Pulsed Lasers Revised: 2/12/14 15: , Henry Zmuda Set 5a Pulsed Lasers


 Clement Casey
 1 years ago
 Views:
Transcription
1 Pulsed Lasers Revised: 2/12/14 15: , Henry Zmuda Set 5a Pulsed Lasers 1
2 Laser Dynamics Puled Lasers More efficient pulsing schemes are based on turning the laser itself on and off by means of an internal modulation process, designed so that energy is stored during the offtime and released during the ontime. Energy may be stored either in the resonator, in the form of light that is periodically permitted to escape, or in the atomic system, in the form of a population inversion that is released periodically by allowing the system to oscillate. These schemes permit short laser pulses to be generated with peak powers far in excess of the constant power deliverable by CW lasers. 2014, Henry Zmuda Set 5a Pulsed Lasers 2
3 Laser Dynamics Puled Lasers Four common methods used for the internal modulation of laser light are: gain switching, Qswitching, cavity dumping, and mode locking. These are considered in turn. 2014, Henry Zmuda Set 5a Pulsed Lasers 3
4 Laser Dynamics Puled Lasers Gain Switching In this rather direct approach, the gain is controlled by turning the laser pump on and off. The pump is well above threshold and almost instantaneously creates a population inversion though the laser oscillation requires time to establish itself. During the ontimes, the gain coefficient exceeds the loss coefficient and laser light is produced. Most pulsed semiconductor lasers are gain switched because it is easy to modulate the electric current used for pumping. 2014, Henry Zmuda Set 5a Pulsed Lasers 4
5 Laser Dynamics Gain Switching From: Fundamentals of Photonics, Saleh and Teich, Wiley, p , Henry Zmuda Set 5a Pulsed Lasers 5
6 Laser Dynamics Gain Switching Turning the pumping rate R on and off is equivalent to modulating the smallsignal population difference. The following regimes are evident in the previous figure: For t < 0, the population difference lies below the threshold and oscillation cannot occur. The pump is turned on at t = 0, which increases the population from a value below threshold to a value above threshold in stepfunction fashion. The population difference N(t) begins to increase as a result. 2014, Henry Zmuda Set 5a Pulsed Lasers 6
7 Laser Dynamics Gain Switching As long as N(t) < N th, the normalized photonnumber density P is negligible. Then N(t) grows exponentially toward its equilibrium value. Once N(t) crosses the threshold N th, laser oscillation begins and P increases. The population inversion then begins to deplete so that the rate of increase of N(t) slows. As P becomes larger, the depletion becomes more effective so that N(t) begins to decay toward its steadystate value. The pump is then turned off which reduces the population to its initial value and N(t)) decay to the initial values. 2014, Henry Zmuda Set 5a Pulsed Lasers 7
8 Laser Dynamics Gain Switching Encyclopedia of Laser Physics and Technology, , Henry Zmuda Set 5a Pulsed Lasers 8
9 Laser Dynamics Case e) Pulsed excitation or Gain Switching  Analysis Start with a laser at rest (no excitation the pump is a pulse) with zero photons excited by a pump whose amplitude is well above that required to exceed threshold on a steadystate basis. How does the laser amplitude develop with time? Assume that the pulsed pump is large enough to make the relative photon number P grow from an insignificant value (as in case a) to something appreciable during its duration. Recall: w w sat = I I sat = P ( ~ 0.1 for this example) 2014, Henry Zmuda Set 5a Pulsed Lasers 9
10 Laser Dynamics e) Gain Switching Under this assumption, dg 0 dt = a R g 1+ P = a R g This has solution (case a): g( t) = R e 1 e at R e, t >> a or t >> τ 2 This suggests that the gain can perhaps exceed threshold before the photons have time to build up from the spontaneous emission level to a level where they utilize the population inversion. 2014, Henry Zmuda Set 5a Pulsed Lasers 10
11 Laser Dynamics e) Gain Switching Now for the photons, assume that the gain g has reached a value in excess of g th but can be treated as as if it were a constant. If we to include the fact that g is a really a function of P the the equation is nonlinear. dp dt = ( S exp [ g ] 1)P + βg constant g t Neglect this. Why? P t ( [ ] 1)t = δ P o exp S exp g If δp o is small enough so as to keep P small (as in case a) the nonlinearities can be ignored. For this case the exponential factor must be large to make P comparable to unity. 2014, Henry Zmuda Set 5a Pulsed Lasers 11
