'- '- p = 800(i cos j sin 270 ) = Oi - -'-,--,--J~36. T = ITI(icos 22 + j sin 22 ) = ITI(0.927i

Size: px
Start display at page:

Download "'- '- p = 800(i cos j sin 270 ) = Oi - -'-,--,--J~36. T = ITI(icos 22 + j sin 22 ) = ITI(0.927i"

Transcription

1 Problem 3.6 A zoologist estimates that the jaw of a predator, Martes, is subjected to a force P as large as 800 N. What forces T and M must be exerted by the temporalis and masseter muscles to support this value of P? ' -'-,--,--J~36 '- '- Solution: Resolve the forces into scalar components, and solve the equilibiium equations... Express the forces in terms of horizontal and vertical unit vectors: T = ITI(icos 22 + j sin 22 ) = ITI(0.927i j) p = 800(i cos j sin 270 ) = Oi - 800j = IMj(icos j sin 144 ) = IMI( i j) Iy the equilibrium conditions, =O=T+M+P=O like terms: LFx = (0.927ITI Ml)i = 0 (I) = (0.375ITI MI - 800)j = 0 (2) tbe first equation, ITI = (0.809) IMI = MI 'tute tho ~s value IIlto the second equation, reduce algebraically, solve: IMj = 874 N, ITI = NJ

2 Problem 3.17 In Problem 3.16, determine the magnitude of the total friction force exerted on the tow truck's tires. (This is the friction force the truck's tires must exert to prevent the truck and car from sliding down the slope.) Solution: Use the value of the tension from the previous problem L F'\ : F kn sin 10 - T cos 8 = kn Solving: I F = 9.43 kn I 100 F T

3 Problem 3.22 A construction worker holds a 180-kg crate in the position shown. What force must she exert on the cable? Solution: Eqns. of Equilibrium: LF)' = T I COS 5 - T 2 sin 30 - mg = 0 { LFx mg = T2cos30 (180)(9.81) - NTI sins" = 0 Solving, we get T1 = 1867 N T2 = 188 N 5 -y x mg = ( 180) (9.81) N

4 Problem 3.30 An astronaut candidate conducts experiments on an airbearing platform. While he carries out calibrations, the platform is held in place by the horizontal tethers AB, AC, and AD. The forces exerted by the tethers are the only horizontal forces acting on the platform. If the tension in tether AC is 2 N, what are the tensions in the other two tethers? Solution: Isolate the platform. The angles a and fj are Also, tan a = - = 0.429, ( ) tan fj = - = 0.857, (3.0) 3.5 fj = The angle between the tether AB and the positive x axis is (180 - fj), hence B -I~ 1.5m ; I 3rm~D...L 1~3rii)-I-t?- I I B TAB = ITABI(i cos(l80 - fj) + j sin( fj» TAB = ITABI(-icosfJ+jsinfJ). D The angle between The tension is the tether AC and the positive x axis is (180 + a). TAC = ITAcl (i cos(l80 + a) + j sin( a» = ITAcl(-icosa-jsina). Solve: The tether AD is aligned with the positive x axis, TAD = ITADli + OJ. The equilibrium condition: ITADI = (ITAcl Sin sin(a fj + fj»). For ITACI = 2 N, a = 23.2 and fj = 40.6, Substitute and collect like terms, ITABI = 1.21 N, ITADI = 2.76 N L Fy = (ITABIsin fj - ITAcl sin a)j = O.

5 Problem 3.51 The cable AB is 0.5 m in length. The unstretched length of the spring is 0.4 m. When the 50-kg mass is suspended at B, the length of the spring increases to 0.45 m. What is the spring constant k? Solution: The Geomelry Law of Cosines and Law of Sines 0.7 m F 1 : TAB sin e + F sin </> N = N

6 Problem 3.SS The mass of each pulley of the system is m and the mass of the suspended object A is ma. Determine the force T necessary for the system to be in equilibrium. Solution: Draw free body diagrams of each pulley and the object A. Each pulley and the object A must be in equilibrium. The weights of the pulleys and object A are W = mg and W A = mag. The equilibrium equations for the weight A, the lower pulley, second pulley, third pulley, and the top pulley are, respectively, B - W A = 0, 2C - B W = 0, 2D - C - W = 0, 2T - D - W = 0, and Fs - 2T - W = o. Begin with the first equation and solve for B, substitute for B in the second equation and solve for C, substitute for C in the third equation and solve for D, and substitute for D in the fourth equation and solve for T, to get T in terms of Wand W A. The result is I IT WA 3W WA 7W 0= and T = ' 8 8' or in terms of the masses, T = ~(ma + 7m).

