Replica exchange methodology. John Karanicolas June 2003

Size: px
Start display at page:

Download "Replica exchange methodology. John Karanicolas June 2003"

Transcription

1 Replica exchange methodology John Karanicolas June 2003

2 Outline o Motivation o Theory o Practical considerations o MMTSB Tool Set

3 Why? o Sampling on rugged potential energy surfaces is difficult o Sampling is important for: o Collecting statistics (mean of some observable, free energy differences, etc.) o Finding the global minimum (e.g. structure prediction, refinement)

4 X Starting here X X or evaluate the free energy difference to here? can we get here? Doing so directly involves overcoming large barriers, and is therefore time-consuming

5 Umbrella Sampling: Strategy o Include an additional term (an umbrella ) in the Hamiltonian (potential energy function), to flatten the potential energy surface: + = Original P.E. surface + Umbrella term = Modified P.E. surface

6 Umbrella sampling: Result o Application of an umbrella flattens the potential energy surface, so that: fi All states are now (nearly) isoenergetic fi This means that they occur with similar probability fi Random walk in potential energy space fi Barrier heights are reduced fi More frequent transitions between states o We can use statistical mechanics to unbias the simulation

7 Choice of an Umbrella o Sometimes obvious: o A distance (e.g. ligand-receptor association) o An angle or dihedral (e.g. cyclohexane boat-chair transition) o Sometimes intuitive: o Radius of gyration (Rg) (e.g. protein folding) o Number of native contacts formed (e.g. protein folding)

8 A problem remains o The umbrella is not perfect. o We can t construct a perfect umbrella without knowledge of the true potential energy surface

9 Solution o Perform several independent simulations, each with a different approximate umbrella o A simple harmonic potential is often used, centered at several different places o Use statistical mechanics to stitch them together afterwards o This requires some overlap between simulations

10 Schematically: Numerous (harmonic) umbrellas: separately applied to Original P.E. surface:

11 A new problem emerges o The umbrella may not overcome all relevant barriers. o Example: Umbrellas in Rg for protein folding. o Large Rg umbrellas help sample extended states. o BUT: small Rg umbrellas do NOT induce transitions between native state and compact misfolded states.

12 Schematically: Very high barrier N M High barrier High barrier U Low Rg states High Rg states

13 Solution o Couple several simulations with different umbrellas, and periodically exchange the umbrellas o In the Rg example, may speed folding via: M (low Rg) Æ U (high Rg) Æ N (low Rg)

14 Schematically: Umbrella 1 A A A D Umbrella 2 B B D A Umbrella 3 C D B C Umbrella 4 D C C B A-D represent 4 non-interacting (MD or MC) simulations

15 Exchange probability o We can consider this set of simulations as a single system obeying equilibrium thermodynamics o This dictates that the exchanges must be accepted/rejected based on the Metropolis criterion: P(exchange) = Ï exp(-bde); DE 0 Ì Ó 1; DE < 0 b = 1 k B T

16 Exchange probability [ ] DE = E i q A where: ( ) - E ( q ) i B [ ( ) - E ( q )] j A + E j q B qa and qb represent two conformations, Ei and Ej denote the energy evaluated using different umbrellas The energy of moving from conformation A to conformation B in Hamiltonian i, and B to A in Hamiltonian j

17 Acceptance ratio o Early studies using MC find optimal sampling when the acceptance ratio is close to 20% o Indicates that the move set contains a good balance between short-range and long-range moves o What controls the acceptance ratio in replica exchange?

18 Acceptance ratio (cont d) o Force constant of (harmonic) umbrella o Distance between minima of (harmonic) umbrella

19 Move step o How do I choose which replicas to exchange? o Any can be exchanged, and Boltzmann sampling is preserved

20 Move step (cont d) o BUT: large DE results in low exchange probability o Low exchange probability means that replica exchange isn t buying you much compared with uncoupled simulations o Large DE occurs if the umbrellas are very different. o SO: we therefore exchange only replicas at neighboring conditions: o Maximizes the acceptance ratio o Allows maximally diverse conditions (ie. large spacing between umbrellas)

21 Exchange frequency o How often should I try exchanging replicas? o Unclear to the field. Some researchers try every 10 steps of MD, some every 2000 steps of MD. o We believe

22 Exchange frequency o The exchange frequency should be (at least) the relaxation time between neighboring replicas. o If the time is less than this, replicas which exchange will quickly return to their previous condition, and the intervening space will not be sampled o This time is on the order of 500 to 2000 MD steps

23 Temperature as a condition o We can write the Metropolis criterion for exchanges to different temperatures: Ï P(exchange) = Ì exp(d); D < 0 Ó 1; D 0

24 Exchange probability D = b i [ ] ( ) - E( q ) B E q A where: [ ] + b j E q B ( ) - E( q ) A or: ( ) E q A D = b i - b j [ ] ( ) - E( q ) B

25 Why exchange temperatures? o Any ideas?

26 Exchanging temperatures o Temperature acts exactly as an umbrella o Low temperatures enhance sampling in local minima o Energy dominates o High temperatures help barrier crossings o Entropy dominates o When is this useful?

