Electricity & Magnetism Lecture 6: Electric Potential

Size: px
Start display at page:

Download "Electricity & Magnetism Lecture 6: Electric Potential"

Transcription

1 Electicity & Mgnetism Lectue 6: Electic Potentil Tody s Concept: Electic Potenl (Defined in tems of Pth Integl of Electic Field) Electicity & Mgnesm Lectue 6, Slide

2 Stuff you sked bout:! Explin moe why E is negve of delt V! I don't like tht we wee told to use gdients when we hven't even done them in mth yet.! So we just need to supeimpose the dil field lines which e found by tking the negve of the gdient of the electic potenl in 3d ctesin/spheicl/ cylindicl coodinte system nd e pependicul to euipotenls, the locus point of ll point with the sme potenl diffeence. Simple enough... We'll just do tht!.... Ohhhhh wit... WHAT?.! so electic potenl is the ndeivve of electic field is tht coect? in othe wods the e unde electic field funcon gives the electic potenl?! Wht is the diffeence between n integl of dot poduct nd integl of simple poduct?! Cn you plese explin the Gdient in diffeent Coodinte systems? Electicity & Mgnesm Lectue 6, Slide

3 Big Ide Lst me we defined the electic potenl enegy of chge in n electic field: b ΔU b = F dl b = E dl The only menon of the pcle ws though its chge. We cn obtin new unty, the electic potenl, which is PROPERTY OF THE SPACE, s the potenl enegy pe unit chge. ΔV b ΔU b Note the simility to the definion of nothe unty which is lso PROPERTY OF THE SPACE, the electic field. v E F = b E d l Electicity & Mgnesm Lectue 6, Slide 3

4 Electic Potentil fom E field Conside the thee points A, B, nd C locted in egion of constnt electic field s shown. D Δx Wht is the sign of ΔV AC = V C - V A? A) ΔV AC < B) ΔV AC = C) ΔV AC > Remembe the definion: ΔV A C = Choose pth (ny will do!) ΔV A C = D A E d l C D E d l C A E d l ΔV A C = C E d l = EΔx < D Electicity & Mgnesm Lectue 6, Slide

5 CheckPoint: Zeo Electic Field Suppose the electic field is zeo in cetin egion of spce. Which of the following sttements best descibes the electic potenl in this egion? A. The electic potenl is zeo eveywhee in this egion. B. The electic potenl is zeo t lest one point in this egion. C. The electic potenl is constnt eveywhee in this egion. D. Thee is not enough infomon given to disnguish which of the bove nswes is coect. Remembe the definion ΔV A B = B A E d l E = ΔV = A B V is constnt! Electicity & Mgnesm Lectue 6, Slide 5

6 E fom V If we cn get the potenl by integng the electic field: ΔV b = b E d l We should be ble to get the electic field by diffeenng the potenl? In Ctesin coodintes: E x = dv dx E y = dv dy E z = dv dz v E = V Electicity & Mgnesm Lectue 6, Slide 6

7 CheckPoint: Sptil Dependence of Potentil The electic potenl in cetin egion is ploded in the following gph At which point is the mgnitude of the E-FIELD getest? o A o B o C o D How do we get E fom V? v E = V E x = V dx Look t slopes! Electicity & Mgnesm Lectue 6, Slide 7

8 CheckPoint: Sptil Dependence of Potentil The electic potenl in cetin egion is ploded in the following gph At which point is the diecon of the E- field long the negve x-xis? o A o B o C o D At B, the slope is decesing (-) so the diection of the E field is negtive E is negtive when the slope of V is positive (E=-dV/dx). Theefoe E is diected long the x-xis t point C. How do we get E fom V? v E = V E x = dv dx Look t slopes! Electicity & Mgnesm Lectue 6, Slide 8

9 Euipotentils Euipotenls e the locus of points hving the sme potenl. Euipotentils poduced by point chge Euipotenls e ALWAYS pependicul to the electic field lines. The SPACING of the euipotenls indictes The STRENGTH of the electic field. Electicity & Mgnesm Lectue 6, Slide 9

10 Contou Lines on Topogphic Mps Electicity & Mgnesm Lectue 6, Slide

11 Visulizing the Potentil of Point Chge Electicity & Mgnesm Lectue 6, Slide

12 CheckPoint: Electic Field Lines The field-line epesenton of the E-field in cetin egion in spce is shown below. The dshed lines epesent euipotenl lines. At which point in spce is the E-field the wekest? o A o B o C o D The electic field lines e the lest dense t D Fom wht I know, the nswe should be D D is whee the electic field lines e the lest dense I m petty sue the electic field lines e the lest dense t D I d guess D Electicity & Mgnesm Lectue 6, Slide

13 CheckPoint: Electic Field Lines The field-line epesenton of the E-field in cetin egion in spce is shown below. The dshed lines epesent euipotenl lines. Compe the wok done moving negve chge fom A to B nd fom C to D. Which one euies moe wok? A. Moe wok is euied to move negve chge fom A to B thn fom C to D B. Moe wok is euied to move negve chge fom C to D thn fom A to B C. The sme mount of wok is euied to move negve chge fom A to B s to move it fom C to D D. Cnnot detemine without pefoming the clculon Electicity & Mgnesm Lectue 6, Slide 3