7 Problem 3.88 The cable AB is 0.5 m in length and the ul1stretched length of the spring Be is 0.4 m. The spring constant k is 5200 N/m. When the 50-kg mass is suspended at B, what is the resulting length of the stretched spring? Solution: Introduce the distances band h. Then we have 4 unknowns (F, TAB, b, h, LBc). We have the constraint and equilibrium equations 0.5 In = J b2 + h2 LBe = J (0.7 In - W + h2 F = (5200 N/m)(LBe m) B '\' ~Fx: ---TAB b 0.7 m - b 0.5 m LBe + ---F=O F '\' h h ~ F y : -0- TAB + - F N = 0.5 m LBe Solving we find h = m, b = 0.37\ m, LBe = m, F = 364 N, TAB = 343 N GOBe = m I N

8 Problem 3.92* The cable AB keeps the 8-kg collar A in place on the smooth bar CD. The y axis points upward. Determine the distance s from C to the collar A for which the tension in the cable is 150 N m Y x Z Solution: From the figure, the coordinates of the points (in meters) are B(O, 0.5, 0.15), C(O.4, 0.3, 0), and D(0.2, 0, 0.25). The first unit vector is of the form, «XI - xk)i + (YI - YK)j - (ZI - ZK )k) e'k = ---;============== J (XI - XK)2 + (YI - YK)2 + (ZI - ZK )2 ' where I K takes on the value CD. The coordinates of point A are given by Ax = Cx + secdx, Ay = Cy + secoy, where we do not know the value of s. The equations of equilibrium for this problem are: LFy = TABeABy + FNy - W = 0, where TAB = 150 N. The weight of the collar is given by, Y 0.15 m I ~I 1_0.4 m--t 1 B(.).! AB //"~ 'r >,,\ /' 'I~C" 0.5 m I F N ~ '. ~ s 0.3 m,./,/ 1:---.-,'- D -c:/ 0.25-,r- m - J_x "" j,_ -L.- z/--0.2j~/ T 180 I n B _120 N \ '-- =:::: \\" ~ " \ Distance. s (m) W = mg, or W = (8)(9.81) = N. The condition that the force FN is perpendicular to CD is We have three equilibrium equations plus the dot product equation in the four unknowns, s and the three components of F N. Several methods of solution are open to us. Any iterative algebraic solution method should give the result s = m and that Alternalive Solulion: The complication in the algebra in the solution is because we do not know the location of point A. We can assume the location of A is known (assume that we know the distance.1') and solve for the value of the tension in cable AB which corresponds 10 that location for A. We can plot the value of the tension versus the distance s and find the value of s at which the tension is 150 N. If we do this, we get the plot shown. From the plot, s ~ N. FN = 80.7i j k N.

Announcements. Equilibrium of a Particle in 2-D

Announcements. Equilibrium of a Particle in 2-D nnouncements Equilibrium of a Particle in 2-D Today s Objectives Draw a free body diagram (FBD) pply equations of equilibrium to solve a 2-D problem Class ctivities pplications What, why, and how of a

More information

When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero.

When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero. When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero. 0 0 0 0 k M j M i M M k R j R i R F R z y x z y x Forces and moments acting on a rigid body could be

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

PH201 Chapter 5 Solutions

PH201 Chapter 5 Solutions PH201 Chapter 5 Solutions 5.4. Set Up: For each object use coordinates where +y is upward. Each object has Call the objects 1 and 2, with and Solve: (a) The free-body diagrams for each object are shown

More information

Engineering Mechanics: Statics in SI Units, 12e

Engineering Mechanics: Statics in SI Units, 12e Engineering Mechanics: Statics in SI Units, 12e 3 Equilibrium of a Particle 1 Chapter Objectives Concept of the free-body diagram for a particle Solve particle equilibrium problems using the equations

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 13

ENGR-1100 Introduction to Engineering Analysis. Lecture 13 ENGR-1100 Introduction to Engineering Analysis Lecture 13 EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS Today s Objectives: Students will be able to: a) Identify support reactions, and, b) Draw a free-body

More information

Easy. P5.3 For equilibrium: f = F and n = F g. Also, f = n, i.e., f n F F g. (a) 75.0 N N N N (b) ma y.

