A Signal-Level Fusion Model for Image-Based Change Detection in DARPA's Dynamic Database System

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "A Signal-Level Fusion Model for Image-Based Change Detection in DARPA's Dynamic Database System"

Transcription

1 SPIE Aerosense 001 Conference on Signl Processing, Sensor Fusion, nd Trget Recognition X, April 16-0, Orlndo FL. (Minor errors in published version corrected.) A Signl-Level Fusion Model for Imge-Bsed Chnge Detection in DARPA's Dynmic Dtbse System Mrk J. Crlotto Veridin Corportion, 1400 Key Blvd., Suite 100, Arlington VA 09 Abstrct Improving chnge detection performnce (probbility of detection/flse lrm rte) is n importnt gol of DARPA's Dynmic Dtbse (DDB) progrm. We describe novel pproch bsed on fusing the outputs from two complementry imge-bsed chnge detection lgorithms. Both use historicl imgery over the region of interest to construct normlcy models for detecting chnge. Imge level chnge detection (ILCD) segments the set of imges into temporlly co-vrying pixel sets tht re sptilly distributed throughout the imge, nd uses sptil normlcy models constructed over these pixel sets to detect chnge in new imge. Object level chnge detection (OLCD) segments ech imge into set of sptilly compct objects, nd uses temporl normlcy models constructed over objects ssocited over time to detect chnge in the new imge. Becuse of the orthogonl mnner in which ILCD nd OLCD operte in spce-time, flse lrms tend to decorrelte. We develop signl-level sttisticl models to predict the performnce gin (output/input signl to noise rtio) of ech lgorithm individully, nd combined using 'nd' fusion. Experimentl results using synthetic perture rdr (SAR) imges re presented. Fusion gins rnging from slightly greter thn unity in low clutter bckgrounds (e.g., open res) to more thn 0db in complex bckgrounds contining mn-mde objects such s vehicles nd buildings hve been chieved nd re discussed. Key Words: Chnge detection, lgorithm fusion, imge-level fusion, performnce modeling, synthetic perture rdr (SAR). 1. Introduction Multi-sensor fusion hs been pplied in vriety of remote sensing nd reconnissnce pplictions including lnd use/lnd cover clssifiction, terrin nd feture extrction, chnge detection, nd object recognition. In DARPA's Dynmic Dtbse (DDB) progrm (Kessler 1990) fusion techniques re used to improve chnge detection nd object clssifiction performnce. This pper describes new wy to improve chnge detection performnce by fusing the outputs from two different chnge detection lgorithms operting on dt from the sme sensor. We show tht becuse of the orthogonl nture of the chnge detection lgorithms used it is possible to chieve significnt fusion gins by this pproch. After briefly summrizing the two chnge detection lgorithms in Section, signl-level sttisticl models re derived in order to predict the performnce of ech lgorithm individully, nd combined using 'nd' fusion (Section 3). Results from severl experiments over different imge bckgrounds re presented in Section 4. Ares for future work re discussed in Section 5.

2 . Detecting Chnge in Spce nd Time DDB employs two different lgorithms for detecting chnge. The first, known s object-level chnge detection (OLCD), ws originlly developed under DARPA's Semi-Automted IMINT Processing (SAIP) effort (Welby 1999). OLCD detects nd mintins dtbse of trget-like regions in SAR (Tom et l 000) nd electro-opticl (EO) imgery (Hoogs nd Mundy 000). Regions which pper, dispper or chnge stte re lbeled s possible chnges. Conceptully, OLCD sptilly segments imges into compct trget-like regions, models the behvior of these regions, nd detects chnges in time. The second lgorithm, imge level chnge detection (ILCD) ws developed under the DDB progrm for detecting chnges in complex bckgrounds (Crlotto 1999, 000b). ILCD, which opertes on EO s well s SAR, segments set of reference imges (i.e., imges tht do not contin trgets of interest) into sptilly distributed, temporlly co-vrying pixel sets. Ech pixel set corresponds to unique bckground type (Crlotto 000). Chnges in new imge re detected sptilly by compring the vlues within ech pixel set to the verge over the pixel set. Chnges detected by ILCD nd OLCD re fused by the object level chnge fusion (OLCF) component in DDB (Berlin et l 000). Becuse of the orthogonl mnner in which ILCD nd OLCD operte in spcetime (ILCD is temporl segmenttion followed by sptil normlcy modeling nd detection while OLCD is sptil segmenttion followed by temporl normlcy modeling nd detection), flse lrms tend to decorrelte. OLCF exploits this property to enhnce chnge detection performnce by reducing the flse lrm rte. 3. Performnce Modeling To simplify our nlysis we ssume tht OLCD opertes on pixels insted of objects, nd pproximte the sptil nd temporl normlcy models used by ILCD nd OLCD s simple verges in spce nd time (Figure 1). Figure 1 ILCD nd OLCD normlcy models Consider the pixel in Figure 1. Let b n be the other pixels in the sme co-vrying pixel set s. The error in predicting from the sptil verge of the b n (ILCD prediction error) is

3 e b 1 N b n (1) where the totl number of pixels in the set is N +1. Let c n be the regions (ssumed here to be single pixel in extent) ssocited with over time. The OLCD prediction error is the error in predicting from the temporl verge of the c n where M is the number of reference imges. The men squred ILCD prediction error is: e c 1 M c. () n E[e b ] E N b n N 1 ( N E[ ] N E[b N n ] + NE[b n ] + (N N)E[b n b m ]) (3) Assuming jointly norml rndom vribles we cn prmeterize the sttistics in terms of the mens nd covrinces s follows: E[ ] + E[b n ] b + b E[b n ] b + b E[b n b m ] + b (4) from which we obtin [ ] 1 ( N ( N + ) N ( b + b ) + N( + ) + (N N)( b + b b )). (5) E e b The signl to noise rtio (SNR) is the signl divided by the noise power: SNR b b b + b + 1 +(1 1 N b N ) ( b ) b (1 1 N b N ). (6) If we ssume: b b (7) where 0 1, when N is lrge ( ) b SNR b N +(1 1 N ) ( b) ( 1 )(1 + 1 N ) ( b) ( ). (8) 1

