Evaluation of a Prototype Magnetic Gear

Size: px
Start display at page:

Download "Evaluation of a Prototype Magnetic Gear"

Transcription

1 Evaluation of a Prototype Magnetic Gear S. Gerber and R-J. Wang Department of Electrical and Electronic Engineering Stellenbosch University Matieland 72, South Africa sgerber@sun.ac.za Abstract In this paper, the design of a prototype concentrictype magnetic gear is evaluated. The effects that the mechanical bridges connecting the modulator segments have on the performance of the gear have been analyzed by using detailed twodimensional (2D) finite element (FE) analysis. The magnetic gear suffers significantly from end-effects, which result in a considerable decrease in the peak torque capability as well as excessive losses under high-speed operation. Three-dimensional (D) FE analysis is employed to identify the origin of the undesired endeffects and to determine which structural components have the greatest negative impact. Insight is then gained into how the prototype could be modified to reduce these end-effects. I. I NTRODUCTION In recent years there has been growing interest in the research of magnetic gears. This can be attributed to the availability of high energy density magnetic material and more importantly the novel topologies that can significantly increase the torque density of magnetic gears [1]. The unique advantages of magnetic gears over their mechanical counterparts are contact-less torque transfer, inherent over-load protection, reduced noise, high efficiency and low or no maintenance operation. For these reasons, magnetic gears would be the preferred choice in certain demanding and safety critical applications. Furthermore, because magnetic gears typically have a much higher torque density than electrical machines, the overall system torque density can be improved when a magnetic gear is used in conjunction with a higherspeed electrical machine [2]. In this paper, the design of a prototype concentric-type magnetic gear, first presented in [], is critically examined. The effect of the modulator bridges on the air-gap flux density harmonics and thus the performance in terms of torque, as well as efficiency, is analyzed. The magnetic design of the gear was done by using 2D FE analysis. It is, however, found that the practical measurement results in terms of peak torque capability (stall torque) and efficiency fell far short of the predicted ones. Several papers [2], [4] [] also reported this discrepancy, but only mentioned that the decrease of the stall torque may be ascribed to end-effects without further analysis and explanation. This paper presents a detailed investigation of the end-effects in the prototype. Measures that could be taken to alleviate the negative impact of these effects are then proposed. Relevant conclusions are drawn from this investigation /1/$ IEEE Figure 1. Cross-sectional view of the prototype magnetic gear. II. T HE PROTOTYPE MAGNETIC GEAR In this section, the electromagnetic design, the mechanical layout and the predicted and measured performance characteristics of the prototype magnetic gear are discussed. A. Magnetic design Fig. 1 shows a cross-sectional view of the prototype magnetic gear. The modulator is kept stationary while the inner high-speed (HS) and outer low-speed (LS) assemblies rotate. For this configuration, the gear ratio may be expressed as follows [2]: ns ph (1) Gr = ph where ns is the number of flux modulator segments and ph is the number of pole pairs on the HS rotor. The number of pole pairs on the LS rotor is given by pl = ns ph (2) The detailed dimensions of the prototype magnetic gear are given in Table I. The type of permanent magnets used in the prototype is N5 grade NdFeB magnets. The modulator and the LS yoke were fabricated using.5 mm, M-1 electrical laminations. In order to ease the construction and increase the torsional stiffness of the flux modulator, the segments were 1

2 Table I P ROTOTYPE DESIGN PARAMETERS Parameter Value HS magnet pitch [fraction of pole pitch]. LS magnet pitch [fraction of pole pitch].87 Modulator tooth pitch [fraction of segment pitch].447 HS yoke inner diameter [mm] 41 HS yoke thickness [mm] 18.8 HS magnet thickness [mm] 5 HS air-gap length [mm].7 Modulator thickness [mm] 7 Modulator bridge thickness [mm].5 LS air-gap length [mm].5 LS magnet thickness [mm] 5 LS yoke thickness [mm] 7.5 LS yoke outer diameter [mm] 1 Stack length [mm] 4 Number of HS pole pairs 2 Number of LS pole pairs 21 Gear ratio 1.5 Figure. Flux density distribution of the prototype magnetic gear obtained using 2D FE analysis. (a) No bridges on the modulator (b) Bridges added on the HS side of the modulator Figure 4. Figure 2. Three-quarter section view of the prototype magnetic gear showing mechanical support structure, HS and LS shafts. connected with thin bridges on the HS side. The modulator was constructed by placing stainless steel rods in the slots between the modulator segments and filling these slots with epoxy resin. The HS yoke was made of solid mild steel and integrated with the HS shaft as shown in Fig. 2, which also shows the modulator supported from the casing as well as the LS shaft. The flux density distribution of the magnetic gear at its maximum torque position obtained using 2D FE analysis is shown in Fig.. According to the 2D FE analysis, the Close-up view of the magnetic gear stall torque of the LS rotor is 5. Nm. This results in a torque density of 11 knm/m based on the active material volume. Bearing in mind that N5 are a low grade Neodymium magnets, this result seems to verify that stall torque densities exceeding 1 knm/m is practically achievable. B. Effect of the modulator bridges Fig. 4 shows the modulator of the magnetic gear without bridges and added. The radial flux density distribution in the HS air-gap due to HS magnets and LS magnets respectively are displayed in Fig. 5. Figs. and 7 show the radial air-gap flux density spectra in the HS and LS air-gaps respectively. It can be observed from Fig. that the bridges can suppress the undesired higher order harmonics (e.g. 21st and 25th harmonics) in the HS air-gap, which helps to minimis unwanted losses in the HS magnets and solid yoke. The fundamental harmonic (2nd) in the HS air-gap due to the HS magnets is actually slightly stronger. 2

3 Radial flux density [T] Normalised angle (a) Due to HS magnets Radial flux density [T] Normalised angle.8 1. Radial flux density waveform in the HS air-gap Space harmonics present in the LS air-gap (b) Due to the LS magnets. Space harmonics present in the HS air-gap. However, this harmonic due to the LS magnets is slightly weaker. From Fig. 7 it is clear that the bridges have very little impact on the harmonics in the LS air-gap due to either the HS or LS magnets. In order to illustrate the benefits of reducing higher order harmonics in the HS air-gap, simulations of the gear with the HS rotor operating at a speed of 12 rpm was performed. 21 Torque [Nm] Figure Time [ms].5. Fig. 8 shows a comparison of the ohmic losses in the HS magnets. The losses are almost 4 times smaller in the case of the bridged modulator. The advantages in terms of torque ripple on the HS rotor is illustrated in Fig.. Two-dimensional FE analysis indicates that the stall torque of the gear is 52 Nm without bridges and 5.4 Nm with.4 Figure 8. Total ohmic losses in the HS magnets with the HS rotor rotating at 12 rpm (a) Due to the HS magnets.. Figure (b) Due to the LS magnets. Ohmic loss [W] (b) Due to LS magnets Figure 5. (a) Due to the HS magnets Figure Time [ms].5. Torque on the HS rotor operating at a speed of 12 rpm.