27 Why exchange temperatures? o Useful when an umbrella reaction coordinate is not known (e.g. protein folding) o Useful when we re interested in temperaturedependent information (e.g. protein folding)

28 Umbrellas in multiple dimensions o Sure, why not! o Example: ligand binding to receptor o Umbrella applied to ligand-receptor distance o Umbrella applied to ligand orientation

29 Umbrellas in multiple dimensions o In multiple-dimension replica exchange, all combinations of conditions need not be represented o Example: ligand binding to receptor o When the ligand-receptor distance is large, we don t need multiple umbrellas on the orientation o No barriers here o Why is this helpful?

30 Implementation in MMTSB Tool Set o Running replica exchange: o aarex.pl, aarexamber.pl, latrex.pl o Analysis of replica exchange results: o rexinfo.pl

31 Summary o Replica exchange involves: o Defining a series of different conditions across an interesting reaction coordinate o Simultaneously running a simulation under each set of conditions o Periodically exchanging the current conformation in each condition, subject to the Metropolis criterion o This leads to enhanced sampling along this reaction coordinate o Available through the MMTSB Tool Set

Multi-Ensemble Markov Models and TRAM. Fabian Paul 21-Feb-2018

Multi-Ensemble Markov Models and TRAM. Fabian Paul 21-Feb-2018 Multi-Ensemble Markov Models and TRAM Fabian Paul 21-Feb-2018 Outline Free energies Simulation types Boltzmann reweighting Umbrella sampling multi-temperature simulation accelerated MD Analysis methods

More information

Lecture 14: Advanced Conformational Sampling

Lecture 14: Advanced Conformational Sampling Lecture 14: Advanced Conformational Sampling Dr. Ronald M. Levy ronlevy@temple.edu Multidimensional Rough Energy Landscapes MD ~ ns, conformational motion in macromolecules ~µs to sec Interconversions

More information

Molecular simulation and structure prediction using CHARMM and the MMTSB Tool Set Free Energy Methods

Molecular simulation and structure prediction using CHARMM and the MMTSB Tool Set Free Energy Methods Molecular simulation and structure prediction using CHARMM and the MMTSB Tool Set Free Energy Methods Charles L. Brooks III MMTSB/CTBP 2006 Summer Workshop CHARMM Simulations The flow of data and information

More information

Basics of Statistical Mechanics

Basics of Statistical Mechanics Basics of Statistical Mechanics Review of ensembles Microcanonical, canonical, Maxwell-Boltzmann Constant pressure, temperature, volume, Thermodynamic limit Ergodicity (see online notes also) Reading assignment:

More information

Computing free energy: Thermodynamic perturbation and beyond

Computing free energy: Thermodynamic perturbation and beyond Computing free energy: Thermodynamic perturbation and beyond Extending the scale Length (m) 1 10 3 Potential Energy Surface: {Ri} 10 6 (3N+1) dimensional 10 9 E Thermodynamics: p, T, V, N continuum ls

More information

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below Introduction In statistical physics Monte Carlo methods are considered to have started in the Manhattan project (1940

More information

Advanced sampling. fluids of strongly orientation-dependent interactions (e.g., dipoles, hydrogen bonds)

Advanced sampling. fluids of strongly orientation-dependent interactions (e.g., dipoles, hydrogen bonds) Advanced sampling ChE210D Today's lecture: methods for facilitating equilibration and sampling in complex, frustrated, or slow-evolving systems Difficult-to-simulate systems Practically speaking, one is

More information

Molecular Interactions F14NMI. Lecture 4: worked answers to practice questions

Molecular Interactions F14NMI. Lecture 4: worked answers to practice questions Molecular Interactions F14NMI Lecture 4: worked answers to practice questions http://comp.chem.nottingham.ac.uk/teaching/f14nmi jonathan.hirst@nottingham.ac.uk (1) (a) Describe the Monte Carlo algorithm

More information

Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water?

Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water? Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water? Ruhong Zhou 1 and Bruce J. Berne 2 1 IBM Thomas J. Watson Research Center; and 2 Department of Chemistry,

More information

Free energy simulations

Free energy simulations Free energy simulations Marcus Elstner and Tomáš Kubař January 14, 2013 Motivation a physical quantity that is of most interest in chemistry? free energies Helmholtz F or Gibbs G holy grail of computational

More information

Why study protein dynamics?

Why study protein dynamics? Why study protein dynamics? Protein flexibility is crucial for function. One average structure is not enough. Proteins constantly sample configurational space. Transport - binding and moving molecules

More information

Computational Studies of the Photoreceptor Rhodopsin. Scott E. Feller Wabash College

Computational Studies of the Photoreceptor Rhodopsin. Scott E. Feller Wabash College Computational Studies of the Photoreceptor Rhodopsin Scott E. Feller Wabash College Rhodopsin Photocycle Dark-adapted Rhodopsin hn Isomerize retinal Photorhodopsin ~200 fs Bathorhodopsin Meta-II ms timescale

More information

3.320 Lecture 18 (4/12/05)

3.320 Lecture 18 (4/12/05) 3.320 Lecture 18 (4/12/05) Monte Carlo Simulation II and free energies Figure by MIT OCW. General Statistical Mechanics References D. Chandler, Introduction to Modern Statistical Mechanics D.A. McQuarrie,