4 As the covrince between rndom vribles in the ILCD normlcy model increses (pproches unity) the SNR increses becuse we cn do better nd better job of estimting sptilly from the b n. The OLCD SNR is derived in the sme fshion nd is SNR c c ( c) (1 1 M c M ) cc ' ( ) c M +(1 1 M ) (9) where s bove c c cc '. (10) As the number of imges M increses SNR c ( c ) ( 1 )(1+ 1 M ) ( c) ( ). (11) 1 As the covrince between rndom vribles in the OLCD normlcy model increses (pproches unity) its SNR lso increses becuse it cn do better nd better job of estimting temporlly from the c n. In DDB OLCF fuses ILCD nd OLCD outputs t the object level. ILCD objects re connected regions where the squred prediction error exceeds specified constnt flse lrm rte (CFAR) threshold. OLCD objects re compct regions tht hve chnged bsed on similr CFAR criterion. Here we pproximte the performnce of OLCF by modeling it, s we hve ILCD nd OLCD, t the signl (prediction error) level. The expected vlue of the product of the ILCD nd OLCD prediction error imges is E[e b e c ] E N b M n N M c n E[ ] E[b n ] E[c n ] + E[b n c m ] ( + ) ( b + b ) ( c + c ) + ( bc + b c ) (1) from which we derive the OLCF SNR SNR bc b c + b c b c + bc b c + b c ( 1 + ) (13)

5 where bc. This is nlogous to n 'nd' fusion rule. Tble 1 summrizes the lgorithm correltions: is the correltion of rndom vribles between ILCD nd OLCD normlcy models, nd nd re the correltions within the ILCD nd OLCD normlcy models respectively. Tble 1 ILCD, OLCD, nd OLCF prmeters b b' c c' 1 b 1 b' 1 c 1 c' 1 To show the benefit of fusion we define the OLCF to ILCD, nd OLCF to OLCD processing gins: Gin bc / b Gin bc / c (14) ssuming. In generl, ILCD performs well when is lrge, OLCD performs well when is b c lrge, nd OLCF performs well when is smll. Figure plots theoreticl fusion gins for. Appendix A describes sttisticl methods for estimting,, nd from imges db bet 0.3 bet 0.4 bet Figure Fusion gins predicted by signl level performnce model lph

6 SNR Mesured SNR (db) Tble Trgets in open Mesured Processing Gin (db) Predicted Processing Gin (db) Estimted Component Prmeters Input 43.1 ILCD ˆ 0.34 OLCD ˆ 0.5 OLCF ˆ 0.06 SNR Mesured SNR (db) Tble 3 Trgets in trees Mesured Processing Gin (db) Predicted Processing Gin (db) Estimted Component Prmeters Input 35. ILCD ˆ 0.47 OLCD ˆ 0.31 OLCF ˆ 0.14 SNR Mesured SNR (db) Tble 4 Trgets ner fcility Mesured Processing Gin (db) Predicted Processing Gin (db) Estimted Component Prmeters Input 6. ILCD ˆ 0.69 OLCD ˆ 0.41 OLCF ˆ 0.7 SNR Mesured SNR (db) Tble 5 Trgets embedded in mnmde clutter Mesured Processing Gin (db) Predicted Processing Gin (db) Estimted Component Prmeters Input 7. ILCD ˆ 0.66 OLCD ˆ 0.53 OLCF ˆ 0.34

7 4. Experimentl Results The performnce of detection lgorithm is determined by its output signl nd noise probbility distributions p(ysignl ) nd p(ynoise). The probbilities of detection (Pd) nd flse lrm (Pf) depend on the operting point t P d (t) p(y > t signl) P f (t) p(y > tnoise). (15) Algorithm performnce cn lso be expressed in terms of the signl to noise rtio (SNR) SNR ( s n ) ( s + n ). (16) Computed over the new imge (input SNR), the SNR is indictive of the performnce of single imge Neymn-Person (CFAR) detector. Computed over the prediction error imge (output SNR), the SNR is indictive of the CFAR performnce of ILCD or OLCD t the signl (pre-detection) level. The difference between input nd output SNR (in db) is mesure of the performnce gin of the chnge detector.to evlute the performnce models we selected four SAR imges collected by Veridin's DCS sensor over the DDB Eglin Site 1 study re. These imges represent the deployment of trgets in four different clutter environments: in the open, ner trees, ner fcility, nd embedded in mn-mde clutter. Tbles - 5 summrizes the experimentl results. The first column in ech tble shows the input SNR nd the output SNR from ILCD, OLCD, nd OLCF (pre-detection level). The mesured processing gin (second column) is the output minus input SNR. The predicted processing gins (third column) were obtined from Eqs. 8, 11, nd 14 using component prmeters (fourth column) estimted from the imges s discussed in the ppendix. As the complexity of the scene increses the fusion gin increses with the highest gins chieved in mnmde bckgrounds. Although the predicted nd mesured performnce gins gree in terms of their overll trend there re significnt differences between them. In heterogeneous scenes, using single globl sttistic to represent the covrinces within different bckground types is one potentil source of error. Another is ttempting to compute sttistics over bckground typescontining limited number of smples (i.e., when M nd/or N is smll). 5. Future Work Improving the ccurcy of our performnce model is one importnt re for future work. In prticulr we shll explore the possibility of developing locl estimtes of performnce over ech bckground type. Becuse OLCD fuses ILCD nd OLCD outputs t the object level, in order to obtin more meningful mesure of performnce it is necessry to model the performnce of the components following CFAR detection. This is second re for future work. Detecting chnge in high clutter bckgrounds with significnt trget obscurtion is n importnt opertionl chllenge. Combining detections cross looks t the signl level using 'or' fusion (Crlotto 000b) or using dptive fusion strtegies (Liggins nd Nebrich 000) re two possible lterntives. Extending our performnce model to other fusion rules is third re for future work.

