Geometric Inference for Probability distributions

Size: px
Start display at page:

Download "Geometric Inference for Probability distributions"

Transcription

1 Geometric Inference for Probability distributions F. Chazal 1 D. Cohen-Steiner 2 Q. Mérigot 2 1 Geometrica, INRIA Saclay, 2 Geometrica, INRIA Sophia-Antipolis 2009 June 1

2 Motivation What is the (relevant) topology/geometry of a point cloud data set in R d? Motivations : Reconstruction, manifold learning and NLDR, clustering and segmentation, etc...

3 Geometric inference Question Given an approximation C of a geometric object K, is it possible to estimate the topological and geometric properties of K, knowing only the approximation C? The answer depends on the considered class of objects and a notion of distance between the objects (approximation) ; Positive answer for a large class of compact sets endowed with the Hausdorff distance (i.e. K and C are close if all the points of C (resp. K) are close to K (resp. C)). In this talk : - can the considered objects be probability measures on R d? - motivation : allowing approximations to have outliers or to be corrupted by non local noise.

4 Distance functions for geometric inference Distance function and Hausforff distance Distance to a compact K R d : d K : x inf p K x p Hausdorff distance between compact sets K, K R d : d H (K, K ) = inf x R d d K (x) d K (x) Replace K and C by d K and d C. Compare the topology of the offsets K r = d 1 K ([0, r]) and C r = d 1 C ([0, r]).

5 Stability properties of the offsets Topological/geometric properties of the offsets of K are stable with respect to Hausdorff approximation : 1. Topological stability of the offsets of K (CCSL 06, NSW 06). 2. Approximate normal cones (CCSL 08). 3. Boundary measures (CCSM 07), curvature measures (CCSLT 09), Voronoi covariance measures (GMO 09).

6 The problem of outliers If K = K {x} where d K (x) > R, then d K d K > R : offset-based inference methods fail! Question : Can we generalized the previous approach by replacing the distance function by a distance-like function having a better behavior with respect to noise and outliers?

7 The three main ingredients for stability The proofs of stability relies on three important theoretical facts : 1 the stability of the map K d K : d K d K = sup x R d d K (x) d K (x) = d H (K, K ) 2 the 1-Lipschitz property for d K ; 3 the 1-concavity on the function d 2 K : x x 2 d 2 K (x) is convex.

8 Replacing compact sets by measures A measure µ is a mass distribution on R d. Mathematically, it is defined as a map µ that takes a (Borel) subset B R d and outputs a nonnegative number µ(b). Moreover we ask that if (B i ) are disjoint subsets, µ ( i N B ) i = i N µ(b i) µ(b) corresponds to to the mass of µ contained in B a point cloud C = {p 1,..., p n } defines a measure µ C = 1 n i δ p i the volume form on a k-dimensional submanifold M of R d defines a measure vol k M.

9 Distance between measures The Wasserstein distance d W (µ, ν) between two probability measures µ, ν quantifies the optimal cost of pushing µ onto ν, the cost of moving a small mass dx from x to y being x y 2 dx. c 1 d 1 c i π i,j d j µ ν π 1 µ and ν are discrete measures : µ = i c iδ xi, ν = j d jδ yj with j d j = i c i. 2 Transport plan : set of coefficients π ij 0 with i π ij = d j and j π ij = c i. 3 Cost of a transport plan ( ) 1/2 C(π) = ij x i y j 2 π ij 4 d W (µ, ν) := inf π C(π)

10 Wasserstein distance Examples : If C 1 and C 2 are two point clouds, with #C 1 = #C 2, then d W (µ C1, µ C2 ) is the square root of the cost of a minimal least-square matching between C 1 and C 2. If C = {p 1,..., p n } is a point cloud, and C = {p 1,..., p n k 1, o 1,..., o k } with d(o i, C) = R, then d H (C, C ) R but d W (µ C, µ C ) k (R + diam(c)) n

11 The distance to a measure Distance function to a measure, first attempt Let m ]0, 1[ be a positive mass, and µ a probability measure on R d : δ µ,m (x) = inf {r > 0; µ(b(x, r)) > m}. x δ µ,m(x) µ(b(x, δ µ,m(x)) = m µ δ µ,m is the smallest distance needed to attain a mass of at least m ; Coincides with the distance to the k-th neighbor when m = k/n and µ = 1 n n i=1 δ p i : δ µ,k/n (µ) = x p k C (x).

12 Unstability of µ δ µ,m Distance to a measure, first attempt Let m ]0, 1[ be a positive mass, and µ a probability measure on R d : δ µ,m (x) = inf {r > 0; µ(b(x, r)) > m}. Unstability under Wasserstein perturbations : µ ε = (1/2 ε)δ 0 + (1/2 + ε)δ 1 for ε > 0 : x < 0, δ µε,1/2(x) = x 1 for ε = 0 : x < 0, δ µ0,1/2(x) = x 0 Consequence : the map µ δ µ,m C 0 (R d ) is discontinuous whatever the (reasonable) topology on C 0 (R d ).

