The Fine Spectra of the Difference Operator Δ over the Sequence Spaces l 1 and bv

Size: px
Start display at page:

Download "The Fine Spectra of the Difference Operator Δ over the Sequence Spaces l 1 and bv"

Transcription

1 International Mathematical Forum, 1, 2006, no 24, The Fine Spectra of the Difference Operator Δ over the Sequence Spaces l 1 and bv Kuddusi Kayaduman Gaziantep Üniversitesi Fen Edebiyat Fakültesi,Matematik Bölümü Gaziantep, Turkey kayaduman@gantepedutr Hasan Furkan Kahramanmaraş Sütçü İmam Üniversitesi Fen Edebiyat Fakültesi,Matematik Bölümü Kahramanmaraş, Turkey hasanfurkan@hotmailcom Abstract In the present paper, the fine spectrum of the difference operator on the sequence spaces l 1 and bv have been examined Mathematics Subject Classification: Primary: 47A10, Secondary: 47B37 Keywords: Spectrum of an operator, the sequence spaces l 1 and bv 1 Preliminaries, Background and Notation Let X and Y be the Banach spaces and T : X Y also be a bounded linear operator By R(T ), we denote the range of T, ie, R(T )={y Y : y = Tx, x X} By B(X), we also denote the set of all bounded linear operators on X into itself If X is any Banach space and T B(X) then the adjoint T of T is a bounded linear operator on the dual X of X defined by (T φ)(x) =φ(tx) for all φ X and x X Let X {θ} be a complex normed space and T : D(T ) X also be a linear operator with domain D(T ) X With T, we associate the operator T α = T αi, (1)

2 1154 Kuddusi Kayaduman and Hasan Furkan where α is a complex number and I is the identity operator on D(T ) If T α has an inverse, which is linear, we denote it by Tα 1, that is T 1 α =(T αi) 1 (2) and call it the resolvent operator of T The name resolvent is appropriate, since Tα 1 helps to solve the equation T α x = y Thus, x = Tα 1 y provided Tα 1 exists More important, the investigation of properties of Tα 1 will be basic for an understanding of the operator T itself Naturally, many properties of T α and Tα 1 depend on α, and spectral theory is concerned with those properties For instance, we shall be interested in the set of all α in the complex plane such that Tα 1 exists Boundedness of Tα 1 is another property that will be essential We shall also ask for what α s the domain of Tα 1 is dense in X, to name just a few aspects For our investigation of T, T α and Tα 1, we need some basic concepts in spectral theory which are given as follows (see [6, pp ]): Definition 11 Let X {θ} be a complex normed space and T : D(T ) X also be a linear operator with domain D(T ) X A regular value α of T is a complex number such that (R1) Tα 1 exists, (R2) Tα 1 is bounded, (R3) Tα 1 is defined on a set which is dense in X The resolvent set ρ(t ) of T is the set of all regular values α of T Its complement σ(t )=C\ρ(T ) in the complex plane C is called the spectrum of T Furthermore, the spectrum σ(t ) is partitioned into three disjoint sets as follows: The point (discrete) spectrum σ p (T ) is the set such that Tα 1 does not exist A α σ p (T ) is called an eigenvalue of T The continuous spectrum σ c (T ) is the set such that Tα 1 (R3) but not (R2), that is, Tα 1 is unbounded The residual spectrum σ r (T ) is the set such that T 1 α bounded or not) but not satisfy (R3), that is, the domain of Tα 1 in X exists and satisfies exists (and may be is not dense To avoid trivial misunderstandings, let us say that some of the sets defined above, may be empty This is an existence problem which we shall have to discuss Indeed, it is well-known that σ c (T )=σ r (T )= and the spectrum σ(t ) consists of only the set σ p (T ) in the finite dimensional case By w, we shall denote the space of all real valued sequences Any vector subspace of w is called as a sequence space We shall write l, c, c 0 and bv for the spaces of all bounded, convergent, null and bounded variation sequences, respectively Also by l 1 and bs, we denote the space of all absolutely convergent and bounded series, respectively

3 The Fine Spectra of the Difference Operator Δ Over l 1 and bv 1155 Let λ and μ be two sequence spaces and A =(a nk ) be an infinite matrix of real or complex numbers a nk, where n, k N = {0, 1, 2,} Then, we say that A defines a matrix mapping from λ into μ, and we denote it by writing A : λ μ, if for every sequence x =(x k ) λ the sequence Ax = {(Ax) n }, the A-transform of x, is in μ; where (Ax) n = k a nk x k, (n N) (3) For simplicity in notation, here and in what follows, the summation without limits runs from 0 to By (λ : μ), we denote the class of all matrices A such that A : λ μ Thus, A (λ : μ) if and only if the series on the right side of (3) converges for each n N and every x λ, and we have Ax = {(Ax) n } n N μ for all x λ 2 Main Results In this section, the fine spectrum of the difference operator Δ on the sequence spaces l 1 and bv has been examined The difference operator Δ is represented by the matrix Δ= Lemma 21 The matrix A =(a nk ) gives rise to a bounded linear operator T B(l 1 ) from l 1 to itself if and only if the supremum of l 1 norms of the columns of A is bounded Corollary 22 Δ:l 1 l 1 is a bounded linear operator and Δ (l1,l 1 ) =2 Lemma 23 The matrix A =(a nk ) gives rise to a bounded linear operator T B(bv) from bv to itself if and only if sup (a nk a n 1,k ) l < n k=l Corollary 24 Δ:bv bv is a bounded linear operator and Δ (l1,l 1 ) = Δ (bv,bv) The fine spectrum of the Cesàro operator on the sequence space l p has been studied by Gonzàlez [5], where 1 <p< Also, weighted mean matrices of operators on l p have been investigated by Cartlidge [3] The spectrum of the