More information

Multicanonical parallel tempering

Multicanonical parallel tempering JOURNAL OF CHEMICAL PHYSICS VOLUME 116, NUMBER 13 1 APRIL 2002 Multicanonical parallel tempering Roland Faller, Qiliang Yan, and Juan J. de Pablo Department of Chemical Engineering, University of Wisconsin,

More information

Basics of Statistical Mechanics

Basics of Statistical Mechanics Basics of Statistical Mechanics Review of ensembles Microcanonical, canonical, Maxwell-Boltzmann Constant pressure, temperature, volume, Thermodynamic limit Ergodicity (see online notes also) Reading assignment:

More information

Monte Carlo. Lecture 15 4/9/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

Monte Carlo. Lecture 15 4/9/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky Monte Carlo Lecture 15 4/9/18 1 Sampling with dynamics In Molecular Dynamics we simulate evolution of a system over time according to Newton s equations, conserving energy Averages (thermodynamic properties)

More information

Application of the Markov State Model to Molecular Dynamics of Biological Molecules. Speaker: Xun Sang-Ni Supervisor: Prof. Wu Dr.

Application of the Markov State Model to Molecular Dynamics of Biological Molecules. Speaker: Xun Sang-Ni Supervisor: Prof. Wu Dr. Application of the Markov State Model to Molecular Dynamics of Biological Molecules Speaker: Xun Sang-Ni Supervisor: Prof. Wu Dr. Jiang Introduction Conformational changes of proteins : essential part

More information

Optimization Methods via Simulation

Optimization Methods via Simulation Optimization Methods via Simulation Optimization problems are very important in science, engineering, industry,. Examples: Traveling salesman problem Circuit-board design Car-Parrinello ab initio MD Protein

More information

Limitations of temperature replica exchange (T-REMD) for protein folding simulations

Limitations of temperature replica exchange (T-REMD) for protein folding simulations Limitations of temperature replica exchange (T-REMD) for protein folding simulations Jed W. Pitera, William C. Swope IBM Research pitera@us.ibm.com Anomalies in protein folding kinetic thermodynamic 322K

More information

Kinetic Monte Carlo (KMC)

Kinetic Monte Carlo (KMC) Kinetic Monte Carlo (KMC) Molecular Dynamics (MD): high-frequency motion dictate the time-step (e.g., vibrations). Time step is short: pico-seconds. Direct Monte Carlo (MC): stochastic (non-deterministic)

More information

Some Accelerated/Enhanced Sampling Techniques

Some Accelerated/Enhanced Sampling Techniques Some Accelerated/Enhanced Sampling Techniques The Sampling Problem Accelerated sampling can be achieved by addressing one or more of the MD ingredients Back to free energy differences... Examples of accelerated

More information

Molecular Dynamics and Accelerated Molecular Dynamics

Molecular Dynamics and Accelerated Molecular Dynamics Molecular Dynamics and Accelerated Molecular Dynamics Arthur F. Voter Theoretical Division National Laboratory Lecture 3 Tutorial Lecture Series Institute for Pure and Applied Mathematics (IPAM) UCLA September

More information

3.320 Lecture 23 (5/3/05)

3.320 Lecture 23 (5/3/05) 3.320 Lecture 23 (5/3/05) Faster, faster,faster Bigger, Bigger, Bigger Accelerated Molecular Dynamics Kinetic Monte Carlo Inhomogeneous Spatial Coarse Graining 5/3/05 3.320 Atomistic Modeling of Materials

More information

A new combination of replica exchange Monte Carlo and histogram analysis for protein folding and thermodynamics

A new combination of replica exchange Monte Carlo and histogram analysis for protein folding and thermodynamics JOURNAL OF CHEMICAL PHYSICS VOLUME 115, NUMBER 3 15 JULY 2001 A new combination of replica exchange Monte Carlo and histogram analysis for protein folding and thermodynamics Dominik Gront Department of

More information

Free energy calculations

Free energy calculations Free energy calculations Berk Hess May 5, 2017 Why do free energy calculations? The free energy G gives the population of states: ( ) P 1 G = exp, G = G 2 G 1 P 2 k B T Since we mostly simulate in the

More information

Optimized statistical ensembles for slowly equilibrating classical and quantum systems

Optimized statistical ensembles for slowly equilibrating classical and quantum systems Optimized statistical ensembles for slowly equilibrating classical and quantum systems IPAM, January 2009 Simon Trebst Microsoft Station Q University of California, Santa Barbara Collaborators: David Huse,

More information

Statistical Mechanics Primer

Statistical Mechanics Primer Statistical Mechanics Primer David an alen January 7, 2007 As the data produced by experimental biologists becomes more quantitative, there becomes a need for more quantitative models. There are many ways

More information

Markov Chain Monte Carlo Method

Markov Chain Monte Carlo Method Markov Chain Monte Carlo Method Macoto Kikuchi Cybermedia Center, Osaka University 6th July 2017 Thermal Simulations 1 Why temperature 2 Statistical mechanics in a nutshell 3 Temperature in computers 4