13 The distance function to a measure. Definition If µ is a measure on R d and m 0 > 0, one let : ( 1 d µ,m0 : x R d m 0 m0 0 ) 1/2 δµ,m(x)dm 2 Example. Let C = {p 1,..., p n } and µ = 1 n n i=1 δ p i. Let p k C (x) denote the kth nearest neighbor to x in C, and set m 0 = k 0 /n : ( 1 d µ,m0 (x) = k 0 k 0 k=1 x p k C (x) 2 ) 1/2

14 The distance function to a discrete measure. Example (continued) Let C = {p 1,..., p n } and µ = 1 n n i=1 δ p i. Let p k C (x) denote the kth nearest neighbor to x in C, and set m 0 = k 0 /n : d µ,m0 (x) = k0 x p k C (x) 2) 1/2. ( 1 k0 k=1 x 2 d 2 µ,m 0 (x) = 1 k 0 2x p k p C k (x) k C (x) 0 k=1 Hence, this function is linear inside k 0 th-order Voronoï cells, and : ( x 2 d 2 µ,m 0 (x)) = 1 k 0 p k C k (x) 0 k=1 2

15 1-Concavity of the squared distance function Example. (continued) d 2 µ,m 0 (y) = 1 k 0 y p k C k (y) k=1 k 0 k 0 k=1 1 k 0 y x + x p k C k (x) 2 0 k=1 y p k C (x) 2 = y x k 0 x p k C k (x) k=1 k 0 k 0 k=1 = y x 2 + d 2 µ,m 0 (x) + y x d 2 µ,m 0 (x) y x x p k C (x)

16 Proposition The distance function to a discrete measure is 1-concave, ie. ( y 2 d 2 µ,m 0 (y)) ( x 2 d 2 µ,m 0 (x)) ( x 2 d 2 µ,m 0 )(x) x y This is equivalent to the function x x 2 d 2 µ,m 0 (x) being convex.

17 Another expression for d µ,m0 Projection submeasure For any x R d, and m > 0, denote by µ x,m the restriction of µ on the ball B = B(x, δ µ,m (x)), whose trace on the sphere B has been rescaled so that the total mass of µ x,m is m. The measure µ x,m gives mass to the multiple projections of x on µ ; For the point cloud case, when m 0 = k 0 /n + r with 0 < r < 1, and x is not on a k-voronoï face, µ x,m0 = k 0 k=1 1 n δ p k C (x) + rδ p k 0 +1 C (x)

18 Another expression for d µ,m0 Proposition Let µ be a probability measure on R d and m 0 > 0. Then, for almost every point x R d d µ,m0 is differentiable at x and : d 2 µ,m 0 (x) = 1 x h 2 dµ x,m0 (h) m 0 ( x 2 d 2 µ,m 0 (x)) = 2 hdµ x,m0 (h) m 0 for the point cloud case : ( x 2 d 2 µ,m 0 (x)) = 2 k 0 k0 k=1 pk C (x) interpretation : d µ,m0 (x) is the (partial) Wasserstein distance between the Dirac mass m 0 δ x and µ.

19 Theorem 1 the function x d µ,m0 (x) is 1-Lipschitz ; 2 the function x x 2 d 2 µ,m 0 (x) is convex ; 3 the map µ d µ,m0 from probability measures to continuous 1 functions is m0 Lipschitz, ie d µ,m0 d µ,m 0 1 m0 d W (µ, µ ) the proof of 2 and 3 involves the second expression for d µ,m0. properties 1 and 2 are related to the regularity of d µ,m0 stability property. while 3 is a

20 Consequences of the previous properties 1 existence of an analogous to the medial axis 2 stability of a filtered version of it (as with the µ-medial axis) under Wasserstein perturbation 3 stability of the critical function of a measure 4 the gradient d µ,m0 is L 1 -stable 5... = the distance functions d µ,m0 share many stability and regularity properties with the usual distance function.

21 Example : square with outliers 10% outliers, k = 150 δ µ,m0, m 0 = 1/10

22 Example : square with outliers d µ,m0 d µ,m0

23 A 3D example Reconstruction of an offset from a noisy dataset, with 10% outliers

24 A reconstruction theorem Theorem Let µ be a probability measure of dimension at most k > 0 with compact support K R d such that r α (K) > 0 for some α (0, 1]. For any 0 < η < r α (K), there exists positive constants m 1 = m 1 (µ, α, η) > 0 and C = C(m 1 ) > 0 such that : for any m 0 < m 1 and any probability measure µ such that W 2 (µ, µ ) < C m 0, the sublevel set d 1 µ,m 0 ((, η]) is homotopy equivalent (and even isotopic) to the offsets d 1 K ([0, r]) of K for 0 < r < r α (K).

25 k-nn density estimation vs distance to a measure data Density is estimated using x m 0 ω d 1 (δ µ,m0 (x)), m 0 = 150/1200.

26 k-nn density estimation vs distance to a measure density log(1 + 1/d µ,m0 ) Density is estimated using x (Devroye-Wagner 77). m 0 vol d (B(x,δ µ,m0 (x))), m 0 = 150/1200

27 k-nn density estimation vs distance to a measure 1 the gradient of the estimated density can behave wildly 2 exhibits peaks near very dense zone 1. can be fixed using d µ,m0 (because of the semiconcavity) 2. shows that the distance function is a better-behaved geometric object to associate to a measure.

28 k-nn density estimation vs distance to a measure 1 the gradient of the estimated density can behave wildly 2 exhibits peaks near very dense zone 1. can be fixed using d µ,m0 (because of the semiconcavity) 2. shows that the distance function is a better-behaved geometric object to associate to a measure.

29 Pushing data along the gradient of d µ,m0 Mean-Shift like algorithm (Comaniciu-Meer 02) Theoretical guarantees on the convergence of the algorithm and smoothness of trajectories.

30 Pushing data along the gradient of d µ,m0

31 Take-home messages µ d µ,m0 provide a way to associate geometry to a measure in Euclidean space. d µ,m0 is robust to Wasserstein perturbations : outliers and noise are easily handled (no assumption on the nature of the noise). d µ,m0 shares regularity properties with the usual distance function to a compact. Geometric stability results in this measure-theoretic setting : topology/geometry of the sublevel sets of d µ,m0, stable notion of persistence diagram for µ,... Algorithm : for finite point clouds d µ,m0 and (d µ,m0 ) can be easily and efficiently computed in any dimension. To get more details : http ://geometrica.saclay.inria.fr/team/fred.chazal/papers/rr-6930.pdf

Geometric Inference for Probability distributions

Geometric Inference for Probability distributions Geometric Inference for Probability distributions F. Chazal 1 D. Cohen-Steiner 2 Q. Mérigot 2 1 Geometrica, INRIA Saclay, 2 Geometrica, INRIA Sophia-Antipolis 2009 July 8 F. Chazal, D. Cohen-Steiner, Q.