4 1156 Kuddusi Kayaduman and Hasan Furkan Cesàro operator on the sequence spaces bv 0 and bv have also been investigated by Okutoyi [8] and Okutoyi [7], respectively More recently, the fine spectra of the difference operator Δ over the sequence space l p by Akhmedov and Başar [1] In this work, our purpose is to determine the fine spectrum of the difference operator Δ on the sequence spaces l 1 and bv Theorem 25 σ(δ,l 1 )={α C : α 1 1} Proof: Since Δ αi is triangle, hence (Δ αi) 1 exists Solving the equation (Δ αi)x = y for y we can formally derive that (Δ αi) 1 = (1 α) 1 0 (1 α) (1 α) 1 (1 α) (1 α) 3 (1 α) 2 Thus, we observe that (Δ αi) 1 (l 1 : l 1 ) if and only if sup k n=1 1 1 α n < One can see that (Δ αi) 1 (l 1 : l 1 ) whenever α 1 1 This completes the proof Theorem 26 σ p (Δ,l 1 )= Proof: This is immediate from the inclusion l 1 c 0, and by Theorem 22 in [2] If T : l 1 l 1 is a bounded linear operator with matrix A, then it is known that the adjoint operator T : l 1 l 1 is defined by the transpose of the matrix A Theorem 27 σ p (Δ,l 1 )={α C : α 1 1} Proof: Suppose Δ f = αf for f θ l 1 = l Then by solving the system of linear equations f 0 f 1 = αf 0 f 1 f 2 = αf 1 f 2 f 3 = αf 2 f k f k 1 = αf k (4)

5 The Fine Spectra of the Difference Operator Δ Over l 1 and bv 1157 we obtain that f k =(1 α) k f 0, (k N) This shows that f =(f k ) l 1 if and only if α 1 1 This means that f l 1 if f 0 0 and α 1 1, as asserted This completes the proof Now we give the following lemma required in the proof of next theorem Lemma 28 [4, p 59] T has a dense range if and only if T is one to one, where T denotes the adjoint operator of the operator T Theorem 29 σ r (Δ,l 1 )={α C : α 1 1} Proof: For α 1 1, the operator Δ αi is one to one in l 1 hence has an inverse But Δ αi is not one to one by Theorem 27 Now Lemma 28 yields the fact that the range of the operator Δ αi is not dense in l 1 and this step completes the proof Theorem 210 σ c (Δ,l 1 )= Proof: Since σ(t,x) is the disjoint union of the parts σ p (T,X), σ r (T,X) and σ c (T,X) we must have σ c (Δ,l 1 )= Theorem 211 σ(δ,bv)={α C : α 1 1} Proof: Solving the equation (Δ αi)x = y (5) for y bv, we can formally derive that 1/(1 α) 0 0 (Δ αi) 1 1/(1 α) 2 1/(1 α) 0 = 1/(1 α) 3 1/(1 α) 2 1/(1 α) Therefore, one can obtain by (5) that x =(Δ αi) 1 y At this situation, it is easy to show that x k x k 1 = k j=0 y j y j 1, (k N) (1 α) k j+1 and (Δ αi) 1 is bounded if and only if α 1 > 1 This completes the proof

6 1158 Kuddusi Kayaduman and Hasan Furkan Theorem 212 Δ B(bv) with the norm Δ (bv,bv) =2 Proof: The linearity of the operator Δ is trivial and so is omitted Let us take any x =(x k ) bv Then since ( ) Δx bv = x k x k 1 (x k 1 x k 2 ) k k x k x k 1 + k x k 1 x k 2 =2 x bv we derive from here that Further, by Theorem 211 we have that Δ (bv,bv) 2 (6) 2 Δ (bv,bv) (7) Therefore, we obtain by combining the inequalities (6) and (7) that Δ (bv,bv) =2 as desired This step concludes the proof Theorem 213 σ p (Δ,bv)= Proof: Suppose that Δx = αx for x θ =(0, 0, 0,)inbv Then, by solving the systems of linear equations x 0 = αx 0 x 1 x 0 = αx 1 x 2 x 1 = αx 2 we find that if x n0 is the first non-zero entry of the sequence x =(x n ) the α = 1 and x n0 +1 x n0 = x n0 +1 which implies that x n0 = 0 This is a contradiction Therefore σ p (Δ,bv)= If T : bv bv is a bounded matrix operator with matrix A, then T : bv bv acting on C bs has matrix of the form [ ] χ 0 b A t ;

7 The Fine Spectra of the Difference Operator Δ Over l 1 and bv 1159 where χ is the limit of the sequence of row sums of A minus the sum of the limit of the columns of A, and b is the column vector whose k th entry is the limit of the k th column of A for each k N [7] For Δ : bv bv, the matrix Δ B(bs) is of the form [ ] 0 0 Δ = 0 Δ t Theorem 214 σ p (Δ,bv )={α C : α 1 1} Proof: Suppose Δ f = αf for f θ bv = C bs Then by solving the system of linear equations 0 = αf 0 f 1 f 2 = αf 1 f 2 f 3 = αf 2 f k f k 1 = αf k (8) we obtain that f k =(1 α) k f 1, (k N) If α = 0 then we can choose f 0 0 and so f =(f 0, 0, 0, 0, ) is an eigenvector corresponding to α Ifα 0 then f 0 = 0, and by solving the system we obtain that f n =(1 α) n 1 f 1 (n 2) This means that f C bs iff n sup (1 α) k < n or sup n k=0 if and only if α 1 1, as asserted 1 (1 α) n+1 1 (1 α) < Theorem 215 σ r (Δ,bv)={α C : α 1 1} Proof: For α 1 1, the operator Δ αi is one to one hence has an inverse However, Δ αi is not one to one by Theorem 214 Now, Lemma 28 yields the fact that R(Δ αi) bv and this step concludes the proof Theorem 216 σ c (Δ,bv)=