More information

Molecular dynamics simulation. CS/CME/BioE/Biophys/BMI 279 Oct. 5 and 10, 2017 Ron Dror

Molecular dynamics simulation. CS/CME/BioE/Biophys/BMI 279 Oct. 5 and 10, 2017 Ron Dror Molecular dynamics simulation CS/CME/BioE/Biophys/BMI 279 Oct. 5 and 10, 2017 Ron Dror 1 Outline Molecular dynamics (MD): The basic idea Equations of motion Key properties of MD simulations Sample applications

More information

DISCRETE TUTORIAL. Agustí Emperador. Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING:

DISCRETE TUTORIAL. Agustí Emperador. Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING: DISCRETE TUTORIAL Agustí Emperador Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING: STRUCTURAL REFINEMENT OF DOCKING CONFORMATIONS Emperador

More information

Essential dynamics sampling of proteins. Tuorial 6 Neva Bešker

Essential dynamics sampling of proteins. Tuorial 6 Neva Bešker Essential dynamics sampling of proteins Tuorial 6 Neva Bešker Relevant time scale Why we need enhanced sampling? Interconvertion between basins is infrequent at the roomtemperature: kinetics and thermodynamics

More information

Free energy calculations and the potential of mean force

Free energy calculations and the potential of mean force Free energy calculations and the potential of mean force IMA Workshop on Classical and Quantum Approaches in Molecular Modeling Mark Tuckerman Dept. of Chemistry and Courant Institute of Mathematical Science

More information

Modeling Background; Donald J. Jacobs, University of North Carolina at Charlotte Page 1 of 8

Modeling Background; Donald J. Jacobs, University of North Carolina at Charlotte Page 1 of 8 Modeling Background; Donald J. Jacobs, University of North Carolina at Charlotte Page 1 of 8 Depending on thermodynamic and solvent conditions, the interrelationships between thermodynamic stability of

More information

Biomolecular modeling. Theoretical Chemistry, TU Braunschweig (Dated: December 10, 2010)

Biomolecular modeling. Theoretical Chemistry, TU Braunschweig (Dated: December 10, 2010) Biomolecular modeling Marcus Elstner and Tomáš Kubař Theoretical Chemistry, TU Braunschweig (Dated: December 10, 2010) IX. FREE ENERGY SIMULATIONS When searching for a physical quantity that is of most

More information

Replica Exchange with Solute Scaling: A More Efficient Version of Replica Exchange with Solute Tempering (REST2)

Replica Exchange with Solute Scaling: A More Efficient Version of Replica Exchange with Solute Tempering (REST2) pubs.acs.org/jpcb Replica Exchange with Solute Scaling: A More Efficient Version of Replica Exchange with Solute Tempering (REST2) Lingle Wang, Richard A. Friesner, and B. J. Berne* Department of Chemistry,

More information

Equilibrium Molecular Thermodynamics from Kirkwood Sampling

Equilibrium Molecular Thermodynamics from Kirkwood Sampling This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source

More information

Generalized Ensembles: Multicanonical Simulations

Generalized Ensembles: Multicanonical Simulations Generalized Ensembles: Multicanonical Simulations 1. Multicanonical Ensemble 2. How to get the Weights? 3. Example Runs and Re-Weighting to the Canonical Ensemble 4. Energy and Specific Heat Calculation

More information

Free energy calculations using molecular dynamics simulations. Anna Johansson

Free energy calculations using molecular dynamics simulations. Anna Johansson Free energy calculations using molecular dynamics simulations Anna Johansson 2007-03-13 Outline Introduction to concepts Why is free energy important? Calculating free energy using MD Thermodynamical Integration

More information

Equilibrium Molecular Thermodynamics from Kirkwood Sampling

Equilibrium Molecular Thermodynamics from Kirkwood Sampling This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source

More information

Energy Landscapes and Accelerated Molecular- Dynamical Techniques for the Study of Protein Folding

Energy Landscapes and Accelerated Molecular- Dynamical Techniques for the Study of Protein Folding Energy Landscapes and Accelerated Molecular- Dynamical Techniques for the Study of Protein Folding John K. Prentice Boulder, CO BioMed Seminar University of New Mexico Physics and Astronomy Department

More information

Smart walking: A new method for Boltzmann sampling of protein conformations

Smart walking: A new method for Boltzmann sampling of protein conformations Smart walking: A new method for Boltzmann sampling of protein conformations Ruhong Zhou and B. J. Berne Department of Chemistry and the Center for Biomolecular Simulation, Columbia University, New York,

More information

Computing free energy: Replica exchange

Computing free energy: Replica exchange Computing free energy: Replica exchange Extending the scale Length (m) 1 10 3 Potential Energy Surface: {Ri} 10 6 (3N+1) dimensional 10 9 E Thermodynamics: p, T, V, N continuum ls Macroscopic i a t e regime

More information

Evolution of functionality in lattice proteins

Evolution of functionality in lattice proteins Evolution of functionality in lattice proteins Paul D. Williams,* David D. Pollock, and Richard A. Goldstein* *Department of Chemistry, University of Michigan, Ann Arbor, MI, USA Department of Biological