8 Appendix - Prmeter Estimtion chrcterizes the performnce of ILCD. To estimte we first compute the correltion coefficient between the new imge y nd its verge over S k i E 1 N y n n y n E 1 N y n n N + N N [ b ( ) ] E y n [ ] n, n S k 1 b N 1 N N when N is lrge. We use the verge of the estimtes over ll pixel sets s the estimted vlue of the imge. (A-1) for chrcterizes the performnce of OLCD. To estimte we mesure the correltion coefficient between pixel in the new imge y nd the temporl verge of the ssocited reference imge pixels x n, nd verge the results to obtin n estimte of for the imge: when M is lrge. E 1 o M x m m 1 c M y m 1 E M x m m M + M M [ c ( ) c c ] E y m [ ] 1 M M (A-) Finlly to obtin n estimte of, which chrcterizes the performnce gin of OLCF, we mesure the correltion coefficient between the ILCD nd OLCD predicted error imges: where f [ ] [ ] Vr e b e c Vr[ e b ]Vr e c (A-3) Vr[ e b e c ] b c + bc Vr[ e b ] b (1 1 N b N ) (A-4) Vr[ e c ] c (1 1 M c M ) cc' Expnding Eq. 7 we hve

9 f b b (1 1 N b N ) N ( ) 1+ 1 M 1 ( ) c + bc c (1 1 M c M ) cc' (A-5) from which the following expression is obtined ˆ f N 1 ( ) 1+ 1 M 1 ( ) (1 ). (A-6) References Mrk Berlin, Mrk Nebrich, nd Mrtin Liggins, "Wide-Are SAR-EO Object Level Chnge Fusion Process for DDB," 000 Meeting of the MSS Ntionl Symposium on Sensor nd Dt Fusion, Kelly AFB, Sn Antonio TX, June 000. Mrk Crlotto, "Imge-level chnge detection," 1999 Meeting of the MSS Ntionl Symposium on Sensor nd Dt Fusion, Applied Physics Lbortory, Johns Hopkins University, Lurel MD, My Mrk Crlotto, "Detecting prtilly-obscured objects using multi-look SAR," 000 Meeting of the MSS Ntionl Symposium on Sensor nd Dt Fusion, Kelly AFB, Sn Antonio TX, June 000. Mrk Crlotto, "Nonliner bckground estimtion nd chnge detection for wide re serch," Opticl Engineering, Vol. 39, No. 5, My 000. Anthony Hoogs nd Joseph L. Mundy, " Informtion Fusion for EO Object Detection nd Delinetion," 000 Meeting of the MSS Ntionl Symposium on Sensor nd Dt Fusion, Kelly AFB, Sn Antonio TX, June 000. Mrtin E. Liggins II nd Mrk A. Nebrich, "Adptive multi-imge decision fusion," SPIE Aerosense, April 000, Orlndo FL. Otto Kessler, July 000. Victor Tom, Helen Webb, nd Dvid Lefebvre, " Wide-Are SAR Object Level Chnge Detection," 000 Meeting of the MSS Ntionl Symposium on Sensor nd Dt Fusion, Kelly AFB, Sn Antonio TX, June 000. Steven Welby,

Tests for the Ratio of Two Poisson Rates

Tests for the Ratio of Two Poisson Rates Chpter 437 Tests for the Rtio of Two Poisson Rtes Introduction The Poisson probbility lw gives the probbility distribution of the number of events occurring in specified intervl of time or spce. The Poisson

More information

Non-Linear & Logistic Regression

Non-Linear & Logistic Regression Non-Liner & Logistic Regression If the sttistics re boring, then you've got the wrong numbers. Edwrd R. Tufte (Sttistics Professor, Yle University) Regression Anlyses When do we use these? PART 1: find

More information

Acceptance Sampling by Attributes

Acceptance Sampling by Attributes Introduction Acceptnce Smpling by Attributes Acceptnce smpling is concerned with inspection nd decision mking regrding products. Three spects of smpling re importnt: o Involves rndom smpling of n entire

More information

A New Statistic Feature of the Short-Time Amplitude Spectrum Values for Human s Unvoiced Pronunciation

A New Statistic Feature of the Short-Time Amplitude Spectrum Values for Human s Unvoiced Pronunciation Xiodong Zhung A ew Sttistic Feture of the Short-Time Amplitude Spectrum Vlues for Humn s Unvoiced Pronuncition IAODOG ZHUAG 1 1. Qingdo University, Electronics & Informtion College, Qingdo, 6671 CHIA Abstrct:

More information

Data Assimilation. Alan O Neill Data Assimilation Research Centre University of Reading

Data Assimilation. Alan O Neill Data Assimilation Research Centre University of Reading Dt Assimiltion Aln O Neill Dt Assimiltion Reserch Centre University of Reding Contents Motivtion Univrite sclr dt ssimiltion Multivrite vector dt ssimiltion Optiml Interpoltion BLUE 3d-Vritionl Method

More information

Lecture 14: Quadrature

Lecture 14: Quadrature Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

More information

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by. NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

More information

Continuous Random Variables

Continuous Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is rel-vlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

1 Online Learning and Regret Minimization

1 Online Learning and Regret Minimization 2.997 Decision-Mking in Lrge-Scle Systems My 10 MIT, Spring 2004 Hndout #29 Lecture Note 24 1 Online Lerning nd Regret Minimiztion In this lecture, we consider the problem of sequentil decision mking in