Easy. P5.3 For equilibrium: f = F and n = F g. Also, f = n, i.e., f n F F g. (a) 75.0 N N N N (b) ma y. Chapter 5 Homework Solutions Easy P5.3 For equilibrium: f = F and n = F g. Also, f = n, i.e., (a) f n F F g s k 75.0 N 25.09.80 N 0.306 60.0 N 25.09.80 N 0.245 ANS. FIG. P5.3 P5.4 F y ma y : n mg 0 f s

More information

5.2 Rigid Bodies and Two-Dimensional Force Systems

5.2 Rigid Bodies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems Procedures and Strategies, page 1 of 1 Procedures and Strategies for Solving Problems Involving Equilibrium

More information

Name: M1 - Dynamics. Date: Time: Total marks available: Total marks achieved:

Name: M1 - Dynamics. Date: Time: Total marks available: Total marks achieved: Name: M1 - Dynamics Date: Time: Total marks available: Total marks achieved: Questions Q1. A railway truck P, of mass m kg, is moving along a straight horizontal track with speed 15 ms 1. Truck P collides

More information

STATICS. Bodies. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Design of a support

STATICS. Bodies. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Design of a support 4 Equilibrium CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University of Rigid Bodies 2010 The McGraw-Hill Companies,

More information

Engineering Mechanics: Statics in SI Units, 12e

Engineering Mechanics: Statics in SI Units, 12e Engineering Mechanics: Statics in SI Units, 12e 3 Equilibrium of a Particle Chapter Objectives To introduce the concept of the free-body diagram for a particle To show how to solve particle equilibrium

More information

Equilibrium of a Particle

Equilibrium of a Particle ME 108 - Statics Equilibrium of a Particle Chapter 3 Applications For a spool of given weight, what are the forces in cables AB and AC? Applications For a given weight of the lights, what are the forces

More information

Physics 2211 ABC Quiz #3 Solutions Spring 2017

Physics 2211 ABC Quiz #3 Solutions Spring 2017 Physics 2211 ABC Quiz #3 Solutions Spring 2017 I. (16 points) A block of mass m b is suspended vertically on a ideal cord that then passes through a frictionless hole and is attached to a sphere of mass

More information

DISPLACEMENT AND FORCE IN TWO DIMENSIONS

DISPLACEMENT AND FORCE IN TWO DIMENSIONS DISPLACEMENT AND FORCE IN TWO DIMENSIONS Vocabulary Review Write the term that correctly completes the statement. Use each term once. coefficient of kinetic friction equilibrant static friction coefficient

More information

THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES

THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES Today s Objectives: Students will be able to: 1. Calculate the work of a force. 2. Apply the principle of work and energy to

More information

Chapter 2 Statics of Particles. Resultant of Two Forces 8/28/2014. The effects of forces on particles:

Chapter 2 Statics of Particles. Resultant of Two Forces 8/28/2014. The effects of forces on particles: Chapter 2 Statics of Particles The effects of forces on particles: - replacing multiple forces acting on a particle with a single equivalent or resultant force, - relations between forces acting on a particle

More information

EQUATIONS OF MOTION: RECTANGULAR COORDINATES

EQUATIONS OF MOTION: RECTANGULAR COORDINATES EQUATIONS OF MOTION: RECTANGULAR COORDINATES Today s Objectives: Students will be able to: 1. Apply Newton s second law to determine forces and accelerations for particles in rectilinear motion. In-Class

More information

EQUILIBRIUM OF RIGID BODIES

EQUILIBRIUM OF RIGID BODIES EQUILIBRIUM OF RIGID BODIES Equilibrium A body in equilibrium is at rest or can translate with constant velocity F = 0 M = 0 EQUILIBRIUM IN TWO DIMENSIONS Case where the force system acting on a rigid

More information

Physics 4A Chapter 5: Force and Motion and Chapter 6: Dynamics I: Motion Along a Line

Physics 4A Chapter 5: Force and Motion and Chapter 6: Dynamics I: Motion Along a Line Physics 4A Chapter 5: Force and Motion and Chapter 6: Dynamics I: Motion Along a Line Conceptual Questions and Example Problems from Chapters 5 and 6 Conceptual Question 5.7 An object experiencing a constant

More information

Core Mathematics M1. Dynamics (Planes)

Core Mathematics M1. Dynamics (Planes) Edexcel GCE Core Mathematics M1 Dynamics (Planes) Materials required for examination Mathematical Formulae (Green) Items included with question papers Nil Advice to Candidates You must ensure that your

More information

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line Physics for Scientists and Engineers Chapter 6 Dynamics I: Motion Along a Line Spring, 008 Ho Jung Paik Applications of Newton s Law Objects can be modeled as particles Masses of strings or ropes are negligible

More information

CHAPTER 4 NEWTON S LAWS OF MOTION

CHAPTER 4 NEWTON S LAWS OF MOTION 62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

More information

Announcements. Equilibrium of a Rigid Body

Announcements. Equilibrium of a Rigid Body Announcements Equilibrium of a Rigid Body Today s Objectives Identify support reactions Draw a free body diagram Class Activities Applications Support reactions Free body diagrams Examples Engr221 Chapter

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50.