4 Loss [W] Torque [Nm] HS rotor angle [degrees] 4 Figure 1. Torque on the LS rotor vs. position of the HS rotor. The LS rotor is kept at a fixed position. The position at corresponds to the maximum torque position in Fig. Figure nhs [rpm] 15 2 Total no-load losses vs. speed of the high-speed rotor. 5 Efficiency [%] Figure 11. Experimental setup used to test the prototype magnetic gear. bridges. Fig. 1 shows a plot of the torque on the LS rotor as a function of the HS rotor position. These results agree well with those presented in [5], which also indicate that bridges on the HS side of the modulator do not have a significant impact on the stall torque. Thus, in the case of this prototype, the bridged modulator shows not only the benefits of simplified mechanical construction, but also a distinct advantage of suppressing unwanted high order flux harmonics in the HS air-gap with little impact on the flux harmonics in the LS air-gap and the stall torque of the gear. C. Predicted versus measured results The experimental setup used to test the prototype is shown in Fig. 11. The measured stall torque of the LS rotor was only Nm which amounts to a 8% reduction when compared with that of 2D FE predicted results. Furthermore, the prototype suffered significantly from rotational losses as can be seen in Fig. 12 which shows the no-load losses of the gear as a function of the rotational speed. To identify the regions in the gear where the losses are concentrated, Thermax temperature indicators were placed at various parts of the prototype. A significant temperature rise was found on the side of the casing supporting the modulator during high speed operation, which is caused by the time-varying end leakage flux in the casing. These losses substantially decreased the efficiency of the prototype gear, especially at higher speeds. Fig. 1 shows the efficiency of the gear at a constant load of 2 Nm. III. A NALYSIS OF END - EFFECTS In this section, detailed D FE modeling of the prototype magnetic gear is presented. The purpose of this analysis is 5 1 nhs [rpm] 15 2 Figure 1. Efficiency vs. speed of the high-speed rotor at a constant load of 2 Nm. to determine the causes for the large difference between the results from 2D FE analysis and measurements. Simulations were performed using MagNet 7 from Infolytica Corporation. A. Laminated material modeling Considering the three-dimensional nature of the problem under investigation and specifically the deviation between 2D and D FE results, special attention was paid to the modeling of the laminated material used for the LS yoke and the modulator. Electrical laminations have significantly different BH-curves between the parallel and perpendicular directions to the lamination plane. To fully exploit the D FE computational advantage, this needs to be adequately accounted for in the D FE modeling. Given a BH-curve, B(H), for a uniform sample of steel, the BH-curves in the plane of the laminations, Bxy (H), and perpendicular to this plane, Bz (H), can be deduced from the following relations [7]: Bxy (H) = γb(h) + (1 γ)µ H B Hz (B) = γh(b) + (1 γ) µ () (4) with γ the stacking factor, taken as.5 in this study. The difference between a simple isotropic model and an anisotropic model of the laminated material is illustrated in Fig. 14, which shows the axial component of the flux density in the modulator for the model with the supporting casing described in the following section. This axial component of flux is not accounted for in 2D simulations. 22

5 B. Identification of end-effect origins (a) Isotropic BH-curve. (b) Anisotropic BH-curve. Figure 14. Flux density color map of Bz in the modulator for the model including the surrounding casing. φls RLS RLS LS RHS e yok φhs φleak F Rleak φleak Rleak RHS φhs r ato dul o M F et agn m HS e yok HS Figure 15. Simplified magnetic equivalent circuit explaining the mechanism behind the end-effects which have a negative impact on the performance of the gear. A simplified representation of the magnetic circuit of the gear is presented in Fig. 15. This circuit will be used throughout this section to describe the difference between the simulation models used to calculate the stall torque of the gear. Note that in this circuit, only the HS magnets are represented for the sake of simplicity. The principles discussed, however, are valid for both magnet layers. In Fig. 15, the sources represent the MMF of the north and south poles of the magnets. The reluctance, RHS, represents the total reluctance of the HS magnet and HS air-gap. Similarly, the reluctance, RLS, represents the equivalent air-gap on the LS side of the gear. The reluctance of the steel yokes and the modulator is considered negligible in this discussion. The leakage path reluctance is represented by Rleak. The results of the simulations in this section are summarized in Fig. 17, to which reference will be made in each case. The first step taken in the analysis of the end-effects was to do a D simulation of the ideal gear, i.e. without any structural parts in the model. The stall torque obtained in this way should be less than in a 2D simulation because in a 2D simulation Rleak =. Considering the D case, Rleak is always less than infinity and some leakage flux will exist. The stall torque obtained from the D simulation was 4. Nm (Fig. 17: D, ideal case), a drop of only 1% compared to the 2D value. From this, it appears that the torque reduction is not only caused by the unavoidable endeffects associated with the finite stack length, but also by the surrounding structural components that form part of the flux leakage path. In other words, the actual value of Rleak must be smaller than accounted for in this simulation. One difference between the prototype and the ideal D model was that the modulator in the prototype was slightly extended. This was done in the belief that this would enhance the coupling between the HS and LS rotors. Taking this extension of the modulator into account in the D model actually yielded a 5% lower stall torque of 44.2 Nm (Fig. 17: D, extended modulator). While it is true that the extended modulator increases the total flux linkage of the magnets, the assumption that this improves the torque capability of the gear is incorrect. What is important to the torque capability is the coupling of the appropriate harmonics between the HS and LS rotors. Extending the modulator results in a lower Rleak, resulting in a greater leakage flux, φleak. Because of the somewhat reduced overall reluctance seen by the HS magnets, the flux φhs increases and thus causes a larger MMF drop across the HS rotor reluctance, RHS. As a result of the above, the flux coupling to the LS rotor, φls, is actually reduced. This explanation is consistent with observations made in the D FE model, namely more flux linked by the HS magnets but reduced flux coupling to the LS rotor. In order to determine the cause of the additional drop in stall torque, a D simulation including all the relevant structural components in the model was done. This simulation reported a stall torque of only 5. Nm (Fig. 17: D, support 2