More information

Convergence of replica exchange molecular dynamics

Convergence of replica exchange molecular dynamics THE JOURNAL OF CHEMICAL PHYSICS 123, 154105 2005 Convergence of replica exchange molecular dynamics Wei Zhang and Chun Wu Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware

More information

Contact map guided ab initio structure prediction

Contact map guided ab initio structure prediction Contact map guided ab initio structure prediction S M Golam Mortuza Postdoctoral Research Fellow I-TASSER Workshop 2017 North Carolina A&T State University, Greensboro, NC Outline Ab initio structure prediction:

More information

Random Walks A&T and F&S 3.1.2

Random Walks A&T and F&S 3.1.2 Random Walks A&T 110-123 and F&S 3.1.2 As we explained last time, it is very difficult to sample directly a general probability distribution. - If we sample from another distribution, the overlap will

More information

Computational chemical biology to address non-traditional drug targets. John Karanicolas

Computational chemical biology to address non-traditional drug targets. John Karanicolas Computational chemical biology to address non-traditional drug targets John Karanicolas Our computational toolbox Structure-based approaches Ligand-based approaches Detailed MD simulations 2D fingerprints

More information

Lecture 2: Receptor-ligand binding and cooperativity

Lecture 2: Receptor-ligand binding and cooperativity Lecture 2: Receptor-ligand binding and cooperativity Paul C Bressloff (Spring 209) A biochemical receptor is a protein molecule that receives a chemical signal in the form of ligand molecules. The ligands

More information

Choosing weights for simulated tempering

Choosing weights for simulated tempering PHYSICAL REVIEW E 7, 173 7 Choosing weights for simulated tempering Sanghyun Park 1 and Vijay S. Pande 1, 1 Department of Chemistry, Stanford University, Stanford, California 935, USA Department of Structural

More information

Lecture 34 Protein Unfolding Thermodynamics

Lecture 34 Protein Unfolding Thermodynamics Physical Principles in Biology Biology 3550 Fall 2018 Lecture 34 Protein Unfolding Thermodynamics Wednesday, 21 November c David P. Goldenberg University of Utah goldenberg@biology.utah.edu Clicker Question

More information

LOCAL MINIMA HOPPING ALONG THE PROTEIN ENERGY SURFACE

LOCAL MINIMA HOPPING ALONG THE PROTEIN ENERGY SURFACE LOCAL MINIMA HOPPING ALONG THE PROTEIN ENERGY SURFACE by Brian Olson A Thesis Submitted to the Graduate Faculty of George Mason University In Partial Fulfillment of The Requirements for the Degree of Master

More information

Kinetic Monte Carlo: from transition probabilities to transition rates

Kinetic Monte Carlo: from transition probabilities to transition rates Kinetic Monte Carlo: from transition probabilities to transition rates With MD we can only reproduce the dynamics of the system for 100 ns. Slow thermallyactivated processes, such as diffusion, cannot

More information

Lecture 5: Temperature, Adiabatic Processes

Lecture 5: Temperature, Adiabatic Processes Lecture 5: Temperature, Adiabatic Processes Chapter II. Thermodynamic Quantities A.G. Petukhov, PHYS 743 September 20, 2017 Chapter II. Thermodynamic Quantities Lecture 5: Temperature, Adiabatic Processes

More information

PROTEIN-PROTEIN DOCKING REFINEMENT USING RESTRAINT MOLECULAR DYNAMICS SIMULATIONS

PROTEIN-PROTEIN DOCKING REFINEMENT USING RESTRAINT MOLECULAR DYNAMICS SIMULATIONS TASKQUARTERLYvol.20,No4,2016,pp.353 360 PROTEIN-PROTEIN DOCKING REFINEMENT USING RESTRAINT MOLECULAR DYNAMICS SIMULATIONS MARTIN ZACHARIAS Physics Department T38, Technical University of Munich James-Franck-Str.

More information

Free Radical-Initiated Unfolding of Peptide Secondary Structure Elements

Free Radical-Initiated Unfolding of Peptide Secondary Structure Elements Free Radical-Initiated Unfolding of Peptide Secondary Structure Elements Thesis of the Ph.D. Dissertation by Michael C. Owen, M.Sc. Department of Chemical Informatics Faculty of Education University of

More information

Continuous Constant ph Molecular Dynamics

Continuous Constant ph Molecular Dynamics Continuous Constant ph Molecular Dynamics Ana Patricia Gámiz-Hernández Department of Chemistry University of Basel AG Meuwly apgamiz (UniBas) CPHMD July 2013 1 / 46 Outline 1 Motivation Biopolymers in

More information

7. Kinetics controlled by fluctuations: Kramers theory of activated processes

7. Kinetics controlled by fluctuations: Kramers theory of activated processes 7. Kinetics controlled by fluctuations: Kramers theory of activated processes Macroscopic kinetic processes (time dependent concentrations) Elementary kinetic process Reaction mechanism Unimolecular processes

More information

Lecture 8: Computer Simulations of Generalized Ensembles

Lecture 8: Computer Simulations of Generalized Ensembles Lecture 8: Computer Simulations of Generalized Ensembles Bernd A. Berg Florida State University November 6, 2008 Bernd A. Berg (FSU) Generalized Ensembles November 6, 2008 1 / 33 Overview 1. Reweighting

More information

CS 273 Prof. Serafim Batzoglou Prof. Jean-Claude Latombe Spring Lecture 12 : Energy maintenance (1) Lecturer: Prof. J.C.

