First-order Second-degree Equations Related with Painlevé Equations

Size: px
Start display at page:

Download "First-order Second-degree Equations Related with Painlevé Equations"

Transcription

1 ISSN (print), (online) International Journal of Nonlinear Science Vol.8(2009) No.3,pp First-order Second-degree Equations Related with Painlevé Equations Ayman Sakka 1, Uğurhan Muğan 2 1 Islamic University of Gaa, Department of Mathematics P.O.Box 108, Rimal, Gaa, Palestine 2 Bilkent University, Department of Mathematics, Bilkent, Ankara, Turkey (Received 27 August 2008, accepted 15 January 2009) Abstract: The first-order second-degree equations satisfying the Fuchs theorem concerning the absence of movable critical points, related with Painlevé equations, and one-parameter families of solutions which solve the first-order second-degree equations are investigated. Keywords: Painlevé equations; Fuchs theorem 1 Introduction Painlevé equations, PI-PVI, which are second order first-degree equations v = F (v, v, ) where F is rational in v, algebraic in v and locally analytic in with the Painlevé property, which were first derived at the beginning of the 20 th century by Painlevé and his school [1]. A differential equation is said to have Painlevé property if all solutions are single valued around all movable singularities. Movable means that the position of the singularities varies as a function of the initial values. Painlevé equations may be regarded as the nonlinear counterparts of some classical special functions. They also arise as reductions of solutions of soliton equations solvable by the inverse scattering method (IST). Ablowit, Ramani, and Segur [2] showed that all the ordinary differential equations (ODE) obtained by the exact similarity transforms from a partial differential equation (PDE) solvable by IST have the Painlevé property. The Painlevé property confirms the integrability properties of a PDE. Wiess, Tabor and Carnevale [3] defined a Painlevé property for PDE that does not refer to that for ODE s. This method is commonly used to investigate the integrability of a given PDE [4, 5]. Painlevé equations can also be obtained as the compatibility condition of the isomonodromy deformation problem. Recently, there have been studies of integrable mappings and discrete systems, including the discrete analogous of the Painlevé equations. The Riccati equation is the only example for the first-order first-degree equation which has the Painlevé property. By Fuchs theorem, the irreducible form of the first order algebraic differential equation of the second-degree with Painlevé property is given as (v ) 2 = (A 2 v 2 + A 1 v + A 0 )v + B 4 v 4 + B 3 v 3 + B 2 v 2 + B 1 v + B 0, (1) where A j, j = 0, 1, 2 and B k, j = 0, 1, 2, 3, 4 are functions of and set of parameters denoted by α [6]. Higher order (n 3) and second order higher-degree (k 2) with Painlevé property were subject to the articles [7 9]. Painlevé equations, PI-PVI, possess a rich internal structure. For example, for certain choice of the parameters, PII-PVI admit one parameter families of solutions, rational, algebraic and expressible in terms of the classical transcendental functions: Airy, Bessel, Weber-Hermite, Whitteker, hypergeometric functions respectively. But, all the known one parameter families of solutions appear as the solutions of Riccati Corresponding author. Tel. : ; Fax: address: mugan@fen.bilkent.edu.tr Copyright c World Academic Press, World Academic Union IJNS /276

2 260 International Journal of Nonlinear Science,Vol.8(2009),No.3,pp equations. In this article, we investigate the one parameter families of solutions of PII-PVI which solves the first-order second-degree equation of the form (1). Let v() be a solution of one of the Painlevé equations v = P 2 (v ) 2 + P 1 v + P 0, (2) where P 0, P 1, P 2 depend on v, and set of parameters α. Differentiating equation (1), and using (2) to replace v, and (1) to replace (v ) 2, one gets where Φv + Ψ = 0, (3) Φ = (P 1 2A 2 v A 1 )(A 2 v 2 + A 1 v + A 0 ) + P 2 (A 2 v 2 + A 1 v + A 0 ) 2 + 2P 0 4B 4 v 3 (3B 3 + A 2 )v2 (2B 2 + A 1 )v (B 1 + A 0 ) + 2P 2(B 4 v 4 + B 3 v 3 + B 2 v 2 + B 1 v + B 0 ), Ψ = (B 4 v 4 + B 3 v 3 + B 2 v 2 + B 1 v + B 0 )[P 2 (A 2 v 2 (4) + A 1 v + A 0 ) + 2P 1 2A 2 v A 1 ] P 0 (A 2 v 2 + A 1 v + A 0 ) (B 4 v4 + B 3 v3 + B 2 v2 + B 1 v + B 0 ). One can determine the coefficients A j, j = 0, 1, 2 and B k, j = 0, 1, 2, 3, 4 of (1) by setting Φ = Ψ = 0. Therefore, the Painlevé equation (2) admit one-parameter family of solutions characteried by equation (1) if and only if Φ = Ψ = 0. For the sake of the completeness, we will examine all possible cases, and hence, we recover some of the well known one-parameter families of solutions as well as the new ones. 2 Painlevé II Equation Let v be a solution of the PII equation In this case, equation (3) takes the form of v = 2v 3 + v + α. (5) (φ 3 v 3 + φ 2 v 2 + φ 1 v + φ 0 )v + ψ 5 v 5 + ψ 4 v 4 + ψ 3 v 3 + ψ 2 v 2 + ψ 1 v + ψ 0 = 0, (6) where φ 3 = 4(B A2 2 1), φ 2 = A 2 + 3B 3 + 3A 1 A 2, φ 1 = A 1 + 2B 2 + 2A 0 A 2 + A 2 1, φ 0 = A 0 + B 1 + A 0 A 1 2α, ψ 5 = 2A 2 (B 4 + 1), ψ 4 = B 4 + A 1B 4 + 2A 2 B 3 + 2A 1 ψ 3 = B 3 + A 1B 3 + 2A 2 B 2 + 2A 0 + A 2, ψ 2 = B 2 + A 1B 2 + 2A 2 B 1 + A 1 + αa 2, ψ 1 = B 1 + A 1B 1 + 2A 2 B 0 + A 0 + αa 1, ψ 0 = B 0 + A 1B 0 + αa 0. (7) Setting ψ 5 = 0 yields A 2 = 0 or B 4 = 1. If A 2 = 0, then one can not choose A j, j = 0, 1 and B k, k = 0, 1,..., 4 so that φ j = 0, j = 0, 1, 2, 3 and ψ k = 0, k = 0, 1,..., 4. If B 4 = 1, then φ j = 0, j = 0, 1, 2, 3, and ψ k = 0, k = 0, 1,..., 4 if and only if A 2 = ±2, A 1 = 0, A 0 = ±, B 3 = B 1 = 0, B 2 =, B 0 = 1 4 2, and α = ± 1 2. With these choices of A j, B k, equation (1) gives the well known equation 2v = ±(2v 2 + ), (8) which gives the one-parameter family of solutions of PII if α = ±1/2, [10]. There is no first-order seconddegree equation related with PII. 3 Painlevé III Equation Let v solve the third Painlevé equation PIII v = 1 v (v ) 2 1 v + γv (αv2 + β) + δ v. (9) Then equation (3) takes the following form: (φ 4 v 4 + φ 3 v 3 + φ 2 v 2 + φ 1 v + φ 0 )v + ψ 6 v 6 + ψ 5 v 5 + ψ 4 v 4 + ψ 3 v 3 + ψ 2 v 2 + ψ 1 v + ψ 0 = 0, (10) IJNS for contribution: editor@nonlinearscience.org.uk

3 Ayman Sakka, Uğurhan Muğan: First-order Second-degree Equations Related with 261 where φ 4 = 2γ 2B 4 A 2 2, φ 3 = 2α A 2 B 3 A 1 A 2 1 A 2, φ 2 = (A A 1), φ 1 = 2β + B 1 + A 0 A 1 A 0 1 A 0, φ 0 = A B 0 + 2δ, ψ 6 = A 2 (B 4 + γ), ψ 5 = (B B 4 + A 2 B 3 + γa 1 + α A 2), ψ 4 = A 0 B 4 B 3 2 B 3 γa 0 α A 1 A 2 B 2, ψ 3 = A 0 B 3 B 2 2 B 2 A 2 B 1 β A 2 α A 0, ψ 2 = A 0 B 2 B 1 2 B 1 A 2 B 0 β A 1 δa 2, ψ 1 = A 0 B 1 B 0 2 B 0 β A 0 δa 1, ψ 0 = A 0 (B 0 δ). (11) Setting ψ 0 = ψ 6 = 0 gives A 0 (B 0 δ) = 0, A 2 (B 4 + γ) = 0. (12) Thus, one should consider the following four cases separately: Case 1. A 0 = A 2 = 0: If B 4 = γ, B 3 = 2α, B 2 = K, B 2 1 = 2β, B 0 = δ, and A 1 = 2a 1 then, φ j = 0, j = 0, 1,..., 4, and ψ k = 0, k = 1, 2,...5, where K is arbitrary constant and a 1 is a constant and satisfies γ(a 1 + 1) = 0, α(a 1 + 1) = 0, β(a 1 1) = 0, δ(a 1 1) = 0. (13) Therefore, we have the following subcases: i. a = 0, α = β = γ = δ = 0 ii. a 1 = 1, β = δ = 0 and iii. a 1 = 1, α = γ = 0. When α = β = γ = δ = 0, the general solution of PIII is v(; 0, 0, 0, 0) = c 1 c 2 where c 1, c 2 are constants. When a 1 = 1, β = δ = 0, (1) gives the following first-order second-degree equation for v The transformations v = (v + v) 2 = γ 2 v 4 + 2αv 3 + (K + 1)v 2. (14) w γ 1/2 (w + 1) + α, v = γ 1/2 v 2 + wv, (15) give one-to-one correspondence between solutions v of PIII, and solutions w() of the following Riccati equation w w 2 2w + K = 0. (16) β = δ = 0 case for PIII was also considered in [10, 11]. When a 1 = 1, α = γ = 0, v satisfies the following first-order second-degree equation (v v) 2 = (K + 1)v 2 2βv δ 2. (17) Equation (17) was also considered in [9], and the solution of PIII for α = γ = 0 was first given in [10]. Case 2. A 0 = 0, A 2 = 0: Equation (12) gives B 4 = γ and B 0 = δ. To set φ j = 0, j = 0, 1,..., 4 and ψ k = 0, k = 1, 2,..., 5, one should choose B 3 = 1 [2α A 2(2a 1 + 1)], B 2 = [ a A 0A 2 ], B 1 = 1 [2β + 2a 1A 0 A 0 ], (18) and A 1 = 2a 1, A2 0 = 4δ, where a 1 = 2α A 2 1 and α, β, γ, δ satisfy Then, equation (1) becomes βγ 1/2 + α( δ) 1/2 + 2γ 1/2 ( δ) 1/2 = 0. (19) v + γ 1/2 v 2 + [αγ 1/2 + 1]v + ( δ) 1/2 = 0. (20) Equation (20) was given in the literature before, see for example [10]. Case 3. A 0 = 0, A 2 = 0: Equation (12) gives B 0 = δ. One should choose B 4 = γ, B 3 = 2α, IJNS homepage:

4 262 International Journal of Nonlinear Science,Vol.8(2009),No.3,pp B 2 = a 2 1, B 1 = 1 [2β + 2a 1A 0 A 0 ], A 2 0 = 4δ, A 1 = 2a 1, and α = 0 in order to get φ j = 0, j = 0,..., 4, and ψ k = 0, k = 1,..., 5, where a 1 is a constant such that γ(a 1 + 1) = 0, 2β + A 0 (a 1 1) = 0. (21) So, if γ = 0, then β = 2( δ) 1/2 and (1) gives the equation (20) with α = 0. If γ = 0 then (1) gives the equation (17) with K = 1 β2 δ. Case 4. A 0 = 0, A 2 = 0: Equation (12) gives B 4 = γ, and if B 0 = δ, B 3 = 1 [2α A 2(2a 1 + 1)], B 2 = a2 1, B 2 1 = 2β, A2 2 = 4γ, A 1 = 2a 1, and β = 0, then φ j = 0, j = 0,..., 4, ψ k = 0, k = 1,..., 5, where a 1 is a constant and satisfies δ(a 1 1) = 0, 2α A 2 (a 1 + 1) = 0. (22) So, if δ = 0, equation (1) gives the equation (20) for β = 0. If δ = 0, then v solves the equation (14) with K = α2 γ 1. 4 Painlevé IV Equation Let v be a solution of the PIV equation where Then equation (3) takes the form of v = 1 2v (v ) v3 + 4v 2 + 2( 2 α)v + β v. (23) (φ 4 v 4 + φ 3 v 3 + φ 2 v 2 + φ 1 v + φ 0 )v + ψ 6 v 6 + ψ 5 v 5 + ψ 4 v 4 + ψ 3 v 3 + ψ 2 v 2 + ψ 1 v + ψ 0 = 0, (24) φ 4 = 3(1 B A2 2 ), φ 3 = 8 A 2 2B 3 2A 1 A 2, φ 2 = 4( 2 α) B A2 1 A 0A 2 A 1, φ 1 = A 0, φ 0 = 1 2 A2 0 + B 0 + 2β, ψ 6 = 3 2 A 2(B 4 + 1), ψ 5 = (B A 1B A 2B 3 + 4A A 1), ψ 4 = 1 2 A 0B 4 B A 1B A 2B 2 2( 2 α)a 2 4A A 0, ψ 3 = 1 2 A 0B 3 B A 1B A 2B 1 2( 2 α)a 1 4A 0, ψ 2 = 1 2 A 0B 2 B A 1B A 2B 0 2( 2 α)a 0 βa 2, ψ 1 = 1 2 A 0B 1 B A 1B 0 βa 1, ψ 0 = 1 2 A 0(B 0 2β). (25) Setting ψ 0 = ψ 6 = 0 implies A 2 (B 4 + 1) = 0, A 0 (B 0 2β) = 0. (26) respectively. Therefore, there are four subcases: i. A 0 = A 2 = 0; ii. A 0 = 0, A 2 = 0; iii. A 0 = 0, A 2 = 0, and iv. A 0 = 0, A 2 = 0. For the first case, there are no choice of A j and B k such that Φ = Ψ = 0. In the second and third cases, one should choose A 2 = 2ε, A 1 = 4ε, A 0 = 2( 2β) 1/2, B 4 = 1, B 3 = 4, B 2 = 4[ 2 + α + ε( 2β) 1/2 + ε], B 1 = 4ε( 2β) 1/2, B 0 = 2β, and where ε = ±1. Then v satisfies the following Riccati equation ( 2β) 1/2 + 2εα + 2 = 0, (27) v = ε(v 2 + v 2α 2ε). (28) Equation (28) was also considered in [12, 13]. When A 0 = 0, A 2 = 0, one has to choose A 0 = 4, A 1 = 0, B 4 = 1, B 3 = 4, B 2 = 4( 2 α), B 1 = 0, B 0 = 4, and β = 2. Therefore, one can state the following theorem IJNS for contribution: editor@nonlinearscience.org.uk

5 Ayman Sakka, Uğurhan Muğan: First-order Second-degree Equations Related with 263 Theorem 1 The Painlevé IV equation admits a one-parameter family of solution characteried by if and only if β = 2. (v + 2) 2 v 4 4v 3 4( 2 α)v 2 = 0, (29) (29) was also given in [14]. If f() = + a and g() = a, where a 2 = 4α, then (29) can be written as (v + 2) 2 = v 2 (v f)(v g). (30) If a = 0, that is α = 0, then (29) reduces to the following Riccati equation v = εv(v + ) 2, ε = ±1. (31) Equation (31) is nothing but equation (28) with α = 0. If a = 0, by using the transformation v = fw2 g [6], (30) can be transformed to the following Riccati w 2 1 equation: 2w = ε(fw 2 g), ε = ±1. (32) By introducing w = 2εy fy 5 Painlevé V Equation If v solves the PV equation +a, x = 2, (32) can be linearied. v = 3v 1 2v(v 1) (v ) 2 1 v + α 2 v(v β(v 1)2 1) γ δv(v + 1) v + v v 1, (33) then equation (3) takes the form of (φ 5 v 5 +φ 4 v 4 +φ 3 v 3 +φ 2 v 2 +φ 1 v+φ 0 )v +ψ 7 v 7 +ψ 6 v 6 +ψ 5 v 5 +ψ 4 v 4 +ψ 3 v 3 +ψ 2 v 2 +ψ 1 v+ψ 0 = 0, (34) where φ 5 = 2α B A2 2, φ 4 = 3B A2 2 6α A A 2, φ 3 = 2B 3 + B A A 1A 2 + A 0 A 2 + A A 2 A 1 1 A [3α + β + γ + δ 2 ], 2 φ 2 = 2B 1 + B A A 0A 1 + A 0 A 2 + A A 1 A 0 1 A 0 2 [α + 3β + γ δ 2 ], 2 φ 1 = 3B A β + A A 0, φ 0 = ( 2β + B A2 0 ), ψ 7 = 1 2 A 2(B 4 + 2α ), ψ 2 6 = B 4 ( 3 2 A A 1 2 ) 1 2 A 2B 3 + α (3A 2 2 A 1 ) B 4, ψ 5 = B 4 ( 1 2 A A ) + B 3( 3 2 A A 1 2 ) 1 2 A 2B 2 A 2 (3α + β + γ + δ 2 ) + α (3A A 0 ) + B 4 B 3, ψ 4 = B 3 ( 1 2 A A ) + B 2( 3 2 A A 1 2 ) 1 2 A 2B A 0B 4 A 1 (3α + β + γ + δ 2 ) + A 2 2 (α + 3β + γ δ 2 ) + 3α A B 3 B 2, ψ 3 = B 2 ( 1 2 A A ) + B 1( 3 2 A A 1 2 ) 1 2 A 2B A 0B 3 A 0 (3α + β + γ + δ 2 ) + A 2 1 (α + 3β + γ δ 2 ) 3β A B 2 B 1, ψ 2 = B 1 ( 1 2 A A ) + B 0( 3 2 A A 1 2 ) + A 0 (α + 3β + γ δ 2 ) 2 + β (A 2 2 3A 1 ) + B 1 B 0, ψ 1 = B 0 ( 3 2 A A ) 1 2 A 0B 1 + β (A 2 1 3A 0 ) + B 0, ψ 0 = 1 2 A 0(B 0 2β ). 2 Setting ψ 7 = ψ 0 = 0 implies (35) A 0 (B 0 2β 2 ) = 0, A 2(B 4 + 2α ) = 0. (36) 2 Therefore, one should consider the following four distinct cases. Case 1. A 0 = 0, A 2 = 0: In this case, (36) implies B 4 = 1 4 A2 2, and B 0 = 1 4 A2 0. In order to get IJNS homepage:

6 264 International Journal of Nonlinear Science,Vol.8(2009),No.3,pp φ j = 0, j = 0, 5, one should choose A 0 = 8β, A = 8α, then φ 2 j, j = 1, 4 are identically ero, and φ j = 0, j = 2, 3 if 2 B B A A 1 A 0 + d d (A 1) 2α 6β 2γ + 2δ 2 = 0, (37) 2 B B A A 1 A 2 d d (A 1) + 6α + 2β + 2γ + 2δ A 0 A 2 = 0, (38) respectively. The equations ψ j = 0, j = 1, 6, give B 1 = 1 2 A 0A 1 and B 3 = 1 2 A 1A 2. Then, the equations (37) and (38) give B 2 = 1 4 [(A 0 + A 1 + A 2 ) 2 + A A 0A 2 + 8δ], and d d (A 1) = 2 (A 2 A 0 )(A 0 + A 1 + A 2 ) + 2γ. (39) With these choices ψ 5 = ψ 2 = 0 identically, and ψ 4 = ψ 3 = 0 if ( (A 0 + A 1 + A 2 ) 3 + 8δ A 1 + 2A 2 2 ) 4γ (A 0 + A 1 + A 2 ) = 0, (40) ( (A 0 + A 1 + A 2 ) 3 + 8δ A 1 + 2A ) + 4γ (A 0 + A 1 + A 2 ) = 0, (41) respectively. By adding the above equations, one gets (A 0 + A 1 + A 2 )[(A 0 + A 1 + A 2 ) 2 + 8δ] = 0. (42) If A 0 + A 1 + A 2 = 0, then equations (39), and (40) give γ = 0 and δ(a 2 A 0 2 ) = 0. Thus, if then v solves the following Riccati equation: γ = 0, δ[(2α) 1/2 ( 2β) 1/2 1] = 0, (43) v (2α) 1/2 v 2 [( 2δ) 1/2 (2α) 1/2 + ( 2β) 1/2 ]v + ( 2β) 1/2 = 0... (44) If A 0 + A 1 + A 2 = 0, then equations (42), and (40) give ( 2δ) 1/2 [1 ( 2β) 1/2 (2α) 1/2 ] = γ, (45) and the equations (39) and (41) are identically satisfied. Therefore, if α, β, γ, and δ satisfy the relation (45), then PV has one-parameter family of solution which is given by the following Riccati equation: v (2α) 1/2 v 2 [( 2δ) 1/2 (2α) 1/2 + ( 2β) 1/2 ]v + ( 2β) 1/2 = 0... (46) Equation (46) is the well known one-parameter family of solutions of PV [15]. Case 2. A 0 = A 2 = 0: In order to make φ j = 0, j = 1,..., 5 and ψ k = 0, k = 1,..., 6 one should choose B 4 = 2α, B 2 0 = 2β, and A 2 1, B n, n = 1, 2, 3 satisfy the following equations 2B 3 + B A2 1 A 1 1 A 1 + 6α 2 + 2β 2 + 2γ 2B 1 + B A2 1 + A A 1 2α 2 6β 2 2γ + 2δ = 0, (47) + 2δ = 0, (48) B 3 + B 3 ( 1 2 A 1 2 ) + 4α 2 A 1 = 0, (49) B 3 B 2 + B 3 ( 1 2 A ) + B 2( 1 2 A 1 2 ) A 1( 3α 2 + β 2 + γ + δ) = 0, (50) B 2 B 1 + B 2 ( 1 2 A ) + B 1( 1 2 A 1 2 ) + A 1( α 2 + 3β 2 + γ δ) = 0, (51) IJNS for contribution: editor@nonlinearscience.org.uk