6 Torque [Nm] D case lator cture plied sured ed 1 ed 2 p ifi ifi a al ru du ide mo rt st ces a e me mod mod, D nded uppo leran totyp D, D, te to Pro,s, ex D D, D Figure 1. Flux density distribution plot clearly showing the severe leakage through the modulator supporting structure. Figure 17. structure). A flux density distribution plot produced by this simulation is shown in Fig. 1. It can be seen that flux leaks into the surrounding casing, especially where the modulator is supported. In terms of the circuit of Fig. 15, the effect of the casing is to reduce the leakage reluctance, Rleak, even further. Even with almost all the structural components included in the model, the simulated stall torque is still % higher than the measured result. This discrepancy is due to manufacturing tolerances, specifically the dimensions of the magnets, which is slightly smaller and unintentional skewing of the modulator. A simulation with the magnets within the tolerance specified and skewing the modulator by 1 electrical results in a stall torque of.5 Nm (Fig. 17: D, tolerances applied), which is very close to the measured results. IV. R ECOMMENDED DESIGN IMPROVEMENTS The simplest modification that can be made to the design that will significantly reduce the end-effects is to replace the connecting ring of the modulator with a nonmagnetic one. Making only this modification results in a stall torque of 41.5 Nm (Fig. 17: D, modified 1). Alternatively, if the supporting plate on the side connected to the modulator is replaced with a nonmagnetic one, the stall torque is 4.7 Nm (Fig. 17: D, modified 2). In both cases, however, the stall torque is still significantly lower than the ideal D case and it may be worthwhile to construct most of the casing from nonmagnetic material or to move the supporting casing further away from the active parts of the gear. Because the end-effects are significant in magnetic gears, the stack length should be included as a design variable whenever possible when design optimizations are performed. V. C ONCLUSIONS The evaluation of the design and end-effects of a prototype magnetic gear have been presented in the above sections. Introducing connecting bridges on the flux modulator helps simplify the construction and also dampen some potentially harmful harmonics in the HS air-gap. Two-dimensional FE analysis promises very good performance and indicates that torque densities exceeding 1 knm/m is practically achievable. However, end-effects have a significant detrimental impact on the stall torque capability of concentric magnetic gears and must be taken into consideration if accurate performance estimates are to be obtained. For concentric magnetic gears it is vitally important that the flux modulator is magnetically insulated. It must be kept in place by components with low permeability, e.g. austenitic stainless steel, aluminium or epoxy. Failure to do this can result in significant leakage flux, especially when surrounding structural parts are fabricated using soft magnetic materials. The leakage flux not only reduces the torque capability of the gear, but will also reduce the efficiency of the gear depending on the conductivity of the surrounding structural parts as well as the speed of operation. ACKNOWLEDGEMENT The authors would like to thank Mr. L. Bronn for his contribution in the design and construction of the prototype. This project is in part supported by the National Research Foundation (NRF) and Stellenbosch University, all of South Africa. R EFERENCES [1] K. Atallah and D. Howe, A novel high-performance magnetic gear, Magnetics, IEEE Transactions on, vol. 7, no. 4, pp , July 21. [2] K. Atallah, S. Calverley, and D. Howe, Design, analysis and realisation of a high-performance magnetic gear, Electric Power Applications, IEE Proceedings -, vol. 151, no. 2, pp , March. [] L. Bro nn, R.-J. Wang, and M. J. Kamper, Development of a shutter type magnetic gear, in Proceedings of the 1th Southern African Universities Power Engineering Conference, 21. [4] P. Rasmussen, T. Andersen, F. Jorgensen, and O. Nielsen, Development of a high-performance magnetic gear, Industry Applications, IEEE Transactions on, vol. 41, no., pp , May-June 25. [5] N. Frank and H. Toliyat, Analysis of the concentric planetary magnetic gear with strengthened stator and interior permanent magnet inner rotor, Industry Applications, IEEE Transactions on, vol. 47, no. 4, pp , July-Aug 211. [] P. Rasmussen, T. V. Frandsen, K. K. Jensen, and K. Jessen, Experimental evaluation of a motor integrated permanent magnet gear, in Energy Conversion Congress and Exposition (ECCE), 211 IEEE, September 211, pp [7] J. Bastos and G. Quichaud, D modelling of a non-linear anisotropic lamination, Magnetics, IEEE Transactions on, vol. 21, no., pp. 2 2, Nov 185. Powered by TCPDF ( Stall torque of the low-speed rotor from different sources.

Experimental Tests and Efficiency Improvement of Surface Permanent Magnet Magnetic Gear

Experimental Tests and Efficiency Improvement of Surface Permanent Magnet Magnetic Gear IEEJ Journal of Industry Applications Vol.3 No.1 pp.62 67 DOI: 10.1541/ieejjia.3.62 Paper Experimental Tests and Efficiency Improvement of Surface Permanent Magnet Magnetic Gear Michinari Fukuoka a) Student

More information

Analytical Calculation of Air Gap Magnetic Field Distribution in Vernier Motor

Analytical Calculation of Air Gap Magnetic Field Distribution in Vernier Motor IEEE PEDS 017, Honolulu, USA 1-15 June 015 Analytical Calculation of Air Gap Magnetic Field Distribution in Vernier Motor Hyoseok Shi, Noboru Niguchi, and Katsuhiro Hirata Department of Adaptive Machine

More information

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008]

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008] Doubly salient reluctance machine or, as it is also called, switched reluctance machine [Pyrhönen et al 2008] Pros and contras of a switched reluctance machine Advantages Simple robust rotor with a small

More information

Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars

Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars 223 Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars Pelizari, A. ademir.pelizari@usp.br- University of Sao Paulo Chabu, I.E. ichabu@pea.usp.br - University of Sao Paulo

More information

Keywords: Electric Machines, Rotating Machinery, Stator faults, Fault tolerant control, Field Weakening, Anisotropy, Dual rotor, 3D modeling

Keywords: Electric Machines, Rotating Machinery, Stator faults, Fault tolerant control, Field Weakening, Anisotropy, Dual rotor, 3D modeling Analysis of Electromagnetic Behavior of Permanent Magnetized Electrical Machines in Fault Modes M. U. Hassan 1, R. Nilssen 1, A. Røkke 2 1. Department of Electrical Power Engineering, Norwegian University

More information

Reluctance Synchronous Machine with a Particular Cageless Segmental Rotor

Reluctance Synchronous Machine with a Particular Cageless Segmental Rotor Reluctance Synchronous Machine with a Particular Cageless Segmental Rotor I.A. Viorel 1, I. Husain 2, Ioana Chişu 1, H.C. Hedeşiu 1, G. Madescu 3 and L. Szabó 1 1 Dept. of Electrical Machines, Technical

More information

CHAPTER 3 INFLUENCE OF STATOR SLOT-SHAPE ON THE ENERGY CONSERVATION ASSOCIATED WITH THE SUBMERSIBLE INDUCTION MOTORS

CHAPTER 3 INFLUENCE OF STATOR SLOT-SHAPE ON THE ENERGY CONSERVATION ASSOCIATED WITH THE SUBMERSIBLE INDUCTION MOTORS 38 CHAPTER 3 INFLUENCE OF STATOR SLOT-SHAPE ON THE ENERGY CONSERVATION ASSOCIATED WITH THE SUBMERSIBLE INDUCTION MOTORS 3.1 INTRODUCTION The electric submersible-pump unit consists of a pump, powered by

More information

Optimal Design of PM Axial Field Motor Based on PM Radial Field Motor Data

Optimal Design of PM Axial Field Motor Based on PM Radial Field Motor Data Optimal Design of PM Axial Field Motor Based on PM Radial Field Motor Data GOGA CVETKOVSKI LIDIJA PETKOVSKA Faculty of Electrical Engineering Ss. Cyril and Methodius University Karpos II b.b. P.O. Box

More information

Design and analysis of a HTS vernier PM machine. IEEE Transactions on Applied Superconductivity. Copyright IEEE.

Design and analysis of a HTS vernier PM machine. IEEE Transactions on Applied Superconductivity. Copyright IEEE. Title Design and analysis of a HTS vernier PM machine Author(s) Li, J; Chau, KT Citation Ieee Transactions On Applied Superconductivity, 2010, v. 20 n. 3, p. 1055-1059 Issued Date 2010 URL http://hdl.handle.net/10722/129194

More information

Water-Cooled Direct Drive Permanent Magnet Motor Design in Consideration of its Efficiency and Structural Strength

Water-Cooled Direct Drive Permanent Magnet Motor Design in Consideration of its Efficiency and Structural Strength Journal of Magnetics 18(2), 125-129 (2013) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2013.18.2.125 Water-Cooled Direct Drive Permanent Magnet Motor Design in Consideration

More information

Third harmonic current injection into highly saturated multi-phase machines

Third harmonic current injection into highly saturated multi-phase machines ARCHIVES OF ELECTRICAL ENGINEERING VOL. 66(1), pp. 179-187 (017) DOI 10.1515/aee-017-001 Third harmonic current injection into highly saturated multi-phase machines FELIX KLUTE, TORBEN JONSKY Ostermeyerstraße