More information

On the Uncertainty of Sensors Based on Magnetic Effects. E. Hristoforou, E. Kayafas, A. Ktena, DM Kepaptsoglou

On the Uncertainty of Sensors Based on Magnetic Effects. E. Hristoforou, E. Kayafas, A. Ktena, DM Kepaptsoglou On the Uncertinty of Sensors Bsed on Mgnetic Effects E. ristoforou, E. Kyfs, A. Kten, DM Kepptsoglou Ntionl Technicl University of Athens, Zogrfou Cmpus, Athens 1578, Greece Tel: +3177178, Fx: +3177119,

More information

8 Laplace s Method and Local Limit Theorems

8 Laplace s Method and Local Limit Theorems 8 Lplce s Method nd Locl Limit Theorems 8. Fourier Anlysis in Higher DImensions Most of the theorems of Fourier nlysis tht we hve proved hve nturl generliztions to higher dimensions, nd these cn be proved

More information

Hybrid Group Acceptance Sampling Plan Based on Size Biased Lomax Model

Hybrid Group Acceptance Sampling Plan Based on Size Biased Lomax Model Mthemtics nd Sttistics 2(3): 137-141, 2014 DOI: 10.13189/ms.2014.020305 http://www.hrpub.org Hybrid Group Acceptnce Smpling Pln Bsed on Size Bised Lomx Model R. Subb Ro 1,*, A. Ng Durgmmb 2, R.R.L. Kntm

More information

CS667 Lecture 6: Monte Carlo Integration 02/10/05

CS667 Lecture 6: Monte Carlo Integration 02/10/05 CS667 Lecture 6: Monte Crlo Integrtion 02/10/05 Venkt Krishnrj Lecturer: Steve Mrschner 1 Ide The min ide of Monte Crlo Integrtion is tht we cn estimte the vlue of n integrl by looking t lrge number of

More information

THERMAL EXPANSION COEFFICIENT OF WATER FOR VOLUMETRIC CALIBRATION

THERMAL EXPANSION COEFFICIENT OF WATER FOR VOLUMETRIC CALIBRATION XX IMEKO World Congress Metrology for Green Growth September 9,, Busn, Republic of Kore THERMAL EXPANSION COEFFICIENT OF WATER FOR OLUMETRIC CALIBRATION Nieves Medin Hed of Mss Division, CEM, Spin, mnmedin@mityc.es

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

Measuring Electron Work Function in Metal

Measuring Electron Work Function in Metal n experiment of the Electron topic Mesuring Electron Work Function in Metl Instructor: 梁生 Office: 7-318 Emil: shling@bjtu.edu.cn Purposes 1. To understnd the concept of electron work function in metl nd

More information

#6A&B Magnetic Field Mapping

#6A&B Magnetic Field Mapping #6A& Mgnetic Field Mpping Gol y performing this lb experiment, you will: 1. use mgnetic field mesurement technique bsed on Frdy s Lw (see the previous experiment),. study the mgnetic fields generted by

More information

Construction and Selection of Single Sampling Quick Switching Variables System for given Control Limits Involving Minimum Sum of Risks

Construction and Selection of Single Sampling Quick Switching Variables System for given Control Limits Involving Minimum Sum of Risks Construction nd Selection of Single Smpling Quick Switching Vribles System for given Control Limits Involving Minimum Sum of Risks Dr. D. SENHILKUMAR *1 R. GANESAN B. ESHA RAFFIE 1 Associte Professor,

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

Minimum Energy State of Plasmas with an Internal Transport Barrier

Minimum Energy State of Plasmas with an Internal Transport Barrier Minimum Energy Stte of Plsms with n Internl Trnsport Brrier T. Tmno ), I. Ktnum ), Y. Skmoto ) ) Formerly, Plsm Reserch Center, University of Tsukub, Tsukub, Ibrki, Jpn ) Plsm Reserch Center, University

More information

Strategy: Use the Gibbs phase rule (Equation 5.3). How many components are present?

Strategy: Use the Gibbs phase rule (Equation 5.3). How many components are present? University Chemistry Quiz 4 2014/12/11 1. (5%) Wht is the dimensionlity of the three-phse coexistence region in mixture of Al, Ni, nd Cu? Wht type of geometricl region dose this define? Strtegy: Use the

More information

http:dx.doi.org1.21611qirt.1994.17 Infrred polriztion thermometry using n imging rdiometer by BALFOUR l. S. * *EORD, Technion Reserch & Development Foundtion Ltd, Hif 32, Isrel. Abstrct This pper describes

More information

Chapter 9: Inferences based on Two samples: Confidence intervals and tests of hypotheses

Chapter 9: Inferences based on Two samples: Confidence intervals and tests of hypotheses Chpter 9: Inferences bsed on Two smples: Confidence intervls nd tests of hypotheses 9.1 The trget prmeter : difference between two popultion mens : difference between two popultion proportions : rtio of

More information

Testing categorized bivariate normality with two-stage. polychoric correlation estimates

Testing categorized bivariate normality with two-stage. polychoric correlation estimates Testing ctegorized bivrite normlity with two-stge polychoric correltion estimtes Albert Mydeu-Olivres Dept. of Psychology University of Brcelon Address correspondence to: Albert Mydeu-Olivres. Fculty of

More information

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon Phys463.nb 49 7 Energy Bnds Ref: textbook, Chpter 7 Q: Why re there insultors nd conductors? Q: Wht will hppen when n electron moves in crystl? In the previous chpter, we discussed free electron gses,

More information

3.4 Numerical integration

3.4 Numerical integration 3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,

More information

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40 Mth B Prof. Audrey Terrs HW # Solutions by Alex Eustis Due Tuesdy, Oct. 9 Section 5. #7,, 6,, 5; Section 5. #8, 9, 5,, 7, 3; Section 5.3 #4, 6, 9, 3, 6, 8, 3; Section 5.4 #7, 8,, 3, 5, 9, 4 5..7 Since