14 Clicke Question: Electonic Field Wht e these? ELECTRIC FIELD LINES! Wht e these? EQUIPOTENTIALS! Wht is the sign of W AC = wok done by E field to move negve chge fom A to C? A) W AC < B) W AC = C) W AC > A nd C e on the sme euipotenl W AC = Euipotenls e pependicul to the E field: No wok is done long n euipotenl Electicity & Mgnesm Lectue 6, Slide

15 CheckPoint Results: Electic Field Lines The field-line epesenton of the E-field in cetin egion in spce is shown below. The dshed lines epesent euipotenl lines. Compe the wok done moving negve chge fom A to B nd fom C to D. Which one euies moe wok? A. Moe wok is euied to move negve chge fom A to B thn fom C to D B. Moe wok is euied to move negve chge fom C to D thn fom A to B C. The sme mount of wok is euied to move negve chge fom A to B s to move it fom C to D D. Cnnot detemine without pefoming the clculon! A nd C e on the sme euipotenl! B nd D e on the sme euipotenl! Theefoe the potenl diffeence between A nd B is the SAME s the potenl between C nd D Electicity & Mgnesm Lectue 6, Slide 5

16 CheckPoint: Electic Field Lines 3 The field-line epesenton of the E-field in cetin egion in spce is shown below. The dshed lines epesent euipotenl lines. Compe the wok done moving negve chge fom A to B nd fom A to D. Which one euies moe wok? A. Moe wok is euied to move negve chge fom A to B thn fom A to D B. Moe wok is euied to move negve chge fom A to D thn fom A to B C. The sme mount of wok is euied to move negve chge fom A to B s to move it fom A to D D. Cnnot detemine without pefoming the clculon Electicity & Mgnesm Lectue 6, Slide 6

17 3 coss-secon Clcultion fo Potentil Q Point chge t cente of concentic conducng spheicl shells of dii,, 3, nd. The inne shell is unchged, but the oute shell cies chge Q. metl Wht is V s funcon of? metl Conceptul Anlysis:! Chges nd Q will cete n E field thoughout spce! V () = E d l Sttegic Anlysis:! Spheicl symmety: Use Guss Lw to clculte E eveywhee! Integte E to get V Electicity & Mgnesm Lectue 6, Slide 7

18 3 coss-secon Clcultion: Quntittive Anlysis 5 metl metl Q > : Wht is E()? A) B) C) πε Q D) E) πε Q πε πε Q Q Why? Guss lw: E d A = Q enclosed ε Eπ E Q = ε = πε Q Electicity & Mgnesm Lectue 6, Slide 8

19 3 Clcultion: Quntittive Anlysis coss-secon Q 3 < < : Wht is E()? A) B) πε C) πε metl D) πε E) πε Q metl Applying Guss lw, wht is Q enclosed fo ed sphee shown? A) B) - C) How is this possible? - must be induced t = 3 sufce chge t = sufce = Q σ 3 Q = = π 3 π σ Electicity & Mgnesm Lectue 6, Slide 9

20 3 Clcultion: Quntittive Anlysis coss-secon metl metl Q Connue on in < < 3 : E = πε < < : E = πε To find V: ) Choose such tht V( ) = (usul: = infinity) ) Integte! > : Q V = πε 3 < < : A) < : E = B) C) V = Q V = = ΔV πε Q V = πε 3 ( ) Electicity & Mgnesm Lectue 6, Slide

21 > : 3 < < : Clcultion: Quntittive Anlysis metl metl Q 3 coss-secon Electicity & Mgnesm Lectue 6, Slide Q V = πε Q V = πε < < 3 : ) ( ) ( ) ( 3 V V V Δ = Δ!! " # $ $ % & = 3 ) ( Q V πε πε V () = πε Q 3 $ % & ' ( ) < < :!! " # $ $ % & = 3 ) ( Q V πε < < :!! " # $ $ % & = 3 ) ( Q V πε

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

Lecture 11: Potential Gradient and Capacitor Review:

Lecture 11: Potential Gradient and Capacitor Review: Lectue 11: Potentil Gdient nd Cpcito Review: Two wys to find t ny point in spce: Sum o Integte ove chges: q 1 1 q 2 2 3 P i 1 q i i dq q 3 P 1 dq xmple of integting ove distiution: line of chge ing of

More information

Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin

Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin 1 1 Electic Field + + q F Q R oigin E 0 0 F E ˆ E 4 4 R q Q R Q - - Electic field intensity depends on the medium! Electic Flux Density We intoduce new vecto field D independent of medium. D E So, electic

More information

Physics 11b Lecture #11

Physics 11b Lecture #11 Physics 11b Lectue #11 Mgnetic Fields Souces of the Mgnetic Field S&J Chpte 9, 3 Wht We Did Lst Time Mgnetic fields e simil to electic fields Only diffeence: no single mgnetic pole Loentz foce Moving chge

More information

Physics 1502: Lecture 2 Today s Agenda

Physics 1502: Lecture 2 Today s Agenda 1 Lectue 1 Phsics 1502: Lectue 2 Tod s Agend Announcements: Lectues posted on: www.phs.uconn.edu/~cote/ HW ssignments, solutions etc. Homewok #1: On Mstephsics this Fid Homewoks posted on Msteingphsics