8 1160 Kuddusi Kayaduman and Hasan Furkan Proof: The result immediately follows from the fact that σ(δ,bv) is the disjoint union of σ p (Δ,bv), σ r (Δ,bv) and σ c (Δ,bv) ACKNOWLEDGEMENTS The authors would like to express their indeptedness to Dr Bilâl Altay, İnönü Ün ivers ites i, Eğit im Fakültes i, Matematik Eğitimi Bölümü, Malatya/Türkiye, for his careful reading and corrections on the first draft of the present paper References [1] A M Akhmedov and F Başar, On the spectra of the difference operator in Δ over the sequence space l p, Demonstratio Math (to appear) [2] B Altay and F Başar, On the fine spectrum of the difference operator Δ on c 0 and c, Information Sciences, 168(2004), [3] J P Cartlidge, Weighted Mean Matrices as Operators on l p, Ph D Dissertation, Indiana University, 1978 [4] S Goldberg, Unbounded Lineer Operators, Dover Publications, Inc New York, 1985 [5] M Gonzàlez, The fine spectrum of the Cesàro operator in l p (1 <p< ), Arch Math 44(1985), [6] E Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons Inc New York-Chichester-Brisbane-Toronto, 1978 [7] J T Okutoyi, On the spectrum of C 1 as an operator on bv, Commun Fac Sci Univ Ank Ser A 1, 41(1992), [8] J I Okutoyi, On the spectrum of C 1 as an operator on bv 0, J Austral Math Soc Ser A,48 (1990), Received: October 16, 2005

On The Fine Spectrum of Generalized Upper Triangular Triple-Band Matrices ( 2 uvw) t

On The Fine Spectrum of Generalized Upper Triangular Triple-Band Matrices ( 2 uvw) t Filomat 30:5 (06 363 373 DOI 098/FIL605363A Published by Faculty of Sciences and Mathematics University of Niš Serbia Available at: http://wwwpmfniacrs/filomat On The Fine Spectrum of Generalized Upper

More information

On the Spaces of Nörlund Almost Null and Nörlund Almost Convergent Sequences

On the Spaces of Nörlund Almost Null and Nörlund Almost Convergent Sequences Filomat 30:3 (206), 773 783 DOI 0.2298/FIL603773T Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat On the Spaces of Nörlund Almost

More information

Prove that this gives a bounded linear operator T : X l 1. (6p) Prove that T is a bounded linear operator T : l l and compute (5p)

Prove that this gives a bounded linear operator T : X l 1. (6p) Prove that T is a bounded linear operator T : l l and compute (5p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2006-03-17 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

More information

On some I-convergent sequence spaces defined by a compact operator

On some I-convergent sequence spaces defined by a compact operator Annals of the University of Craiova, Mathematics and Computer Science Series Volume 43(2), 2016, Pages 141 150 ISSN: 1223-6934 On some I-convergent sequence spaces defined by a compact operator Vaeel A.

More information

The Residual Spectrum and the Continuous Spectrum of Upper Triangular Operator Matrices

The Residual Spectrum and the Continuous Spectrum of Upper Triangular Operator Matrices Filomat 28:1 (2014, 65 71 DOI 10.2298/FIL1401065H Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat The Residual Spectrum and the

More information

Remarks on the Spectrum of Bounded and Normal Operators on Hilbert Spaces

Remarks on the Spectrum of Bounded and Normal Operators on Hilbert Spaces An. Şt. Univ. Ovidius Constanţa Vol. 16(2), 2008, 7 14 Remarks on the Spectrum of Bounded and Normal Operators on Hilbert Spaces M. AKKOUCHI Abstract Let H be a complex Hilbert space H. Let T be a bounded

More information

Fine spectrum of the upper triangular matrix U(r, 0, 0,s) over the sequence spaces c 0 and c

Fine spectrum of the upper triangular matrix U(r, 0, 0,s) over the sequence spaces c 0 and c Proyeccione Journal of Mathematic Vol 37, N o, pp 85-0, March 208 Univeridad Católica del Norte Antofagata - Chile Fine pectrum of the upper triangular matrix U(r, 0, 0,) over the equence pace c 0 and

More information

FUNCTION BASES FOR TOPOLOGICAL VECTOR SPACES. Yılmaz Yılmaz

FUNCTION BASES FOR TOPOLOGICAL VECTOR SPACES. Yılmaz Yılmaz Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 33, 2009, 335 353 FUNCTION BASES FOR TOPOLOGICAL VECTOR SPACES Yılmaz Yılmaz Abstract. Our main interest in this

More information

Infinite Matrices and Almost Convergence

Infinite Matrices and Almost Convergence Filomat 29:6 (205), 83 88 DOI 0.2298/FIL50683G Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Infinite Matrices and Almost Convergence

More information

RECENT RESULTS ON THE DOMAIN OF THE SOME LIMITATION METHODS IN THE SEQUENCE SPACES f 0 AND f

RECENT RESULTS ON THE DOMAIN OF THE SOME LIMITATION METHODS IN THE SEQUENCE SPACES f 0 AND f http://wwwnewtheoryorg ISSN: 249-402 Received: 0902205 Year: 205, Number: 2, Pages: 43-54 Accepted: 202205 Original Article ** RECENT RESULTS ON THE DOMAIN OF THE SOME LIMITATION METHODS IN THE SEQUENCE

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

Research Article On the Riesz Almost Convergent Sequences Space

Research Article On the Riesz Almost Convergent Sequences Space Abstract and Applied Analysis Volume 202, Article ID 69694, 8 pages doi:0.55/202/69694 Research Article On the Riesz Almost Convergent Sequences Space Mehmet Şengönül and Kuddusi Kayaduman 2 Faculty of