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50. 1. A child pulls a 15kg sled containing a 5kg dog along a straight path on a horizontal surface. He exerts a force of a 55N on the sled at an angle of 20º above the horizontal. The coefficient of friction

More information

ME 230 Kinematics and Dynamics

ME 230 Kinematics and Dynamics ME 230 Kinematics and Dynamics Wei-Chih Wang Department of Mechanical Engineering University of Washington Lecture 8 Kinetics of a particle: Work and Energy (Chapter 14) - 14.1-14.3 W. Wang 2 Kinetics

More information

PROBLEMS ON EQUILIBRIUM OF PARTICLES

PROBLEMS ON EQUILIBRIUM OF PARTICLES O EQUILIBRIUM O PRICLES 1. ind the angle of tilt q with the horiontal so that the contact force at B will be one-half that at for the smooth clinder. (3/15) q?, contact force at B will be one-half that

More information

24 m / s. 4. The units N / kg are used for A. net force. B. gravitational force. C. electric field strength. D. gravitational field strength.

24 m / s. 4. The units N / kg are used for A. net force. B. gravitational force. C. electric field strength. D. gravitational field strength. PHYSICS 12 JUNE 2004 PROVINCIAL EXAMINATION PART A: MULTIPLE CHOICE 1. Which of the following is a scalar quantity? A. work B. force C. velocity D. momentum 2. An astronaut on the moon throws a 5.0 kg

More information

STATICS. FE Review. Statics, Fourteenth Edition R.C. Hibbeler. Copyright 2016 by Pearson Education, Inc. All rights reserved.

STATICS. FE Review. Statics, Fourteenth Edition R.C. Hibbeler. Copyright 2016 by Pearson Education, Inc. All rights reserved. STATICS FE Review 1. Resultants of force systems VECTOR OPERATIONS (Section 2.2) Scalar Multiplication and Division VECTOR ADDITION USING EITHER THE PARALLELOGRAM LAW OR TRIANGLE Parallelogram Law: Triangle

More information

3.1 Particles in Two-Dimensional Force Systems

3.1 Particles in Two-Dimensional Force Systems 3.1 Particles in Two-Dimensional Force Sstems + 3.1 Particles in Two-Dimensional Force Sstems Eample 1, page 1 of 1 1. Determine the tension in cables and. 30 90 lb 1 Free-bod diagram of connection F 2

More information

EQUILIBRIUM OF PARTICLES (PROBLEMS)

EQUILIBRIUM OF PARTICLES (PROBLEMS) EQUILIRIUM OF PARICLES (PROLEMS) 1. Determine the force P required to maintain the 2-kg engine in the position for which q=3 o. he diameter of the pulle at is negligible. 2. 4-kg sphere rests on the smooth

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5

CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5 1 / 40 CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa 2 / 40 EQUATIONS OF MOTION:RECTANGULAR COORDINATES

More information

Course Overview. Statics (Freshman Fall) Dynamics: x(t)= f(f(t)) displacement as a function of time and applied force

Course Overview. Statics (Freshman Fall) Dynamics: x(t)= f(f(t)) displacement as a function of time and applied force Course Overview Statics (Freshman Fall) Engineering Mechanics Dynamics (Freshman Spring) Strength of Materials (Sophomore Fall) Mechanism Kinematics and Dynamics (Sophomore Spring ) Aircraft structures

More information

Forces & NEWTON S LAWS HOMEWORK

Forces & NEWTON S LAWS HOMEWORK 1 Forces & NEWTON S LAWS HOMEWORK BASIC CONCEPTS OF MASS VS. WEIGHT VS. VOLUME VS. DENSITY MULTIPLE CHOICE: You have one kilogram of feathers and one kilogram of lead. Which has more: 1. mass? 3. weight?

More information

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis The Laws of Motion The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis Models using Newton s Second Law Forces

More information

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Closed book and closed notes. No work needs to be shown. 1. Three rocks are thrown with identical speeds from the top of the same building.

More information

SCHEME OF BE 100 ENGINEERING MECHANICS DEC 2015

SCHEME OF BE 100 ENGINEERING MECHANICS DEC 2015 Part A Qn. No SCHEME OF BE 100 ENGINEERING MECHANICS DEC 201 Module No BE100 ENGINEERING MECHANICS Answer ALL Questions 1 1 Theorem of three forces states that three non-parallel forces can be in equilibrium

More information

Problems (Equilibrium of Particles)

Problems (Equilibrium of Particles) 1. he -kg block rests on the rough surface. Length of the spring is 18 mm in the position shown. Unstretched length of the spring is mm. Determine the coefficient of friction required for the equilibrium.