More information

A Novel Pseudo-Direct-Drive Permanent-Magnet Machine with Less Magnet

A Novel Pseudo-Direct-Drive Permanent-Magnet Machine with Less Magnet Machine Copy for Proofreading, Vol. x, y z, 2016 A Novel Pseudo-Direct-Drive Permanent-Magnet Machine with Less Magnet Xin Yin, Pierre-Daniel Pfister * and Youtong Fang Abstract Magnetic gears (MGs), an

More information

Design and analysis of Axial Flux Permanent Magnet Generator for Direct-Driven Wind Turbines

Design and analysis of Axial Flux Permanent Magnet Generator for Direct-Driven Wind Turbines Design and analysis of Axial Flux Permanent Magnet Generator for Direct-Driven Wind Turbines Sung-An Kim, Jian Li, Da-Woon Choi, Yun-Hyun Cho Dep. of Electrical Engineering 37, Nakdongdae-ro, 55beon-gil,

More information

Analytical Solution of Magnetic Field in Permanent-Magnet Eddy-Current Couplings by Considering the Effects of Slots and Iron-Core Protrusions

Analytical Solution of Magnetic Field in Permanent-Magnet Eddy-Current Couplings by Considering the Effects of Slots and Iron-Core Protrusions Journal of Magnetics 20(3), 273-283 (2015) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2015.20.3.273 Analytical Solution of Magnetic Field in Permanent-Magnet Eddy-Current

More information

Hybrid Excited Vernier Machines with All Excitation Sources on the Stator for Electric Vehicles

Hybrid Excited Vernier Machines with All Excitation Sources on the Stator for Electric Vehicles Progress In Electromagnetics Research M, Vol. 6, 113 123, 16 Hybrid Excited Vernier Machines with All Excitation Sources on the Stator for Electric Vehicles Liang Xu, Guohai Liu, Wenxiang Zhao *, and Jinghua

More information

SPOKE-TYPE permanent magnet (PM) rotors are typically

SPOKE-TYPE permanent magnet (PM) rotors are typically Magnetic End Leakage Flux in a Spoke Type Rotor Permanent Magnet Synchronous Generator Petter Eklund, Jonathan Sjölund, Sandra Eriksson, Mats Leijon Abstract The spoke type rotor can be used to obtain

More information

2002 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

2002 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 00 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising

More information

TRACING OF MAXIMUM POWER DENSITY POINT FOR AXIAL FLUX TORUS TYPE MACHINES USING GENERAL PURPOSE SIZING EQUATIONS

TRACING OF MAXIMUM POWER DENSITY POINT FOR AXIAL FLUX TORUS TYPE MACHINES USING GENERAL PURPOSE SIZING EQUATIONS TRACING OF MAXIMUM POWER DENSITY POINT FOR AXIAL FLUX TORUS TYPE MACHINES USING GENERAL PURPOSE SIZING EQUATIONS M. Ramanjaneyulu Chowdary Dr.G.S Raju Mr.V.Rameshbabu M.Tech power electronics Former BHU

More information

Regular paper. Design and FE Analysis of BLDC Motor for Electro- Mechanical Actuator

Regular paper. Design and FE Analysis of BLDC Motor for Electro- Mechanical Actuator P.Srinivas* J. Electrical Systems 11-1 (2015): 76-88 Regular paper Design and FE Analysis of BLDC Motor for Electro- Mechanical Actuator JES Journal of Electrical Systems This paper presents the design

More information

Analytical Model for Sizing the Magnets of Permanent Magnet Synchronous Machines

Analytical Model for Sizing the Magnets of Permanent Magnet Synchronous Machines Journal of Electrical Engineering 3 (2015) 134-141 doi: 10.17265/2328-2223/2015.03.004 D DAVID PUBLISHING Analytical Model for Sizing Magnets of Permanent Magnet Synchronous Machines George Todorov and

More information

Development of a Double-Sided Consequent Pole Linear Vernier Hybrid Permanent-Magnet Machine for Wave Energy Converters

Development of a Double-Sided Consequent Pole Linear Vernier Hybrid Permanent-Magnet Machine for Wave Energy Converters Development of a Double-Sided Consequent Pole Linear Vernier Hybrid Permanent-Magnet Machine for Wave Energy Converters A. A. Almoraya, N. J. Baker, K. J. Smith and M. A. H. Raihan Electrical Power Research

More information

EFFECT OF NUMBER OF ROTOR POLES ON AC LOSSES OF PERMANENT MAGNET MACHINES HAVING TWO SEPARATE STATORS

EFFECT OF NUMBER OF ROTOR POLES ON AC LOSSES OF PERMANENT MAGNET MACHINES HAVING TWO SEPARATE STATORS Nigerian Journal of Technology (NIJOTECH) Vol. 36, No. 4, October 217, pp. 1145 1149 Copyright Faculty of Engineering, University of Nigeria, Nsukka, Print ISSN: 331-8443, Electronic ISSN: 2467-8821 www.nijotech.com

More information

Torque Performance and Permanent Magnet Arrangement for Interior Permanent Magnet Synchronous Motor

Torque Performance and Permanent Magnet Arrangement for Interior Permanent Magnet Synchronous Motor Extended Summary pp.954 960 Torque Performance and Permanent Magnet Arrangement for Interior Permanent Magnet Synchronous Motor Naohisa Matsumoto Student Member (Osaka Prefecture University, matumoto@eis.osakafu-u.ac.jp)

More information

Generators for wind power conversion

Generators for wind power conversion Generators for wind power conversion B. G. Fernandes Department of Electrical Engineering Indian Institute of Technology, Bombay Email : bgf@ee.iitb.ac.in Outline of The Talk Introduction Constant speed

More information

Designing an Efficient Permanent Magnet Generator for Outdoor Utilities İlhan Tarımer

Designing an Efficient Permanent Magnet Generator for Outdoor Utilities İlhan Tarımer Designing an Efficient Permanent Magnet Generator for Outdoor Utilities İlhan Tarımer Abstract This paper deals with designing, modelling and production process of a permanent magnet axial flux structured

More information

Analytical and numerical computation of the no-load magnetic field in induction motors

Analytical and numerical computation of the no-load magnetic field in induction motors Analytical and numerical computation of the no-load induction motors Dan M. Ionel University of Glasgow, Glasgow, Scotland, UK and Mihai V. Cistelecan Research Institute for Electrical Machines, Bucharest

More information

DESIGN AND ANALYSIS OF AXIAL-FLUX CORELESS PERMANENT MAGNET DISK GENERATOR

DESIGN AND ANALYSIS OF AXIAL-FLUX CORELESS PERMANENT MAGNET DISK GENERATOR DESIGN AND ANALYSIS OF AXIAL-FLUX CORELESS PERMANENT MAGNET DISK GENERATOR Łukasz DR ZIKOWSKI Włodzimierz KOCZARA Institute of Control and Industrial Electronics Warsaw University of Technology, Warsaw,

More information

Cycloidal Magnetic Gear Speed Reducer

Cycloidal Magnetic Gear Speed Reducer Modern Mechanical Engineering, 203, 3, 47-5 Published Online November 203 (http://www.scirp.org/journal/mme) http://dx.doi.org/0.4236/mme.203.3402 Cycloidal Magnetic Gear Speed Reducer Ricardo Chicurel-Uziel

More information

1439. Numerical simulation of the magnetic field and electromagnetic vibration analysis of the AC permanent-magnet synchronous motor