More information

A sampling theory for compact sets

A sampling theory for compact sets ENS Lyon January 2010 A sampling theory for compact sets F. Chazal Geometrica Group INRIA Saclay To download these slides: http://geometrica.saclay.inria.fr/team/fred.chazal/teaching/distancefunctions.pdf

More information

Stability of boundary measures

Stability of boundary measures Stability of boundary measures F. Chazal D. Cohen-Steiner Q. Mérigot INRIA Saclay - Ile de France LIX, January 2008 Point cloud geometry Given a set of points sampled near an unknown shape, can we infer

More information

Geometric Inference on Kernel Density Estimates

Geometric Inference on Kernel Density Estimates Geometric Inference on Kernel Density Estimates Bei Wang 1 Jeff M. Phillips 2 Yan Zheng 2 1 Scientific Computing and Imaging Institute, University of Utah 2 School of Computing, University of Utah Feb

More information

Geometric inference for measures based on distance functions The DTM-signature for a geometric comparison of metric-measure spaces from samples

Geometric inference for measures based on distance functions The DTM-signature for a geometric comparison of metric-measure spaces from samples Distance to Geometric inference for measures based on distance functions The - for a geometric comparison of metric-measure spaces from samples the Ohio State University wan.252@osu.edu 1/31 Geometric

More information

Geometric Inference for Probability Measures

Geometric Inference for Probability Measures Geometric Inference for Probability Measures Frédéric CHAZAL David COHEN-STEINER Quentin MÉRIGOT June 21, 2010 Abstract Data often comes in the form of a point cloud sampled from an unknown compact subset

More information

Some Topics in Computational Topology. Yusu Wang. AMS Short Course 2014

Some Topics in Computational Topology. Yusu Wang. AMS Short Course 2014 Some Topics in Computational Topology Yusu Wang AMS Short Course 2014 Introduction Much recent developments in computational topology Both in theory and in their applications E.g, the theory of persistence

More information

Some Topics in Computational Topology

Some Topics in Computational Topology Some Topics in Computational Topology Yusu Wang Ohio State University AMS Short Course 2014 Introduction Much recent developments in computational topology Both in theory and in their applications E.g,

More information

WITNESSED K-DISTANCE

WITNESSED K-DISTANCE WITNESSED K-DISTANCE LEONIDAS GUIBAS, DMITRIY MOROZOV, AND QUENTIN MÉRIGOT Abstract. Distance function to a compact set plays a central role in several areas of computational geometry. Methods that rely

More information

Witnessed k-distance

Witnessed k-distance Witnessed k-distance Leonidas J. Guibas, Quentin Mérigot, Dmitriy Morozov To cite this version: Leonidas J. Guibas, Quentin Mérigot, Dmitriy Morozov. Witnessed k-distance. Discrete and Computational Geometry,

More information

Metric Thickenings of Euclidean Submanifolds

Metric Thickenings of Euclidean Submanifolds Metric Thickenings of Euclidean Submanifolds Advisor: Dr. Henry Adams Committe: Dr. Chris Peterson, Dr. Daniel Cooley Joshua Mirth Masters Thesis Defense October 3, 2017 Introduction Motivation Can we

More information

Persistent Homology of Data, Groups, Function Spaces, and Landscapes.

Persistent Homology of Data, Groups, Function Spaces, and Landscapes. Persistent Homology of Data, Groups, Function Spaces, and Landscapes. Shmuel Weinberger Department of Mathematics University of Chicago William Benter Lecture City University of Hong Kong Liu Bie Ju Centre

More information

Declutter and Resample: Towards parameter free denoising

Declutter and Resample: Towards parameter free denoising Declutter and Resample: Towards parameter free denoising Mickaël Buchet, Tamal K. Dey, Jiayuan Wang, Yusu Wang arxiv:1511.05479v2 [cs.cg] 27 Mar 2017 Abstract In many data analysis applications the following

More information

Statistics and Topological Data Analysis

Statistics and Topological Data Analysis Geometry Understanding in Higher Dimensions CHAIRE D INFORMATIQUE ET SCIENCES NUMÉRIQUES Collège de France - June 2017 Statistics and Topological Data Analysis Bertrand MICHEL Ecole Centrale de Nantes

More information

SEPARABILITY AND COMPLETENESS FOR THE WASSERSTEIN DISTANCE

SEPARABILITY AND COMPLETENESS FOR THE WASSERSTEIN DISTANCE SEPARABILITY AND COMPLETENESS FOR THE WASSERSTEIN DISTANCE FRANÇOIS BOLLEY Abstract. In this note we prove in an elementary way that the Wasserstein distances, which play a basic role in optimal transportation

More information

Homology through Interleaving

Homology through Interleaving Notes by Tamal K. Dey, OSU 91 Homology through Interleaving 32 Concept of interleaving A discrete set P R k is assumed to be a sample of a set X R k, if it lies near to it which we can quantify with the

More information

Learning from persistence diagrams

Learning from persistence diagrams Learning from persistence diagrams Ulrich Bauer TUM July 7, 2015 ACAT final meeting IST Austria Joint work with: Jan Reininghaus, Stefan Huber, Roland Kwitt 1 / 28 ? 2 / 28 ? 2 / 28 3 / 28 3 / 28 3 / 28