More information

Solutionbank M1 Edexcel AS and A Level Modular Mathematics

Solutionbank M1 Edexcel AS and A Level Modular Mathematics Page of Solutionbank M Exercise A, Question A particle P of mass 0. kg is moving along a straight horizontal line with constant speed m s. Another particle Q of mass 0.8 kg is moving in the same direction

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PH 105 Exam 2 VERSION A Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Is it possible for a system to have negative potential energy? A)

More information

Week 4 Homework/Recitation: 9/21/2017 Chapter4: Problems 3, 5, 11, 16, 24, 38, 52, 77, 78, 98. is shown in the drawing. F 2

Week 4 Homework/Recitation: 9/21/2017 Chapter4: Problems 3, 5, 11, 16, 24, 38, 52, 77, 78, 98. is shown in the drawing. F 2 Week 4 Homework/Recitation: 9/1/017 Chapter4: Problems 3, 5, 11, 16, 4, 38, 5, 77, 78, 98. 3. Two horizontal forces, F 1 and F, are acting on a box, but only F 1 is shown in the drawing. F can point either

More information

Review: Advanced Applications of Newton's Laws

Review: Advanced Applications of Newton's Laws Review: Advanced Applications of Newton's Laws 1. The free-body diagram of a wagon being pulled along a horizontal surface is best represented by a. A d. D b. B e. E c. C 2. The free-body diagram of a

More information

Lecture 5. Dynamics. Forces: Newton s First and Second

Lecture 5. Dynamics. Forces: Newton s First and Second Lecture 5 Dynamics. Forces: Newton s First and Second What is a force? It s a pull or a push: F F Force is a quantitative description of the interaction between two physical bodies that causes them to

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PH 105 Exam 2 VERSION B Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A boy throws a rock with an initial velocity of 2.15 m/s at 30.0 above

More information

Tenth Edition STATICS 1 Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek Lecture Notes: John Chen California Polytechnic State University

Tenth Edition STATICS 1 Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek Lecture Notes: John Chen California Polytechnic State University T E CHAPTER 1 VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek Lecture Notes: Introduction John Chen California Polytechnic State University! Contents

More information

Section 8: 8: Statics Statics - Basics 8-1

Section 8: 8: Statics Statics - Basics 8-1 8-1 Section 8: Statics - Basics Fundamental Concepts Time - definition of an event requires specification of the time and position at which it occurred. Mass - used to characterize and compare bodies,

More information

SOLUTION a. Since the applied force is equal to the person s weight, the spring constant is 670 N m ( )( )

SOLUTION a. Since the applied force is equal to the person s weight, the spring constant is 670 N m ( )( ) 5. ssm A person who weighs 670 N steps onto a spring scale in the bathroom, and the spring compresses by 0.79 cm. (a) What is the spring constant? (b) What is the weight of another person who compresses

More information

Student AP Physics 1 Date. Newton s Laws B FR

Student AP Physics 1 Date. Newton s Laws B FR Student AP Physics 1 Date Newton s Laws B FR #1 A block is at rest on a rough inclined plane and is connected to an object with the same mass as shown. The rope may be considered massless; and the pulley

More information

Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3

Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3 Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3 2 3 Determine the magnitude of the resultant force FR = F1 + F2 and its direction, measured counterclockwise from the

More information

N - W = 0. + F = m a ; N = W. Fs = 0.7W r. Ans. r = 9.32 m

N - W = 0. + F = m a ; N = W. Fs = 0.7W r. Ans. r = 9.32 m 91962_05_R1_p0479-0512 6/5/09 3:53 PM Page 479 R1 1. The ball is thrown horizontally with a speed of 8 m>s. Find the equation of the path, y = f(x), and then determine the ball s velocity and the normal

More information

1. Draw a FBD of the toy plane if it is suspended from a string while you hold the string and move across the room at a constant velocity.

1. Draw a FBD of the toy plane if it is suspended from a string while you hold the string and move across the room at a constant velocity. 1. Draw a FBD of the toy plane if it is suspended from a string while you hold the string and move across the room at a constant velocity. 2. A 15 kg bag of bananas hangs from a taunt line strung between

More information

ME 230 Kinematics and Dynamics

ME 230 Kinematics and Dynamics ME 230 Kinematics and Dynamics Wei-Chih Wang Department of Mechanical Engineering University of Washington Lecture 6: Particle Kinetics Kinetics of a particle (Chapter 13) - 13.4-13.6 Chapter 13: Objectives

More information

Chapter 4: Newton s Second Law F = m a. F = m a (4.2)

Chapter 4: Newton s Second Law F = m a. F = m a (4.2) Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.