7 Ayman Sakka, Uğurhan Muğan: First-order Second-degree Equations Related with 265 B 1 + B 1 ( 1 2 A ) 4β 2 A 1 = 0. (52) Adding the equations (49-52) gives A 1 [B 1 + B 2 + B (α β) 2δ] = 0. (53) 2 Thus, two cases A 1 = 0 and A 1 = 0, should be considered separately. Case 2.a. A 1 = 0: Solving equations (49-52), gives B j = K j, j = 1, 2, 3, where K 2 j are constants, then (47) and (48) give γ = δ = 0, 2K 3 + K 2 + 6α + 2β = 0, 2K 1 + K 2 2α 6β = 0. (54) If one lets K 2 = 2K, then equation (54) gives K 3 = (K + 3α + β), and K 1 = (K α 3β). Thus, for γ = δ = 0, v() satisfies The transformation 2 (v ) 2 = 2αv 4 (K + 3α + β)v 3 + 2Kv 2 (K α 3β)v 2β. (55) v = (v 1)[w + μ (2μ 1)v], v = [(w + μ )2 + 2β] w (w + μ )2 2β, (56) where (2μ 1) 2 = 8α, give one-to-one correspondence between solutions v of (55) and solutions w of the following equation w = w 2 + 2w + K 3α + 3β 1. (57) The relation between PV with γ = δ = 0 and equation (57) was considered in [16]. Case 2.b. A 1 = 0: In this case, Φ = Ψ = 0 implies that α + β = 0, γ = ( 2δ) 1/2 and v satisfies v = (2α) 1/2 (v 1) 2 + γv. (58) Equation (58) is the special case α + β = 0 of the one-parameter family of PV, see equation (44). Case 3. A 0 = 0, A 2 = 0: Equation (36) gives B 4 = 2α. Setting φ 2 5 = 0 and ψ 6 = 0 give A 2 2 = 8α 2 B 3 = 1 2 A 1A 2, and equations φ j = 0, j = 0,..., 4 are satisfied if B 2 = 1 [ 2 A A 1 2 A 1 A A 2 1 6α 2β 2γ 2δ2 ], B 1 = 1 [ 2 A A A 1 A 2 4α 4β 2γ], and A 1 satisfies the following equations: B 0 = 2β 2, (59) d2 d 2 (A 1 ) = d d (A 1)[ 5 2 A A 1 1] 10α(2A 1 + A 2 ) 2β(A 1 + A 2 ) γ(3a 2 + A 1 2) 2δ(A 1 + A 2 2) A 2 1 (6A 2 + A 1 ), d2 d 2 (A 1 ) = d d (A 1)[3A 2 + A 1 2] 6α(A 1 + A 2 ) 4β(A 1 + A 2 ) γ(3a 2 + A 1 4) + 2δ(A 1 + 2) A 2 1 (A 2 + A 1 ), (60) (61) d2 d 2 (A 1 ) = d d (A 1)[ 1 2 A A 1 1] + 2αA 1 2β(A 1 + A 2 ) + γ(a 1 + 2) A 2 1 A 2. (62) Solving equation (60) for d2 d 2 (A 1 ) and using in (61) and (62) give the equations for d d (A 1). Eliminating d d (A 1) between these equations, and using α = A 2 2 give (A 1 + A 2 )[(A 1 + A 2 ) 2 + 8δ] = 0. (63) Therefore, if A 1 + A 2 = 0, then equation (63) implies that (A 1 + A 2 ) 2 + 8δ = 0. Equations (60), (61), and (62) are satisfied if (A 1 + A 2 )(A 2 2) + 4γ = 0, and β = 0. Thus, if γ + ( 2δ) 1/2 [(2α) 1/2 1] = 0 and β = 0, v solves the following Riccati equation v = v[(2α) 1/2 v + ( 2δ) 1/2 (2α) 1/2 )]. (64) IJNS homepage:

8 266 International Journal of Nonlinear Science,Vol.8(2009),No.3,pp Equation (64) is a special case, β = 0, of (46). If A 1 + A 2 = 0 then equation (60), (61), (62) are satisfied if (A 2 2 )(γ + 2δ) = 0. Therefore, when γ = δ = 0, first-order second-degree equation (1) reduces to the following Riccati equation v = (2α) 1/2 v(v 1) + ( 2β) 1/2 (v 1). (65) Equation (65) is the particular case, K = α β, of equation (55). If γ and δ are not both ero, then one has A 2 = 2, and hence α = 1 2. Thus, we have B 4 = 1, 2 B 3 = 2, B 2 2 = 1 (2δ 2 + 2γ + 2β + 1), B 2 1 = 2 (γ + 2β). Then, for α = 1/2 and γ, δ not both ero, 2 v solves the following first-order second-degree equation [v v(v 1)] 2 + 2(δ 2 + γ + β)v 2 2(γ + 2β)v + 2β = 0. (66) If one lets f() = b + a, and g() = c + a, where a 2 = 2β, a(b + c) = 2γ, bc = 2δ, then (66) takes the following form [v v(v 1)] 2 = (fv a)(gv a). (67) If a = 0, that is, if β = γ = 0, then equation (67) is reduced to the following Riccati equation v = v(v 1) + ( 2δ) 1/2 v. (68) Equation (68) is the special case, β = γ = 0 and α = 1 2, of (46). If b = c, that is, if γ 2 = 4βδ, then equation (67) is reduced to the following Riccati equation v = v(v 1) + [( 2δ) 1/2 + ( 2β) 1/2 ]v ( 2β) 1/2. (69) Equation (69) is the special case, α = 1 2, of (46). If β = 0, and γ 2 4βδ = 0, then the solution of equation (66) is given by v = a(w2 +1), where w() fw 2 +g solves the following Riccati equation: w = ε(fw 2 + g), ε = ±1. (70) (70) can be transformed to the following linear equation by the transformation w = 2εy fy : 2 f()y + ay g()f 2 ()y = 0. (71) If b = 0, the change of variable = a b x transforms equation (71) to the equation ( 1 y x 1 1 ) y + a2 (x 1)(cx b) x 4bx 2 y = 0. (72) If b = 0, that is δ = 0, then the change of variable = 1 ac x2 transforms equation (71) to the Bessel equation x 2 y + x y + (x 2 + a 2 )y = 0. (73) Case 4. A 0 = 0, A 2 = 0: In this case, equation (36) gives B 0 = 2β 2. Setting φ 0 = 0 and ψ 1 = 0 implies that A 2 0 = 8β 2, and B 1 = 1 2 A 0A 1. The conditions φ j = 0 for j = 1,..., 5 are satisfied if and ψ j = 0, j = 2,..., 6 if, B 2 = 1 [ 2 A A A 0 A A 2 1 2α 6β 2γ + 2δ2 ], B 3 = 1 [ 2 A A A 2 1 4α 4β 2γ], B 4 = 2α, 2 (74) d2 d 2 (A 1 ) = d d (A 1)[ 5 2 A A 1 + 1] + 2α(A 1 + A 0 ) + 10β(2A 1 + A 0 ) +γ(3a 0 + A 1 + 2) 2δ(A 1 + A 0 + 2) A 2 1 (6A 0 + A 1 ), d2 d 2 (A 1 ) = d d (A 1)[3A 0 + A 1 + 2] + 4α(A 1 + A 0 ) + 6β(A 1 + A 0 ) +γ(3a 0 + A 1 + 4) + 2δ(A 1 2) A 2 1 (A 0 + A 1 ), (75) (76) IJNS for contribution: editor@nonlinearscience.org.uk

9 Ayman Sakka, Uğurhan Muğan: First-order Second-degree Equations Related with 267 d2 d 2 (A 1 ) = d d (A 1)[ 1 2 A A 0 1] + 2α(A 0 + A 1 ) 2βA 1 γ(a 1 2) A 2 1 A 0. (77) Solving equation (75) for d2 (A d 2 1 ) and using in (76) and (77) give the first order differential equations for A 1. Eliminating d d (A 1) between these equations and using β = A 2 0 gives (A 1 + A 0 )[(A 1 + A 0 ) 2 + 8δ] = 0. (78) If A 1 + A 0 = 0, then one obtains (A 1 + A 0 ) 2 + 8δ = 0. The equations (76) and (77) are satisfied if α = 0 and (A 0 + 2)(A 0 + A 1 ) = 4γ. Thus, when γ = ( 2δ) 1/2 [1 ( β) 1/2 ], v satisfies the following Riccati equation v = [( 2δ) 1/2 + ( 2β) 1/2 ]v ( 2β) 1/2. (79) This is the special case, α = 0, of equation (46). If A 1 + A 0 = 0, equations(75), (76), (77) are satisfied only if (A 0 + 2)(γ 2δ) = 0. Therefore, if A = 0, then one should have γ = δ = 0, and v satisfies (65). If A = 0, then β = 1 2 and first-order second-degree equation (1) gives [v (v 1)] 2 = 2αv 4 2(γ + 2α)v 3 2(δ 2 γ α)v 2. (80) The Lie-point discrete symmetry v = 1 v, α = β, β = α, γ = γ, δ = δ of PV [10] transforms solutions v(; α, 1 2, γ, δ) of (80) to solutions v(; 1 2, β, γ, δ) of equation (66). 6 Painlevé VI Equation If v solves the sixth Painlevé equation, PVI v = 1 2 { 1 v + 1 v v }(v ) 2 { v }v + v(v 1)(v ) {α + β v 2 + γ( 1) (v 1) 2 + δ( 1) v ) 2 }, (81) then the equation (3) takes the form (φ 6 v 6 + φ 5 v 5 + φ 4 v 4 + φ 3 v 3 + φ 2 v 2 + φ 1 v + φ 0 )v + ψ 8 v 8 + ψ 7 v 7 + ψ 6 v 6 + ψ 5 v 5 + ψ 4 v 4 + ψ 3 v 3 + ψ 2 v 2 + ψ 1 v + ψ 0 = 0, (82) IJNS homepage:

10 268 International Journal of Nonlinear Science,Vol.8(2009),No.3,pp where φ 6 = 2α B A2 2, φ 5 = 2( + 1)B 4 + ( + 1)A 2 2 4α(+1) A 2 ( 1) ( 1) A 2, φ 4 = ( 1) A 2 ( 1) ( 1) (A 1 A 2 ) A2 1 + A 0A 2 + ( + 1)A 1 A A2 2 + B 2 + ( + 1)B 3 3B 4 + ( + 1)A 2 A [α( ) + β + (δ + γ)( 1)], φ 3 = ( 1) (A 1 A 2 ) ( 1) ( 1) (A 0 A 1 ) + 2A 0 A 1 A 1 A 2 + 2B 1 B 3 + ( + 1)A 1 A 0 A 2 4 [(α + β)( + 1) + (γ + δ)( 1)], ( 1) 2 φ 2 = ( 1) (A 0 A 1 ) + ( 1) ( 1) A A2 0 ( + 1)A 0A 1 A 0 A A B 0 ( + 1)B 1 B 2 A 1 + ( + 1)A [α + β( ) + (γ + δ)( 1)], ( 1) 2 φ 1 = [2( + 1)B 0 + ( + 1)A β(+1) + A ( 1) ( 1) A 0], φ 0 = [B A β ], ( 1) 2 ψ 8 = 1 2 A 2[B 4 + 2α ], ψ 7 = B 4 [( + 1)A A 1 2( 1) ( 1) ] 1 2 A α 2B 3 + [2( + 1)A 2 A 1 ] B 4, ψ 6 = B 4 [ 3 2 (A 0 A 2 ) + ( 1) + 2( 1) ( 1) ] + B 3[( + 1)A A 1 2( 1) ( 1) ] 1 2 A 2B 2 + ( + 1)B 4 B 3 + α [2( + 1)A 1 A 0 ] A 2 [α( ) + β + (δ + γ)( 1)], ψ 5 = B 3 [ 3 2 (A 0 A 2 ) + B 4 [ 1 2 A 1 + ( + 1)A 0 + ( 1) + 2( 1) ( 1) ] + B 2[( + 1)A A 1 2( 1) ( 1) ] 1 2 A 2B 1 ( 1) ] + 2α(+1) A 0 A 1 [α( ) + β+ (δ + γ)( 1)] + 2A 2 [(α + β)( + 1) + (γ + δ)( 1)] + ( + 1)B ( 1) 2 3 B 4 B 2, ψ 4 = B 2 [ 3 2 (A 0 A 2 ) + ( 1) + 2( 1) ( 1) ] + B 1[( + 1)A A 1 2( 1) ( 1) ] 1 2 A 2B 0 B 3 [ 1 2 A 1 + ( + 1)A 0 + ( 1) ] A 0B 4 A 0 [α( ) + β + (δ + γ)( 1)] + 2A 1 [(α + β)( + 1) + (γ + δ)( 1)] ( 1) 2 A 2 [α + β( ) + γ( 1) + δ( 1)] + ( + 1)B ( 1) 2 2 B 3 B 1, ψ 3 = B 1 [ 3 2 (A 0 A 2 ) + B 2 [ 1 2 A 1 + ( + 1)A 0 + ( 1) + 2( 1) ( 1) ] + B 0[( + 1)A A 1 2( 1) ( 1) ] A 0B 3 ( 1) ] + 2β(+1) A ( 1) A 0 [(α + β)( + 1) + (γ + δ)( 1)] ( 1) 2 A 1 [α + β( ) + (γ + δ)( 1)] + ( + 1)B ( 1) 2 1 B 2 B 0, ψ 2 = B 0 [ 3 2 (A 0 A 2 ) + ( 1) + 2( 1) ( 1) ] B 1[ 1 2 A 1 + ( + 1)A 0 + B 1 + β [2( + 1)A ( 1) 2 1 A 2 ] A 0 [α + β( ) + (γ + δ)( 1)], ( 1) 2 ψ 1 = β [2( + 1)A ( 1) 2 0 A 1 ] A 0B 1 B 0 [( + 1)A A 1 + ( 1) ] B 0, ψ 0 = 2 A 0[B 0 2β ( 1) 2 ]. Setting ψ 8 = ψ 0 = 0 implies A 0 ( B 0 2β ) ( ( 1) 2 = 0, A 2 B 4 + ( 1) ] A 0B 2 + ( + 1)B 0 (83) ) 2α 2 ( 1) 2 = 0. (84) To solve these equations one may distinguish between the following four cases: Case 1. A 0 = 0, A 2 = 0: Equation (84) gives B 4 = 2α, B 0 = 2β. If A ( 1) 2 2 = 2a 2 ( 1), A 0 = 2a 0 ( 1), B 3 = 1 2 A 1A 2, and B 1 = 1 2 A 1A 0 then, φ 0 = φ 6 = ψ 1 = ψ 7 = 0, where a 2 2 = 2α and a2 0 = 2β. Then φ 1 = φ 5 = 0 identically, and φ j = 0, j = 2, 3, 4 if A 1 = 2(λ+μ) ( 1), and B 2 = 2 [(λ 2 + a 0 λ γ β) 2 + (2μλ + a 0 λ + a 0 μ μ + 2a 0 a 2 a 0 α β + γ δ) + μ 2 + μ(a 0 + 1) + a 0 β + δ], (85) where λ and μ are constants such that λ + μ + a 0 + a 2 = 0, λ(a 2 a 0 1) = a 2 α β γ δ, and μ(a 2 a 0 1) = a 0 α β + γ + δ. To set ψ j = 0, j = 2,..., 6, λ and μ should satisfy (λ + a 2 1)[(λ + a 0 ) 2 2γ] = 0, and (μ + a 2 )[(μ + a 2 ) 2 2γ] = 0. The above five conditions on λ, and μ are satisfied if (2α) 1/2 ( 2β) 1/2 (2γ) 1/2 (1 2δ) 1/2 = 1. (86) IJNS for contribution: editor@nonlinearscience.org.uk

11 Ayman Sakka, Uğurhan Muğan: First-order Second-degree Equations Related with 269 Therefore, if α, β, γ, and δ satisfy the condition (86), then v satisfies the following Riccati equation: ( 1)v = (2α) 1/2 v 2 [(( 2β) 1/2 + (2γ) 1/2 ) + (2α) 1/2 (2γ) 1/2 ]v + ( 2β) 1/2. (87) This is the well known one parameter family of solutions of PVI [10, 17, 18]. Case 2. A 0 = A 2 = 0: In order to set φ j = 0, j = 0,..., 6, one should choose B 4 = 2α, B 0 = 2β, A ( 1) 2 1 = a 1, B 2 = ( + 1)B A2 1 + A 1 + ( 1) ( 1) A 2 1 [α( ) + β + γ( 1) + δ( 1)], B 1 = B ( + 1)A 1 (2 + 1) ( 1) A [(α + β)( + 1) + (γ + δ)( 1)], ( 1) 2 (88) where a 1 is a constant. with these choices ψ 1 = ψ 7 = 0 identically, and ψ 6 = 0, if B 3 satisfies the following equation: d d [2 ( 1) 2 B 3 ] 1 2 a 1( 1) 2 B 3 2α [a 1( + 1) ] = 0. (89) Therefore, there are three distinct subcases: i. a 1 (a 1 2) = 0; ii. a 1 = 0, and iii. a 1 = 2. If a 1 (a 1 2) = 0, then one can not choose B 3 and a 1 so that ψ j = 0, j = 2, 3, 4, 5. If a 1 = 0, then equation (89) gives B 3 = 4α+b 3, where b 3 is a constant, and ψ j = 0, j = 2, 3, 4, 5 only if b 3 = 2(γ + β), and α = δ = 0. Therefore, if α = δ = 0, one-parameter family of solutions of PVI are given by 2 ( 1) 2 (v ) 2 = 2(v ) 2 [(γ + β)v β]. (90) If γ + β = 0, then equation (90) reduces to the linear equation which is a special case, α = δ = 0 and γ + β = 0, of the equation (87). If γ + β = 0, then the transformation v = ( 1)v = ( 2β) 1/2 (v ), (91) 1 {2[( 1)u (γ + β) u + n( 1) + m]2 + β}, (92) where 2m(m 1) = γ and 2n(n 1) = β, transform equation (90) to the hypergeometric equation ( 1)u + [2(n + m + 1) (2n + 1)]u + (n + m)(n + m 1)u = 0. (93) If a 1 = 2, then equation (89) gives B 3 = b 3 4α, where b 3 is a constant, and ψ j = 0, j = 2, 3, 4, 5 only if b 3 = 2 and α = β = 0, γ = δ = 1 2. Therefore, with these values of the parameters, PVI has one-parameter family of solutions given by ( 1) 2 (v v) 2 = v(v 1) 2. (94) The transformation v = [( 1) u u ] 2 transforms equation (94) into the hypergeometric equation ( 1)u + (1 + 2)u + 1 u = 0. (95) 2 Case 3. A 0 = 0, A 2 = 0: (84), and φ 0 = φ 6 = 0 give B 0 = respectively. Then, one can obtain B 1 = 1 2 A 0A 1, and 2β ( 1) 2, A 2 0 = 8β ( 1) 2, and B 4 = 2α B 2 = 1 A 2 0 (+1) A 0 A 1 A A A [α + β( ) + γ( 1) + δ( 1)], B 3 = 1 A 0A 1 1 A (+1) A 1 + (2 + 1) 2 ( 1) A 2 1 [(α + β)( + 1) + (γ + δ)( 1)], (96) IJNS homepage:

12 270 International Journal of Nonlinear Science,Vol.8(2009),No.3,pp by solving ψ 1 = 0, φ j = 0, j = 2, 3 respectively. Then, φ 1 = φ 2 = ψ 5 = ψ 7 = ψ 8 = 0 identically and φ 4 = 0 gives ( 1)A 1 + ( 1)A 1 A 0 = 0. (97) If one lets A 0 = a 0 ( 1), where a2 0 = 8β. Then equation (97) implies that A 1 = a 1 is a constant. The equation ψ 6 = 0 now gives a 0 ( 1), where a 1 (a 1 2)[a a 0 a 1 + 4a 1 8(γ + δ α)] = 0, (a 0 + a 1 )[a a 0 a 1 + 4a 1 8(γ + δ + α)] = 0. (98) So, there are four distinct cases: i. a 1 = 2, a 0 + a 1 = 0, ii. a 1 = 2, a 0 + a 1 = 0, iii. a 1 = 2, a 0 + a 1 = 0, and iv. a 1 = 2, a 0 + a 1 = 0. If a 1 = 2, a 0 + a 1 = 0 and a 1 = 2, a 0 + a 1 = 0, then one can not choose B k, k = 0,..., 4 such that ψ j = 0, j = 2, 3, 4, 5. When a 1 = 2, a 0 + a 1 = 0, ψ j = 0, j = 2,..., 5 only if α = δ = 0, γ + β = 0, and then v satisfies (91). If a 1 = 2, a 0 = 2, then β = 1 2, B 0 = 1, B ( 1) 2 1 = 2 and ( 1) 2 B 2 = 1 [2α + 2γ( 1) + 2δ( 1) 2 + 1], B 3 = 1 [(1 2γ 2δ)( 1) 2α( + 1)]. (99) Then ψ j = 0, j = 2,..., 5 identically. Hence, we have the following theorem Theorem 2 The Painlevé VI equation admits a one-parameter family of solution characteried by 2 [( 1)v (v 1)] 2 = v 2 {2αv 2 [(2α + λ) + 2α λ]v + 2γ 2 + (2α + λ 4γ) + 2γ λ}, (100) where λ = 2γ + 2δ 1, if and only if β = 1 2. Equation (100) can be linearied as follows: If α = λ = 0, then equation (100) can be reduced to the following linear equation: ( 1)v = [(2γ) 1/2 ( 1) ]v. (101) This is a special case, α = 0, and β = 1 2, of equation (87). If α = 0 and λ = 0, then the solution of equation (100) is given by where w satisfies the following Riccati equation v = 1 λ [( 1)w2 2γ( 1) λ], (102) ( 1)w = ε[( 1)w 2 2γ( 1) λ], ε = ±1. (103) The transformation w = 2ε(y +ny) y, where 4n 2 = 1 2δ, transform equation (103) into the hypergeometric equation: If α = 0, then equation (100) can be written as ( 1)y + (2n + 1)( 1)y 1 λy = 0 (104) 4 2 [( 1)v (v 1)] 2 = v 2 (av f)(av g), (105) where f() = b( 1) + a, g() = c( 1) + a, a 2 = 2α, bc = 2γ, a(b + c) = 2α + λ. If b = c, that is, if 2(2α) 1/2 (2γ) 1/2 = 2α + 2γ + 2δ 1, then equation (105) is reduced to following Riccati equation ( 1)v = (2α) 1/2 v 2 [(2γ) 1/2 ( 1) + (2α) 1/2 ]v. (106) (106) is the special case, β = 1 2, of equation (87). If (2α) 1/2 (2γ) 1/2 = 2α + 2γ + 2δ 1, then the solution of equation (100) is given by v = fw2 g a(w 2 1), (107) IJNS for contribution: editor@nonlinearscience.org.uk