1439. Numerical simulation of the magnetic field and electromagnetic vibration analysis of the AC permanent-magnet synchronous motor 1439. Numerical simulation of the magnetic field and electromagnetic vibration analysis of the AC permanent-magnet synchronous motor Bai-zhou Li 1, Yu Wang 2, Qi-chang Zhang 3 1, 2, 3 School of Mechanical

More information

Power density improvement of three phase flux reversal machine with distributed winding

Power density improvement of three phase flux reversal machine with distributed winding Published in IET Electric Power Applications Received on 4th January 2009 Revised on 2nd April 2009 ISSN 1751-8660 Power density improvement of three phase flux reversal machine with distributed winding

More information

STAR-CCM+ and SPEED for electric machine cooling analysis

STAR-CCM+ and SPEED for electric machine cooling analysis STAR-CCM+ and SPEED for electric machine cooling analysis Dr. Markus Anders, Dr. Stefan Holst, CD-adapco Abstract: This paper shows how two well established software programs can be used to determine the

More information

Development and analysis of radial force waves in electrical rotating machines

Development and analysis of radial force waves in electrical rotating machines DOI: 10.24352/UB.OVGU-2017-098 TECHNISCHE MECHANIK, 37, 2-5, (2017), 218 225 submitted: June 20, 2017 Development and analysis of radial force waves in electrical rotating machines S. Haas, K. Ellermann

More information

Eddy Current Heating in Large Salient Pole Generators

Eddy Current Heating in Large Salient Pole Generators Eddy Current Heating in Large Salient Pole Generators C.P.Riley and A.M. Michaelides Vector Fields Ltd., 24 Bankside, Kidlington, Oxford OX5 1JE, UK phone: (+44) 1865 370151, fax: (+44) 1865 370277 e-mail:

More information

Dr. N. Senthilnathan (HOD) G. Sabaresh (PG Scholar) Kongu Engineering College-Perundurai Dept. of EEE

Dr. N. Senthilnathan (HOD) G. Sabaresh (PG Scholar) Kongu Engineering College-Perundurai Dept. of EEE Design and Optimization of 4.8kW Permanent MagNet Brushless Alternator for Automobile G. Sabaresh (PG Scholar) Kongu Engineering College-Perundurai Dept. of EEE sabareshgs@gmail.com 45 Dr. N. Senthilnathan

More information

Dynamic simulation of a coaxial magnetic gear using global ODE's and DAE s and the rotating machinery, magnetic interface

Dynamic simulation of a coaxial magnetic gear using global ODE's and DAE s and the rotating machinery, magnetic interface Dynamic simulation of a coaxial magnetic gear using global ODE's and DAE s and the rotating machinery, magnetic interface M. Ostroushko 1, W. Zhang 1, W. M. Rucker 1 1. Institute of Theory of Electrical

More information

Performance analysis of variable speed multiphase induction motor with pole phase modulation

Performance analysis of variable speed multiphase induction motor with pole phase modulation ARCHIVES OF ELECTRICAL ENGINEERING VOL. 65(3), pp. 425-436 (2016) DOI 10.1515/aee-2016-0031 Performance analysis of variable speed multiphase induction motor with pole phase modulation HUIJUAN LIU, JUN

More information

UJET VOL. 2, NO. 2, DEC Page 8

UJET VOL. 2, NO. 2, DEC Page 8 UMUDIKE JOURNAL OF ENGINEERING AND TECHNOLOGY (UJET) VOL. 2, NO. 2, DEC 2016 PAGE 8-15 FINITE ELEMENT ANALYSIS OF A 7.5KW ASYNCHRONOUS MOTOR UNDER INTERMITTENT LOADING. Abunike, E. C. and Okoro, O. I.

More information

Analysis of Anti-Notch Method to the Reduction of the Cogging Torque in Permanent Magnet Synchronous Generator

Analysis of Anti-Notch Method to the Reduction of the Cogging Torque in Permanent Magnet Synchronous Generator International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 1301 Analysis of Anti-Notch Method to the Reduction of the Cogging Torque in Permanent Magnet Synchronous Generator

More information

AXIAL FLUX INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR WITH SINUSOIDALLY SHAPED MAGNETS

AXIAL FLUX INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR WITH SINUSOIDALLY SHAPED MAGNETS AXIAL FLUX INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR WITH SINUSOIDALLY SHAPED MAGNETS A. Parviainen, J. Pyrhönen, M. Niemelä Lappeenranta University of Technology, Department of Electrical Engineering

More information

Magnetic vibration analysis of a new DC-excited multitoothed switched reluctance machine. Liu, C; Chau, KT; Lee, CHT; Lin, F; Li, F; Ching, TW

Magnetic vibration analysis of a new DC-excited multitoothed switched reluctance machine. Liu, C; Chau, KT; Lee, CHT; Lin, F; Li, F; Ching, TW Title Magnetic vibration analysis of a new DC-excited multitoothed switched reluctance machine Author(s) Liu, C; Chau, KT; Lee, CHT; Lin, F; Li, F; Ching, TW Citation The 2014 IEEE International Magnetics

More information

Analysis of Idle Power and Iron Loss Reduction in an Interior PM Automotive Alternator

Analysis of Idle Power and Iron Loss Reduction in an Interior PM Automotive Alternator Analysis of Idle Power and Iron Loss Reduction in an Interior PM Automotive Alternator by Vlatka Životić-Kukolj M.Eng.Sci. (Research) Electrical and Electronic Engineering, Adelaide University, 2001 B.Eng

More information

Optimisation of Inner Diameter to Outer Diameter Ratio of Axial Flux Permanent Magnet Generator

Optimisation of Inner Diameter to Outer Diameter Ratio of Axial Flux Permanent Magnet Generator IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 220-1, Volume 9, Issue 6 Ver. III (Nov Dec. 2014), PP 4-47 Optimisation of Inner Diameter to Outer Diameter

More information

Comprehensive Analysis and Evaluation of Cogging Torque in Axial Flux Permanent Magnet Machines

Comprehensive Analysis and Evaluation of Cogging Torque in Axial Flux Permanent Magnet Machines Comprehensive Analysis and Evaluation of Cogging Torque in Axial Flux Permanent Magnet Machines A. P. Ferreira, Member, IEEE, A. V. Leite, Member, IEEE and A. F. Costa Abstract Evaluation and minimization

More information

Accurate Joule Loss Estimation for Rotating Machines: An Engineering Approach

Accurate Joule Loss Estimation for Rotating Machines: An Engineering Approach Accurate Joule Loss Estimation for Rotating Machines: An Engineering Approach Adeeb Ahmed Department of Electrical and Computer Engineering North Carolina State University Raleigh, NC, USA aahmed4@ncsu.edu

More information

Experimental Assessment of Unbalanced Magnetic Force according to Rotor Eccentricity in Permanent Magnet Machine

Experimental Assessment of Unbalanced Magnetic Force according to Rotor Eccentricity in Permanent Magnet Machine Journal of Magnetics 23(1), 68-73 (218) ISSN (Print) 1226-175 ISSN (Online) 2233-6656 https://doi.org/1.4283/jmag.218.23.1.68 Experimental Assessment of Unbalanced Magnetic Force according to Rotor Eccentricity

More information

This is a repository copy of Analysis and design optimization of an improved axially magnetized tubular permanent-magnet machine.