More information

Inference of curvature using tubular neighborhoods

Inference of curvature using tubular neighborhoods Inference of curvature using tubular neighborhoods Frédéric Chazal, David Cohen-Steiner, André Lieutier Quentin Mérigot, Boris Thibert Introduction Geometric inference deals with the problem of recovering

More information

Manifold Reconstruction in Arbitrary Dimensions using Witness Complexes

Manifold Reconstruction in Arbitrary Dimensions using Witness Complexes Manifold Reconstruction in Arbitrary Dimensions using Witness Complexes Jean-Daniel Boissonnat INRIA, Geometrica 2004, route des lucioles 06902 Sophia-Antipolis boissonn@sophia.inria.fr Leonidas J. Guibas

More information

AN INTRODUCTION TO VARIFOLDS DANIEL WESER. These notes are from a talk given in the Junior Analysis seminar at UT Austin on April 27th, 2018.

AN INTRODUCTION TO VARIFOLDS DANIEL WESER. These notes are from a talk given in the Junior Analysis seminar at UT Austin on April 27th, 2018. AN INTRODUCTION TO VARIFOLDS DANIEL WESER These notes are from a talk given in the Junior Analysis seminar at UT Austin on April 27th, 2018. 1 Introduction Why varifolds? A varifold is a measure-theoretic

More information

Cones of measures. Tatiana Toro. University of Washington. Quantitative and Computational Aspects of Metric Geometry

Cones of measures. Tatiana Toro. University of Washington. Quantitative and Computational Aspects of Metric Geometry Cones of measures Tatiana Toro University of Washington Quantitative and Computational Aspects of Metric Geometry Based on joint work with C. Kenig and D. Preiss Tatiana Toro (University of Washington)

More information

Integral Jensen inequality

Integral Jensen inequality Integral Jensen inequality Let us consider a convex set R d, and a convex function f : (, + ]. For any x,..., x n and λ,..., λ n with n λ i =, we have () f( n λ ix i ) n λ if(x i ). For a R d, let δ a

More information

Centre for Mathematics and Its Applications The Australian National University Canberra, ACT 0200 Australia. 1. Introduction

Centre for Mathematics and Its Applications The Australian National University Canberra, ACT 0200 Australia. 1. Introduction ON LOCALLY CONVEX HYPERSURFACES WITH BOUNDARY Neil S. Trudinger Xu-Jia Wang Centre for Mathematics and Its Applications The Australian National University Canberra, ACT 0200 Australia Abstract. In this

More information

Lecture Notes 1: Vector spaces

Lecture Notes 1: Vector spaces Optimization-based data analysis Fall 2017 Lecture Notes 1: Vector spaces In this chapter we review certain basic concepts of linear algebra, highlighting their application to signal processing. 1 Vector

More information

Gromov-Hausdorff Approximation of Filament Structure Using Reeb-type Graph

Gromov-Hausdorff Approximation of Filament Structure Using Reeb-type Graph Gromov-Hausdorff Approximation of Filament Structure Using Reeb-type Graph Frédéric Chazal and Ruqi Huang and Jian Sun July 26, 2014 Abstract In many real-world applications data appear to be sampled around

More information

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis.

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis. Vector spaces DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Vector space Consists of: A set V A scalar

More information

VARIATIONAL PRINCIPLE FOR THE ENTROPY

VARIATIONAL PRINCIPLE FOR THE ENTROPY VARIATIONAL PRINCIPLE FOR THE ENTROPY LUCIAN RADU. Metric entropy Let (X, B, µ a measure space and I a countable family of indices. Definition. We say that ξ = {C i : i I} B is a measurable partition if:

More information

Gromov-Hausdorff Approximation of Filament Structure Using Reeb-type Graph

Gromov-Hausdorff Approximation of Filament Structure Using Reeb-type Graph Noname manuscript No. (will be inserted by the editor) Gromov-Hausdorff Approximation of Filament Structure Using Reeb-type Graph Frédéric Chazal Ruqi Huang Jian Sun Received: date / Accepted: date Abstract

More information

Sobolev Mappings between Manifolds and Metric Spaces

Sobolev Mappings between Manifolds and Metric Spaces Sobolev Mappings between Manifolds and Metric Spaces Piotr Haj lasz Abstract In connection with the theory of p-harmonic mappings, Eells and Lemaire raised a question about density of smooth mappings in

More information

Introduction to the theory of currents. Tien-Cuong Dinh and Nessim Sibony

Introduction to the theory of currents. Tien-Cuong Dinh and Nessim Sibony Introduction to the theory of currents Tien-Cuong Dinh and Nessim Sibony September 21, 2005 2 3 This course is an introduction to the theory of currents. We give here the main notions with examples, exercises

More information

Optimal Transport: A Crash Course

Optimal Transport: A Crash Course Optimal Transport: A Crash Course Soheil Kolouri and Gustavo K. Rohde HRL Laboratories, University of Virginia Introduction What is Optimal Transport? The optimal transport problem seeks the most efficient

More information

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM Contents 1. The Atiyah-Guillemin-Sternberg Convexity Theorem 1 2. Proof of the Atiyah-Guillemin-Sternberg Convexity theorem 3 3. Morse theory

More information

LECTURE 15: COMPLETENESS AND CONVEXITY

LECTURE 15: COMPLETENESS AND CONVEXITY LECTURE 15: COMPLETENESS AND CONVEXITY 1. The Hopf-Rinow Theorem Recall that a Riemannian manifold (M, g) is called geodesically complete if the maximal defining interval of any geodesic is R. On the other