More information

15. Quantisation Noise and Nonuniform Quantisation

15. Quantisation Noise and Nonuniform Quantisation 5. Quntistion Noise nd Nonuniform Quntistion In PCM, n nlogue signl is smpled, quntised, nd coded into sequence of digits. Once we hve quntised the smpled signls, the exct vlues of the smpled signls cn

More information

INTRODUCTION TO LINEAR ALGEBRA

INTRODUCTION TO LINEAR ALGEBRA ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR AGEBRA Mtrices nd Vectors Prof. Dr. Bülent E. Pltin Spring Sections & / ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR

More information

Chapter 2 Fundamental Concepts

Chapter 2 Fundamental Concepts Chpter 2 Fundmentl Concepts This chpter describes the fundmentl concepts in the theory of time series models In prticulr we introduce the concepts of stochstic process, men nd covrince function, sttionry

More information

Section 14.3 Arc Length and Curvature

Section 14.3 Arc Length and Curvature Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in

More information

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

Numerical integration

Numerical integration 2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter

More information

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a). The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples

More information

The Trapezoidal Rule

The Trapezoidal Rule _.qd // : PM Pge 9 SECTION. Numericl Integrtion 9 f Section. The re of the region cn e pproimted using four trpezoids. Figure. = f( ) f( ) n The re of the first trpezoid is f f n. Figure. = Numericl Integrtion

More information

LECTURE NOTE #12 PROF. ALAN YUILLE

LECTURE NOTE #12 PROF. ALAN YUILLE LECTURE NOTE #12 PROF. ALAN YUILLE 1. Clustering, K-mens, nd EM Tsk: set of unlbeled dt D = {x 1,..., x n } Decompose into clsses w 1,..., w M where M is unknown. Lern clss models p(x w)) Discovery of

More information

Online Short Term Load Forecasting by Fuzzy ARTMAP Neural Network

Online Short Term Load Forecasting by Fuzzy ARTMAP Neural Network Online Short Term Lod Forecsting by Fuzzy ARTMAP Neurl Network SHAHRAM JAVADI Electricl Engineering Deprtment AZAD University Tehrn Centrl Brnch Moshnir Power Electric Compny IRAN Abstrct: This pper presents

More information

Visual motion. Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys

Visual motion. Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys Visul motion Mn slides dpted from S. Seitz, R. Szeliski, M. Pollefes Outline Applictions of segmenttion to video Motion nd perceptul orgniztion Motion field Opticl flow Motion segmenttion with lers Video

More information

u( t) + K 2 ( ) = 1 t > 0 Analyzing Damped Oscillations Problem (Meador, example 2-18, pp 44-48): Determine the equation of the following graph.

u( t) + K 2 ( ) = 1 t > 0 Analyzing Damped Oscillations Problem (Meador, example 2-18, pp 44-48): Determine the equation of the following graph. nlyzing Dmped Oscilltions Prolem (Medor, exmple 2-18, pp 44-48): Determine the eqution of the following grph. The eqution is ssumed to e of the following form f ( t) = K 1 u( t) + K 2 e!"t sin (#t + $

More information

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson 2.26 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: The two-dimensionl region, ρ, φ β, is bounded by conducting surfces t φ =, ρ =, nd φ = β held t zero

More information

12. DYNAMIC ANALYSIS. Force Equilibrium is Fundamental in the Dynamic Analysis of Structures 12.1 INTRODUCTION

12. DYNAMIC ANALYSIS. Force Equilibrium is Fundamental in the Dynamic Analysis of Structures 12.1 INTRODUCTION 12. DYNAMIC ANALYSIS Force Equilibrium is Fundmentl in the Dynmic Anlysis of Structures 12.1 INTRODUCTION { XE "Newton's Second Lw" }All rel physicl structures behve dynmiclly when subjected to lods or

More information

Confidence Intervals for Predicting Lumber Strength Properties Based on Ratios of Percentiles From Two Weibull Populations

Confidence Intervals for Predicting Lumber Strength Properties Based on Ratios of Percentiles From Two Weibull Populations United Sttes Deprtment of Agriculture Forest Service Forest Products Lbortory Reserch Pper FPL RP 606 Confidence Intervls for Predicting Lumber Strength Properties Bsed on Rtios of Percentiles From Two

More information

Ordinary differential equations

Ordinary differential equations Ordinry differentil equtions Introduction to Synthetic Biology E Nvrro A Montgud P Fernndez de Cordob JF Urchueguí Overview Introduction-Modelling Bsic concepts to understnd n ODE. Description nd properties

More information

12 TRANSFORMING BIVARIATE DENSITY FUNCTIONS

12 TRANSFORMING BIVARIATE DENSITY FUNCTIONS 1 TRANSFORMING BIVARIATE DENSITY FUNCTIONS Hving seen how to trnsform the probbility density functions ssocited with single rndom vrible, the next logicl step is to see how to trnsform bivrite probbility

More information

Phys 7221, Fall 2006: Homework # 6

Phys 7221, Fall 2006: Homework # 6 Phys 7221, Fll 2006: Homework # 6 Gbriel González October 29, 2006 Problem 3-7 In the lbortory system, the scttering ngle of the incident prticle is ϑ, nd tht of the initilly sttionry trget prticle, which

More information

Response aodels and aini.al designs for mixtures of n of m iteas. useful for intercropping and other investigations

Response aodels and aini.al designs for mixtures of n of m iteas. useful for intercropping and other investigations Response odels nd ini.l designs for mixtures of n of m ites useful for intercropping nd oer investigtions BY W. T. FEDERER B.iomet:r.ics lln.it:, Cornell lln.ivers.it:y, It:hc, NY 14853, ll.s.a. AND D.