This is a repository copy of Analysis and design optimization of an improved axially magnetized tubular permanent-magnet machine. This is a repository copy of Analysis and design optimization of an improved axially magnetized tubular permanent-magnet machine. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/827/

More information

MODELING surface-mounted permanent-magnet (PM)

MODELING surface-mounted permanent-magnet (PM) Modeling of Axial Flux Permanent-Magnet Machines Asko Parviainen, Markku Niemelä, and Juha Pyrhönen Abstract In modeling axial field machines, three dimensional (3-D) finite-element method (FEM) models

More information

Publication P Institute of Electrical and Electronics Engineers (IEEE)

Publication P Institute of Electrical and Electronics Engineers (IEEE) Publication P2 Jere Kolehmainen and Jouni Ikäheimo. 2008. Motors with buried magnets for medium-speed applications. IEEE Transactions on Energy Conversion, volume 23, number 1, pages 86-91. 2008 Institute

More information

Design, analysis and fabrication of linear permanent magnet synchronous machine

Design, analysis and fabrication of linear permanent magnet synchronous machine Design, analysis and fabrication of linear permanent magnet synchronous machine Monojit Seal Dept. of Electrical Engineering, IIEST, Shibpur, Howrah - 711103 W.B., India. email: seal.monojit@gmail.com

More information

Power Density Comparison for Three Phase Non-Slotted Double-Sided AFPM Motors

Power Density Comparison for Three Phase Non-Slotted Double-Sided AFPM Motors Australian Journal of Basic and Applied Sciences, 4(1): 5947-5955, 010 ISSN 1991-8178 Power Density Comparison for hree Phase Non-Slotted Double-Sided AFPM Motors S. Asghar Gholamian and A. Yousefi Electrical

More information

Chapter 5 Three phase induction machine (1) Shengnan Li

Chapter 5 Three phase induction machine (1) Shengnan Li Chapter 5 Three phase induction machine (1) Shengnan Li Main content Structure of three phase induction motor Operating principle of three phase induction motor Rotating magnetic field Graphical representation

More information

Analysis and Performance Evaluation of an Axial-Field Brushless PM Machine Utilising Soft Magnetic Composites

Analysis and Performance Evaluation of an Axial-Field Brushless PM Machine Utilising Soft Magnetic Composites The following paper posted here is not the official IEEE published version. The final published version of this paper can be found in the Proceedings of the International Electric Machines and Drives Conference

More information

Analytical Method for Magnetic Field Calculation in a Low-Speed Permanent-Magnet Harmonic Machine

Analytical Method for Magnetic Field Calculation in a Low-Speed Permanent-Magnet Harmonic Machine Vol. 5 No.5/ May. 2011 Analytical Method for Magnetic Field Calculation in a Low-Speed Permanent-Magnet Harmonic Machine ABSTRACT Magnetic-gearing effect has become increasingly attractive when designing

More information

Concept Design and Performance Analysis of HTS Synchronous Motor for Ship Propulsion. Jin Zou, Di Hu, Mark Ainslie

Concept Design and Performance Analysis of HTS Synchronous Motor for Ship Propulsion. Jin Zou, Di Hu, Mark Ainslie Concept Design and Performance Analysis of HTS Synchronous Motor for Ship Propulsion Jin Zou, Di Hu, Mark Ainslie Bulk Superconductivity Group, Engineering Department, University of Cambridge, CB2 1PZ,

More information

ON THE PARAMETERS COMPUTATION OF A SINGLE SIDED TRANSVERSE FLUX MOTOR

ON THE PARAMETERS COMPUTATION OF A SINGLE SIDED TRANSVERSE FLUX MOTOR ON THE PARAMETERS COMPUTATION OF A SINGLE SIDED TRANSVERSE FLUX MOTOR Henneberger, G. 1 Viorel, I. A. Blissenbach, R. 1 Popan, A.D. 1 Department of Electrical Machines, RWTH Aachen, Schinkelstrasse 4,

More information

3 Chapter 3 Machine design

3 Chapter 3 Machine design 3 Chapter 3 Machine design This chapter is divided into three sections. In the first section the detailed design plan for the prototype is given. The second section contains the stator design as well as

More information

Retrofit design of a line-start permanentmagnet synchronous machine

Retrofit design of a line-start permanentmagnet synchronous machine Retrofit design of a line-start permanentmagnet synchronous machine KS Garner 23148543 Dissertation submitted in fulfilment of the requirements for the degree Magister in Electrical and Electronic Engineering

More information

Magnetic gear with intersecting axes and straight stationary pole-pieces

Magnetic gear with intersecting axes and straight stationary pole-pieces Research Article Magnetic gear with intersecting axes and straight stationary pole-pieces Advances in Mechanical Engineering 2018, Vol. 10(11) 1 10 Ó The Author(s) 2018 DOI: 10.1177/1687814018808865 journals.sagepub.com/home/ade

More information

A New Moving-magnet Type Linear Actuator utilizing Flux Concentration Permanent Magnet Arrangement

A New Moving-magnet Type Linear Actuator utilizing Flux Concentration Permanent Magnet Arrangement 342 Journal of Electrical Engineering & Technology Vol. 7, No. 3, pp. 342~348, 2012 http://dx.doi.org/10.5370/jeet.2012.7.3.342 A New Moving-magnet Type Linear Actuator utilizing Flux Concentration Permanent

More information

2577. The analytical solution of 2D electromagnetic wave equation for eddy currents in the cylindrical solid rotor structures

2577. The analytical solution of 2D electromagnetic wave equation for eddy currents in the cylindrical solid rotor structures 2577. The analytical solution of 2D electromagnetic wave equation for eddy currents in the cylindrical solid rotor structures Lale T. Ergene 1, Yasemin D. Ertuğrul 2 Istanbul Technical University, Istanbul,

More information

INTERIOR Permanent Magnet (IPM) machines have been

INTERIOR Permanent Magnet (IPM) machines have been 1 Permanent Magnet minimization in PM-Assisted Synchronous Reluctance motors for wide speed range P. Guglielmi, B. Boazzo, E. Armando, G. Pellegrino and A. Vagati Department of Electrical Engineering -

More information

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18,

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2006 196 A Method for the Modeling and Analysis of Permanent

More information

Analytical Method for Predicting the Air-Gap Flux Density of Dual-Rotor Permanent- Magnet (DRPM) Machine

Analytical Method for Predicting the Air-Gap Flux Density of Dual-Rotor Permanent- Magnet (DRPM) Machine Analytical Method for Predicting the Air-Gap Flux Density of Dual-Rotor Permanent- Magnet (DRPM) Machine W.Xie, G.Dajaku*, D.Gerling Institute for Electrical Drives and Actuators, University of Federal

More information

Torque Ripple Reduction Using Torque Compensation Effect of an Asymmetric Rotor Design in IPM Motor

Torque Ripple Reduction Using Torque Compensation Effect of an Asymmetric Rotor Design in IPM Motor Journal of Magnetics 22(2), 266-274 (2017) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 https://doi.org/10.4283/jmag.2017.22.2.266 Torque Ripple Reduction Using Torque Compensation Effect of an Asymmetric

More information

Eddy Current Losses in the Tank Wall of Power Transformers

Eddy Current Losses in the Tank Wall of Power Transformers Eddy Current Losses in the Tank Wall of Power Transformers Erich Schmidt Institute of Electrical Drives and Machines, Vienna University of Technology A 14 Vienna, Austria, Gusshausstrasse 25 29 Phone:

More information

MODEL AND LABORATORY SIMULATION OF A INDUCTION MOTOR FOR DIAGNOSTIC PURPOSES

MODEL AND LABORATORY SIMULATION OF A INDUCTION MOTOR FOR DIAGNOSTIC PURPOSES Metrol. Meas. yst. Vol. XVI (29), No 4, pp. 67-618 METROLOGY AND MEAUREMENT YTEM Index 3393, IN 86-8229 www.metrology.pg.gda.pl MODEL AND LABORATORY IMULATION OF A INDUCTION MOTOR FOR DIAGNOTIC PURPOE

More information

UNIT I INTRODUCTION Part A- Two marks questions

UNIT I INTRODUCTION Part A- Two marks questions ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR-621220 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING DESIGN OF ELECTRICAL MACHINES UNIT I INTRODUCTION 1. Define specific magnetic

More information

ANALYTICAL COMPUTATION OF RELUCTANCE SYN- CHRONOUS MACHINE INDUCTANCES UNDER DIF- FERENT ECCENTRICITY FAULTS

ANALYTICAL COMPUTATION OF RELUCTANCE SYN- CHRONOUS MACHINE INDUCTANCES UNDER DIF- FERENT ECCENTRICITY FAULTS Progress In Electromagnetics Research M, Vol. 24, 29 44, 2012 ANALYTICAL COMPUTATION OF RELUCTANCE SYN- CHRONOUS MACHINE INDUCTANCES UNDER DIF- FERENT ECCENTRICITY FAULTS H. Akbari * Department of Electrical

More information

IEEE Transactions on Applied Superconductivity. Copyright IEEE.

IEEE Transactions on Applied Superconductivity. Copyright IEEE. Title Loss analysis of permanent magnet hybrid brushless machines with and without HTS field windings Author(s) Liu, C; Chau, KT; Li, W Citation The 21st International Conference on Magnet Technology,

More information

Publication P National Centre for Scientific Research (NCSR) "Demokritos"

Publication P National Centre for Scientific Research (NCSR) Demokritos Publication P7 Sami Ruoho, Jere Kolehmainen, and Jouni Ikäheimo. 2008. Anisotropy of resistivity of Nd-Fe-B magnets - Consequences in eddy-current calculations. In: Dimitris Niarchos (editor). Proceedings

More information

Tubular Linear Permanent Magnet Actuator with Fractional Slots

Tubular Linear Permanent Magnet Actuator with Fractional Slots IEEJ Journal of Industry Applications Vol.1 No.3 pp.17 177 DOI: 10.1541/ieejjia.1.17 Paper Tubular Linear Permanent Magnet Actuator with Fractional Slots oberto Di Stefano Non-member, Fabrizio Marignetti

More information

Modeling and Design Optimization of Permanent Magnet Linear Synchronous Motor with Halbach Array

Modeling and Design Optimization of Permanent Magnet Linear Synchronous Motor with Halbach Array Modeling and Design Optimization of Permanent Magnet Linear Synchronous Motor with Halbach Array N. Roshandel Tavana, and A. Shoulaie nroshandel@ee.iust.ir, and shoulaie@ee.iust.ac.ir Department of Electrical

More information

A new hybrid method for the fast computation of airgap flux and magnetic forces in IPMSM

A new hybrid method for the fast computation of airgap flux and magnetic forces in IPMSM 2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER) A new hybrid method for the fast computation of airgap flux and magnetic forces in IPMSM Emile Devillers, Michel

More information

Proposal of C-core Type Transverse Flux Motor for Ship Propulsion Increasing Torque Density by Dense Stator Configuration

Proposal of C-core Type Transverse Flux Motor for Ship Propulsion Increasing Torque Density by Dense Stator Configuration ADVANCED ELECTROMAGNETICS, Vol., No., December 01 Proposal of C-core Type Transverse Flux Motor for Ship Propulsion Increasing Torque Density by Dense Stator Configuration Yuta Yamamoto 1 *, Takafumi Koseki

More information

Step Motor Modeling. Step Motor Modeling K. Craig 1

Step Motor Modeling. Step Motor Modeling K. Craig 1 Step Motor Modeling Step Motor Modeling K. Craig 1 Stepper Motor Models Under steady operation at low speeds, we usually do not need to differentiate between VR motors and PM motors (a hybrid motor is

More information

Eddy-Current Loss Analysis of Copper-Bar Windings of Ultra High-Speed PM Motor

Eddy-Current Loss Analysis of Copper-Bar Windings of Ultra High-Speed PM Motor Eddy-Current Loss Analysis of Copper-Bar Windings of Ultra High-Speed PM Motor Toshihiko Noguchi IEEE Senior Member Shizuoka University 3-5-1 Johoku, Naka-Ku, Hamamatsu, Shizuoka, Japan E-Mail: ttnogut@ipc.shizuoka.ac.jp

More information

Transverse Flux Permanent Magnet Generator for Ocean Wave Energy Conversion

Transverse Flux Permanent Magnet Generator for Ocean Wave Energy Conversion Transverse Flux Permanent Magnet Generator for Ocean Wave Energy Conversion José Lima, Anabela Pronto, and Mário Ventim Neves Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa, Quinta da Torre,

More information

Cogging torque reduction of Interior Permanent Magnet Synchronous Motor (IPMSM)

Cogging torque reduction of Interior Permanent Magnet Synchronous Motor (IPMSM) Scientia Iranica D (2018) 25(3), 1471{1477 Sharif University of Technology Scientia Iranica Transactions D: Computer Science & Engineering and Electrical Engineering http://scientiairanica.sharif.edu Cogging

More information

Chapter 2 Synchronous Reluctance and PM Assisted Reluctance Motors

Chapter 2 Synchronous Reluctance and PM Assisted Reluctance Motors Chapter 2 Synchronous Reluctance and PM Assisted Reluctance Motors Nicola Bianchi Abstract This chapter focuses on the key notions about analysis and design of synchronous reluctance and permanent magnet

More information

Project 1: Analysis of an induction machine using a FEM based software EJ Design of Electrical Machines

Project 1: Analysis of an induction machine using a FEM based software EJ Design of Electrical Machines Project : Analysis of an induction machine using a FEM based software General instructions In this assignment we will analyze an induction machine using Matlab and the freely available finite element software

More information

Inductance Testing According to the New IEEE Std 1812 Application and Possible Extensions for IPM Machines

Inductance Testing According to the New IEEE Std 1812 Application and Possible Extensions for IPM Machines Inductance Testing According to the New IEEE Std 1812 Application and Possible Extensions for IPM Machines Vandana Rallabandi Narges Taran Dan M. Ionel Department of Electrical and Computer Engineering

More information

Finite Element Analysis of Cogging Torque in Low Speed Permanent Magnets Wind Generators

Finite Element Analysis of Cogging Torque in Low Speed Permanent Magnets Wind Generators Finite Element Analysis of Cogging Torque in Low Speed Permanent Magnets Wind Generators T. Tudorache, L. Melcescu, M. Popescu, M Cistelecan University POLITEHNICA of Bucharest, Electrical Engineering

More information

HyperStudy, OptiStruct, Flux 의연계를통한 연료모터펌프소음저감최적화 알테어황의준

HyperStudy, OptiStruct, Flux 의연계를통한 연료모터펌프소음저감최적화 알테어황의준 HyperStudy, OptiStruct, Flux 의연계를통한 연료모터펌프소음저감최적화 알테어황의준 Contents Introduction Workflow Model Setup Results Introduction This study deals with a multi-physics optimization of a fuel pump permanent magnet

More information

Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy

Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy 1 Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy Mariana Cavique, Student, DEEC/AC Energia, João F.P. Fernandes, LAETA/IDMEC,