More information

Minimal time mean field games

Minimal time mean field games based on joint works with Samer Dweik and Filippo Santambrogio PGMO Days 2017 Session Mean Field Games and applications EDF Lab Paris-Saclay November 14th, 2017 LMO, Université Paris-Sud Université Paris-Saclay

More information

The optimal partial transport problem

The optimal partial transport problem The optimal partial transport problem Alessio Figalli Abstract Given two densities f and g, we consider the problem of transporting a fraction m [0, min{ f L 1, g L 1}] of the mass of f onto g minimizing

More information

Optimization and Optimal Control in Banach Spaces

Optimization and Optimal Control in Banach Spaces Optimization and Optimal Control in Banach Spaces Bernhard Schmitzer October 19, 2017 1 Convex non-smooth optimization with proximal operators Remark 1.1 (Motivation). Convex optimization: easier to solve,

More information

On the regularity of solutions of optimal transportation problems

On the regularity of solutions of optimal transportation problems On the regularity of solutions of optimal transportation problems Grégoire Loeper April 25, 2008 Abstract We give a necessary and sufficient condition on the cost function so that the map solution of Monge

More information

RESEARCH STATEMENT MICHAEL MUNN

RESEARCH STATEMENT MICHAEL MUNN RESEARCH STATEMENT MICHAEL MUNN Ricci curvature plays an important role in understanding the relationship between the geometry and topology of Riemannian manifolds. Perhaps the most notable results in

More information

THESIS METRIC THICKENINGS OF EUCLIDEAN SUBMANIFOLDS. Submitted by. Joshua R. Mirth. Department of Mathematics

THESIS METRIC THICKENINGS OF EUCLIDEAN SUBMANIFOLDS. Submitted by. Joshua R. Mirth. Department of Mathematics THESIS METRIC THICKENINGS OF EUCLIDEAN SUBMANIFOLDS Submitted by Joshua R. Mirth Department of Mathematics In partial fulfillment of the requirements For the Degree of Master of Science Colorado State

More information

Topology Guaranteeing Manifold Reconstruction using Distance Function to Noisy Data

Topology Guaranteeing Manifold Reconstruction using Distance Function to Noisy Data Topology Guaranteeing Manifold Reconstruction using Distance Function to Noisy Data ABSTRACT Frédéric Chazal Université de Bourgogne Institute of Mathematics of Burgundy France fchazal@u-bourgogne.fr Given

More information

4 Countability axioms

4 Countability axioms 4 COUNTABILITY AXIOMS 4 Countability axioms Definition 4.1. Let X be a topological space X is said to be first countable if for any x X, there is a countable basis for the neighborhoods of x. X is said

More information

Topology of the set of singularities of a solution of the Hamilton-Jacobi Equation

Topology of the set of singularities of a solution of the Hamilton-Jacobi Equation Topology of the set of singularities of a solution of the Hamilton-Jacobi Equation Albert Fathi IAS Princeton March 15, 2016 In this lecture, a singularity for a locally Lipschitz real valued function

More information

generalized modes in bayesian inverse problems

generalized modes in bayesian inverse problems generalized modes in bayesian inverse problems Christian Clason Tapio Helin Remo Kretschmann Petteri Piiroinen June 1, 2018 Abstract This work is concerned with non-parametric modes and MAP estimates for

More information

Parameter-free Topology Inference and Sparsification for Data on Manifolds

Parameter-free Topology Inference and Sparsification for Data on Manifolds Parameter-free Topology Inference and Sparsification for Data on Manifolds Tamal K. Dey Zhe Dong Yusu Wang Abstract In topology inference from data, current approaches face two major problems. One concerns

More information

Topological complexity of motion planning algorithms

Topological complexity of motion planning algorithms Topological complexity of motion planning algorithms Mark Grant mark.grant@ed.ac.uk School of Mathematics - University of Edinburgh 31st March 2011 Mark Grant (University of Edinburgh) TC of MPAs 31st

More information

Convex Geometry. Carsten Schütt

Convex Geometry. Carsten Schütt Convex Geometry Carsten Schütt November 25, 2006 2 Contents 0.1 Convex sets... 4 0.2 Separation.... 9 0.3 Extreme points..... 15 0.4 Blaschke selection principle... 18 0.5 Polytopes and polyhedra.... 23

More information

Deformations of Unbounded Convex Bodies and Hypersurfaces

Deformations of Unbounded Convex Bodies and Hypersurfaces Deformations of Unbounded Convex Bodies and Hypersurfaces Georgia Institute of Technology Atlanta, USA April 25, 2010, Charleston Let K R n be a convex body, i.e., a closed convex set with interior points.

More information

Domains in metric measure spaces with boundary of positive mean curvature, and the Dirichlet problem for functions of least gradient

Domains in metric measure spaces with boundary of positive mean curvature, and the Dirichlet problem for functions of least gradient Domains in metric measure spaces with boundary of positive mean curvature, and the Dirichlet problem for functions of least gradient Panu Lahti Lukáš Malý Nageswari Shanmugalingam Gareth Speight June 22,

More information

ON A MEASURE THEORETIC AREA FORMULA

ON A MEASURE THEORETIC AREA FORMULA ON A MEASURE THEORETIC AREA FORMULA VALENTINO MAGNANI Abstract. We review some classical differentiation theorems for measures, showing how they can be turned into an integral representation of a Borel

More information

Pseudo-Poincaré Inequalities and Applications to Sobolev Inequalities

Pseudo-Poincaré Inequalities and Applications to Sobolev Inequalities Pseudo-Poincaré Inequalities and Applications to Sobolev Inequalities Laurent Saloff-Coste Abstract Most smoothing procedures are via averaging. Pseudo-Poincaré inequalities give a basic L p -norm control

More information

Scalar Field Analysis over Point Cloud Data

Scalar Field Analysis over Point Cloud Data DOI 10.1007/s00454-011-9360-x Scalar Field Analysis over Point Cloud Data Frédéric Chazal Leonidas J. Guibas Steve Y. Oudot Primoz Skraba Received: 19 July 2010 / Revised: 13 April 2011 / Accepted: 18

More information

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy Banach Spaces These notes provide an introduction to Banach spaces, which are complete normed vector spaces. For the purposes of these notes, all vector spaces are assumed to be over the real numbers.