CS 273 Prof. Serafim Batzoglou Prof. Jean-Claude Latombe Spring Lecture 12 : Energy maintenance (1) Lecturer: Prof. J.C. CS 273 Prof. Serafim Batzoglou Prof. Jean-Claude Latombe Spring 2006 Lecture 12 : Energy maintenance (1) Lecturer: Prof. J.C. Latombe Scribe: Neda Nategh How do you update the energy function during the

More information

Biophysical Model Building

Biophysical Model Building Biophysical Model Building Step 1: Come up with a hypothesis about how a system works How many binding sites? Is there cooperativity? Step 2: Translate the qualitative hypotheses into an observable mathematical

More information

EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December Suggested resolution

EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December Suggested resolution page 1 of 7 EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December 2013 Suggested resolution Exercise 1. [total: 25 p] a) [t: 5 p] Describe the bonding [1.5 p] and the molecular orbitals [1.5 p] of the ethylene

More information

Energy functions and their relationship to molecular conformation. CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror

Energy functions and their relationship to molecular conformation. CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror Energy functions and their relationship to molecular conformation CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror Yesterday s Nobel Prize: single-particle cryoelectron microscopy 2 Outline Energy

More information

Lecture 7: Two State Systems: From Ion Channels To Cooperative Binding

Lecture 7: Two State Systems: From Ion Channels To Cooperative Binding Lecture 7: Two State Systems: From Ion Channels To Cooperative Binding Lecturer: Brigita Urbanc Office: 12 909 (E mail: brigita@drexel.edu) Course website: www.physics.drexel.edu/~brigita/courses/biophys_2011

More information

w REXAMD: A Hamiltonian Replica Exchange Approach to Improve Free Energy Calculations for Systems with Kinetically Trapped Conformations

w REXAMD: A Hamiltonian Replica Exchange Approach to Improve Free Energy Calculations for Systems with Kinetically Trapped Conformations pubs.acs.org/jctc Downloaded via 148.251.232.83 on March 8, 2019 at 14:33:02 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. w REXAMD: A Hamiltonian

More information

Lecture 2+3: Simulations of Soft Matter. 1. Why Lecture 1 was irrelevant 2. Coarse graining 3. Phase equilibria 4. Applications

Lecture 2+3: Simulations of Soft Matter. 1. Why Lecture 1 was irrelevant 2. Coarse graining 3. Phase equilibria 4. Applications Lecture 2+3: Simulations of Soft Matter 1. Why Lecture 1 was irrelevant 2. Coarse graining 3. Phase equilibria 4. Applications D. Frenkel, Boulder, July 6, 2006 What distinguishes Colloids from atoms or

More information

Entanglement Entropy in Extended Quantum Systems

Entanglement Entropy in Extended Quantum Systems Entanglement Entropy in Extended Quantum Systems John Cardy University of Oxford STATPHYS 23 Genoa Outline A. Universal properties of entanglement entropy near quantum critical points B. Behaviour of entanglement

More information

Spectral Clustering. Guokun Lai 2016/10

Spectral Clustering. Guokun Lai 2016/10 Spectral Clustering Guokun Lai 2016/10 1 / 37 Organization Graph Cut Fundamental Limitations of Spectral Clustering Ng 2002 paper (if we have time) 2 / 37 Notation We define a undirected weighted graph

More information

Protein Structure Analysis with Sequential Monte Carlo Method. Jinfeng Zhang Computational Biology Lab Department of Statistics Harvard University

Protein Structure Analysis with Sequential Monte Carlo Method. Jinfeng Zhang Computational Biology Lab Department of Statistics Harvard University Protein Structure Analysis with Sequential Monte Carlo Method Jinfeng Zhang Computational Biology Lab Department of Statistics Harvard University Introduction Structure Function & Interaction Protein structure

More information

Free-Energy Calculations in Protein Folding by Generalized-Ensemble Algorithms

Free-Energy Calculations in Protein Folding by Generalized-Ensemble Algorithms Free-Energy Calculations in Protein Folding by Generalized-Ensemble Algorithms Yuji Sugita 1 and Yuko Okamoto 2 Department of Theoretical Studies Institute for Molecular Science Okazaki, Aichi 444-8585,

More information

Parallel Tempering Algorithm in Monte Carlo Simulation

Parallel Tempering Algorithm in Monte Carlo Simulation Parallel Tempering Algorithm in Monte Carlo Simulation Tony Cheung (CUHK) Kevin Zhao (CUHK) Mentors: Ying Wai Li (ORNL) Markus Eisenbach (ORNL) Kwai Wong (UTK/ORNL) Metropolis Algorithm on Ising Model

More information

Hamiltonian Replica Exchange Molecular Dynamics Using Soft-Core Interactions to Enhance Conformational Sampling