More information

U>, and is negative. Electric Potential Energy

U>, and is negative. Electric Potential Energy Electic Potentil Enegy Think of gvittionl potentil enegy. When the lock is moved veticlly up ginst gvity, the gvittionl foce does negtive wok (you do positive wok), nd the potentil enegy (U) inceses. When

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 4 Due on Sep. 1, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

Physics 604 Problem Set 1 Due Sept 16, 2010

Physics 604 Problem Set 1 Due Sept 16, 2010 Physics 64 Polem et 1 Due ept 16 1 1) ) Inside good conducto the electic field is eo (electons in the conducto ecuse they e fee to move move in wy to cncel ny electic field impessed on the conducto inside

More information

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface Genel Physics II Chpte 3: Guss w We now wnt to quickly discuss one of the moe useful tools fo clculting the electic field, nmely Guss lw. In ode to undestnd Guss s lw, it seems we need to know the concept

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 3 Due on Sep. 14, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

ELECTROSTATICS. 4πε0. E dr. The electric field is along the direction where the potential decreases at the maximum rate. 5. Electric Potential Energy:

ELECTROSTATICS. 4πε0. E dr. The electric field is along the direction where the potential decreases at the maximum rate. 5. Electric Potential Energy: LCTROSTATICS. Quntiztion of Chge: Any chged body, big o smll, hs totl chge which is n integl multile of e, i.e. = ± ne, whee n is n intege hving vlues,, etc, e is the chge of electon which is eul to.6

More information

Work, Potential Energy, Conservation of Energy. the electric forces are conservative: ur r

Work, Potential Energy, Conservation of Energy. the electric forces are conservative: ur r Wok, Potentil Enegy, Consevtion of Enegy the electic foces e consevtive: u Fd = Wok, Potentil Enegy, Consevtion of Enegy b b W = u b b Fdl = F()[ d + $ $ dl ] = F() d u Fdl = the electic foces e consevtive

More information

PX3008 Problem Sheet 1

PX3008 Problem Sheet 1 PX38 Poblem Sheet 1 1) A sphee of dius (m) contins chge of unifom density ρ (Cm -3 ). Using Guss' theoem, obtin expessions fo the mgnitude of the electic field (t distnce fom the cente of the sphee) in

More information

= ΔW a b. U 1 r m 1 + K 2

= ΔW a b. U 1 r m 1 + K 2 Chpite 3 Potentiel électiue [18 u 3 mi] DEVOIR : 31, 316, 354, 361, 35 Le potentiel électiue est le tvil p unité de chge (en J/C, ou volt) Ce concept est donc utile dns les polèmes de consevtion d énegie

More information

ELECTRO - MAGNETIC INDUCTION

ELECTRO - MAGNETIC INDUCTION NTRODUCTON LCTRO - MAGNTC NDUCTON Whenee mgnetic flu linked with cicuit chnges, n e.m.f. is induced in the cicuit. f the cicuit is closed, cuent is lso induced in it. The e.m.f. nd cuent poduced lsts s

More information

π,π is the angle FROM a! TO b

π,π is the angle FROM a! TO b Mth 151: 1.2 The Dot Poduct We hve scled vectos (o, multiplied vectos y el nume clled scl) nd dded vectos (in ectngul component fom). Cn we multiply vectos togethe? The nswe is YES! In fct, thee e two

More information

Chapter 25 Electric Potential

Chapter 25 Electric Potential Chpte 5 lectic Potentil consevtive foces -> potentil enegy - Wht is consevtive foce? lectic potentil = U / : the potentil enegy U pe unit chge is function of the position in spce Gol:. estblish the eltionship

More information

Chapter 2: Electric Field

Chapter 2: Electric Field P 6 Genel Phsics II Lectue Outline. The Definition of lectic ield. lectic ield Lines 3. The lectic ield Due to Point Chges 4. The lectic ield Due to Continuous Chge Distibutions 5. The oce on Chges in

More information

Radial geodesics in Schwarzschild spacetime

Radial geodesics in Schwarzschild spacetime Rdil geodesics in Schwzschild spcetime Spheiclly symmetic solutions to the Einstein eqution tke the fom ds dt d dθ sin θdϕ whee is constnt. We lso hve the connection components, which now tke the fom using

More information

Answers to test yourself questions

Answers to test yourself questions Answes to test youself questions opic Descibing fields Gm Gm Gm Gm he net field t is: g ( d / ) ( 4d / ) d d Gm Gm Gm Gm Gm Gm b he net potentil t is: V d / 4d / d 4d d d V e 4 7 9 49 J kg 7 7 Gm d b E

More information

Continuous Charge Distributions

Continuous Charge Distributions Continuous Chge Distibutions Review Wht if we hve distibution of chge? ˆ Q chge of distibution. Q dq element of chge. d contibution to due to dq. Cn wite dq = ρ dv; ρ is the chge density. = 1 4πε 0 qi

More information

This immediately suggests an inverse-square law for a "piece" of current along the line.