More information

1. A person in an elevator begins going down. 2. The person reaches a constant velocity

1. A person in an elevator begins going down. 2. The person reaches a constant velocity Friction. Describe what this person is feeling and why: 1. A person in an elevator begins going down 2. The person reaches a constant velocity 3. The person reaches the bottom. 4. The person then realizes

More information

Unit 4 Work, Power & Conservation of Energy Workbook

Unit 4 Work, Power & Conservation of Energy Workbook Name: Per: AP Physics C Semester 1 - Mechanics Unit 4 Work, Power & Conservation of Energy Workbook Unit 4 - Work, Power, & Conservation of Energy Supplements to Text Readings from Fundamentals of Physics

More information

Problems (Equilibrium of Particles)

Problems (Equilibrium of Particles) 1. he kg block rests on the rough surface. Length of the spring is 18 mm in the position shown. Unstretched length of the spring is mm. Determine the coefficient of friction required for the equilibrium.

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The Laws of Motion The description of an object in motion included its position, velocity, and acceleration. There was no consideration of what might influence that motion.

More information

Concept of Force Challenge Problem Solutions

Concept of Force Challenge Problem Solutions Concept of Force Challenge Problem Solutions Problem 1: Force Applied to Two Blocks Two blocks sitting on a frictionless table are pushed from the left by a horizontal force F, as shown below. a) Draw

More information

2. If a net horizontal force of 175 N is applied to a bike whose mass is 43 kg what acceleration is produced?

2. If a net horizontal force of 175 N is applied to a bike whose mass is 43 kg what acceleration is produced? Chapter Problems Newton s 2nd Law: Class Work 1. A 0.40 kg toy car moves at constant acceleration of 2.3 m/s 2. Determine the net applied force that is responsible for that acceleration. 2. If a net horizontal

More information

Equilibrium & Elasticity

Equilibrium & Elasticity PHYS 101 Previous Exam Problems CHAPTER 12 Equilibrium & Elasticity Static equilibrium Elasticity 1. A uniform steel bar of length 3.0 m and weight 20 N rests on two supports (A and B) at its ends. A block

More information

Work and Kinetic Energy I

Work and Kinetic Energy I Work and Kinetic Energy I Scalar Product The scalar product of any two vectors A and B is a scalar quantity equal to the product of the magnitudes of the two vectors and the cosine of the angle φ between

More information

Announcements. Principle of Work and Energy - Sections Engr222 Spring 2004 Chapter Test Wednesday

Announcements. Principle of Work and Energy - Sections Engr222 Spring 2004 Chapter Test Wednesday Announcements Test Wednesday Closed book 3 page sheet sheet (on web) Calculator Chap 12.6-10, 13.1-6 Principle of Work and Energy - Sections 14.1-3 Today s Objectives: Students will be able to: a) Calculate

More information

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd Chapter Objectives To develop the equations of equilibrium for a rigid body. To introduce the concept of the free-body diagram for a rigid body. To show how to solve rigid-body equilibrium problems using

More information

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge HSC PHYSICS ONLINE DYNAMICS TYPES O ORCES Electrostatic force (force mediated by a field - long range: action at a distance) the attractive or repulsion between two stationary charged objects. AB A B BA

More information

EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS

EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS Today s Objectives: Students will be able to: EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS a) Identify support reactions, and, b) Draw a free-body diagram. In-Class Activities: Check Homework Reading

More information

PROBLEMS on FORCE SYSTEMS

PROBLEMS on FORCE SYSTEMS on FORCE SYSTEMS 1. The guy cables AB and AC are attached to the top of the transmission tower. The tension in cable AB is 8 kn. Determine the required tension T in cable AC such that the net effect of

More information

Equilibrium. Rigid Bodies VECTOR MECHANICS FOR ENGINEERS: STATICS. Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

Equilibrium. Rigid Bodies VECTOR MECHANICS FOR ENGINEERS: STATICS. Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E 4 Equilibrium CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University of Rigid Bodies Contents Introduction

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero.

When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero. When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero. 0 0 0 0 k M j M i M M k R j R i R F R z y x z y x Forces and moments acting on a rigid body could be

More information

where x and y are any two non-parallel directions in the xy-plane. iii) One force equation and one moment equation.

where x and y are any two non-parallel directions in the xy-plane. iii) One force equation and one moment equation. Concurrent Force System ( of Particles) Recall that the resultant of a concurrent force system is a force F R that passes through the point of concurrency, which we label as point O. The moment equation,

More information

Chapter 8 Solutions. The change in potential energy as it moves from A to B is. The change in potential energy in going from A to B is

Chapter 8 Solutions. The change in potential energy as it moves from A to B is. The change in potential energy in going from A to B is Chapter 8 Solutions *8. (a) With our choice for the zero level for potential energy at point B, U B = 0. At point A, the potential energy is given by U A = mgy where y is the vertical height above zero

More information

Motion in a straight line

Motion in a straight line Exam-style assessment Motion in a straight line 1. The speed-time graph shown relates to a car travelling between two sets of traffic lights. The car accelerates from rest and reaches a speed of 0 ms -1

More information

Examples Newton's Laws and Friction

Examples Newton's Laws and Friction Examples Newton's Laws and Friction 1. A 10.0 kg box is sitting on a table. (A) If a 49 N force is required to overcome friction and start the block moving, calculate the coefficient of static friction.

