edu Zhaohui Du Shaghai, Chia zhao.hui.du@gmail.com

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

PHYS-3301 Lecture 5. CHAPTER 3 The Experimental Basis of Quantum. 3.8: Compton Effect. 3.8: Compton Effect. Sep. 11, 2018

PHYS-3301 Lecture 5. CHAPTER 3 The Experimental Basis of Quantum. 3.8: Compton Effect. 3.8: Compton Effect. Sep. 11, 2018 CHAPTER 3 The Experimetal Basis of Quatum PHYS-3301 Lecture 5 Sep. 11, 2018 3.1 Discovery of the X Ray ad the Electro 3.2 Determiatio of Electro Charge 3.3 Lie Spectra 3.4 Quatizatio 3.5 Blackbody Radiatio

More information

4.3 Growth Rates of Solutions to Recurrences

4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

Chapter 6 Overview: Sequences and Numerical Series. For the purposes of AP, this topic is broken into four basic subtopics:

Chapter 6 Overview: Sequences and Numerical Series. For the purposes of AP, this topic is broken into four basic subtopics: Chapter 6 Overview: Sequeces ad Numerical Series I most texts, the topic of sequeces ad series appears, at first, to be a side topic. There are almost o derivatives or itegrals (which is what most studets

More information

Math 10A final exam, December 16, 2016

Math 10A final exam, December 16, 2016 Please put away all books, calculators, cell phoes ad other devices. You may cosult a sigle two-sided sheet of otes. Please write carefully ad clearly, USING WORDS (ot just symbols). Remember that the

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam will cover.-.9. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for you

More information

Mathematical Induction

Mathematical Induction Mathematical Iductio Itroductio Mathematical iductio, or just iductio, is a proof techique. Suppose that for every atural umber, P() is a statemet. We wish to show that all statemets P() are true. I a

More information

Lecture 6 Simple alternatives and the Neyman-Pearson lemma

Lecture 6 Simple alternatives and the Neyman-Pearson lemma STATS 00: Itroductio to Statistical Iferece Autum 06 Lecture 6 Simple alteratives ad the Neyma-Pearso lemma Last lecture, we discussed a umber of ways to costruct test statistics for testig a simple ull

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

ECON 3150/4150, Spring term Lecture 3

ECON 3150/4150, Spring term Lecture 3 Itroductio Fidig the best fit by regressio Residuals ad R-sq Regressio ad causality Summary ad ext step ECON 3150/4150, Sprig term 2014. Lecture 3 Ragar Nymoe Uiversity of Oslo 21 Jauary 2014 1 / 30 Itroductio

More information

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j The -Trasform 7. Itroductio Geeralie the complex siusoidal represetatio offered by DTFT to a represetatio of complex expoetial sigals. Obtai more geeral characteristics for discrete-time LTI systems. 7.

More information

Addition: Property Name Property Description Examples. a+b = b+a. a+(b+c) = (a+b)+c

Addition: Property Name Property Description Examples. a+b = b+a. a+(b+c) = (a+b)+c Notes for March 31 Fields: A field is a set of umbers with two (biary) operatios (usually called additio [+] ad multiplicatio [ ]) such that the followig properties hold: Additio: Name Descriptio Commutativity

More information

SECTION 2 Electrostatics

SECTION 2 Electrostatics SECTION Electrostatics This sectio, based o Chapter of Griffiths, covers effects of electric fields ad forces i static (timeidepedet) situatios. The topics are: Electric field Gauss s Law Electric potetial

More information

Physics 2D Lecture Slides Lecture 22: Feb 22nd 2005

Physics 2D Lecture Slides Lecture 22: Feb 22nd 2005 Physics D Lecture Slides Lecture : Feb d 005 Vivek Sharma UCSD Physics Itroducig the Schrodiger Equatio! (, t) (, t) #! " + U ( ) "(, t) = i!!" m!! t U() = characteristic Potetial of the system Differet

More information

Nernst Equation. Nernst Equation. Electric Work and Gibb's Free Energy. Skills to develop. Electric Work. Gibb's Free Energy

Nernst Equation. Nernst Equation. Electric Work and Gibb's Free Energy. Skills to develop. Electric Work. Gibb's Free Energy Nerst Equatio Skills to develop Eplai ad distiguish the cell potetial ad stadard cell potetial. Calculate cell potetials from kow coditios (Nerst Equatio). Calculate the equilibrium costat from cell potetials.

More information

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series.

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series. .3 Covergece Theorems of Fourier Series I this sectio, we preset the covergece of Fourier series. A ifiite sum is, by defiitio, a limit of partial sums, that is, a cos( kx) b si( kx) lim a cos( kx) b si(

More information

Chapter 7: Numerical Series

Chapter 7: Numerical Series Chapter 7: Numerical Series Chapter 7 Overview: Sequeces ad Numerical Series I most texts, the topic of sequeces ad series appears, at first, to be a side topic. There are almost o derivatives or itegrals

More information

NUMERICAL METHODS FOR SOLVING EQUATIONS

NUMERICAL METHODS FOR SOLVING EQUATIONS Mathematics Revisio Guides Numerical Methods for Solvig Equatios Page 1 of 11 M.K. HOME TUITION Mathematics Revisio Guides Level: GCSE Higher Tier NUMERICAL METHODS FOR SOLVING EQUATIONS Versio:. Date:

More information

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j.

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j. Eigevalue-Eigevector Istructor: Nam Su Wag eigemcd Ay vector i real Euclidea space of dimesio ca be uiquely epressed as a liear combiatio of liearly idepedet vectors (ie, basis) g j, j,,, α g α g α g α

More information

Section 1 of Unit 03 (Pure Mathematics 3) Algebra

Section 1 of Unit 03 (Pure Mathematics 3) Algebra Sectio 1 of Uit 0 (Pure Mathematics ) Algebra Recommeded Prior Kowledge Studets should have studied the algebraic techiques i Pure Mathematics 1. Cotet This Sectio should be studied early i the course

More information

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT OCTOBER 7, 2016 LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT Geometry of LS We ca thik of y ad the colums of X as members of the -dimesioal Euclidea space R Oe ca

More information

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5 Ma 42: Itroductio to Lebesgue Itegratio Solutios to Homework Assigmet 5 Prof. Wickerhauser Due Thursday, April th, 23 Please retur your solutios to the istructor by the ed of class o the due date. You

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m?

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m? MATH 529 The Boudary Problem The drukard s walk (or boudary problem) is oe of the most famous problems i the theory of radom walks. Oe versio of the problem is described as follows: Suppose a particle

More information