More information

SOME FUNDAMENTAL THEOREMS IN BANACH SPACES AND HILBERT SPACES

SOME FUNDAMENTAL THEOREMS IN BANACH SPACES AND HILBERT SPACES SOME FUNDAMENTAL THEOREMS IN BANACH SPACES AND HILBERT SPACES Sanjay Kumar Department of Mathematics Central University of Jammu, India sanjaykmath@gmail.com Sanjay Kumar (Central University of Jammu)

More information

Jordan Journal of Mathematics and Statistics (JJMS) 8(3), 2015, pp THE NORM OF CERTAIN MATRIX OPERATORS ON NEW DIFFERENCE SEQUENCE SPACES

Jordan Journal of Mathematics and Statistics (JJMS) 8(3), 2015, pp THE NORM OF CERTAIN MATRIX OPERATORS ON NEW DIFFERENCE SEQUENCE SPACES Jordan Journal of Mathematics and Statistics (JJMS) 8(3), 2015, pp 223-237 THE NORM OF CERTAIN MATRIX OPERATORS ON NEW DIFFERENCE SEQUENCE SPACES H. ROOPAEI (1) AND D. FOROUTANNIA (2) Abstract. The purpose

More information

On compact operators

On compact operators On compact operators Alen Aleanderian * Abstract In this basic note, we consider some basic properties of compact operators. We also consider the spectrum of compact operators on Hilbert spaces. A basic

More information

Spectral Theory, with an Introduction to Operator Means. William L. Green

Spectral Theory, with an Introduction to Operator Means. William L. Green Spectral Theory, with an Introduction to Operator Means William L. Green January 30, 2008 Contents Introduction............................... 1 Hilbert Space.............................. 4 Linear Maps

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

Analysis Preliminary Exam Workshop: Hilbert Spaces

Analysis Preliminary Exam Workshop: Hilbert Spaces Analysis Preliminary Exam Workshop: Hilbert Spaces 1. Hilbert spaces A Hilbert space H is a complete real or complex inner product space. Consider complex Hilbert spaces for definiteness. If (, ) : H H

More information

NORMS ON SPACE OF MATRICES

NORMS ON SPACE OF MATRICES NORMS ON SPACE OF MATRICES. Operator Norms on Space of linear maps Let A be an n n real matrix and x 0 be a vector in R n. We would like to use the Picard iteration method to solve for the following system

More information

CESARO OPERATORS ON THE HARDY SPACES OF THE HALF-PLANE

CESARO OPERATORS ON THE HARDY SPACES OF THE HALF-PLANE CESARO OPERATORS ON THE HARDY SPACES OF THE HALF-PLANE ATHANASIOS G. ARVANITIDIS AND ARISTOMENIS G. SISKAKIS Abstract. In this article we study the Cesàro operator C(f)() = d, and its companion operator

More information

The generalized multiplier space and its Köthe-Toeplitz and null duals

The generalized multiplier space and its Köthe-Toeplitz and null duals MATHEMATICAL COMMUNICATIONS 273 Math. Commun. 222017), 273 285 The generalized multiplier space and its Köthe-Toeplitz and null duals Davoud Foroutannia and Hadi Roopaei Department of Mathematics, Vali-e-Asr

More information

Weak Topologies, Reflexivity, Adjoint operators

Weak Topologies, Reflexivity, Adjoint operators Chapter 2 Weak Topologies, Reflexivity, Adjoint operators 2.1 Topological vector spaces and locally convex spaces Definition 2.1.1. [Topological Vector Spaces and Locally convex Spaces] Let E be a vector

More information

Sectorial Forms and m-sectorial Operators

Sectorial Forms and m-sectorial Operators Technische Universität Berlin SEMINARARBEIT ZUM FACH FUNKTIONALANALYSIS Sectorial Forms and m-sectorial Operators Misagheh Khanalizadeh, Berlin, den 21.10.2013 Contents 1 Bounded Coercive Sesquilinear

More information

SPECTRAL THEOREM FOR SYMMETRIC OPERATORS WITH COMPACT RESOLVENT

SPECTRAL THEOREM FOR SYMMETRIC OPERATORS WITH COMPACT RESOLVENT SPECTRAL THEOREM FOR SYMMETRIC OPERATORS WITH COMPACT RESOLVENT Abstract. These are the letcure notes prepared for the workshop on Functional Analysis and Operator Algebras to be held at NIT-Karnataka,

More information

Weyl-Type Theorems for Unbounded Operators

Weyl-Type Theorems for Unbounded Operators Weyl-Type Theorems for Unbounded Operators Anuradha Gupta Department of Mathematics, Delhi College of Arts and Commerce, University of Delhi. 1. Introduction In 1909, H. Weyl (Über beschränkte quadatische

More information

Math Solutions to homework 5

Math Solutions to homework 5 Math 75 - Solutions to homework 5 Cédric De Groote November 9, 207 Problem (7. in the book): Let {e n } be a complete orthonormal sequence in a Hilbert space H and let λ n C for n N. Show that there is

More information

Your first day at work MATH 806 (Fall 2015)

Your first day at work MATH 806 (Fall 2015) Your first day at work MATH 806 (Fall 2015) 1. Let X be a set (with no particular algebraic structure). A function d : X X R is called a metric on X (and then X is called a metric space) when d satisfies

More information

Linear Algebra and its Applications

Linear Algebra and its Applications Linear Algebra and its Applications 436 2012 41 52 Contents lists available at SciVerse ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa Compactness of matrix

More information

Spectrum (functional analysis) - Wikipedia, the free encyclopedia

Spectrum (functional analysis) - Wikipedia, the free encyclopedia 1 of 6 18/03/2013 19:45 Spectrum (functional analysis) From Wikipedia, the free encyclopedia In functional analysis, the concept of the spectrum of a bounded operator is a generalisation of the concept

More information

Essential Descent Spectrum and Commuting Compact Perturbations

Essential Descent Spectrum and Commuting Compact Perturbations E extracta mathematicae Vol. 21, Núm. 3, 261 271 (2006) Essential Descent Spectrum and Commuting Compact Perturbations Olfa Bel Hadj Fredj Université Lille 1, UFR de Mathématiques, UMR-CNRS 8524 59655

More information

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces.