More information

(See Notes on Spontaneous Emission)

(See Notes on Spontaneous Emission) ECE 240 for Cvity from ECE 240 (See Notes on ) Quntum Rdition in ECE 240 Lsers - Fll 2017 Lecture 11 1 Free Spce ECE 240 for Cvity from Quntum Rdition in The electromgnetic mode density in free spce is

More information

Purpose of the experiment

Purpose of the experiment Newton s Lws II PES 6 Advnced Physics Lb I Purpose of the experiment Exmine two cses using Newton s Lws. Sttic ( = 0) Dynmic ( 0) fyi fyi Did you know tht the longest recorded flight of chicken is thirteen

More information

Probabilistic Stand Still Detection using Foot Mounted IMU

Probabilistic Stand Still Detection using Foot Mounted IMU Probbilistic Stnd Still Detection using Foot Mounted IMU Jons Cllmer, Dvid Törnqvist nd Fredrik Gustfsson Division of Automtic Control Linköping University Linköping, Sweden {cllmer, tornqvist, fredrik}@isy.liu.se

More information

Best Approximation. Chapter The General Case

Best Approximation. Chapter The General Case Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

More information

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics - A Peirce UBC Lecture 6: Singulr Integrls, Open Qudrture rules, nd Guss Qudrture (Compiled 6 August 7) In this lecture we discuss the

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2010 Homework Assignment 4; Due at 5p.m. on 2/01/10

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2010 Homework Assignment 4; Due at 5p.m. on 2/01/10 University of Wshington Deprtment of Chemistry Chemistry 45 Winter Qurter Homework Assignment 4; Due t 5p.m. on // We lerned tht the Hmiltonin for the quntized hrmonic oscilltor is ˆ d κ H. You cn obtin

More information

Determination of the activation energy of silicone rubbers using different kinetic analysis methods

Determination of the activation energy of silicone rubbers using different kinetic analysis methods Determintion of the ctivtion energy of silicone rubbers using different kinetic nlysis methods OU Huibin SAHLI ohmed BAIEE Thierry nd GELIN Jen-Clude FETO-ST Institute / Applied echnics Deprtment, 2 rue

More information

Classification Part 4. Model Evaluation

Classification Part 4. Model Evaluation Clssifiction Prt 4 Dr. Snjy Rnk Professor Computer nd Informtion Science nd Engineering University of Florid, Ginesville Model Evlution Metrics for Performnce Evlution How to evlute the performnce of model

More information

Line Integrals. Partitioning the Curve. Estimating the Mass

Line Integrals. Partitioning the Curve. Estimating the Mass Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to

More information

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1 Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions

More information

Synoptic Meteorology I: Finite Differences September Partial Derivatives (or, Why Do We Care About Finite Differences?

Synoptic Meteorology I: Finite Differences September Partial Derivatives (or, Why Do We Care About Finite Differences? Synoptic Meteorology I: Finite Differences 16-18 September 2014 Prtil Derivtives (or, Why Do We Cre About Finite Differences?) With the exception of the idel gs lw, the equtions tht govern the evolution

More information

Ordinary Differential Equations- Boundary Value Problem

Ordinary Differential Equations- Boundary Value Problem Ordinry Differentil Equtions- Boundry Vlue Problem Shooting method Runge Kutt method Computer-bsed solutions o BVPFD subroutine (Fortrn IMSL subroutine tht Solves (prmeterized) system of differentil equtions

More information

Intro to Nuclear and Particle Physics (5110)

Intro to Nuclear and Particle Physics (5110) Intro to Nucler nd Prticle Physics (5110) Feb, 009 The Nucler Mss Spectrum The Liquid Drop Model //009 1 E(MeV) n n(n-1)/ E/[ n(n-1)/] (MeV/pir) 1 C 16 O 0 Ne 4 Mg 7.7 14.44 19.17 8.48 4 5 6 6 10 15.4.41

More information

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality:

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality: FACTA UNIVERSITATIS NIŠ) Ser Mth Inform 9 00) 6 SOME COMPANIONS OF OSTROWSKI S INEQUALITY FOR ABSOLUTELY CONTINUOUS FUNCTIONS AND APPLICATIONS S S Drgomir Dedicted to Prof G Mstroinni for his 65th birthdy

More information

1 computation of E {K(r, n)}

1 computation of E {K(r, n)} 1 Anlysis of the sptil orgniztion of molecules with robust sttistics: Supplementry Mteril Thibult Lgche 1,,, Gbriel Lng 3, Nthlie Suvonnet 4,, Jen-Christophe Olivo-Mrin 1,, 1 Unité d Anlyse d Imges Quntittive,

More information

Lecture Notes PH 411/511 ECE 598 A. La Rosa Portland State University INTRODUCTION TO QUANTUM MECHANICS

Lecture Notes PH 411/511 ECE 598 A. La Rosa Portland State University INTRODUCTION TO QUANTUM MECHANICS Lecture Notes PH 4/5 ECE 598. L Ros Portlnd Stte University INTRODUCTION TO QUNTUM MECHNICS Underlying subject of the PROJECT ssignment: QUNTUM ENTNGLEMENT Fundmentls: EPR s view on the completeness of

More information

A Subspace-based Robust Adaptive Capon Beamforming

A Subspace-based Robust Adaptive Capon Beamforming 374 Progress In Electromgnetics Reserch Symposium 2006, Cmbridge, USA, Mrch 26-29 A Subspce-bsed Robust Adptive Cpon Bemforg G. S. Lio, H. Q. Liu, nd J. Li Xidin University, Chin Abstrct Adptive bemforg

More information

III. Lecture on Numerical Integration. File faclib/dattab/lecture-notes/numerical-inter03.tex /by EC, 3/14/2008 at 15:11, version 9