This immediately suggests an inverse-square law for a piece of current along the line. Electomgnetic Theoy (EMT) Pof Rui, UNC Asheville, doctophys on YouTube Chpte T Notes The iot-svt Lw T nvese-sque Lw fo Mgnetism Compe the mgnitude of the electic field t distnce wy fom n infinite line

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism FI 1 Electomgnetism Alexnde A. Isknd, Ph.D. Physics of Mgnetism nd Photonics Resech Goup Electosttics ELECTRIC PTENTIALS 1 Recll tht we e inteested to clculte the electic field of some chge distiution.

More information

SPA7010U/SPA7010P: THE GALAXY. Solutions for Coursework 1. Questions distributed on: 25 January 2018.

SPA7010U/SPA7010P: THE GALAXY. Solutions for Coursework 1. Questions distributed on: 25 January 2018. SPA7U/SPA7P: THE GALAXY Solutions fo Cousewok Questions distibuted on: 25 Jnuy 28. Solution. Assessed question] We e told tht this is fint glxy, so essentilly we hve to ty to clssify it bsed on its spectl

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

CHAPTER 18: ELECTRIC CHARGE AND ELECTRIC FIELD

CHAPTER 18: ELECTRIC CHARGE AND ELECTRIC FIELD ollege Physics Student s Mnul hpte 8 HAPTR 8: LTRI HARG AD LTRI ILD 8. STATI LTRIITY AD HARG: OSRVATIO O HARG. ommon sttic electicity involves chges nging fom nnocoulombs to micocoulombs. () How mny electons

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , PE ELECTOSTATICS C Popeties of chges : (i) (ii) (iii) (iv) (v) (vi) Two kinds of chges eist in ntue, positive nd negtive with the popety tht unlike chges ttct ech othe nd like chges epel ech othe. Ecess

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

Algebra Based Physics. Gravitational Force. PSI Honors universal gravitation presentation Update Fall 2016.notebookNovember 10, 2016

Algebra Based Physics. Gravitational Force. PSI Honors universal gravitation presentation Update Fall 2016.notebookNovember 10, 2016 Newton's Lw of Univesl Gvittion Gvittionl Foce lick on the topic to go to tht section Gvittionl Field lgeb sed Physics Newton's Lw of Univesl Gvittion Sufce Gvity Gvittionl Field in Spce Keple's Thid Lw

More information

Chapter 23 Electrical Potential

Chapter 23 Electrical Potential hpte Electicl Potentil onceptul Polems [SSM] A poton is moved to the left in unifom electic field tht points to the ight. Is the poton moving in the diection of incesing o decesing electic potentil? Is

More information

( ) ( ) ( ) ( ) ( ) # B x ( ˆ i ) ( ) # B y ( ˆ j ) ( ) # B y ("ˆ ( ) ( ) ( (( ) # ("ˆ ( ) ( ) ( ) # B ˆ z ( k )

( ) ( ) ( ) ( ) ( ) # B x ( ˆ i ) ( ) # B y ( ˆ j ) ( ) # B y (ˆ ( ) ( ) ( (( ) # (ˆ ( ) ( ) ( ) # B ˆ z ( k ) Emple 1: A positie chge with elocit is moing though unifom mgnetic field s shown in the figues below. Use the ight-hnd ule to detemine the diection of the mgnetic foce on the chge. Emple 1 ˆ i = ˆ ˆ i

More information

Chapter 24. Gauss s Law

Chapter 24. Gauss s Law Chpte 24 Guss s Lw CHAPTR OUTLIN 24.1 lectic Flux 24.2 Guss s Lw 24.3 Appliction of Guss s Lw to Vious Chge Distibutions 24.4 Conductos in lectosttic uilibium 24.5 Foml Deivtion of Guss s Lw In tble-top

More information

Chapter 21: Electric Charge and Electric Field

Chapter 21: Electric Charge and Electric Field Chpte 1: Electic Chge nd Electic Field Electic Chge Ancient Gees ~ 600 BC Sttic electicit: electic chge vi fiction (see lso fig 1.1) (Attempted) pith bll demonsttion: inds of popeties objects with sme

More information

2.2 This is the Nearest One Head (Optional) Experimental Verification of Gauss s Law and Coulomb s Law

2.2 This is the Nearest One Head (Optional) Experimental Verification of Gauss s Law and Coulomb s Law 2.2 This is the Neest One Hed 743 P U Z Z L R Some ilwy compnies e plnning to cot the windows of thei commute tins with vey thin lye of metl. (The coting is so thin you cn see though it.) They e doing

More information

(A) 6.32 (B) 9.49 (C) (D) (E) 18.97

(A) 6.32 (B) 9.49 (C) (D) (E) 18.97 Univesity of Bhin Physics 10 Finl Exm Key Fll 004 Deptment of Physics 13/1/005 8:30 10:30 e =1.610 19 C, m e =9.1110 31 Kg, m p =1.6710 7 Kg k=910 9 Nm /C, ε 0 =8.8410 1 C /Nm, µ 0 =4π10 7 T.m/A Pt : 10

More information

Prof. Anchordoqui Problems set # 12 Physics 169 May 12, 2015

Prof. Anchordoqui Problems set # 12 Physics 169 May 12, 2015 Pof. Anchodoqui Poblems set # 12 Physics 169 My 12, 2015 1. Two concentic conducting sphees of inne nd oute dii nd b, espectively, cy chges ±Q. The empty spce between the sphees is hlf-filled by hemispheicl