13 Ayman Sakka, Uğurhan Muğan: First-order Second-degree Equations Related with 271 where w solves the following Riccati equation The transformation ( 1)w = ε(fw 2 g), ε = ±1. (108) w = 2ε 1)y [( + n( 1) + m], (109) f y where 4n 2 = (b a)(c a), 4m 2 = a 2, transforms equation (108) into the following linear equation y = [ 2n m+1 1 b b b+a ]y 4( 1)(b b+a) [b(2a2 + 8nm ab ac) (b a)(2a 2 + 8nm ab ac) 4m(b a) + 4an]y. (110) Equation (110) is known as Huen s equation [19]. Case 4. A 0 = 0, A 2 = 0: In this case, equation (84), and φ 6 = φ 0 = 0 give B 4 = 2α, A 2 2 = 8α, B 0 = 2β respectively. Solving the equations ψ ( 1) 2 7 = 0, and φ j = 0, j = 3, 4 give B 3 = 1 2 A 2A 1, and Then, φ 2 = 0, yields B 2 = { 1 4 A 2( ) ( + 1)A 2A 1 A 1 ( 1) ( 1) A A2 1 A [β + γ( 1) + δ( 1)]}, B 1 = 1 2 {( + 1)A 1 + (2 + 1) ( 1) A 1 A 1 A 2 + A ( + 1)A2 2 4 ( 1) 2 [β( + 1) + (γ + δ)( 1)]. (111) ( 1)A 1 + ( 1)A 1 A 2 = 0. (112) and φ 5 = φ 1 = ψ 2 = ψ 8 = ψ 7 = 0 identically. Let A 2 = a 2 ( 1), where a2 2 = 8α, then equation (112) implies that A 1 = a 1 a 2 ( 1), where a 1 is a constant. The equation ψ 2 = 0 now gives a 1 [a 2 2+2a 2 a 1 4a 1 4a 2 +8(γ+δ β)] = 0, (a 2 +a 1 2)[a 2 2+2a 2 a 1 4a 1 4a 2 +8(γ+δ+β)] = 0. (113) So, there are four subcases to be considered: i. a 1 = 0, a 2 + a 1 = 2; ii. a 1 = 0, a 2 = 2; iii. a 1 = 0, a 1 = 2 a 2 ; and iv. a 1 = 0, a 2 = 2. If a 1 = 2 a 2, a 1 = 0, then one can not choose B k, k = 0,..., 4 so that ψ j = 0, j = 2,..., 5. When a 1 = 0, a 2 = 2, ψ j = 0, j = 2,..., 5 only if α+δ = (2α) 1/2, γ = β = 0. In this case, v satisfies the following Riccati equation ( 1)v = (2α) 1/2 v(v 1), (114) which is the special case, γ = β = 0, of the equation (87). When a 1 = 0, a 2 + a 1 2 = 0, then ψ j = 0, j = 2,..., 5 only if β = 0 and (2α) 1/2 (2γ) 1/2 (1 2δ) 1/2 1 = 0. Then v satisfies the following Riccati equation: ( 1)v = (2α) 1/2 v 2 [(2γ) 1/2 ( 1) + (2α) 1/2 ]v. (115) Equation (115) is the special case, β = 0, of (87). If a 1 = 0, a 2 = 2, then one has α = 1 2, B 4 = 1 2, B 3 =, B 2 = B 1 = 1 2 ( 1) 2 [2β + 2γ( 1) + 2δ( 1) ], (116) 1 [(2γ + 2δ 1)( 1) + 2β( + 1)]. ( 1) 2 Now, the equations ψ j = 0, j = 3, 4, 5, 6 are satisfied identically. Thus, PVI admits a one-parameter family of solution characteried by [( 1)v v(v 1)] 2 +2[λ 2 +(γ +β λ) γ]v 2 [(λ+γ +β) +β γ λ]v +2β 2 = 0, (117) where λ = δ 1 2, if and only if α = 1 2. The Lie point-discrete symmetry v = 1 v, α = β, β = α, γ = γ, δ = δ, = 1 of PVI [20] transforms solutions v(; 1 2, β, γ, δ) of equation (117) into solutions v( ; α, 1 2, γ, δ) of equation (100). IJNS homepage:

14 272 International Journal of Nonlinear Science,Vol.8(2009),No.3,pp Conclusion It is well known that for certain choice of parameters the Painlevé equations, PII-PVI, admit one parameter family of solutions, rational, algebraic and expressible in terms of the classical transcendental functions such as Airy, Bessel, Weber-Hermite, Whitteker, hypergeometric functions respectively. All these known one parameter family of solutions satisfy the Riccati equations. In this article, we investigated the first-order second-degree equations satisfying the Fuchs theorem concerning the absence of movable singular points except the poles, related with the Painlevé equations PII-PVI. By using these first-order second-degree equations, one parameter family of solutions of PII-PVI are also obtained. For the sake of completeness, we examine all possible cases, and hence some of the well known results as well as the new ones are obtained. Acknowledgments The work of UM is partially supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) under grand number 108T977. References [1] E.L. Ince: Ordinary Differential Equations, Dover: New York(1956) [2] Mark J. Ablowit, Alfred Ramani, Harvey Segur: A connection between nonlinear evolution equations and ordinary differential equations of P-type. I, J. Math. Phys., 21(4), (1980) [3] John Weiss, M. Tabor, George Carnevale: The Painlevé property for partial differential equations, J. Math. Phys., 24(3), (1983) [4] Jiuli Yin: Painlevé integrability, Bäcklund transformation and solitary solutions satability of modified DGH equation, International Journal of Nonlinear Science, 2(3), (2006) [5] Suping Qian: Painlevé analysis and symmetry reductions to the strong dispersive DGH equation, International Journal of Nonlinear Science, 1(2), (2006) [6] Roger Chalkley: New contributions to the related work of Paul Appell, Laarus Fuchs, Georg Hamel, and Paul Painlev on nonlinear differential equations whose solutions are free of movable branch points, J. Diff. Eq., 68, (1987) [7] Uğurhan Muğan, Fahd Jrad: Painlevé test and the first Painlevé hierarchy, J. Phys. A: Math. Gen., 32(45), (1999) [8] Uğurhan Muğan, Ayman Sakka: Second-order Second-degree Painlevé Equations Related with Painlevé I-VI Equations and Fuchsian Type Transformations, J. Math. Phys., 40(7), (1999) [9] Ayman Sakka: Second-order fourth-degree Painlevé-type equations, J. Phys. A: Math. Gen., 34(3), (2001) [10] Athanassios S. Fokas, Mark J. Ablowit: On a unified approach to transformations and elementary solutions of Painlevé equations, J. Math. Phys., 23, (1982) [11] Nikolai A. Lukashevich: Elementary solutions of certain Painlevé equations, Diff. Urav., 1(6), (1965) [12] Nikolai A. Lukashevich: Theory of the fourth Painlevé equation, Diff. Urav., 3(5), (1967) [13] Kauo Okamoto: Studies on the Painlevé equations.3. 2nd and 4th Painlevé equations, PII and PIV, Math. Ann., 275(2), (1986) IJNS for contribution: editor@nonlinearscience.org.uk

15 Ayman Sakka, Uğurhan Muğan: First-order Second-degree Equations Related with 273 [14] David W. Albrecht, Eliabeth L. Mansfield and Alice E. Milne: Algorithms for special integrals of ordinary differential equations, J. Phys. A: Math. Gen., 29(5), (1996) [15] Valerii I. Gromak: Solutions of Painlevé s fifth problem, Diff. Urav., 12(4), (1976) [16] Ayman Sakka, Uğurhan Muğan: Second-order second-degree Painlevé equations related to Painlevé IV,V,VI equations, J. Phys. A: Math. Gen., 31(10), (1998) [17] Nikolai A. Lukashevich, A.I. Yablonskii: On a set of solutions of the sixth Painlevé equation, Diff. Urav., 3(3), (1967) [18] Uğurhan Muğan, Ayman Sakka: Schlesinger Transformations For Painlevé VI Equation J. Math. Phys., 36, (1995) [19] E.T. Whittaker, G.N. Watson: A Course of Modern Analysis, MacMillan: New York (1943) [20] Marta Maocco: Rational solutions of the Painlevé VI equation J. Phys. A: Math. Gen., 34(11), (2001) IJNS homepage:

Bäcklund transformations for fourth-order Painlevé-type equations

Bäcklund transformations for fourth-order Painlevé-type equations Bäcklund transformations for fourth-order Painlevé-type equations A. H. Sakka 1 and S. R. Elshamy Department of Mathematics, Islamic University of Gaza P.O.Box 108, Rimae, Gaza, Palestine 1 e-mail: asakka@mail.iugaza.edu

More information

Painlevé Test and Higher Order Differential Equations

Painlevé Test and Higher Order Differential Equations Journal of Nonlinear Mathematical Physics Volume 9, Number 3 2002), 282 30 Article Painlevé Test and Higher Order Differential Equations Uğurhan MUĞAN and Fahd JRAD SUNY at Buffalo, Department of Mathematics,

More information

Second-order second-degree Painlevé equations related with Painlevé I VI equations and Fuchsian-type transformations

Second-order second-degree Painlevé equations related with Painlevé I VI equations and Fuchsian-type transformations Second-order second-degree Painlevé equations related with Painlevé I VI equations and Fuchsian-type transformations U. Muğan and A. Sakka Citation: J. Math. Phys. 40, 3569 (1999); doi: 10.1063/1.532909

More information

CURRICULUM VITAE. August 26, 2016

CURRICULUM VITAE. August 26, 2016 CURRICULUM VITAE August 26, 2016 Name: Address: Ayman Hashem Sakka Department of Mathematics, The Islamic University of Gaza, P.B.O 108, Gaza. Date of Birth: March, 1969 Phone(O): +970(8)2860700/1144 Phone(H):

More information

Transcendents defined by nonlinear fourth-order ordinary differential equations

Transcendents defined by nonlinear fourth-order ordinary differential equations J. Phys. A: Math. Gen. 3 999) 999 03. Printed in the UK PII: S0305-447099)9603-6 Transcendents defined by nonlinear fourth-order ordinary differential equations Nicolai A Kudryashov Department of Applied

More information

arxiv:nlin/ v2 [nlin.si] 9 Oct 2002

arxiv:nlin/ v2 [nlin.si] 9 Oct 2002 Journal of Nonlinear Mathematical Physics Volume 9, Number 1 2002), 21 25 Letter On Integrability of Differential Constraints Arising from the Singularity Analysis S Yu SAKOVICH Institute of Physics, National

More information

Compacton Solutions and Peakon Solutions for a Coupled Nonlinear Wave Equation

Compacton Solutions and Peakon Solutions for a Coupled Nonlinear Wave Equation ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol 4(007) No1,pp31-36 Compacton Solutions Peakon Solutions for a Coupled Nonlinear Wave Equation Dianchen Lu, Guangjuan

More information

Travelling Wave Solutions for the Gilson-Pickering Equation by Using the Simplified G /G-expansion Method