III. Lecture on Numerical Integration. File faclib/dattab/lecture-notes/numerical-inter03.tex /by EC, 3/14/2008 at 15:11, version 9 III Lecture on Numericl Integrtion File fclib/dttb/lecture-notes/numerical-inter03.tex /by EC, 3/14/008 t 15:11, version 9 1 Sttement of the Numericl Integrtion Problem In this lecture we consider the

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

Experiments with a Single Factor: The Analysis of Variance (ANOVA) Dr. Mohammad Abuhaiba 1

Experiments with a Single Factor: The Analysis of Variance (ANOVA) Dr. Mohammad Abuhaiba 1 Experiments with Single Fctor: The Anlsis of Vrince (ANOVA) Dr. Mohmmd Abuhib 1 Wht If There Are More Thn Two Fctor Levels? The t-test does not directl ppl There re lots of prcticl situtions where there

More information

Simulated Performance of Packed Bed Solar Energy Storage System having Storage Material Elements of Large Size - Part I

Simulated Performance of Packed Bed Solar Energy Storage System having Storage Material Elements of Large Size - Part I The Open Fuels & Energy Science Journl, 2008, 1, 91-96 91 Open Access Simulted Performnce of Pcked Bed Solr Energy Storge System hving Storge Mteril Elements of Lrge Size - Prt I Rnjit Singh *,1, R.P.

More information

DIRECT CURRENT CIRCUITS

DIRECT CURRENT CIRCUITS DRECT CURRENT CUTS ELECTRC POWER Consider the circuit shown in the Figure where bttery is connected to resistor R. A positive chrge dq will gin potentil energy s it moves from point to point b through

More information

Precalculus Spring 2017

Precalculus Spring 2017 Preclculus Spring 2017 Exm 3 Summry (Section 4.1 through 5.2, nd 9.4) Section P.5 Find domins of lgebric expressions Simplify rtionl expressions Add, subtrct, multiply, & divide rtionl expressions Simplify

More information

Continuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom

Continuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom Lerning Gols Continuous Rndom Vriles Clss 5, 8.05 Jeremy Orloff nd Jonthn Bloom. Know the definition of continuous rndom vrile. 2. Know the definition of the proility density function (pdf) nd cumultive

More information

Entropy and Ergodic Theory Notes 10: Large Deviations I

Entropy and Ergodic Theory Notes 10: Large Deviations I Entropy nd Ergodic Theory Notes 10: Lrge Devitions I 1 A chnge of convention This is our first lecture on pplictions of entropy in probbility theory. In probbility theory, the convention is tht ll logrithms

More information

LINEAR ALGEBRA APPLIED

LINEAR ALGEBRA APPLIED 5.5 Applictions of Inner Product Spces 5.5 Applictions of Inner Product Spces 7 Find the cross product of two vectors in R. Find the liner or qudrtic lest squres pproimtion of function. Find the nth-order

More information

Stein-Rule Estimation and Generalized Shrinkage Methods for Forecasting Using Many Predictors

Stein-Rule Estimation and Generalized Shrinkage Methods for Forecasting Using Many Predictors Stein-Rule Estimtion nd Generlized Shrinkge Methods for Forecsting Using Mny Predictors Eric Hillebrnd CREATES Arhus University, Denmrk ehillebrnd@cretes.u.dk Te-Hwy Lee University of Cliforni, Riverside

More information

Latent Structure Linear Regression

Latent Structure Linear Regression Applied Mthemtics, 2014, 5, 808-823 Published Online Mrch 2014 in SciRes. http://www.scirp.org/journl/m http://dx.doi.org/10.4236/m.2014.55077 Ltent Structure Liner Regression Agnr Höskuldsson Centre for

More information

H.264 (MPEG-4 Part 10)

H.264 (MPEG-4 Part 10) H.64 (MPEG-4 Prt 0) Encoded bitstrem Fig. 4.4 H.64 encoder. ELEG550 Video Coding Technology H.64 (MPEG-4 Prt 0) Encoded bitstrem Fig. 4.5 H.64 decoder. ELEG550 Video Coding Technology H.64 (MPEG-4 Prt

More information

3.1 Exponential Functions and Their Graphs

3.1 Exponential Functions and Their Graphs . Eponentil Functions nd Their Grphs Sllbus Objective: 9. The student will sketch the grph of eponentil, logistic, or logrithmic function. 9. The student will evlute eponentil or logrithmic epressions.

More information

Math 113 Exam 2 Practice

Math 113 Exam 2 Practice Mth 3 Exm Prctice Februry 8, 03 Exm will cover 7.4, 7.5, 7.7, 7.8, 8.-3 nd 8.5. Plese note tht integrtion skills lerned in erlier sections will still be needed for the mteril in 7.5, 7.8 nd chpter 8. This

More information

Using air lines as references for VNA phase measurements

Using air lines as references for VNA phase measurements Using ir lines s references for VNA phse mesurements Stephen Protheroe nd Nick Ridler Electromgnetics Tem, Ntionl Physicl Lbortory, UK Emil: Stephen.protheroe@npl.co.uk Abstrct Air lines re often used

More information

Behavior-based Authentication Systems. Multimedia Security

Behavior-based Authentication Systems. Multimedia Security Behvior-bsed Authentiction Systems Multimedi Security Prt 1: User Authentiction Through Typing Biometrics Fetures Prt 2: User Re-Authentiction vi Mouse Movements 2 User Authentiction Through Typing Biometrics

More information

NUMERICAL EVALUATION OF H-FUNCTION BY CONTINUED FRACTIONS ABSTRACT INTRODUCTION

NUMERICAL EVALUATION OF H-FUNCTION BY CONTINUED FRACTIONS ABSTRACT INTRODUCTION NMERICAL EVALATION OF H-FNCTION BY CONTINED FRACTIONS B.S. Rn & H.S. Dhmi Deptt. Of Mthemtics niversity of Kumun S.S.J. Cmpus, Almor (ttrnchl INDIA- 6360 ABSTRACT In the present pper n ttempt hs been mde

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1 MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further

More information

Problem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are:

Problem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are: (x + y ) = y + (x + y ) = x + Problem Set 9 Discussion: Nov., Nov. 8, Nov. (on probbility nd binomil coefficients) The nme fter the problem is the designted writer of the solution of tht problem. (No one

More information

Quantum Physics II (8.05) Fall 2013 Assignment 2

Quantum Physics II (8.05) Fall 2013 Assignment 2 Quntum Physics II (8.05) Fll 2013 Assignment 2 Msschusetts Institute of Technology Physics Deprtment Due Fridy September 20, 2013 September 13, 2013 3:00 pm Suggested Reding Continued from lst week: 1.