More information

A few words about the MTW tensor

A few words about the MTW tensor A few words about the Ma-Trudinger-Wang tensor Université Nice - Sophia Antipolis & Institut Universitaire de France Salah Baouendi Memorial Conference (Tunis, March 2014) The Ma-Trudinger-Wang tensor

More information

Local regression, intrinsic dimension, and nonparametric sparsity

Local regression, intrinsic dimension, and nonparametric sparsity Local regression, intrinsic dimension, and nonparametric sparsity Samory Kpotufe Toyota Technological Institute - Chicago and Max Planck Institute for Intelligent Systems I. Local regression and (local)

More information

PATH FUNCTIONALS OVER WASSERSTEIN SPACES. Giuseppe Buttazzo. Dipartimento di Matematica Università di Pisa.

PATH FUNCTIONALS OVER WASSERSTEIN SPACES. Giuseppe Buttazzo. Dipartimento di Matematica Università di Pisa. PATH FUNCTIONALS OVER WASSERSTEIN SPACES Giuseppe Buttazzo Dipartimento di Matematica Università di Pisa buttazzo@dm.unipi.it http://cvgmt.sns.it ENS Ker-Lann October 21-23, 2004 Several natural structures

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

g 2 (x) (1/3)M 1 = (1/3)(2/3)M.

g 2 (x) (1/3)M 1 = (1/3)(2/3)M. COMPACTNESS If C R n is closed and bounded, then by B-W it is sequentially compact: any sequence of points in C has a subsequence converging to a point in C Conversely, any sequentially compact C R n is

More information

An introduction to Mathematical Theory of Control

An introduction to Mathematical Theory of Control An introduction to Mathematical Theory of Control Vasile Staicu University of Aveiro UNICA, May 2018 Vasile Staicu (University of Aveiro) An introduction to Mathematical Theory of Control UNICA, May 2018

More information

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability... Functional Analysis Franck Sueur 2018-2019 Contents 1 Metric spaces 1 1.1 Definitions........................................ 1 1.2 Completeness...................................... 3 1.3 Compactness......................................

More information

Optimal transport paths and their applications

Optimal transport paths and their applications Optimal transport paths and their applications Qinglan Xia University of California at Davis March 4, 2009 Outline Monge-Kantorovich optimal transportation (Classical) Ramified optimal transportation Motivation

More information

Pairwise Comparison Dynamics for Games with Continuous Strategy Space

Pairwise Comparison Dynamics for Games with Continuous Strategy Space Pairwise Comparison Dynamics for Games with Continuous Strategy Space Man-Wah Cheung https://sites.google.com/site/jennymwcheung University of Wisconsin Madison Department of Economics Nov 5, 2013 Evolutionary

More information

Distribution-specific analysis of nearest neighbor search and classification

Distribution-specific analysis of nearest neighbor search and classification Distribution-specific analysis of nearest neighbor search and classification Sanjoy Dasgupta University of California, San Diego Nearest neighbor The primeval approach to information retrieval and classification.

More information

1 Lesson 1: Brunn Minkowski Inequality

1 Lesson 1: Brunn Minkowski Inequality 1 Lesson 1: Brunn Minkowski Inequality A set A R n is called convex if (1 λ)x + λy A for any x, y A and any λ [0, 1]. The Minkowski sum of two sets A, B R n is defined by A + B := {a + b : a A, b B}. One

More information

Deforming conformal metrics with negative Bakry-Émery Ricci Tensor on manifolds with boundary

Deforming conformal metrics with negative Bakry-Émery Ricci Tensor on manifolds with boundary Deforming conformal metrics with negative Bakry-Émery Ricci Tensor on manifolds with boundary Weimin Sheng (Joint with Li-Xia Yuan) Zhejiang University IMS, NUS, 8-12 Dec 2014 1 / 50 Outline 1 Prescribing

More information

II - REAL ANALYSIS. This property gives us a way to extend the notion of content to finite unions of rectangles: we define

II - REAL ANALYSIS. This property gives us a way to extend the notion of content to finite unions of rectangles: we define 1 Measures 1.1 Jordan content in R N II - REAL ANALYSIS Let I be an interval in R. Then its 1-content is defined as c 1 (I) := b a if I is bounded with endpoints a, b. If I is unbounded, we define c 1

More information

Moment Measures. Bo az Klartag. Tel Aviv University. Talk at the asymptotic geometric analysis seminar. Tel Aviv, May 2013

Moment Measures. Bo az Klartag. Tel Aviv University. Talk at the asymptotic geometric analysis seminar. Tel Aviv, May 2013 Tel Aviv University Talk at the asymptotic geometric analysis seminar Tel Aviv, May 2013 Joint work with Dario Cordero-Erausquin. A bijection We present a correspondence between convex functions and Borel

More information

Large deviations for random projections of l p balls

Large deviations for random projections of l p balls 1/32 Large deviations for random projections of l p balls Nina Gantert CRM, september 5, 2016 Goal: Understanding random projections of high-dimensional convex sets. 2/32 2/32 Outline Goal: Understanding

More information

Notes, March 4, 2013, R. Dudley Maximum likelihood estimation: actual or supposed