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces. Math 350 Fall 2011 Notes about inner product spaces In this notes we state and prove some important properties of inner product spaces. First, recall the dot product on R n : if x, y R n, say x = (x 1,...,

More information

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent.

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent. Lecture Notes: Orthogonal and Symmetric Matrices Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Orthogonal Matrix Definition. Let u = [u

More information

Your first day at work MATH 806 (Fall 2015)

Your first day at work MATH 806 (Fall 2015) Your first day at work MATH 806 (Fall 2015) 1. Let X be a set (with no particular algebraic structure). A function d : X X R is called a metric on X (and then X is called a metric space) when d satisfies

More information

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms (February 24, 2017) 08a. Operators on Hilbert spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 2016-17/08a-ops

More information

Available online at J. Math. Comput. Sci. 4 (2014), No. 1, 1-9 ISSN:

Available online at   J. Math. Comput. Sci. 4 (2014), No. 1, 1-9 ISSN: Available online at http://scik.org J. Math. Comput. Sci. 4 (2014), No. 1, 1-9 ISSN: 1927-5307 ON -n-paranormal OPERATORS ON BANACH SPACES MUNEO CHŌ 1, KÔTARÔ TANAHASHI 2 1 Department of Mathematics, Kanagawa

More information

2. Dual space is essential for the concept of gradient which, in turn, leads to the variational analysis of Lagrange multipliers.

2. Dual space is essential for the concept of gradient which, in turn, leads to the variational analysis of Lagrange multipliers. Chapter 3 Duality in Banach Space Modern optimization theory largely centers around the interplay of a normed vector space and its corresponding dual. The notion of duality is important for the following

More information

Jónsson posets and unary Jónsson algebras

Jónsson posets and unary Jónsson algebras Jónsson posets and unary Jónsson algebras Keith A. Kearnes and Greg Oman Abstract. We show that if P is an infinite poset whose proper order ideals have cardinality strictly less than P, and κ is a cardinal

More information

A Spectral Characterization of Closed Range Operators 1

A Spectral Characterization of Closed Range Operators 1 A Spectral Characterization of Closed Range Operators 1 M.THAMBAN NAIR (IIT Madras) 1 Closed Range Operators Operator equations of the form T x = y, where T : X Y is a linear operator between normed linear

More information

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS G. RAMESH Contents Introduction 1 1. Bounded Operators 1 1.3. Examples 3 2. Compact Operators 5 2.1. Properties 6 3. The Spectral Theorem 9 3.3. Self-adjoint

More information

Zweier I-Convergent Sequence Spaces

Zweier I-Convergent Sequence Spaces Chapter 2 Zweier I-Convergent Sequence Spaces In most sciences one generation tears down what another has built and what one has established another undoes. In mathematics alone each generation builds

More information

Multi-normed spaces and multi-banach algebras. H. G. Dales. Leeds Semester

Multi-normed spaces and multi-banach algebras. H. G. Dales. Leeds Semester Multi-normed spaces and multi-banach algebras H. G. Dales Leeds Semester Leeds, 2 June 2010 1 Motivating problem Let G be a locally compact group, with group algebra L 1 (G). Theorem - B. E. Johnson, 1972

More information

On the Domain of Riesz Mean in the Space L s *

On the Domain of Riesz Mean in the Space L s * Filomat 3:4 207, 925 940 DOI 0.2298/FIL704925Y Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat On the Domain of Riesz Mean in the

More information

Lax Solution Part 4. October 27, 2016

Lax Solution Part 4.   October 27, 2016 Lax Solution Part 4 www.mathtuition88.com October 27, 2016 Textbook: Functional Analysis by Peter D. Lax Exercises: Ch 16: Q2 4. Ch 21: Q1, 2, 9, 10. Ch 28: 1, 5, 9, 10. 1 Chapter 16 Exercise 2 Let h =

More information

Where is matrix multiplication locally open?

Where is matrix multiplication locally open? Linear Algebra and its Applications 517 (2017) 167 176 Contents lists available at ScienceDirect Linear Algebra and its Applications www.elsevier.com/locate/laa Where is matrix multiplication locally open?

More information

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space 1 Professor Carl Cowen Math 54600 Fall 09 PROBLEMS 1. (Geometry in Inner Product Spaces) (a) (Parallelogram Law) Show that in any inner product space x + y 2 + x y 2 = 2( x 2 + y 2 ). (b) (Polarization

More information

Elementary linear algebra

Elementary linear algebra Chapter 1 Elementary linear algebra 1.1 Vector spaces Vector spaces owe their importance to the fact that so many models arising in the solutions of specific problems turn out to be vector spaces. The

More information

Functional Analysis I

Functional Analysis I Functional Analysis I Course Notes by Stefan Richter Transcribed and Annotated by Gregory Zitelli Polar Decomposition Definition. An operator W B(H) is called a partial isometry if W x = X for all x (ker

More information

Compact operators on Banach spaces

Compact operators on Banach spaces Compact operators on Banach spaces Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto November 12, 2017 1 Introduction In this note I prove several things about compact

More information

Banach Spaces II: Elementary Banach Space Theory

Banach Spaces II: Elementary Banach Space Theory BS II c Gabriel Nagy Banach Spaces II: Elementary Banach Space Theory Notes from the Functional Analysis Course (Fall 07 - Spring 08) In this section we introduce Banach spaces and examine some of their

More information

Review of Some Concepts from Linear Algebra: Part 2

Review of Some Concepts from Linear Algebra: Part 2 Review of Some Concepts from Linear Algebra: Part 2 Department of Mathematics Boise State University January 16, 2019 Math 566 Linear Algebra Review: Part 2 January 16, 2019 1 / 22 Vector spaces A set