More information

Solutions to Midterm Physics 201

Solutions to Midterm Physics 201 Solutions to Midtem Physics. We cn conside this sitution s supeposition of unifomly chged sphee of chge density ρ nd dius R, nd second unifomly chged sphee of chge density ρ nd dius R t the position of

More information

Optimization. x = 22 corresponds to local maximum by second derivative test

Optimization. x = 22 corresponds to local maximum by second derivative test Optimiztion Lectue 17 discussed the exteme vlues of functions. This lectue will pply the lesson fom Lectue 17 to wod poblems. In this section, it is impotnt to emembe we e in Clculus I nd e deling one-vible

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chpte 8 Souces of Mgnetic Field - Mgnetic Field of Moving Chge - Mgnetic Field of Cuent Element - Mgnetic Field of Stight Cuent-Cying Conducto - Foce Between Pllel Conductos - Mgnetic Field of Cicul Cuent

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

CHAPTER 2 ELECTROSTATIC POTENTIAL

CHAPTER 2 ELECTROSTATIC POTENTIAL 1 CHAPTER ELECTROSTATIC POTENTIAL 1 Intoduction Imgine tht some egion of spce, such s the oom you e sitting in, is pemeted by n electic field (Pehps thee e ll sots of electiclly chged bodies outside the

More information

Fluids & Bernoulli s Equation. Group Problems 9

Fluids & Bernoulli s Equation. Group Problems 9 Goup Poblems 9 Fluids & Benoulli s Eqution Nme This is moe tutoil-like thn poblem nd leds you though conceptul development of Benoulli s eqution using the ides of Newton s 2 nd lw nd enegy. You e going

More information

Ch 26 - Capacitance! What s Next! Review! Lab this week!

Ch 26 - Capacitance! What s Next! Review! Lab this week! Ch 26 - Cpcitnce! Wht s Next! Cpcitnce" One week unit tht hs oth theoeticl n pcticl pplictions! Cuent & Resistnce" Moving chges, finlly!! Diect Cuent Cicuits! Pcticl pplictions of ll the stuff tht we ve

More information

General Physics (PHY 2140)

General Physics (PHY 2140) Genel Physics (PHY 40) Lightning Review Lectue 3 Electosttics Lst lectue:. Flux. Guss s s lw. simplifies computtion of electic fields Q Φ net Ecosθ ε o Electicl enegy potentil diffeence nd electic potentil

More information

Chapter 22 The Electric Field II: Continuous Charge Distributions

Chapter 22 The Electric Field II: Continuous Charge Distributions Chpte The lectic Field II: Continuous Chge Distibutions Conceptul Poblems [SSM] Figue -7 shows n L-shped object tht hs sides which e equl in length. Positive chge is distibuted unifomly long the length

More information

Friedmannien equations

Friedmannien equations ..6 Fiedmnnien equtions FLRW metic is : ds c The metic intevl is: dt ( t) d ( ) hee f ( ) is function which detemines globl geometic l popety of D spce. f d sin d One cn put it in the Einstein equtions

More information

Winter 2004 OSU Sources of Magnetic Fields 1 Chapter 32

Winter 2004 OSU Sources of Magnetic Fields 1 Chapter 32 Winte 4 OSU 1 Souces Of Mgnetic Fields We lened two wys to clculte Electic Field Coulomb's Foce de 4 E da 1 dq Q enc ˆ ute Foce Clcultion High symmety Wht e the nlogous equtions fo the Mgnetic Field? Winte

More information

dx was area under f ( x ) if ( ) 0

dx was area under f ( x ) if ( ) 0 13. Line Integls Line integls e simil to single integl, f ( x) dx ws e unde f ( x ) if ( ) 0 Insted of integting ove n intevl [, ] (, ) f xy ds f x., we integte ove cuve, (in the xy-plne). **Figue - get

More information

MAGNETIC EFFECT OF CURRENT & MAGNETISM

MAGNETIC EFFECT OF CURRENT & MAGNETISM TODUCTO MAGETC EFFECT OF CUET & MAGETM The molecul theo of mgnetism ws given b Webe nd modified lte b Ewing. Oested, in 18 obseved tht mgnetic field is ssocited with n electic cuent. ince, cuent is due

More information

Physics 505 Fall 2005 Midterm Solutions. This midterm is a two hour open book, open notes exam. Do all three problems.

Physics 505 Fall 2005 Midterm Solutions. This midterm is a two hour open book, open notes exam. Do all three problems. Physics 55 Fll 5 Midtem Solutions This midtem is two hou open ook, open notes exm. Do ll thee polems. [35 pts] 1. A ectngul ox hs sides of lengths, nd c z x c [1] ) Fo the Diichlet polem in the inteio

More information

Example 2: ( ) 2. $ s ' 9.11" 10 *31 kg ( )( 1" 10 *10 m) ( e)

Example 2: ( ) 2. $ s ' 9.11 10 *31 kg ( )( 1 10 *10 m) ( e) Emple 1: Two point chge e locted on the i, q 1 = e t = 0 nd q 2 = e t =.. Find the wok tht mut be done b n etenl foce to bing thid point chge q 3 = e fom infinit to = 2. b. Find the totl potentil eneg