Notes, March 4, 2013, R. Dudley Maximum likelihood estimation: actual or supposed 18.466 Notes, March 4, 2013, R. Dudley Maximum likelihood estimation: actual or supposed 1. MLEs in exponential families Let f(x,θ) for x X and θ Θ be a likelihood function, that is, for present purposes,

More information

Mañé s Conjecture from the control viewpoint

Mañé s Conjecture from the control viewpoint Mañé s Conjecture from the control viewpoint Université de Nice - Sophia Antipolis Setting Let M be a smooth compact manifold of dimension n 2 be fixed. Let H : T M R be a Hamiltonian of class C k, with

More information

arxiv: v1 [math.ap] 25 Oct 2012

arxiv: v1 [math.ap] 25 Oct 2012 DIMENSIONALITY OF LOCAL MINIMIZERS OF THE INTERACTION ENERGY D. BALAGUÉ 1, J. A. CARRILLO 2, T. LAURENT 3, AND G. RAOUL 4 arxiv:1210.6795v1 [math.ap] 25 Oct 2012 Abstract. In this work we consider local

More information

Neighboring feasible trajectories in infinite dimension

Neighboring feasible trajectories in infinite dimension Neighboring feasible trajectories in infinite dimension Marco Mazzola Université Pierre et Marie Curie (Paris 6) H. Frankowska and E. M. Marchini Control of State Constrained Dynamical Systems Padova,

More information

Preconditioning techniques in frame theory and probabilistic frames

Preconditioning techniques in frame theory and probabilistic frames Preconditioning techniques in frame theory and probabilistic frames Department of Mathematics & Norbert Wiener Center University of Maryland, College Park AMS Short Course on Finite Frame Theory: A Complete

More information

FULL CHARACTERIZATION OF OPTIMAL TRANSPORT PLANS FOR CONCAVE COSTS

FULL CHARACTERIZATION OF OPTIMAL TRANSPORT PLANS FOR CONCAVE COSTS FULL CHARACTERIZATION OF OPTIMAL TRANSPORT PLANS FOR CONCAVE COSTS PAUL PEGON, DAVIDE PIAZZOLI, FILIPPO SANTAMBROGIO Abstract. This paper slightly improves a classical result by Gangbo and McCann (1996)

More information

Nonparametric regression for topology. applied to brain imaging data

Nonparametric regression for topology. applied to brain imaging data , applied to brain imaging data Cleveland State University October 15, 2010 Motivation from Brain Imaging MRI Data Topology Statistics Application MRI Data Topology Statistics Application Cortical surface

More information

n [ F (b j ) F (a j ) ], n j=1(a j, b j ] E (4.1)

n [ F (b j ) F (a j ) ], n j=1(a j, b j ] E (4.1) 1.4. CONSTRUCTION OF LEBESGUE-STIELTJES MEASURES In this section we shall put to use the Carathéodory-Hahn theory, in order to construct measures with certain desirable properties first on the real line

More information

Nonlinear Energy Forms and Lipschitz Spaces on the Koch Curve

Nonlinear Energy Forms and Lipschitz Spaces on the Koch Curve Journal of Convex Analysis Volume 9 (2002), No. 1, 245 257 Nonlinear Energy Forms and Lipschitz Spaces on the Koch Curve Raffaela Capitanelli Dipartimento di Metodi e Modelli Matematici per le Scienze

More information

Chapter 1. Measure Spaces. 1.1 Algebras and σ algebras of sets Notation and preliminaries

Chapter 1. Measure Spaces. 1.1 Algebras and σ algebras of sets Notation and preliminaries Chapter 1 Measure Spaces 1.1 Algebras and σ algebras of sets 1.1.1 Notation and preliminaries We shall denote by X a nonempty set, by P(X) the set of all parts (i.e., subsets) of X, and by the empty set.

More information

NOTES ON THE REGULARITY OF QUASICONFORMAL HOMEOMORPHISMS

NOTES ON THE REGULARITY OF QUASICONFORMAL HOMEOMORPHISMS NOTES ON THE REGULARITY OF QUASICONFORMAL HOMEOMORPHISMS CLARK BUTLER. Introduction The purpose of these notes is to give a self-contained proof of the following theorem, Theorem.. Let f : S n S n be a

More information

Nearest neighbor classification in metric spaces: universal consistency and rates of convergence

Nearest neighbor classification in metric spaces: universal consistency and rates of convergence Nearest neighbor classification in metric spaces: universal consistency and rates of convergence Sanjoy Dasgupta University of California, San Diego Nearest neighbor The primeval approach to classification.

More information

i=1 β i,i.e. = β 1 x β x β 1 1 xβ d

i=1 β i,i.e. = β 1 x β x β 1 1 xβ d 66 2. Every family of seminorms on a vector space containing a norm induces ahausdorff locally convex topology. 3. Given an open subset Ω of R d with the euclidean topology, the space C(Ω) of real valued

More information

THEOREMS, ETC., FOR MATH 516

THEOREMS, ETC., FOR MATH 516 THEOREMS, ETC., FOR MATH 516 Results labeled Theorem Ea.b.c (or Proposition Ea.b.c, etc.) refer to Theorem c from section a.b of Evans book (Partial Differential Equations). Proposition 1 (=Proposition

More information

Topological properties

Topological properties CHAPTER 4 Topological properties 1. Connectedness Definitions and examples Basic properties Connected components Connected versus path connected, again 2. Compactness Definition and first examples Topological

More information

Integral Menger Curvature

Integral Menger Curvature University of Washington mlgoering@gmail.com December 1, 2016 Menger Curvature Given 3 distinct points x, y, z C, one can define the Menger Curvature, denoted c(x, y, z) by c(x, y, z) = 1 R(x, y, z), where