Travelling Wave Solutions for the Gilson-Pickering Equation by Using the Simplified G /G-expansion Method ISSN 1749-3889 (print, 1749-3897 (online International Journal of Nonlinear Science Vol8(009 No3,pp368-373 Travelling Wave Solutions for the ilson-pickering Equation by Using the Simplified /-expansion

More information

The Higher Dimensional Bateman Equation and Painlevé Analysis of Nonintegrable Wave Equations

The Higher Dimensional Bateman Equation and Painlevé Analysis of Nonintegrable Wave Equations Symmetry in Nonlinear Mathematical Physics 1997, V.1, 185 192. The Higher Dimensional Bateman Equation and Painlevé Analysis of Nonintegrable Wave Equations Norbert EULER, Ove LINDBLOM, Marianna EULER

More information

arxiv:nlin/ v1 [nlin.si] 29 May 2002

arxiv:nlin/ v1 [nlin.si] 29 May 2002 arxiv:nlin/0205063v1 [nlinsi] 29 May 2002 On a q-difference Painlevé III Equation: II Rational Solutions Kenji KAJIWARA Graduate School of Mathematics, Kyushu University 6-10-1 Hakozaki, Higashi-ku, Fukuoka

More information

On the Transformations of the Sixth Painlevé Equation

On the Transformations of the Sixth Painlevé Equation Journal of Nonlinear Mathematical Physics Volume 10, Supplement 2 (2003), 57 68 SIDE V On the Transformations of the Sixth Painlevé Equation Valery I GROMAK andgalinafilipuk Department of differential

More information

arxiv:solv-int/ v1 20 Oct 1993

arxiv:solv-int/ v1 20 Oct 1993 Casorati Determinant Solutions for the Discrete Painlevé-II Equation Kenji Kajiwara, Yasuhiro Ohta, Junkichi Satsuma, Basil Grammaticos and Alfred Ramani arxiv:solv-int/9310002v1 20 Oct 1993 Department

More information

Linearization of Mirror Systems

Linearization of Mirror Systems Journal of Nonlinear Mathematical Physics 00, Volume 9, Supplement 1, 34 4 Proceedings: Hong Kong Linearization of Mirror Systems Tat Leung YEE Department of Mathematics, The Hong Kong University of Science

More information

Bäcklund transformation and special solutions for Drinfeld Sokolov Satsuma Hirota system of coupled equations

Bäcklund transformation and special solutions for Drinfeld Sokolov Satsuma Hirota system of coupled equations arxiv:nlin/0102001v1 [nlin.si] 1 Feb 2001 Bäcklund transformation and special solutions for Drinfeld Sokolov Satsuma Hirota system of coupled equations Ayşe Karasu (Kalkanli) and S Yu Sakovich Department

More information

New Exact Travelling Wave Solutions for Regularized Long-wave, Phi-Four and Drinfeld-Sokolov Equations

New Exact Travelling Wave Solutions for Regularized Long-wave, Phi-Four and Drinfeld-Sokolov Equations ISSN 1749-3889 print), 1749-3897 online) International Journal of Nonlinear Science Vol.008) No.1,pp.4-5 New Exact Travelling Wave Solutions for Regularized Long-wave, Phi-Four and Drinfeld-Sokolov Euations

More information

Second-order second degree Painlevé equations related with Painlevé I, II, III equations

Second-order second degree Painlevé equations related with Painlevé I, II, III equations J. Phys. A: Math. Gen. 30 1997 5159 5177. Printed in the UK PII: S0305-44709780859-1 Second-order second degree Painlevé equations related with Painlevé I, II, III equations A Sakka and U Muğan Department

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 60 (00) 3088 3097 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Symmetry

More information

The Traveling Wave Solutions for Nonlinear Partial Differential Equations Using the ( G. )-expansion Method

The Traveling Wave Solutions for Nonlinear Partial Differential Equations Using the ( G. )-expansion Method ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.8(009) No.4,pp.435-447 The Traveling Wave Solutions for Nonlinear Partial Differential Equations Using the ( )-expansion

More information

On the singularities of non-linear ODEs

On the singularities of non-linear ODEs On the singularities of non-linear ODEs Galina Filipuk Institute of Mathematics University of Warsaw G.Filipuk@mimuw.edu.pl Collaborators: R. Halburd (London), R. Vidunas (Tokyo), R. Kycia (Kraków) 1 Plan

More information

Solution of the Coupled Klein-Gordon Schrödinger Equation Using the Modified Decomposition Method

Solution of the Coupled Klein-Gordon Schrödinger Equation Using the Modified Decomposition Method ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.4(2007) No.3,pp.227-234 Solution of the Coupled Klein-Gordon Schrödinger Equation Using the Modified Decomposition

More information

New Solutions for Some Important Partial Differential Equations

New Solutions for Some Important Partial Differential Equations ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.4(2007) No.2,pp.109-117 New Solutions for Some Important Partial Differential Equations Ahmed Hassan Ahmed Ali

More information

MACSYMA PROGRAM FOR THE PAINLEVÉ TEST FOR NONLINEAR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

MACSYMA PROGRAM FOR THE PAINLEVÉ TEST FOR NONLINEAR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS . MACSYMA PROGRAM FOR THE PAINLEVÉ TEST FOR NONLINEAR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS Willy Hereman Mathematics Department and Center for the Mathematical Sciences University of Wisconsin at

More information

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized ISSN 749-889 (print), 749-897 (online) International Journal of Nonlinear Science Vol.8(2009) No.4,pp.448-455 Homotopy Perturbation Method for the Fisher s Equation and Its Generalized M. Matinfar,M. Ghanbari

More information

arxiv: v1 [nlin.si] 23 Aug 2007

arxiv: v1 [nlin.si] 23 Aug 2007 arxiv:0708.3247v1 [nlin.si] 23 Aug 2007 A new integrable generalization of the Korteweg de Vries equation Ayşe Karasu-Kalkanlı 1), Atalay Karasu 2), Anton Sakovich 3), Sergei Sakovich 4), Refik Turhan

More information

Travelling wave solutions for a CBS equation in dimensions

Travelling wave solutions for a CBS equation in dimensions AMERICAN CONFERENCE ON APPLIED MATHEMATICS (MATH '8), Harvard, Massachusetts, USA, March -6, 8 Travelling wave solutions for a CBS equation in + dimensions MARIA LUZ GANDARIAS University of Cádiz Department

More information

Linear and nonlinear ODEs and middle convolution

Linear and nonlinear ODEs and middle convolution Linear and nonlinear ODEs and middle convolution Galina Filipuk Institute of Mathematics University of Warsaw G.Filipuk@mimuw.edu.pl Collaborator: Y. Haraoka (Kumamoto University) 1 Plan of the Talk: Linear

More information

Integrability approaches to differential equations

Integrability approaches to differential equations XXIV Fall Workshop on Geometry and Physics Zaragoza, CUD, September 2015 What is integrability? On a fairly imprecise first approximation, we say integrability is the exact solvability or regular behavior

More information

The Construction of Alternative Modified KdV Equation in (2 + 1) Dimensions

The Construction of Alternative Modified KdV Equation in (2 + 1) Dimensions Proceedings of Institute of Mathematics of NAS of Ukraine 00, Vol. 3, Part 1, 377 383 The Construction of Alternative Modified KdV Equation in + 1) Dimensions Kouichi TODA Department of Physics, Keio University,

More information

New Exact Solutions for MKdV-ZK Equation

New Exact Solutions for MKdV-ZK Equation ISSN 1749-3889 (print) 1749-3897 (online) International Journal of Nonlinear Science Vol.8(2009) No.3pp.318-323 New Exact Solutions for MKdV-ZK Equation Libo Yang 13 Dianchen Lu 1 Baojian Hong 2 Zengyong

More information

Electrostatic Charged Two-Phase Turbulent Flow Model

Electrostatic Charged Two-Phase Turbulent Flow Model ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.5(2008) No.1,pp.65-70 Electrostatic Charged Two-Phase Turbulent Flow Model Jianlong Wen, Jing Wang, Zhentao Wang,

More information

Numerical Simulation of the Generalized Hirota-Satsuma Coupled KdV Equations by Variational Iteration Method

Numerical Simulation of the Generalized Hirota-Satsuma Coupled KdV Equations by Variational Iteration Method ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.7(29) No.1,pp.67-74 Numerical Simulation of the Generalized Hirota-Satsuma Coupled KdV Equations by Variational

More information

Hongliang Zhang 1, Dianchen Lu 2

Hongliang Zhang 1, Dianchen Lu 2 ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.9(010) No.,pp.5-56 Exact Solutions of the Variable Coefficient Burgers-Fisher Equation with Forced Term Hongliang

More information

New Approach of ( Ǵ/G ) Expansion Method. Applications to KdV Equation

New Approach of ( Ǵ/G ) Expansion Method. Applications to KdV Equation Journal of Mathematics Research; Vol. 6, No. ; ISSN 96-9795 E-ISSN 96-989 Published by Canadian Center of Science and Education New Approach of Ǵ/G Expansion Method. Applications to KdV Equation Mohammad

More information

Special Function Solutions of a Class of Certain Non-autonomous Nonlinear Ordinary Differential Equations IJSER. where % "!

Special Function Solutions of a Class of Certain Non-autonomous Nonlinear Ordinary Differential Equations IJSER. where % ! International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 Special Function Solutions of a Class of Certain Non-autonomous Nonlinear Ordinary Differential Equations,, $ Abstract

More information

The (G'/G) - Expansion Method for Finding Traveling Wave Solutions of Some Nonlinear Pdes in Mathematical Physics

The (G'/G) - Expansion Method for Finding Traveling Wave Solutions of Some Nonlinear Pdes in Mathematical Physics Vol.3, Issue., Jan-Feb. 3 pp-369-376 ISSN: 49-6645 The ('/) - Expansion Method for Finding Traveling Wave Solutions of Some Nonlinear Pdes in Mathematical Physics J.F.Alzaidy Mathematics Department, Faculty

More information

(Received 05 August 2013, accepted 15 July 2014)

(Received 05 August 2013, accepted 15 July 2014) ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.18(2014) No.1,pp.71-77 Spectral Collocation Method for the Numerical Solution of the Gardner and Huxley Equations

More information

ON THE SYMMETRIES OF INTEGRABLE PARTIAL DIFFERENCE EQUATIONS

ON THE SYMMETRIES OF INTEGRABLE PARTIAL DIFFERENCE EQUATIONS Proceedings of the International Conference on Difference Equations, Special Functions and Orthogonal Polynomials, World Scientific (2007 ON THE SYMMETRIES OF INTEGRABLE PARTIAL DIFFERENCE EQUATIONS ANASTASIOS

More information

Second-order second-degree Painlevé equations related to Painlevé IV,V,VI equations

Second-order second-degree Painlevé equations related to Painlevé IV,V,VI equations J. Phys. A: Math. Gen. 31 1998) 471 490. Printed in the UK PII: S0305-447098)8567- Second-order second-degree Painlevé equations related to Painlevé IV,V,VI equations A Sakka and U Muğan Department of

More information

A New Technique in Nonlinear Singularity Analysis

A New Technique in Nonlinear Singularity Analysis Publ. RIMS, Kyoto Univ. 39 (2003), 435 449 A New Technique in Nonlinear Singularity Analysis By Pilar R. Gordoa, Nalini Joshi and Andrew Pickering Abstract The test for singularity structure proposed by

More information

Numerical Solution of Second Order Singularly Perturbed Differential Difference Equation with Negative Shift. 1 Introduction

Numerical Solution of Second Order Singularly Perturbed Differential Difference Equation with Negative Shift. 1 Introduction ISSN 749-3889 print), 749-3897 online) International Journal of Nonlinear Science Vol.8204) No.3,pp.200-209 Numerical Solution of Second Order Singularly Perturbed Differential Difference Equation with

More information

Integrability, Nonintegrability and the Poly-Painlevé Test

Integrability, Nonintegrability and the Poly-Painlevé Test Integrability, Nonintegrability and the Poly-Painlevé Test Rodica D. Costin Sept. 2005 Nonlinearity 2003, 1997, preprint, Meth.Appl.An. 1997, Inv.Math. 2001 Talk dedicated to my professor, Martin Kruskal.