More information

Kinematics and Dynamics

Kinematics and Dynamics AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1- supp.html 2015-16 AP Physics: Kinematics Study Guide The study guide will help you review all

More information

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively.

More information

11.1 Virtual Work Procedures and Strategies, page 1 of 2

11.1 Virtual Work Procedures and Strategies, page 1 of 2 11.1 Virtual Work 11.1 Virtual Work rocedures and Strategies, page 1 of 2 rocedures and Strategies for Solving roblems Involving Virtual Work 1. Identify a single coordinate, q, that will completely define

More information

Name. MECH 223 Engineering Statics. Midterm 1, February 24 th 2015

Name. MECH 223 Engineering Statics. Midterm 1, February 24 th 2015 1 Name MECH 223 Engineering Statics Midterm 1, February 24 th 2015 Question 1 (20 + 5 points) (a) (5 points) Form the vector products B C and B C (where B = B ) and use the result to prove the identity

More information

Addis Ababa University Addis Ababa Institute of Technology School Of Mechanical and Industrial Engineering Extension Division Assignment 2

Addis Ababa University Addis Ababa Institute of Technology School Of Mechanical and Industrial Engineering Extension Division Assignment 2 Addis Ababa University Addis Ababa Institute of Technology School Of Mechanical and Industrial Engineering Extension Division Assignment 2 1. The 50-kg crate is projected along the floor with an initial

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

Determine the angle θ between the two position vectors.

Determine the angle θ between the two position vectors. -100. Determine the angle θ between the two position vectors. -105. A force of 80 N is applied to the handle of the wrench. Determine the magnitudes of the components of the force acting along the axis

More information

Sara Rwentambo. PHYS 1007 AB

Sara Rwentambo. PHYS 1007 AB Topics: Free body diagrams (FBDs) Static friction and kinetic friction Tension and acceleration of a system Tension in dynamic equilibrium (bonus question) Opener: Find Your Free Body Diagram Group Activity!

More information

Choose the best answer for Questions 1-15 below. Mark your answer on your scantron form using a #2 pencil.

Choose the best answer for Questions 1-15 below. Mark your answer on your scantron form using a #2 pencil. Name: ID #: Section #: PART I: MULTIPLE CHOICE QUESTIONS Choose the best answer for Questions 1-15 below. Mark your answer on your scantron form using a #2 pencil. 1. A 55.0-kg box rests on a horizontal

More information

Version PREVIEW Semester 1 Review Slade (22222) 1

Version PREVIEW Semester 1 Review Slade (22222) 1 Version PREVIEW Semester 1 Review Slade () 1 This print-out should have 48 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Holt SF 0Rev 10A

More information

Note: Referred equations are from your textbook.

Note: Referred equations are from your textbook. Note: Referred equations are from your textboo 50 IDENTIFY: pply Newton s first law to the car SET UP: Use x and y coordinates that are parallel and perpendicular to the ramp EXECUTE: (a) The free-body

More information

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 2

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 2 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology 1. Stacked Blocks Problem Set 2 Consider two blocks that are resting one on top of the other. The lower block has mass m 2 = 4.8

More information

Physics 211 Week 10. Statics: Walking the Plank (Solution)

Physics 211 Week 10. Statics: Walking the Plank (Solution) Statics: Walking the Plank (Solution) A uniform horizontal beam 8 m long is attached by a frictionless pivot to a wall. A cable making an angle of 37 o, attached to the beam 5 m from the pivot point, supports

More information

PS113 Chapter 4 Forces and Newton s laws of motion

PS113 Chapter 4 Forces and Newton s laws of motion PS113 Chapter 4 Forces and Newton s laws of motion 1 The concepts of force and mass A force is described as the push or pull between two objects There are two kinds of forces 1. Contact forces where two

More information

LOVELY PROFESSIONAL UNIVERSITY BASIC ENGINEERING MECHANICS MCQ TUTORIAL SHEET OF MEC Concurrent forces are those forces whose lines of action

LOVELY PROFESSIONAL UNIVERSITY BASIC ENGINEERING MECHANICS MCQ TUTORIAL SHEET OF MEC Concurrent forces are those forces whose lines of action LOVELY PROFESSIONAL UNIVERSITY BASIC ENGINEERING MECHANICS MCQ TUTORIAL SHEET OF MEC 107 1. Concurrent forces are those forces whose lines of action 1. Meet on the same plane 2. Meet at one point 3. Lie