Hamiltonian Replica Exchange Molecular Dynamics Using Soft-Core Interactions to Enhance Conformational Sampling John von Neumann Institute for Computing Hamiltonian Replica Exchange Molecular Dynamics Using Soft-Core Interactions to Enhance Conformational Sampling J. Hritz, Ch. Oostenbrink published in From Computational

More information

Computer simulations of protein folding with a small number of distance restraints

Computer simulations of protein folding with a small number of distance restraints Vol. 49 No. 3/2002 683 692 QUARTERLY Computer simulations of protein folding with a small number of distance restraints Andrzej Sikorski 1, Andrzej Kolinski 1,2 and Jeffrey Skolnick 2 1 Department of Chemistry,

More information

SCORING. The exam consists of 5 questions totaling 100 points as broken down in this table:

SCORING. The exam consists of 5 questions totaling 100 points as broken down in this table: UNIVERSITY OF CALIFORNIA, BERKELEY CHEM C130/MCB C100A MIDTERM EXAMINATION #2 OCTOBER 20, 2016 INSTRUCTORS: John Kuriyan and David Savage THE TIME LIMIT FOR THIS EXAMINATION: 1 HOUR 50 MINUTES SIGNATURE:

More information

2 Computational methods. 1 Introduction. 2.1 Simulation models

2 Computational methods. 1 Introduction. 2.1 Simulation models Molecular Dynamics Simulations of Folding and Insertion of the Ebola Virus Fusion Peptide into a Membrane Bilayer Mark A. Olson 1, In-Chul Yeh 2, and Michael S. Lee 1,3 1 US Army Medical Research Institute

More information

Multi-Scale Hierarchical Structure Prediction of Helical Transmembrane Proteins

Multi-Scale Hierarchical Structure Prediction of Helical Transmembrane Proteins Multi-Scale Hierarchical Structure Prediction of Helical Transmembrane Proteins Zhong Chen Dept. of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602 Email: zc@csbl.bmb.uga.edu

More information

Problem Set 3 September 25, 2009

Problem Set 3 September 25, 2009 September 25, 2009 General Instructions: 1. You are expected to state all your assumptions and provide step-by-step solutions to the numerical problems. Unless indicated otherwise, the computational problems

More information

Kinetic Monte Carlo (KMC) Kinetic Monte Carlo (KMC)

Kinetic Monte Carlo (KMC) Kinetic Monte Carlo (KMC) Kinetic Monte Carlo (KMC) Molecular Dynamics (MD): high-frequency motion dictate the time-step (e.g., vibrations). Time step is short: pico-seconds. Direct Monte Carlo (MC): stochastic (non-deterministic)

More information

Figure 1: Transition State, Saddle Point, Reaction Pathway

Figure 1: Transition State, Saddle Point, Reaction Pathway Computational Chemistry Workshops West Ridge Research Building-UAF Campus 9:00am-4:00pm, Room 009 Electronic Structure - July 19-21, 2016 Molecular Dynamics - July 26-28, 2016 Potential Energy Surfaces

More information

This semester. Books

This semester. Books Models mostly proteins from detailed to more abstract models Some simulation methods This semester Books None necessary for my group and Prof Rarey Molecular Modelling: Principles and Applications Leach,

More information

Thermodynamics. Entropy and its Applications. Lecture 11. NC State University

Thermodynamics. Entropy and its Applications. Lecture 11. NC State University Thermodynamics Entropy and its Applications Lecture 11 NC State University System and surroundings Up to this point we have considered the system, but we have not concerned ourselves with the relationship

More information

Free Energy Landscape of Protein Folding in Water: Explicit vs. Implicit Solvent

Free Energy Landscape of Protein Folding in Water: Explicit vs. Implicit Solvent PROTEINS: Structure, Function, and Genetics 53:148 161 (2003) Free Energy Landscape of Protein Folding in Water: Explicit vs. Implicit Solvent Ruhong Zhou* IBM T.J. Watson Research Center, Yorktown Heights,

More information

Monte Carlo simulation of proteins through a random walk in energy space

Monte Carlo simulation of proteins through a random walk in energy space JOURNAL OF CHEMICAL PHYSICS VOLUME 116, NUMBER 16 22 APRIL 2002 Monte Carlo simulation of proteins through a random walk in energy space Nitin Rathore and Juan J. de Pablo a) Department of Chemical Engineering,

More information

Protein Structure Prediction

Protein Structure Prediction Protein Structure Prediction Michael Feig MMTSB/CTBP 2006 Summer Workshop From Sequence to Structure SEALGDTIVKNA Ab initio Structure Prediction Protocol Amino Acid Sequence Conformational Sampling to

More information

Equilibrium sampling of self-associating polymer solutions: A parallel selective tempering approach

Equilibrium sampling of self-associating polymer solutions: A parallel selective tempering approach THE JOURNAL OF CHEMICAL PHYSICS 123, 124912 2005 Equilibrium sampling of self-associating polymer solutions: A parallel selective tempering approach Chakravarthy Ayyagari, a Dmitry Bedrov, and Grant D.