More information

Soliton and Periodic Solutions to the Generalized Hirota-Satsuma Coupled System Using Trigonometric and Hyperbolic Function Methods.

Soliton and Periodic Solutions to the Generalized Hirota-Satsuma Coupled System Using Trigonometric and Hyperbolic Function Methods. ISSN 1749-889 (print), 1749-897 (online) International Journal of Nonlinear Science Vol.14(01) No.,pp.150-159 Soliton and Periodic Solutions to the Generalized Hirota-Satsuma Coupled System Using Trigonometric

More information

Invariants for Some Rational Recursive Sequences with Periodic Coefficients

Invariants for Some Rational Recursive Sequences with Periodic Coefficients Invariants for Some Rational Recursive Sequences with Periodic Coefficients By J.FEUER, E.J.JANOWSKI, and G.LADAS Department of Mathematics University of Rhode Island Kingston, R.I. 02881-0816, USA Abstract

More information

New approach for tanh and extended-tanh methods with applications on Hirota-Satsuma equations

New approach for tanh and extended-tanh methods with applications on Hirota-Satsuma equations Volume 28, N. 1, pp. 1 14, 2009 Copyright 2009 SBMAC ISSN 0101-8205 www.scielo.br/cam New approach for tanh and extended-tanh methods with applications on Hirota-Satsuma equations HASSAN A. ZEDAN Mathematics

More information

Ordinary Differential Equations ( Math 6302)

Ordinary Differential Equations ( Math 6302) Ordinary Differential Equations ( Math 6302) Prof. Dr. Ayman Hashem Sakka Islamic University of Gaza Faculty of Science Department of Mathematics Second Semester 2013-2014 Semester: Spring 2014 Instructor:

More information

QUADRATIC EQUATIONS AND MONODROMY EVOLVING DEFORMATIONS

QUADRATIC EQUATIONS AND MONODROMY EVOLVING DEFORMATIONS QUADRATIC EQUATIONS AND MONODROMY EVOLVING DEFORMATIONS YOUSUKE OHYAMA 1. Introduction In this paper we study a special class of monodromy evolving deformations (MED). Chakravarty and Ablowitz [4] showed

More information

A MULTI-COMPONENT LAX INTEGRABLE HIERARCHY WITH HAMILTONIAN STRUCTURE

A MULTI-COMPONENT LAX INTEGRABLE HIERARCHY WITH HAMILTONIAN STRUCTURE Pacific Journal of Applied Mathematics Volume 1, Number 2, pp. 69 75 ISSN PJAM c 2008 Nova Science Publishers, Inc. A MULTI-COMPONENT LAX INTEGRABLE HIERARCHY WITH HAMILTONIAN STRUCTURE Wen-Xiu Ma Department

More information

Coupled KdV Equations of Hirota-Satsuma Type

Coupled KdV Equations of Hirota-Satsuma Type Journal of Nonlinear Mathematical Physics 1999, V.6, N 3, 255 262. Letter Coupled KdV Equations of Hirota-Satsuma Type S.Yu. SAKOVICH Institute of Physics, National Academy of Sciences, P.O. 72, Minsk,

More information

Symmetries and Group Invariant Reductions of Integrable Partial Difference Equations

Symmetries and Group Invariant Reductions of Integrable Partial Difference Equations Proceedings of 0th International Conference in MOdern GRoup ANalysis 2005, 222 230 Symmetries and Group Invariant Reductions of Integrable Partial Difference Equations A. TONGAS, D. TSOUBELIS and V. PAPAGEORGIOU

More information

Group Invariant Solutions of Complex Modified Korteweg-de Vries Equation

Group Invariant Solutions of Complex Modified Korteweg-de Vries Equation International Mathematical Forum, 4, 2009, no. 28, 1383-1388 Group Invariant Solutions of Complex Modified Korteweg-de Vries Equation Emanullah Hızel 1 Department of Mathematics, Faculty of Science and

More information

A Note On Solitary Wave Solutions of the Compound Burgers-Korteweg-de Vries Equation

A Note On Solitary Wave Solutions of the Compound Burgers-Korteweg-de Vries Equation A Note On Solitary Wave Solutions of the Compound Burgers-Korteweg-de Vries Equation arxiv:math/6768v1 [math.ap] 6 Jul 6 Claire David, Rasika Fernando, and Zhaosheng Feng Université Pierre et Marie Curie-Paris

More information

B-splines Collocation Algorithms for Solving Numerically the MRLW Equation

B-splines Collocation Algorithms for Solving Numerically the MRLW Equation ISSN 1749-889 (print), 1749-897 (online) International Journal of Nonlinear Science Vol.8(2009) No.2,pp.11-140 B-splines Collocation Algorithms for Solving Numerically the MRLW Equation Saleh M. Hassan,

More information

The Exact Solitary Wave Solutions for a Family of BBM Equation

The Exact Solitary Wave Solutions for a Family of BBM Equation ISSN 749-3889(print),749-3897(online) International Journal of Nonlinear Science Vol. (2006) No., pp. 58-64 The Exact Solitary Wave Solutions f a Family of BBM Equation Lixia Wang, Jiangbo Zhou, Lihong

More information

THE LAX PAIR FOR THE MKDV HIERARCHY. Peter A. Clarkson, Nalini Joshi & Marta Mazzocco

THE LAX PAIR FOR THE MKDV HIERARCHY. Peter A. Clarkson, Nalini Joshi & Marta Mazzocco Séminaires & Congrès 14, 006, p. 53 64 THE LAX PAIR FOR THE MKDV HIERARCHY by Peter A. Clarkson, Nalini Joshi & Marta Mazzocco Abstract. In this paper we give an algorithmic method of deriving the Lax

More information

Painlevé Analysis, Lie Symmetries and Exact Solutions for Variable Coefficients Benjamin Bona Mahony Burger (BBMB) Equation

Painlevé Analysis, Lie Symmetries and Exact Solutions for Variable Coefficients Benjamin Bona Mahony Burger (BBMB) Equation Commun. Theor. Phys. 60 (2013) 175 182 Vol. 60, No. 2, August 15, 2013 Painlevé Analysis, Lie Symmetries and Exact Solutions for Variable Coefficients Benjamin Bona Mahony Burger (BBMB) Equation Vikas

More information

Geometric Asymptotics

Geometric Asymptotics Geometric Asymptotics Nalini Joshi @monsoon0 Odlyzko 011 Supported by the Australian Research Council Motion Gridlock in India http://thedailynewnation.com/news/5791/a-total-trafficchaos-at-shahbagh-intersection-in-city-as-vehicles-got-stuck-up-to-make-waythrough-the-massive-gridlock-this-photo-was-taken-on-saturday.html

More information

Local and global finite branching of solutions of ODEs in the complex plane

Local and global finite branching of solutions of ODEs in the complex plane Local and global finite branching of solutions of ODEs in the complex plane Workshop on Singularities and Nonlinear ODEs Thomas Kecker University College London / University of Portsmouth Warszawa, 7 9.11.2014

More information

Department of Mathematics Luleå University of Technology, S Luleå, Sweden. Abstract

Department of Mathematics Luleå University of Technology, S Luleå, Sweden. Abstract Nonlinear Mathematical Physics 1997, V.4, N 4, 10 7. Transformation Properties of ẍ + f 1 t)ẋ + f t)x + f t)x n = 0 Norbert EULER Department of Mathematics Luleå University of Technology, S-971 87 Luleå,

More information

A Method for Obtaining Darboux Transformations

A Method for Obtaining Darboux Transformations Journal of Nonlinear Mathematical Physics 998, V.5, N, 40 48. Letter A Method for Obtaining Darbou Transformations Baoqun LU,YongHE and Guangjiong NI Department of Physics, Fudan University, 00433, Shanghai,

More information

Attractivity of the Recursive Sequence x n+1 = (α βx n 1 )F (x n )

Attractivity of the Recursive Sequence x n+1 = (α βx n 1 )F (x n ) ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.7(2009) No.2,pp.201-206 Attractivity of the Recursive Sequence (α βx n 1 )F (x n ) A. M. Ahmed 1,, Alaa E. Hamza

More information

arxiv:nlin/ v2 [nlin.si] 14 Sep 2001

arxiv:nlin/ v2 [nlin.si] 14 Sep 2001 Second order Lax pairs of nonlinear partial differential equations with Schwarz variants arxiv:nlin/0108045v2 [nlin.si] 14 Sep 2001 Sen-yue Lou 1,2,3, Xiao-yan Tang 2,3, Qing-Ping Liu 1,4,3 and T. Fukuyama

More information

A Numerical Algorithm for Finding Positive Solutions of Superlinear Dirichlet Problem

A Numerical Algorithm for Finding Positive Solutions of Superlinear Dirichlet Problem ISSN 1479-3889 (print), 1479-3897 (online) International Journal of Nonlinear Science Vol.3(2007) No.1,pp.27-31 A Numerical Algorithm for Finding Positive Solutions of Superlinear Dirichlet Problem G.A.Afrouzi

More information

arxiv: v2 [nlin.si] 3 Feb 2016

arxiv: v2 [nlin.si] 3 Feb 2016 On Airy Solutions of the Second Painlevé Equation Peter A. Clarkson School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7NF, UK P.A.Clarkson@kent.ac.uk October

More information

Chebyshev Collocation Spectral Method for Solving the RLW Equation

Chebyshev Collocation Spectral Method for Solving the RLW Equation ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.7(2009) No.2,pp.131-142 Chebyshev Collocation Spectral Method for Solving the RLW Equation A. H. A. Ali Mathematics

More information

Exact Travelling Wave Solutions of the Coupled Klein-Gordon Equation by the Infinite Series Method

Exact Travelling Wave Solutions of the Coupled Klein-Gordon Equation by the Infinite Series Method Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-9466 Vol. 6, Issue (June 0) pp. 3 3 (Previously, Vol. 6, Issue, pp. 964 97) Applications and Applied Mathematics: An International Journal (AAM)

More information

Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable Coefficients

Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable Coefficients Contemporary Engineering Sciences, Vol. 11, 2018, no. 16, 779-784 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2018.8262 Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable

More information

Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type Equation

Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type Equation Contemporary Engineering Sciences Vol. 11 2018 no. 16 785-791 HIKARI Ltd www.m-hikari.com https://doi.org/10.12988/ces.2018.8267 Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type

More information

A Generalization of the Sine-Gordon Equation to 2+1 Dimensions

A Generalization of the Sine-Gordon Equation to 2+1 Dimensions Journal of Nonlinear Mathematical Physics Volume 11, Number (004), 164 179 Article A Generalization of the Sine-Gordon Equation to +1 Dimensions PGESTÉVEZ and J PRADA Area de Fisica Teórica, Facultad de