More information

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3 DEPATMENT OF CIVIL AND ENVIONMENTAL ENGINEEING FLID MECHANICS III Solutions to Poblem Sheet 3 1. An tmospheic vote is moelle s combintion of viscous coe otting s soli boy with ngul velocity Ω n n iottionl

More information

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = =

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = = Chpte 1 nivesl Gvittion 11 *P1. () The un-th distnce is 1.4 nd the th-moon 8 distnce is.84, so the distnce fom the un to the Moon duing sol eclipse is 11 8 11 1.4.84 = 1.4 The mss of the un, th, nd Moon

More information

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3331 Electomagnetic I Chapte 4 Electostatic fields Islamic Univesity of Gaza Electical Engineeing Depatment D. Talal Skaik 212 1 Electic Potential The Gavitational Analogy Moving an object upwad against

More information

6. Gravitation. 6.1 Newton's law of Gravitation

6. Gravitation. 6.1 Newton's law of Gravitation Gvittion / 1 6.1 Newton's lw of Gvittion 6. Gvittion Newton's lw of gvittion sttes tht evey body in this univese ttcts evey othe body with foce, which is diectly popotionl to the poduct of thei msses nd

More information

Your Comments. Do we still get the 80% back on homework? It doesn't seem to be showing that. Also, this is really starting to make sense to me!

Your Comments. Do we still get the 80% back on homework? It doesn't seem to be showing that. Also, this is really starting to make sense to me! You Comments Do we still get the 8% back on homewok? It doesn't seem to be showing that. Also, this is eally stating to make sense to me! I am a little confused about the diffeences in solid conductos,

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

2 mv2 qv (0) = 0 v = 2qV (0)/m. Express q. . Substitute for V (0) and simplify to obtain: v = q

2 mv2 qv (0) = 0 v = 2qV (0)/m. Express q. . Substitute for V (0) and simplify to obtain: v = q Pof Anchodoui Polems set # Physics 69 Mch 3, 5 (i) Eight eul chges e locted t cones of cue of side s, s shown in Fig Find electic potentil t one cone, tking zeo potentil to e infinitely f wy (ii) Fou point

More information

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam)

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam) (Sample 3) Exam 1 - Physics 202 - Patel SPRING 1998 FORM CODE - A (solution key at end of exam) Be sue to fill in you student numbe and FORM lette (A, B, C) on you answe sheet. If you foget to include

More information

Chapter 4. Energy and Potential

Chapter 4. Energy and Potential Chpte 4. Enegy nd Ptentil Hyt; 0/5/009; 4-4. Enegy Expended in Mving Pint Chge in n Electic Field The electic field intensity is defined s the fce n unit test chge. The fce exeted y the electic field n

More information

r = (0.250 m) + (0.250 m) r = m = = ( N m / C )

r = (0.250 m) + (0.250 m) r = m = = ( N m / C ) ELECTIC POTENTIAL IDENTIFY: Apply Eq() to clculte the wok The electic potentil enegy of pi of point chges is given y Eq(9) SET UP: Let the initil position of q e point nd the finl position e point, s shown

More information

This chapter is about energy associated with electrical interactions. Every

This chapter is about energy associated with electrical interactions. Every 23 ELECTRIC PTENTIAL whee d l is n infinitesiml displcement long the pticle s pth nd f is the ngle etween F nd d l t ech point long the pth. econd, if the foce F is consevtive, s we defined the tem in

More information

ELECTROSTATICS. Syllabus : Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road PE 1

ELECTROSTATICS. Syllabus : Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road PE 1 PE ELECTOSTATICS Syllbus : Electic chges : Consevtion of chge, Coulumb s lw-foces between two point chges, foces between multiple chges; supeposition pinciple nd continuous chge distibution. Electic field

More information

q r 1 4πε Review: Two ways to find V at any point in space: Integrate E dl: Sum or Integrate over charges: q 1 r 1 q 2 r 2 r 3 q 3

q r 1 4πε Review: Two ways to find V at any point in space: Integrate E dl: Sum or Integrate over charges: q 1 r 1 q 2 r 2 r 3 q 3 Review: Lectue : Consevation of negy and Potential Gadient Two ways to find V at any point in space: Integate dl: Sum o Integate ove chages: q q 3 P V = i 4πε q i i dq q 3 P V = 4πε dq ample of integating

More information

On the Eötvös effect

On the Eötvös effect On the Eötvös effect Mugu B. Răuţ The im of this ppe is to popose new theoy bout the Eötvös effect. We develop mthemticl model which loud us bette undestnding of this effect. Fom the eqution of motion

More information

Energy Dissipation Gravitational Potential Energy Power

Energy Dissipation Gravitational Potential Energy Power Lectue 4 Chpte 8 Physics I 0.8.03 negy Dissiption Gvittionl Potentil negy Powe Couse wesite: http://fculty.uml.edu/andiy_dnylov/teching/physicsi Lectue Cptue: http://echo360.uml.edu/dnylov03/physicsfll.html

More information

NARAYANA I I T / P M T A C A D E M Y. C o m m o n Pr a c t i c e T e s t 0 9 XI-IC SPARK Date: PHYSICS CHEMISTRY MATHEMATICS

NARAYANA I I T / P M T A C A D E M Y. C o m m o n Pr a c t i c e T e s t 0 9 XI-IC SPARK Date: PHYSICS CHEMISTRY MATHEMATICS . (D). (B). (). (). (D). (A) 7. () 8. (B) 9. (B). (). (A). (D). (B). (). (B) NAAYANA I I T / T A A D E Y XIS-I-IIT-SA (..7) o m m o n c t i c e T e s t 9 XI-I SA Dte:..7 ANSWE YSIS EISTY ATEATIS. (B).