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

Surjective Maps Preserving Local Spectral Radius

Surjective Maps Preserving Local Spectral Radius International Mathematical Forum, Vol. 9, 2014, no. 11, 515-522 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.414 Surjective Maps Preserving Local Spectral Radius Mustapha Ech-Cherif

More information

Czechoslovak Mathematical Journal

Czechoslovak Mathematical Journal Czechoslovak Mathematical Journal Oktay Duman; Cihan Orhan µ-statistically convergent function sequences Czechoslovak Mathematical Journal, Vol. 54 (2004), No. 2, 413 422 Persistent URL: http://dml.cz/dmlcz/127899

More information

The Split Hierarchical Monotone Variational Inclusions Problems and Fixed Point Problems for Nonexpansive Semigroup

The Split Hierarchical Monotone Variational Inclusions Problems and Fixed Point Problems for Nonexpansive Semigroup International Mathematical Forum, Vol. 11, 2016, no. 8, 395-408 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2016.6220 The Split Hierarchical Monotone Variational Inclusions Problems and

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

THE BOUNDEDNESS BELOW OF 2 2 UPPER TRIANGULAR OPERATOR MATRICES. In Sung Hwang and Woo Young Lee 1

THE BOUNDEDNESS BELOW OF 2 2 UPPER TRIANGULAR OPERATOR MATRICES. In Sung Hwang and Woo Young Lee 1 THE BOUNDEDNESS BELOW OF 2 2 UPPER TRIANGULAR OPERATOR MATRICES In Sung Hwang and Woo Young Lee 1 When A LH and B LK are given we denote by M C an operator acting on the Hilbert space H K of the form M

More information

MATH 202B - Problem Set 5

MATH 202B - Problem Set 5 MATH 202B - Problem Set 5 Walid Krichene (23265217) March 6, 2013 (5.1) Show that there exists a continuous function F : [0, 1] R which is monotonic on no interval of positive length. proof We know there

More information

On the statistical and σ-cores

On the statistical and σ-cores STUDIA MATHEMATICA 154 (1) (2003) On the statistical and σ-cores by Hüsamett in Çoşun (Malatya), Celal Çaan (Malatya) and Mursaleen (Aligarh) Abstract. In [11] and [7], the concets of σ-core and statistical

More information

POSITIVE MAP AS DIFFERENCE OF TWO COMPLETELY POSITIVE OR SUPER-POSITIVE MAPS

POSITIVE MAP AS DIFFERENCE OF TWO COMPLETELY POSITIVE OR SUPER-POSITIVE MAPS Adv. Oper. Theory 3 (2018), no. 1, 53 60 http://doi.org/10.22034/aot.1702-1129 ISSN: 2538-225X (electronic) http://aot-math.org POSITIVE MAP AS DIFFERENCE OF TWO COMPLETELY POSITIVE OR SUPER-POSITIVE MAPS

More information

5 Compact linear operators

5 Compact linear operators 5 Compact linear operators One of the most important results of Linear Algebra is that for every selfadjoint linear map A on a finite-dimensional space, there exists a basis consisting of eigenvectors.

More information

Cyclic Vector of the Weighted Mean Matrix Operator

Cyclic Vector of the Weighted Mean Matrix Operator Punjab University Journal of Mathematics (ISSN 1016-2526) Vol. 50(1)(2018) pp. 79-88 Cyclic Vector of the Weighted Mean Matrix Operator Ebrahim Pazouki Mazandaran Management and Planning Organization P.

More information

Measure Theory on Topological Spaces. Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond

Measure Theory on Topological Spaces. Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond Measure Theory on Topological Spaces Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond May 22, 2011 Contents 1 Introduction 2 1.1 The Riemann Integral........................................ 2 1.2 Measurable..............................................

More information

On Zweier I-Convergent Double Sequence Spaces

On Zweier I-Convergent Double Sequence Spaces Filomat 3:12 (216), 3361 3369 DOI 1.2298/FIL1612361K Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat On Zweier I-Convergent Double

More information

are Banach algebras. f(x)g(x) max Example 7.4. Similarly, A = L and A = l with the pointwise multiplication

are Banach algebras. f(x)g(x) max Example 7.4. Similarly, A = L and A = l with the pointwise multiplication 7. Banach algebras Definition 7.1. A is called a Banach algebra (with unit) if: (1) A is a Banach space; (2) There is a multiplication A A A that has the following properties: (xy)z = x(yz), (x + y)z =

More information

Functional Analysis, Math 7321 Lecture Notes from April 04, 2017 taken by Chandi Bhandari

Functional Analysis, Math 7321 Lecture Notes from April 04, 2017 taken by Chandi Bhandari Functional Analysis, Math 7321 Lecture Notes from April 0, 2017 taken by Chandi Bhandari Last time:we have completed direct sum decomposition with generalized eigen space. 2. Theorem. Let X be separable

More information

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. Adjoint operator and adjoint matrix Given a linear operator L on an inner product space V, the adjoint of L is a transformation

More information

j=1 [We will show that the triangle inequality holds for each p-norm in Chapter 3 Section 6.] The 1-norm is A F = tr(a H A).

j=1 [We will show that the triangle inequality holds for each p-norm in Chapter 3 Section 6.] The 1-norm is A F = tr(a H A). Math 344 Lecture #19 3.5 Normed Linear Spaces Definition 3.5.1. A seminorm on a vector space V over F is a map : V R that for all x, y V and for all α F satisfies (i) x 0 (positivity), (ii) αx = α x (scale

More information

Linear Algebra March 16, 2019

Linear Algebra March 16, 2019 Linear Algebra March 16, 2019 2 Contents 0.1 Notation................................ 4 1 Systems of linear equations, and matrices 5 1.1 Systems of linear equations..................... 5 1.2 Augmented

More information

PREVALENCE OF SOME KNOWN TYPICAL PROPERTIES. 1. Introduction

PREVALENCE OF SOME KNOWN TYPICAL PROPERTIES. 1. Introduction Acta Math. Univ. Comenianae Vol. LXX, 2(2001), pp. 185 192 185 PREVALENCE OF SOME KNOWN TYPICAL PROPERTIES H. SHI Abstract. In this paper, some known typical properties of function spaces are shown to

More information

Injective semigroup-algebras

Injective semigroup-algebras Injective semigroup-algebras J. J. Green June 5, 2002 Abstract Semigroups S for which the Banach algebra l (S) is injective are investigated and an application to the work of O. Yu. Aristov is described.