More information

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014 SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 014 Mrk Scheme: Ech prt of Question 1 is worth four mrks which re wrded solely for the correct nswer.

More information

New image registration method based on the physical forces

New image registration method based on the physical forces Amin SADRI, Ali Asghr BEHESHTI SHIRAZI, Msoomeh ZAMENI Deprtment of Electricl Engineering, Irn University of Science nd Technology New imge registrtion method bsed on the physicl forces Abstrct. In this

More information

MATH STUDENT BOOK. 10th Grade Unit 5

MATH STUDENT BOOK. 10th Grade Unit 5 MATH STUDENT BOOK 10th Grde Unit 5 Unit 5 Similr Polygons MATH 1005 Similr Polygons INTRODUCTION 3 1. PRINCIPLES OF ALGEBRA 5 RATIOS AND PROPORTIONS 5 PROPERTIES OF PROPORTIONS 11 SELF TEST 1 16 2. SIMILARITY

More information

DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS

DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS 3 DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS This chpter summrizes few properties of Cli ord Algebr nd describe its usefulness in e ecting vector rottions. 3.1 De nition of Associtive

More information

A Convergence Theorem for the Improper Riemann Integral of Banach Space-valued Functions

A Convergence Theorem for the Improper Riemann Integral of Banach Space-valued Functions Interntionl Journl of Mthemticl Anlysis Vol. 8, 2014, no. 50, 2451-2460 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/10.12988/ijm.2014.49294 A Convergence Theorem for the Improper Riemnn Integrl of Bnch

More information

Normal Distribution. Lecture 6: More Binomial Distribution. Properties of the Unit Normal Distribution. Unit Normal Distribution

Normal Distribution. Lecture 6: More Binomial Distribution. Properties of the Unit Normal Distribution. Unit Normal Distribution Norml Distribution Lecture 6: More Binomil Distribution If X is rndom vrible with norml distribution with men µ nd vrince σ 2, X N (µ, σ 2, then P(X = x = f (x = 1 e 1 (x µ 2 2 σ 2 σ Sttistics 104 Colin

More information

Riemann Integrals and the Fundamental Theorem of Calculus

Riemann Integrals and the Fundamental Theorem of Calculus Riemnn Integrls nd the Fundmentl Theorem of Clculus Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University September 16, 2013 Outline Grphing Riemnn Sums

More information

How to simulate Turing machines by invertible one-dimensional cellular automata

How to simulate Turing machines by invertible one-dimensional cellular automata How to simulte Turing mchines by invertible one-dimensionl cellulr utomt Jen-Christophe Dubcq Déprtement de Mthémtiques et d Informtique, École Normle Supérieure de Lyon, 46, llée d Itlie, 69364 Lyon Cedex

More information

Calculus - Activity 1 Rate of change of a function at a point.

Calculus - Activity 1 Rate of change of a function at a point. Nme: Clss: p 77 Mths Helper Plus Resource Set. Copright 00 Bruce A. Vughn, Techers Choice Softwre Clculus - Activit Rte of chnge of function t point. ) Strt Mths Helper Plus, then lod the file: Clculus

More information

MAC-solutions of the nonexistent solutions of mathematical physics

MAC-solutions of the nonexistent solutions of mathematical physics Proceedings of the 4th WSEAS Interntionl Conference on Finite Differences - Finite Elements - Finite Volumes - Boundry Elements MAC-solutions of the nonexistent solutions of mthemticl physics IGO NEYGEBAUE

More information

Thermal Diffusivity. Paul Hughes. Department of Physics and Astronomy The University of Manchester Manchester M13 9PL. Second Year Laboratory Report

Thermal Diffusivity. Paul Hughes. Department of Physics and Astronomy The University of Manchester Manchester M13 9PL. Second Year Laboratory Report Therml iffusivity Pul Hughes eprtment of Physics nd Astronomy The University of nchester nchester 3 9PL Second Yer Lbortory Report Nov 4 Abstrct We investigted the therml diffusivity of cylindricl block

More information

M 1 = + x 2 f(x)dx M 2 =

M 1 = + x 2 f(x)dx M 2 = AppendixB The Delt method... Suppose you hve done study, over 4 yers, which yields 3 estimtes of survivl (sy, φ 1, φ 2, nd φ 3. But, suppose wht you re relly interested in is the estimte of the product

More information

A Blind Image Watermarking Based on Dual Detector *

A Blind Image Watermarking Based on Dual Detector * JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 25, 1723-1736 (2009) A Blind Imge Wtermrking Bsed on Dul Detector * CHIN-PAN HUANG 1, CHI-JEN LIAO 2 AND CHAUR-HEH HSIEH 1 1 Deprtment of Computer nd Communiction

More information

7 - Continuous random variables

7 - Continuous random variables 7-1 Continuous rndom vribles S. Lll, Stnford 2011.01.25.01 7 - Continuous rndom vribles Continuous rndom vribles The cumultive distribution function The uniform rndom vrible Gussin rndom vribles The Gussin

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information