More information

ES226 (01) Engineering Mechanics: Statics Spring 2018 Lafayette College Engineering Division

ES226 (01) Engineering Mechanics: Statics Spring 2018 Lafayette College Engineering Division ES226 (01) Engineering Mechanics: Statics Spring 2018 Lafayette College Engineering Division Exam 1 Study Guide Exam 1: Tuesday, February 6, 2018 7:30 to 8:30pm Kirby Room 104 Exam Format: 50 minute time

More information

Physics 8 Wednesday, October 19, Troublesome questions for HW4 (5 or more people got 0 or 1 points on them): 1, 14, 15, 16, 17, 18, 19. Yikes!

Physics 8 Wednesday, October 19, Troublesome questions for HW4 (5 or more people got 0 or 1 points on them): 1, 14, 15, 16, 17, 18, 19. Yikes! Physics 8 Wednesday, October 19, 2011 Troublesome questions for HW4 (5 or more people got 0 or 1 points on them): 1, 14, 15, 16, 17, 18, 19. Yikes! Troublesome HW4 questions 1. Two objects of inertias

More information

0J2 - Mechanics Lecture Notes 2

0J2 - Mechanics Lecture Notes 2 0J2 - Mechanics Lecture Notes 2 Work, Power, Energy Work If a force is applied to a body, which then moves, we say the force does work. In 1D, if the force is constant with magnitude F, and the body moves

More information

Dynamics; Newton s Laws of Motion

Dynamics; Newton s Laws of Motion Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude

More information

Physics 111. Lecture 15 (Walker: 7.1-2) Work & Energy March 2, Wednesday - Midterm 1

Physics 111. Lecture 15 (Walker: 7.1-2) Work & Energy March 2, Wednesday - Midterm 1 Physics 111 Lecture 15 (Walker: 7.1-2) Work & Energy March 2, 2009 Wednesday - Midterm 1 Lecture 15 1/25 Work Done by a Constant Force The definition of work, when the force is parallel to the displacement:

More information

Solved Problems. 3.3 The object in Fig. 3-1(a) weighs 50 N and is supported by a cord. Find the tension in the cord.

Solved Problems. 3.3 The object in Fig. 3-1(a) weighs 50 N and is supported by a cord. Find the tension in the cord. 30 NEWTON'S LAWS [CHAP. 3 Solved Problems 3.1 Find the weight on Earth of a body whose mass is (a) 3.00 kg, (b) 200 g. The general relation between mass m and weight F W is F W ˆ mg. In this relation,

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

Physics 1 Second Midterm Exam (AM) 2/25/2010

Physics 1 Second Midterm Exam (AM) 2/25/2010 Physics Second Midterm Eam (AM) /5/00. (This problem is worth 40 points.) A roller coaster car of m travels around a vertical loop of radius R. There is no friction and no air resistance. At the top of

More information

Jurong Junior College 2014 J1 H1 Physics (8866) Tutorial 3: Forces (Solutions)

Jurong Junior College 2014 J1 H1 Physics (8866) Tutorial 3: Forces (Solutions) Jurong Junior College 2014 J1 H1 Physics (8866) Tutorial 3: Forces (Solutions) Take g = 9.81 m s -2, P atm = 1.0 x 10 5 Pa unless otherwise stated Learning Outcomes (a) Sub-Topic recall and apply Hooke

More information

LOVELY PROFESSIONAL UNIVERSITY BASIC ENGINEERING MECHANICS MCQ TUTORIAL SHEET OF MEC Concurrent forces are those forces whose lines of action

LOVELY PROFESSIONAL UNIVERSITY BASIC ENGINEERING MECHANICS MCQ TUTORIAL SHEET OF MEC Concurrent forces are those forces whose lines of action LOVELY PROFESSIONAL UNIVERSITY BASIC ENGINEERING MECHANICS MCQ TUTORIAL SHEET OF MEC 107 1. Concurrent forces are those forces whose lines of action 1. Meet on the same plane 2. Meet at one point 3. Lie

More information

Eng Sample Test 4

Eng Sample Test 4 1. An adjustable tow bar connecting the tractor unit H with the landing gear J of a large aircraft is shown in the figure. Adjusting the height of the hook F at the end of the tow bar is accomplished by

More information

Created by T. Madas WORK & ENERGY. Created by T. Madas

Created by T. Madas WORK & ENERGY. Created by T. Madas WORK & ENERGY Question (**) A B 0m 30 The figure above shows a particle sliding down a rough plane inclined at an angle of 30 to the horizontal. The box is released from rest at the point A and passes

More information