More information

Protein Simulations in Confined Environments

Protein Simulations in Confined Environments Critical Review Lecture Protein Simulations in Confined Environments Murat Cetinkaya 1, Jorge Sofo 2, Melik C. Demirel 1 1. 2. College of Engineering, Pennsylvania State University, University Park, 16802,

More information

Parallel Tempering Algorithm for. Conformational Studies of Biological Molecules

Parallel Tempering Algorithm for. Conformational Studies of Biological Molecules Parallel Tempering Algorithm for Conformational Studies of Biological Molecules Ulrich H.E. Hansmann 1 Department of Theoretical Studies, Institute for Molecular Science Okazaki, Aichi 444, Japan ABSTRACT

More information

Outline. Introduction, program and reference textbooks A few definition and facts Modeling of biological systems:

Outline. Introduction, program and reference textbooks A few definition and facts Modeling of biological systems: Introduction 1 Outline Introduction, program and reference textbooks A few definition and facts Modeling of biological systems: Models in space and time: from molecules to the cell Quantitative models

More information

Entropy and Free Energy in Biology

Entropy and Free Energy in Biology Entropy and Free Energy in Biology Energy vs. length from Phillips, Quake. Physics Today. 59:38-43, 2006. kt = 0.6 kcal/mol = 2.5 kj/mol = 25 mev typical protein typical cell Thermal effects = deterministic

More information

Assignment 2 Atomic-Level Molecular Modeling

Assignment 2 Atomic-Level Molecular Modeling Assignment 2 Atomic-Level Molecular Modeling CS/BIOE/CME/BIOPHYS/BIOMEDIN 279 Due: November 3, 2016 at 3:00 PM The goal of this assignment is to understand the biological and computational aspects of macromolecular

More information

Basic Ingredients of Free Energy Calculations: A Review

Basic Ingredients of Free Energy Calculations: A Review Feature Article Basic Ingredients of Free Energy Calculations: A Review CLARA D. CHRIST, 1 ALAN E. MARK, 2 WILFRED F. van GUNSTEREN 1 1 Laboratory of Physical Chemistry, Swiss Federal Institute of Technology,

More information

Energy Barriers and Rates - Transition State Theory for Physicists

Energy Barriers and Rates - Transition State Theory for Physicists Energy Barriers and Rates - Transition State Theory for Physicists Daniel C. Elton October 12, 2013 Useful relations 1 cal = 4.184 J 1 kcal mole 1 = 0.0434 ev per particle 1 kj mole 1 = 0.0104 ev per particle

More information

André Schleife Department of Materials Science and Engineering

André Schleife Department of Materials Science and Engineering André Schleife Department of Materials Science and Engineering Length Scales (c) ICAMS: http://www.icams.de/cms/upload/01_home/01_research_at_icams/length_scales_1024x780.png Goals for today: Background

More information

Chapter 5 Metabolism: Energy & Enzymes

Chapter 5 Metabolism: Energy & Enzymes Energy Energy is the capacity to do work Kinetic energy Energy of motion Potential energy Stored energy What do you use for energy? Where do you think the energy is stored these molecules? The BONDS! Every

More information

Paul Sigler et al, 1998.

Paul Sigler et al, 1998. Biological systems are necessarily metastable. They are created, modulated, and destroyed according to a temporal plan that meets the survival needs of the cell, organism, and species...clearly, no biological

More information

Why Heteroepitaxy? Difficult to Model Multiple Species Dislocations and point defects important Species Flux important

Why Heteroepitaxy? Difficult to Model Multiple Species Dislocations and point defects important Species Flux important Why Heteroepitaxy? Difficult to Model Multiple Species Dislocations and point defects important Species Flux important The Silicon Age is Ending New materials and growth required Useful in design of Devices

More information

Lecture 21 (11/3/17) Protein Stability, Folding, and Dynamics Hydrophobic effect drives protein folding

Lecture 21 (11/3/17) Protein Stability, Folding, and Dynamics Hydrophobic effect drives protein folding Reading: Ch4; 142-151 Problems: Ch4 (text); 14, 16 Ch6 (text); 1, 4 NEXT (after exam) Reading: Ch8; 310-312, 279-285, 285-289 Ch24; 957-961 Problems: Ch8 (text); 1,2,22 Ch8 (study-guide:facts); 1,2,3,4,5,9,10

More information

Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals

Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals K.G. Wang 1, M. and M. Ortiz 2 Universidad de Sevilla 1 Virginia Polytechnic Institute and State University 2 California Institute of Technology

More information

Designing refoldable model molecules

Designing refoldable model molecules Designing refoldable model molecules I. Coluzza, H. G. Muller, and D. Frenkel FOM Institute for Atomic and Molecular Physics, Kruislaan, 407 1098 SJ Amsterdam, The Netherlands Received 16 April 2003; published

More information

The Kramers problem and first passage times.

The Kramers problem and first passage times. Chapter 8 The Kramers problem and first passage times. The Kramers problem is to find the rate at which a Brownian particle escapes from a potential well over a potential barrier. One method of attack

More information

Multiple time step Monte Carlo

Multiple time step Monte Carlo JOURNAL OF CHEMICAL PHYSICS VOLUME 117, NUMBER 18 8 NOVEMBER 2002 Multiple time step Monte Carlo Balázs Hetényi a) Department of Chemistry, Princeton University, Princeton, NJ 08544 and Department of Chemistry

More information