More information

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013 Mth 4318 : Rel Anlysis II Mid-Tem Exm 1 14 Febuy 2013 Nme: Definitions: Tue/Flse: Poofs: 1. 2. 3. 4. 5. 6. Totl: Definitions nd Sttements of Theoems 1. (2 points) Fo function f(x) defined on (, b) nd fo

More information

9.4 The response of equilibrium to temperature (continued)

9.4 The response of equilibrium to temperature (continued) 9.4 The esponse of equilibium to tempetue (continued) In the lst lectue, we studied how the chemicl equilibium esponds to the vition of pessue nd tempetue. At the end, we deived the vn t off eqution: d

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

Section 35 SHM and Circular Motion

Section 35 SHM and Circular Motion Section 35 SHM nd Cicul Motion Phsics 204A Clss Notes Wht do objects do? nd Wh do the do it? Objects sometimes oscillte in simple hmonic motion. In the lst section we looed t mss ibting t the end of sping.

More information

Hopefully Helpful Hints for Gauss s Law

Hopefully Helpful Hints for Gauss s Law Hopefully Helpful Hints fo Gauss s Law As befoe, thee ae things you need to know about Gauss s Law. In no paticula ode, they ae: a.) In the context of Gauss s Law, at a diffeential level, the electic flux

More information

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by Clss Summy.5 Eponentil Functions.6 Invese Functions nd Logithms A function f is ule tht ssigns to ech element D ectly one element, clled f( ), in. Fo emple : function not function Given functions f, g:

More information

Course Updates. Reminders: 1) Assignment #8 available. 2) Chapter 28 this week.

Course Updates. Reminders: 1) Assignment #8 available. 2) Chapter 28 this week. Couse Updtes http://www.phys.hwii.edu/~vne/phys7-sp1/physics7.html Remindes: 1) Assignment #8 vilble ) Chpte 8 this week Lectue 3 iot-svt s Lw (Continued) θ d θ P R R θ R d θ d Mgnetic Fields fom long

More information

Get Solution of These Packages & Learn by Video Tutorials on EXERCISE-1

Get Solution of These Packages & Learn by Video Tutorials on  EXERCISE-1 FEE Downlod Study Pckge fom website: www.tekoclsses.com & www.mthsbysuhg.com Get Solution of These Pckges & Len by Video Tutoils on www.mthsbysuhg.com EXECISE- * MAK IS MOE THAN ONE COECT QUESTIONS. SECTION

More information

Homework: Study 6.2 #1, 3, 5, 7, 11, 15, 55, 57

Homework: Study 6.2 #1, 3, 5, 7, 11, 15, 55, 57 Gols: 1. Undestnd volume s the sum of the es of n infinite nume of sufces. 2. Be le to identify: the ounded egion the efeence ectngle the sufce tht esults fom evolution of the ectngle ound n xis o foms

More information

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23.

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23. Eample: Electic Potential Enegy What is the change in electical potential enegy of a eleased electon in the atmosphee when the electostatic foce fom the nea Eath s electic field (diected downwad) causes

More information

Fields and Waves I Spring 2005 Homework 4. Due 8 March 2005

Fields and Waves I Spring 2005 Homework 4. Due 8 March 2005 Homewok 4 Due 8 Mach 005. Inceasing the Beakdown Voltage: This fist question is a mini design poject. You fist step is to find a commecial cable (coaxial o two wie line) fo which you have the following

More information

SURFACE TENSION. e-edge Education Classes 1 of 7 website: , ,

SURFACE TENSION. e-edge Education Classes 1 of 7 website: , , SURFACE TENSION Definition Sufce tension is popety of liquid by which the fee sufce of liquid behves like stetched elstic membne, hving contctive tendency. The sufce tension is mesued by the foce cting

More information

Physics 1502: Lecture 4 Today s Agenda

Physics 1502: Lecture 4 Today s Agenda 1 Physics 1502: Today s genda nnouncements: Lectues posted on: www.phys.uconn.edu/~cote/ HW assignments, solutions etc. Homewok #1: On Mastephysics today: due next Fiday Go to masteingphysics.com and egiste

More information

Lecture 4. Electric Potential

Lecture 4. Electric Potential Lectue 4 Electic Ptentil In this lectue yu will len: Electic Scl Ptentil Lplce s n Pissn s Eutin Ptentil f Sme Simple Chge Distibutins ECE 0 Fll 006 Fhn Rn Cnell Univesity Cnsevtive Ittinl Fiels Ittinl

More information

Objectives: After finishing this unit you should be able to:

Objectives: After finishing this unit you should be able to: lectic Field 7 Objectives: Afte finishing this unit you should be able to: Define the electic field and explain what detemines its magnitude and diection. Wite and apply fomulas fo the electic field intensity