More information

Prediction and Measurement of Surface Mounted Permanent Magnet Motor Performance with Soft Magnetic Composite and Laminated Steel Stator Cores

Prediction and Measurement of Surface Mounted Permanent Magnet Motor Performance with Soft Magnetic Composite and Laminated Steel Stator Cores Prediction and Measurement of Surface Mounted Permanent Magnet Motor Performance with Soft Magnetic Composite and Laminated Steel Stator Cores Department of Electrical and Computer Engineering College

More information

Proposal of short armature core double-sided transverse flux type linear synchronous motor

Proposal of short armature core double-sided transverse flux type linear synchronous motor Proposal of short armature core double-sided transverse flux type linear synchronous motor Shin Jung-Seob a, Takafumi Koseki a and Kim Houng-Joong b a The University of Tokyo, Engineering Building #2 12F,7-3-1

More information

Cogging Torque Reduction in Permanent-Magnet Brushless Generators for Small Wind Turbines

Cogging Torque Reduction in Permanent-Magnet Brushless Generators for Small Wind Turbines Journal of Magnetics 20(2), 176-185 (2015) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2015.20.2.176 Cogging Torque Reduction in Permanent-Magnet Brushless Generators

More information

Flux: Examples of Devices

Flux: Examples of Devices Flux: Examples of Devices xxx Philippe Wendling philippe.wendling@magsoft-flux.com Create, Design, Engineer! www.magsoft-flux.com www.cedrat.com Solenoid 2 1 The Domain Axisymmetry Open Boundary 3 Mesh

More information

SCIENCE CHINA Technological Sciences. Nonlinear magnetic network models for flux-switching permanent magnet machines

SCIENCE CHINA Technological Sciences. Nonlinear magnetic network models for flux-switching permanent magnet machines SCIENCE CHINA Technological Sciences Article March 2016 Vol.59 No.3: 494 505 doi: 10.1007/s11431-015-5968-z Nonlinear magnetic network models for flux-switching permanent magnet machines ZHANG Gan, HUA

More information

DESIGN AND COMPARISON OF FIVE TOPOLOGIES ROTOR PERMANENT MAGNET SYNCHRONOUS MOTOR FOR HIGH- SPEED SPINDLE APPLICATIONS

DESIGN AND COMPARISON OF FIVE TOPOLOGIES ROTOR PERMANENT MAGNET SYNCHRONOUS MOTOR FOR HIGH- SPEED SPINDLE APPLICATIONS Special Issue on Science, Engineering & Environment, ISSN: 186-990, Japan DOI: https://doi.org/10.1660/017.40.0765 DESIGN AND COMPARISON OF FIVE TOPOLOGIES ROTOR PERMANENT MAGNET SYNCHRONOUS MOTOR FOR

More information

Simplified Analysis Technique for Double Layer Non-overlap Multiphase Slip Permanent Magnet Couplings in Wind Energy Applications

Simplified Analysis Technique for Double Layer Non-overlap Multiphase Slip Permanent Magnet Couplings in Wind Energy Applications Simplified Analysis Technique for Double Layer Non-overlap Multiphase Slip Permanent Magnet Couplings in Wind Energy Applications Petrus JJ van Wyk - Prof. Maarten J. Kamper Renewable Energy Postgraduate

More information

Loss Minimization Design Using Magnetic Equivalent Circuit for a Permanent Magnet Synchronous Motor

Loss Minimization Design Using Magnetic Equivalent Circuit for a Permanent Magnet Synchronous Motor Loss Minimization Design Using Magnetic Equivalent Circuit for a Permanent Magnet Synchronous Motor Daisuke Sato Department of Electrical Engineering Nagaoka University of Technology Nagaoka, Niigata,

More information

Reducing PM Eddy Current Rotor Losses by Partial Magnet and Rotor Yoke Segmentation Dominic A. Wills, Maarten J. Kamper

Reducing PM Eddy Current Rotor Losses by Partial Magnet and Rotor Yoke Segmentation Dominic A. Wills, Maarten J. Kamper XIX International Conference on Electrical Machines - ICEM 1, Rome Reducing M Eddy Current Rotor Losses by artial Magnet and Rotor Yoke Segmentation Dominic A. Wills, Maarten J. Kamper Abstract -- In order

More information

Jerad P. 10/1/2015. Motor Thermal Limits on Torque Production (Frameless Motor Level)

Jerad P. 10/1/2015. Motor Thermal Limits on Torque Production (Frameless Motor Level) Jerad P. 10/1/015 Motor Thermal Limits on Torque Production (Frameless Motor Level) Jerad P. 10/1/015 The theory of operation of a frameless permanent magnet motor (PMM) and its thermal limitations is

More information

A Simple Nonlinear Model of the Switched Reluctance Motor

A Simple Nonlinear Model of the Switched Reluctance Motor IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL 15, NO 4, DECEMBER 2000 395 A Simple Nonlinear Model of the Switched Reluctance Motor Vladan Vujičić and Slobodan N Vukosavić Abstract The paper presents a simple

More information

Static Characteristics of Switched Reluctance Motor 6/4 By Finite Element Analysis

Static Characteristics of Switched Reluctance Motor 6/4 By Finite Element Analysis Australian Journal of Basic and Applied Sciences, 5(9): 1403-1411, 2011 ISSN 1991-8178 Static Characteristics of Switched Reluctance Motor 6/4 By Finite Element Analysis 1 T. Jahan. 2 M.B.B. Sharifian

More information

Influence of different rotor magnetic circuit structure on the performance. permanent magnet synchronous motor

Influence of different rotor magnetic circuit structure on the performance. permanent magnet synchronous motor ARCHIVES OF ELECTRICAL ENGINEERING VOL. 66(3), pp. 583-594 (2017) DOI 10.1515/aee-2017-0044 Influence of different rotor magnetic circuit structure on the performance of permanent magnet synchronous motor

More information

Cogging Torque Reduction in Surface-mounted Permanent Magnet Synchronous Motor by Axial Pole Pairing

Cogging Torque Reduction in Surface-mounted Permanent Magnet Synchronous Motor by Axial Pole Pairing EVS28 KINTEX, Korea, May 3-6, 215 Cogging Torque Reduction in Surface-mounted Permanent Magnet Synchronous Motor by Axial Pole Pairing Soo-Gyung Lee 1, Kyung-Tae Jung 1, Seung-Hee Chai 1, and Jung-Pyo

More information

Electric Rotating Stator Generator with Permanent Magnets and Fixed Rotor with Concentrated Windings: Analysis and Study on its Magnetic Circuit

Electric Rotating Stator Generator with Permanent Magnets and Fixed Rotor with Concentrated Windings: Analysis and Study on its Magnetic Circuit 1 Electric Rotating Stator Generator with Permanent Magnets and Fixed Rotor with Concentrated Windings: Analysis and Study on its Magnetic Circuit Gonçalo Miguéis, Student, DEEC/AC Energia and P.J. Costa

More information

A New Axial Flux Surface Mounted Permanent Magnet Machine Capable of Field Control

A New Axial Flux Surface Mounted Permanent Magnet Machine Capable of Field Control A ew Axial Flux urface Mounted Permanent Magnet Machine Capable of Field Control Metin Aydin 1, tudent Member, IEEE urong Huang 2, Member, IEEE Thomas A. ipo 1, Fellow, IEEE maydin@ieee.org srhuang@yc.shu.edu.cn

More information