More information

************************************* Applied Analysis I - (Advanced PDE I) (Math 940, Fall 2014) Baisheng Yan

************************************* Applied Analysis I - (Advanced PDE I) (Math 940, Fall 2014) Baisheng Yan ************************************* Applied Analysis I - (Advanced PDE I) (Math 94, Fall 214) by Baisheng Yan Department of Mathematics Michigan State University yan@math.msu.edu Contents Chapter 1.

More information

NOWHERE LOCALLY UNIFORMLY CONTINUOUS FUNCTIONS

NOWHERE LOCALLY UNIFORMLY CONTINUOUS FUNCTIONS NOWHERE LOCALLY UNIFORMLY CONTINUOUS FUNCTIONS K. Jarosz Southern Illinois University at Edwardsville, IL 606, and Bowling Green State University, OH 43403 kjarosz@siue.edu September, 995 Abstract. Suppose

More information

Convergence Rates in Regularization for Nonlinear Ill-Posed Equations Involving m-accretive Mappings in Banach Spaces

Convergence Rates in Regularization for Nonlinear Ill-Posed Equations Involving m-accretive Mappings in Banach Spaces Applied Mathematical Sciences, Vol. 6, 212, no. 63, 319-3117 Convergence Rates in Regularization for Nonlinear Ill-Posed Equations Involving m-accretive Mappings in Banach Spaces Nguyen Buong Vietnamese

More information

THE SEMI ORLICZ SPACE cs d 1

THE SEMI ORLICZ SPACE cs d 1 Kragujevac Journal of Mathematics Volume 36 Number 2 (2012), Pages 269 276. THE SEMI ORLICZ SPACE cs d 1 N. SUBRAMANIAN 1, B. C. TRIPATHY 2, AND C. MURUGESAN 3 Abstract. Let Γ denote the space of all entire

More information

A locally convex topology and an inner product 1

A locally convex topology and an inner product 1 Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 4 (2016, pp. 3327-3338 Research India Publications http://www.ripublication.com/gjpam.htm A locally convex topology and

More information

INF-SUP CONDITION FOR OPERATOR EQUATIONS

INF-SUP CONDITION FOR OPERATOR EQUATIONS INF-SUP CONDITION FOR OPERATOR EQUATIONS LONG CHEN We study the well-posedness of the operator equation (1) T u = f. where T is a linear and bounded operator between two linear vector spaces. We give equivalent

More information

ON THE STABILITY OF THE QUASI-LINEAR IMPLICIT EQUATIONS IN HILBERT SPACES

ON THE STABILITY OF THE QUASI-LINEAR IMPLICIT EQUATIONS IN HILBERT SPACES Khayyam J. Math. 5 (219), no. 1, 15-112 DOI: 1.2234/kjm.219.81222 ON THE STABILITY OF THE QUASI-LINEAR IMPLICIT EQUATIONS IN HILBERT SPACES MEHDI BENABDALLAH 1 AND MOHAMED HARIRI 2 Communicated by J. Brzdęk

More information

An extension of Knopp s core theorem for complex bounded sequences

An extension of Knopp s core theorem for complex bounded sequences Mathematical Communications 13(2008, 57-61 57 An extension of Knopp s core theorem for complex bounded sequences Şeyhmus Yardimic Abstract. In this paper, using the idea used by Choudhary, we extend previously

More information

1 Math 241A-B Homework Problem List for F2015 and W2016

1 Math 241A-B Homework Problem List for F2015 and W2016 1 Math 241A-B Homework Problem List for F2015 W2016 1.1 Homework 1. Due Wednesday, October 7, 2015 Notation 1.1 Let U be any set, g be a positive function on U, Y be a normed space. For any f : U Y let

More information

Hausdorff operators in H p spaces, 0 < p < 1

Hausdorff operators in H p spaces, 0 < p < 1 Hausdorff operators in H p spaces, 0 < p < 1 Elijah Liflyand joint work with Akihiko Miyachi Bar-Ilan University June, 2018 Elijah Liflyand joint work with Akihiko Miyachi (Bar-Ilan University) Hausdorff

More information

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t Analysis Comprehensive Exam Questions Fall 2. Let f L 2 (, ) be given. (a) Prove that ( x 2 f(t) dt) 2 x x t f(t) 2 dt. (b) Given part (a), prove that F L 2 (, ) 2 f L 2 (, ), where F(x) = x (a) Using

More information

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due 9/5). Prove that every countable set A is measurable and µ(a) = 0. 2 (Bonus). Let A consist of points (x, y) such that either x or y is

More information

FORBIDDEN MINORS FOR THE CLASS OF GRAPHS G WITH ξ(g) 2. July 25, 2006

FORBIDDEN MINORS FOR THE CLASS OF GRAPHS G WITH ξ(g) 2. July 25, 2006 FORBIDDEN MINORS FOR THE CLASS OF GRAPHS G WITH ξ(g) 2 LESLIE HOGBEN AND HEIN VAN DER HOLST July 25, 2006 Abstract. For a given simple graph G, S(G) is defined to be the set of real symmetric matrices

More information

On John type ellipsoids

On John type ellipsoids On John type ellipsoids B. Klartag Tel Aviv University Abstract Given an arbitrary convex symmetric body K R n, we construct a natural and non-trivial continuous map u K which associates ellipsoids to

More information

Intrinsic products and factorizations of matrices

Intrinsic products and factorizations of matrices Available online at www.sciencedirect.com Linear Algebra and its Applications 428 (2008) 5 3 www.elsevier.com/locate/laa Intrinsic products and factorizations of matrices Miroslav Fiedler Academy of Sciences

More information

Fuzzy Statistical Limits

Fuzzy Statistical Limits Fuzzy Statistical Limits Mark Burgin a and Oktay Duman b a Department of Mathematics, University of California, Los Angeles, California 90095-1555, USA b TOBB Economics and Technology University, Faculty

More information

A NOTE ON QUASI-ISOMETRIES. S. M. Patel Sardar Patel University, India.