More information

Estimation of Hausdorff Measure of Fractals Based on Genetic Algorithm

Estimation of Hausdorff Measure of Fractals Based on Genetic Algorithm ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.4(2007) No.3,pp.208-212 Estimation of Hausdorff Measure of Fractals Based on Genetic Algorithm Li-Feng Xi 1, Qi-Li

More information

On a New Aftertreatment Technique for Differential Transformation Method and its Application to Non-linear Oscillatory Systems

On a New Aftertreatment Technique for Differential Transformation Method and its Application to Non-linear Oscillatory Systems ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.8(2009) No.4,pp.488-497 On a New Aftertreatment Technique for Differential Transformation Method and its Application

More information

Symmetry reductions and travelling wave solutions for a new integrable equation

Symmetry reductions and travelling wave solutions for a new integrable equation Symmetry reductions and travelling wave solutions for a new integrable equation MARIA LUZ GANDARIAS University of Cádiz Department of Mathematics PO.BOX 0, 50 Puerto Real, Cádiz SPAIN marialuz.gandarias@uca.es

More information

Cubic B-spline Collocation Method for Fourth Order Boundary Value Problems. 1 Introduction

Cubic B-spline Collocation Method for Fourth Order Boundary Value Problems. 1 Introduction ISSN 1749-3889 print, 1749-3897 online International Journal of Nonlinear Science Vol.142012 No.3,pp.336-344 Cubic B-spline Collocation Method for Fourth Order Boundary Value Problems K.N.S. Kasi Viswanadham,

More information

Special solutions of the third and fifth Painlevé equations and vortex solutions of the complex Sine-Gordon equations

Special solutions of the third and fifth Painlevé equations and vortex solutions of the complex Sine-Gordon equations Special solutions of the third and fifth Painlevé equations and vortex solutions of the complex Sine-Gordon equations Peter A Clarkson School of Mathematics, Statistics and Actuarial Science University

More information

Group analysis, nonlinear self-adjointness, conservation laws, and soliton solutions for the mkdv systems

Group analysis, nonlinear self-adjointness, conservation laws, and soliton solutions for the mkdv systems ISSN 139-5113 Nonlinear Analysis: Modelling Control, 017, Vol., No. 3, 334 346 https://doi.org/10.15388/na.017.3.4 Group analysis, nonlinear self-adjointness, conservation laws, soliton solutions for the

More information

The Box-Counting Measure of the Star Product Surface

The Box-Counting Measure of the Star Product Surface ISSN 79-39 (print), 79-397 (online) International Journal of Nonlinear Science Vol.() No.3,pp.- The Box-Counting Measure of the Star Product Surface Tao Peng, Zhigang Feng Faculty of Science, Jiangsu University

More information

Flow and Natural Convection Heat Transfer in a Power Law Fluid Past a Vertical Plate with Heat Generation

Flow and Natural Convection Heat Transfer in a Power Law Fluid Past a Vertical Plate with Heat Generation ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.7(2009) No.1,pp.50-56 Flow and Natural Convection Heat Transfer in a Power Law Fluid Past a Vertical Plate with

More information

On the Well-posedness and Stability of Peakons for a Generalized Camassa-Holm Equation

On the Well-posedness and Stability of Peakons for a Generalized Camassa-Holm Equation ISSN 1479-3889 (print), 1479-3897 (online) International Journal of Nonlinear Science Vol.1 (006) No.3, pp.139-148 On the Well-posedness and Stability of Peakons for a Generalized Camassa-Holm Equation

More information

arxiv: v1 [math-ph] 17 Sep 2008

arxiv: v1 [math-ph] 17 Sep 2008 arxiv:080986v [math-ph] 7 Sep 008 New solutions for the modified generalized Degasperis Procesi equation Alvaro H Salas Department of Mathematics Universidad de Caldas Manizales Colombia Universidad Nacional

More information

) -Expansion Method for Solving (2+1) Dimensional PKP Equation. The New Generalized ( G. 1 Introduction. ) -expansion method

) -Expansion Method for Solving (2+1) Dimensional PKP Equation. The New Generalized ( G. 1 Introduction. ) -expansion method ISSN 749-3889 (print, 749-3897 (online International Journal of Nonlinear Science Vol.4(0 No.,pp.48-5 The New eneralized ( -Expansion Method for Solving (+ Dimensional PKP Equation Rajeev Budhiraja, R.K.

More information

Diophantine integrability

Diophantine integrability Loughborough University Institutional Repository Diophantine integrability This item was submitted to Loughborough University's Institutional Repository by the/an author. Additional Information: This pre-print

More information

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are real numbers. 1

More information

Introductions to ExpIntegralEi

Introductions to ExpIntegralEi Introductions to ExpIntegralEi Introduction to the exponential integrals General The exponential-type integrals have a long history. After the early developments of differential calculus, mathematicians

More information

Studies on Integrability for Nonlinear Dynamical Systems and its Applications

Studies on Integrability for Nonlinear Dynamical Systems and its Applications Studies on Integrability for Nonlinear Dynamical Systems and its Applications Koichi Kondo Division of Mathematical Science Department of Informatics and Mathematical Science Graduate School of Engineering

More information

A Differential Quadrature Algorithm for the Numerical Solution of the Second-Order One Dimensional Hyperbolic Telegraph Equation

A Differential Quadrature Algorithm for the Numerical Solution of the Second-Order One Dimensional Hyperbolic Telegraph Equation ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.13(01) No.3,pp.59-66 A Differential Quadrature Algorithm for the Numerical Solution of the Second-Order One Dimensional

More information

Exact solutions through symmetry reductions for a new integrable equation

Exact solutions through symmetry reductions for a new integrable equation Exact solutions through symmetry reductions for a new integrable equation MARIA LUZ GANDARIAS University of Cádiz Department of Mathematics PO.BOX, 1151 Puerto Real, Cádiz SPAIN marialuz.gandarias@uca.es

More information

Closed Form Solutions

Closed Form Solutions Closed Form Solutions Mark van Hoeij 1 Florida State University ISSAC 2017 1 Supported by NSF 1618657 1 / 26 What is a closed form solution? Example: Solve this equation for y = y(x). y = 4 x 3 (1 x) 2

More information

Moving Boundary Problems for the Harry Dym Equation & Reciprocal Associates

Moving Boundary Problems for the Harry Dym Equation & Reciprocal Associates Moving Boundary Problems for the Harry Dym Equation & Reciprocal Associates Colin Rogers Australian Research Council Centre of Excellence for Mathematics & Statistics of Complex Systems & The University

More information

Flat Chain and Flat Cochain Related to Koch Curve

Flat Chain and Flat Cochain Related to Koch Curve ISSN 1479-3889 (print), 1479-3897 (online) International Journal of Nonlinear Science Vol. 3 (2007) No. 2, pp. 144-149 Flat Chain and Flat Cochain Related to Koch Curve Lifeng Xi Institute of Mathematics,

More information

2. The generalized Benjamin- Bona-Mahony (BBM) equation with variable coefficients [30]

2. The generalized Benjamin- Bona-Mahony (BBM) equation with variable coefficients [30] ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.12(2011) No.1,pp.95-99 The Modified Sine-Cosine Method and Its Applications to the Generalized K(n,n) and BBM Equations

More information

New Exact Solutions to NLS Equation and Coupled NLS Equations

New Exact Solutions to NLS Equation and Coupled NLS Equations Commun. Theor. Phys. (Beijing, China 4 (2004 pp. 89 94 c International Academic Publishers Vol. 4, No. 2, February 5, 2004 New Exact Solutions to NLS Euation Coupled NLS Euations FU Zun-Tao, LIU Shi-Da,

More information

The Modified Variational Iteration Method for Solving Linear and Nonlinear Ordinary Differential Equations

The Modified Variational Iteration Method for Solving Linear and Nonlinear Ordinary Differential Equations Australian Journal of Basic and Applied Sciences, 5(10): 406-416, 2011 ISSN 1991-8178 The Modified Variational Iteration Method for Solving Linear and Nonlinear Ordinary Differential Equations 1 M.A. Fariborzi

More information

Some Elliptic Traveling Wave Solutions to the Novikov-Veselov Equation

Some Elliptic Traveling Wave Solutions to the Novikov-Veselov Equation Progress In Electromagnetics Research Symposium 006, Cambridge, USA, March 6-9 59 Some Elliptic Traveling Wave Solutions to the Novikov-Veselov Equation J. Nickel, V. S. Serov, and H. W. Schürmann University

More information

Painlev~ analysis and integrability of the damped anharmonic oscillator equation

Painlev~ analysis and integrability of the damped anharmonic oscillator equation PRAMANA journal of physics C(') Printed in India Vol. 45, No. 4, October 1995 pp. 305-309 Painlev~ analysis and integrability of the damped anharmonic oscillator equation S PAUL RAJ and S RAJASEKAR* Department

More information

Singularities, Algebraic entropy and Integrability of discrete Systems

Singularities, Algebraic entropy and Integrability of discrete Systems Singularities, Algebraic entropy and Integrability of discrete Systems K.M. Tamizhmani Pondicherry University, India. Indo-French Program for Mathematics The Institute of Mathematical Sciences, Chennai-2016

More information

Discrete systems related to some equations of the Painlevé-Gambier classification

Discrete systems related to some equations of the Painlevé-Gambier classification Discrete systems related to some equations of the Painlevé-Gambier classification S. Lafortune, B. Grammaticos, A. Ramani, and P. Winternitz CRM-2635 October 1999 LPTM et GMPIB, Université Paris VII, Tour

More information

Closed Form Solutions

Closed Form Solutions Closed Form Solutions Mark van Hoeij 1 Florida State University Slides of this talk: www.math.fsu.edu/ hoeij/issac2017.pdf 1 Supported by NSF 1618657 1 / 29 What is a closed form solution? Example: Solve

More information

Computational Solutions for the Korteweg devries Equation in Warm Plasma

Computational Solutions for the Korteweg devries Equation in Warm Plasma COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 16(1, 13-18 (1 Computational Solutions for the Korteweg devries Equation in Warm Plasma E.K. El-Shewy*, H.G. Abdelwahed, H.M. Abd-El-Hamid. Theoretical Physics

More information

MATH 423 Linear Algebra II Lecture 10: Inverse matrix. Change of coordinates.

MATH 423 Linear Algebra II Lecture 10: Inverse matrix. Change of coordinates. MATH 423 Linear Algebra II Lecture 10: Inverse matrix. Change of coordinates. Let V be a vector space and α = [v 1,...,v n ] be an ordered basis for V. Theorem 1 The coordinate mapping C : V F n given

More information

Second Order Lax Pairs of Nonlinear Partial Differential Equations with Schwarzian Forms

Second Order Lax Pairs of Nonlinear Partial Differential Equations with Schwarzian Forms Second Order Lax Pairs of Nonlinear Partial Differential Equations with Schwarzian Forms Sen-yue Lou a b c, Xiao-yan Tang a b, Qing-Ping Liu b d, and T. Fukuyama e f a Department of Physics, Shanghai Jiao

More information

Factorial2. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Factorial2. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation Factorial Notations Traditional name Double factorial Traditional notation n Mathematica StandardForm notation Factorialn Primary definition n 06.0.0.000.0 cos n 4 n n Specific values Specialized values

More information