More information

18.175: Lecture 3 Integration

18.175: Lecture 3 Integration 18.175: Lecture 3 Scott Sheffield MIT Outline Outline Recall definitions Probability space is triple (Ω, F, P) where Ω is sample space, F is set of events (the σ-algebra) and P : F [0, 1] is the probability

More information

Optimal construction of k-nearest neighbor graphs for identifying noisy clusters

Optimal construction of k-nearest neighbor graphs for identifying noisy clusters Optimal construction of k-nearest neighbor graphs for identifying noisy clusters Markus Maier a,, Matthias Hein b, Ulrike von Luxburg a a Max Planck Institute for Biological Cybernetics, Spemannstr. 38,

More information

Robustness for a Liouville type theorem in exterior domains

Robustness for a Liouville type theorem in exterior domains Robustness for a Liouville type theorem in exterior domains Juliette Bouhours 1 arxiv:1207.0329v3 [math.ap] 24 Oct 2014 1 UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris,

More information

Some Background Material

Some Background Material Chapter 1 Some Background Material In the first chapter, we present a quick review of elementary - but important - material as a way of dipping our toes in the water. This chapter also introduces important

More information

CAPACITIES ON METRIC SPACES

CAPACITIES ON METRIC SPACES [June 8, 2001] CAPACITIES ON METRIC SPACES V. GOL DSHTEIN AND M. TROYANOV Abstract. We discuss the potential theory related to the variational capacity and the Sobolev capacity on metric measure spaces.

More information

Stochastic Proximal Gradient Algorithm

Stochastic Proximal Gradient Algorithm Stochastic Institut Mines-Télécom / Telecom ParisTech / Laboratoire Traitement et Communication de l Information Joint work with: Y. Atchade, Ann Arbor, USA, G. Fort LTCI/Télécom Paristech and the kind

More information

Generative Models and Optimal Transport

Generative Models and Optimal Transport Generative Models and Optimal Transport Marco Cuturi Joint work / work in progress with G. Peyré, A. Genevay (ENS), F. Bach (INRIA), G. Montavon, K-R Müller (TU Berlin) Statistics 0.1 : Density Fitting

More information

Local semiconvexity of Kantorovich potentials on non-compact manifolds

Local semiconvexity of Kantorovich potentials on non-compact manifolds Local semiconvexity of Kantorovich potentials on non-compact manifolds Alessio Figalli, Nicola Gigli Abstract We prove that any Kantorovich potential for the cost function c = d / on a Riemannian manifold

More information

arxiv: v2 [math.dg] 30 Nov 2016

arxiv: v2 [math.dg] 30 Nov 2016 MIN-MAX THEORY FOR FREE BOUNDARY MINIMAL HYPERSURFACES I - REGULARITY THEORY arxiv:1611.02612v2 [math.dg] 30 Nov 2016 MARTIN MAN-CHUN LI AND XIN ZHOU Abstract. In 1960s, Almgren [2, 3] initiated a program

More information

Localizing solutions of the Einstein equations

Localizing solutions of the Einstein equations Localizing solutions of the Einstein equations Richard Schoen UC, Irvine and Stanford University - General Relativity: A Celebration of the 100th Anniversary, IHP - November 20, 2015 Plan of Lecture The

More information

Real Analysis II, Winter 2018

Real Analysis II, Winter 2018 Real Analysis II, Winter 2018 From the Finnish original Moderni reaalianalyysi 1 by Ilkka Holopainen adapted by Tuomas Hytönen January 18, 2018 1 Version dated September 14, 2011 Contents 1 General theory

More information

1.1. MEASURES AND INTEGRALS

1.1. MEASURES AND INTEGRALS CHAPTER 1: MEASURE THEORY In this chapter we define the notion of measure µ on a space, construct integrals on this space, and establish their basic properties under limits. The measure µ(e) will be defined

More information

On fuzzy entropy and topological entropy of fuzzy extensions of dynamical systems

On fuzzy entropy and topological entropy of fuzzy extensions of dynamical systems On fuzzy entropy and topological entropy of fuzzy extensions of dynamical systems Jose Cánovas, Jiří Kupka* *) Institute for Research and Applications of Fuzzy Modeling University of Ostrava Ostrava, Czech

More information

Displacement convexity of the relative entropy in the discrete h

Displacement convexity of the relative entropy in the discrete h Displacement convexity of the relative entropy in the discrete hypercube LAMA Université Paris Est Marne-la-Vallée Phenomena in high dimensions in geometric analysis, random matrices, and computational

More information

Hessian measures of semi-convex functions and applications to support measures of convex bodies

Hessian measures of semi-convex functions and applications to support measures of convex bodies Hessian measures of semi-convex functions and applications to support measures of convex bodies Andrea Colesanti and Daniel Hug Abstract This paper originates from the investigation of support measures

More information

(U) =, if 0 U, 1 U, (U) = X, if 0 U, and 1 U. (U) = E, if 0 U, but 1 U. (U) = X \ E if 0 U, but 1 U. n=1 A n, then A M.

(U) =, if 0 U, 1 U, (U) = X, if 0 U, and 1 U. (U) = E, if 0 U, but 1 U. (U) = X \ E if 0 U, but 1 U. n=1 A n, then A M. 1. Abstract Integration The main reference for this section is Rudin s Real and Complex Analysis. The purpose of developing an abstract theory of integration is to emphasize the difference between the

More information

Geodesic Delaunay Triangulations in Bounded Planar Domains

Geodesic Delaunay Triangulations in Bounded Planar Domains Geodesic Delaunay Triangulations in Bounded Planar Domains Leonidas J. Guibas Dept. of Computer Science Stanford University Stanford, CA guibas@cs.stanford.edu Jie Gao Dept. of Computer Science Stony Brook

More information