A NOTE ON QUASI-ISOMETRIES. S. M. Patel Sardar Patel University, India. GLASNIK MATEMATIČKI Vol. 35(55)(2000), 307 312 A NOTE ON QUASI-ISOMETRIES S. M. Patel Sardar Patel University, India. Abstract. The paper aims at investigating some basic properties of a quasi isometry

More information

Vector Spaces. Commutativity of +: u + v = v + u, u, v, V ; Associativity of +: u + (v + w) = (u + v) + w, u, v, w V ;

Vector Spaces. Commutativity of +: u + v = v + u, u, v, V ; Associativity of +: u + (v + w) = (u + v) + w, u, v, w V ; Vector Spaces A vector space is defined as a set V over a (scalar) field F, together with two binary operations, i.e., vector addition (+) and scalar multiplication ( ), satisfying the following axioms:

More information

The goal of this chapter is to study linear systems of ordinary differential equations: dt,..., dx ) T

The goal of this chapter is to study linear systems of ordinary differential equations: dt,..., dx ) T 1 1 Linear Systems The goal of this chapter is to study linear systems of ordinary differential equations: ẋ = Ax, x(0) = x 0, (1) where x R n, A is an n n matrix and ẋ = dx ( dt = dx1 dt,..., dx ) T n.

More information

Trace Class Operators and Lidskii s Theorem

Trace Class Operators and Lidskii s Theorem Trace Class Operators and Lidskii s Theorem Tom Phelan Semester 2 2009 1 Introduction The purpose of this paper is to provide the reader with a self-contained derivation of the celebrated Lidskii Trace

More information

PERTURBATION THEORY FOR NONLINEAR DIRICHLET PROBLEMS

PERTURBATION THEORY FOR NONLINEAR DIRICHLET PROBLEMS Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 28, 2003, 207 222 PERTURBATION THEORY FOR NONLINEAR DIRICHLET PROBLEMS Fumi-Yuki Maeda and Takayori Ono Hiroshima Institute of Technology, Miyake,

More information

Functional Analysis HW #3

Functional Analysis HW #3 Functional Analysis HW #3 Sangchul Lee October 26, 2015 1 Solutions Exercise 2.1. Let D = { f C([0, 1]) : f C([0, 1])} and define f d = f + f. Show that D is a Banach algebra and that the Gelfand transform

More information

I teach myself... Hilbert spaces

I teach myself... Hilbert spaces I teach myself... Hilbert spaces by F.J.Sayas, for MATH 806 November 4, 2015 This document will be growing with the semester. Every in red is for you to justify. Even if we start with the basic definition

More information

Rotations of hypercyclic and supercyclic operators

Rotations of hypercyclic and supercyclic operators Rotations of hypercyclic and supercyclic operators Fernando León-Saavedra and Vladimír Müller Abstract Let T B(X) be a hypercyclic operator and λ a complex number of modulus 1. Then λt is hypercyclic and

More information

Comparison between some Kurzweil-Henstock type integrals for Riesz-space-valued functions

Comparison between some Kurzweil-Henstock type integrals for Riesz-space-valued functions Comparison between some Kurzweil-Henstock type integrals for Riesz-space-valued functions A. Boccuto V. A. Skvortsov ABSTRACT. Some kinds of integral, like variational, Kurzweil-Henstock and (SL)-integral

More information

Self-adjoint extensions of symmetric operators

Self-adjoint extensions of symmetric operators Self-adjoint extensions of symmetric operators Simon Wozny Proseminar on Linear Algebra WS216/217 Universität Konstanz Abstract In this handout we will first look at some basics about unbounded operators.

More information

Operators with Compatible Ranges

Operators with Compatible Ranges Filomat : (7), 579 585 https://doiorg/98/fil7579d Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://wwwpmfniacrs/filomat Operators with Compatible Ranges

More information

A NOTE ON QUASI ISOMETRIES II. S.M. Patel Sardar Patel University, India

A NOTE ON QUASI ISOMETRIES II. S.M. Patel Sardar Patel University, India GLASNIK MATEMATIČKI Vol. 38(58)(2003), 111 120 A NOTE ON QUASI ISOMETRIES II S.M. Patel Sardar Patel University, India Abstract. An operator A on a complex Hilbert space H is called a quasi-isometry if

More information

Fréchet differentiability of the norm of L p -spaces associated with arbitrary von Neumann algebras

Fréchet differentiability of the norm of L p -spaces associated with arbitrary von Neumann algebras Fréchet differentiability of the norm of L p -spaces associated with arbitrary von Neumann algebras (Part I) Fedor Sukochev (joint work with D. Potapov, A. Tomskova and D. Zanin) University of NSW, AUSTRALIA

More information

Operators with numerical range in a closed halfplane

Operators with numerical range in a closed halfplane Operators with numerical range in a closed halfplane Wai-Shun Cheung 1 Department of Mathematics, University of Hong Kong, Hong Kong, P. R. China. wshun@graduate.hku.hk Chi-Kwong Li 2 Department of Mathematics,

More information