More information

PHYS 2421 Fields and Waves

PHYS 2421 Fields and Waves PHYS 242 Felds nd Wves Instucto: Joge A. López Offce: PSCI 29 A, Phone: 747-7528 Textook: Unvesty Physcs e, Young nd Feedmn 23. Electc potentl enegy 23.2 Electc potentl 23.3 Clcultng electc potentl 23.4

More information

1. The sphere P travels in a straight line with speed

1. The sphere P travels in a straight line with speed 1. The sphee P tels in stight line with speed = 10 m/s. Fo the instnt depicted, detemine the coesponding lues of,,,,, s mesued eltie to the fixed Oxy coodinte system. (/134) + 38.66 1.34 51.34 10sin 3.639

More information

The Formulas of Vector Calculus John Cullinan

The Formulas of Vector Calculus John Cullinan The Fomuls of Vecto lculus John ullinn Anlytic Geomety A vecto v is n n-tuple of el numbes: v = (v 1,..., v n ). Given two vectos v, w n, ddition nd multipliction with scl t e defined by Hee is bief list

More information

Conflict Exam Issue. Sorry, Can t do it. Please see Kevin Pitts if you have any additional questions or concerns about this. Office is 231 Loomis

Conflict Exam Issue. Sorry, Can t do it. Please see Kevin Pitts if you have any additional questions or concerns about this. Office is 231 Loomis Conflict Exam Issue. Soy, Can t do it I was told that: Students can only be excused fom the scheduled final fo illness, death in the family o eligious holiday. No exceptions. Please see Kevin Pitts if

More information

PHYS 1444 Lecture #5

PHYS 1444 Lecture #5 Shot eview Chapte 24 PHYS 1444 Lectue #5 Tuesday June 19, 212 D. Andew Bandt Capacitos and Capacitance 1 Coulom s Law The Fomula QQ Q Q F 1 2 1 2 Fomula 2 2 F k A vecto quantity. Newtons Diection of electic

More information

University Physics (PHY 2326)

University Physics (PHY 2326) Chapte Univesity Physics (PHY 6) Lectue lectostatics lectic field (cont.) Conductos in electostatic euilibium The oscilloscope lectic flux and Gauss s law /6/5 Discuss a techniue intoduced by Kal F. Gauss

More information

Module 05: Gauss s s Law a

Module 05: Gauss s s Law a Module 05: Gauss s s Law a 1 Gauss s Law The fist Maxwell Equation! And a vey useful computational technique to find the electic field E when the souce has enough symmety. 2 Gauss s Law The Idea The total

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Week 8. Topic 2 Properties of Logarithms

Week 8. Topic 2 Properties of Logarithms Week 8 Topic 2 Popeties of Logithms 1 Week 8 Topic 2 Popeties of Logithms Intoduction Since the esult of ithm is n eponent, we hve mny popeties of ithms tht e elted to the popeties of eponents. They e

More information

Unit 1. Electrostatics of point charges

Unit 1. Electrostatics of point charges Unit 1 Electosttics of point chges 1.1 Intoduction 1. Electic chge 1.3 Electosttic foces. Coulomb s lw 1.4 Electic field. Field lines 1.5 Flux of the electic field. Guss s lw 1.6 Wok of the foces of electic

More information

1. Viscosities: μ = ρν. 2. Newton s viscosity law: 3. Infinitesimal surface force df. 4. Moment about the point o, dm

1. Viscosities: μ = ρν. 2. Newton s viscosity law: 3. Infinitesimal surface force df. 4. Moment about the point o, dm 3- Fluid Mecnics Clss Emple 3: Newton s Viscosit Lw nd Se Stess 3- Fluid Mecnics Clss Emple 3: Newton s Viscosit Lw nd Se Stess Motition Gien elocit field o ppoimted elocit field, we wnt to be ble to estimte

More information

Algebra-based Physics II

Algebra-based Physics II lgebabased Physics II Chapte 19 Electic potential enegy & The Electic potential Why enegy is stoed in an electic field? How to descibe an field fom enegetic point of view? Class Website: Natual way of

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

3.1 Magnetic Fields. Oersted and Ampere

3.1 Magnetic Fields. Oersted and Ampere 3.1 Mgnetic Fields Oested nd Ampee The definition of mgnetic induction, B Fields of smll loop (dipole) Mgnetic fields in mtte: ) feomgnetism ) mgnetiztion, (M ) c) mgnetic susceptiility, m d) mgnetic field,

More information

u(r, θ) = 1 + 3a r n=1

u(r, θ) = 1 + 3a r n=1 Mth 45 / AMCS 55. etuck Assignment 8 ue Tuesdy, Apil, 6 Topics fo this week Convegence of Fouie seies; Lplce s eqution nd hmonic functions: bsic popeties, computions on ectngles nd cubes Fouie!, Poisson

More information

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons Electostatics IB 12 1) electic chage: 2 types of electic chage: positive and negative 2) chaging by fiction: tansfe of electons fom one object to anothe 3) positive object: lack of electons negative object:

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

Your Comments. Conductors and Insulators with Gauss's law please...so basically everything!

Your Comments. Conductors and Insulators with Gauss's law please...so basically everything! You Comments I feel like I watch a pe-lectue, and agee with eveything said, but feel like it doesn't click until lectue. Conductos and Insulatos with Gauss's law please...so basically eveything! I don't

More information