12 Laser Dynamics e) Gain Switching If δ P o = 10 7, P = 0.1 requires, P = 0.1 = 10 7 exp ( S exp[ g] 1)t exp ( S exp[ g] 1)t = 106 ( S exp[ g] 1)t = ln 10 6 = 13.8 If the gain is just above threshold, for instance if g = 1.1g th and if g th is small (~ 0.1), then the time needed to reach oscillation is: ln( 10 ( S exp[ 6 ) g] 1)Δt = ln( 10 6 ) 13.8 Δt = ~ S exp[ g] 1 exp[ g g th ] g g th 1 = 13.8 = g g th S=exp[ g th ] 13.8 = 13.8 = g th g th 0.1g th 0.01 = , Henry Zmuda Set 5a Pulsed Lasers 12
13 Laser Dynamics e) Gain Switching For this example, it will take a normalized time of 1380 (the number of round trips) before the laser reaches an amplitude that is beginning to be interesting then the nonlinearities kick in (our next step). If the cavity length was 12 inches and n = 1, then τ RT = 1 ns and the buildup time is 1.38 µs. Obviously, the pumping must be maintained for a long enough time to permit this evolution. If we "seed" the cavity with a reasonable value of photonssay from another laserwe can speed up this process and shrink the factor of 1380 down to a smaller value by starting with a larger value of δp o. 2014, Henry Zmuda Set 5a Pulsed Lasers 13
14 Laser Dynamics e) Gain Switching Once P reaches an appreciable level nonlinearities must be considered. Recall the fundamental equation we are dealing with: dp dt = ( Seg 1)P + βg dp dt = ( ( eg t) g th 1)P + βg t dp dt = ( ( eg t) g th 1)P dg dt = a R g 1+ P dg( t) dt = a R e g t 1+ P( t) Neglect. 2014, Henry Zmuda Set 5a Pulsed Lasers 14
15 Laser Dynamics e) Gain Switching These must be solved numerically: dp dt = ( ( eg t) g th 1)P dg t = a R e g t dt 1+ P( t) Normalize the time as: T = t τ p, τ p photon lifetime = τ RT ( 1 S), S = e g th 2014, Henry Zmuda Set 5a Pulsed Lasers 15
16 Laser Dynamics e) Gain Switching Normalization: T = t τ p, τ p = τ RT ( 1 S), S = e g th dp( t τ ) p τ p d t τ p dg( t τ ) p τ p d t τ p dp( T ) dt dg( T ) ( = e g ( t τ p) g th ) 1 P t τ p = a R e g t τ p = τ RT e g T dt = aτ p = b = τ p τ 2 dp T 1+ P( t τ ) p g th 1 1 e g th P T R e g T 1+ P( T ) dt = τ ( p e g ( T ) g th 1)P T dg T dt = aτ p R e g T 1+ P( T ) 2014, Henry Zmuda Set 5a Pulsed Lasers 16
17 Laser Dynamics e) Gain Switching Numerical Solution: Slide57: P b = R b 1 g th R e R th = 4 P CW = 3, b = 0.5 τ 2 = 20τ p g th = 0.1 S = , Henry Zmuda Set 5a Pulsed Lasers 17
18 Laser Dynamics e) Gain Switching For T > 9, the relative photon number P becomes larger than 1 and begin to depress the population inversion (or gain) and becomes larger than the CW value by a factor of ~ 6 at T ~ 12. (The CW value is shown as the dashed line at ~ 19.3.) With the number of photons in the cavity large, stimulated emission reduces the gain and the photon number reaches a maximum when the gain crosses threshold, shown as the dashed line at , Henry Zmuda Set 5a Pulsed Lasers 18
19 Laser Dynamics e) Gain Switching There are still a large number of photons in the cavity and they continue to stimulate the atoms and thus reduce the gain to below the threshold and as a consequence the photon number decreases to below the CW value. This allows the gain to reestablish itself and leads to a secondary peak in the photons. Eventually, both the photons and the gain settle down to their CW values. This large initial pulse is sometimes referred to as a gain switched pulse and occurs because the gain can build up faster than the photons. 2014, Henry Zmuda Set 5a Pulsed Lasers 19
20 Laser Dynamics e) Gain Switching Depending upon the choice of the parameters, we can have one or more significant pulses with the initial one being intense. If we could build up the inversion to a larger value than was found here, for example by making the initial seed of the photons even smaller, we would expect a larger initial pulse. Techniques for accomplishing this and modifications to our model are covered in the next on Q switching. 2014, Henry Zmuda Set 5a Pulsed Lasers 20
21 Laser Dynamics Q Switching Giant Pulses Basic Pulse Forming Network: RF Radar Pulse Generator Camera Flash Circuit Electronic auto ignition etc. R C Pump V Battery Switch Q Switch R L Cavity Impedance Level Shift 2014, Henry Zmuda Set 5a Pulsed Lasers 21
22 Laser Dynamics Q Switching Giant Pulses For circuits such as this the peak power delivered to the load can be many times the average power extracted from the source. Similar ideas apply for the giant pulse operation of a laser. Energy can be stored for future use by creating a population inversion. Obviously the spontaneous emission represents a drain on the stored energy, just as in leakage through the capacitor. 2014, Henry Zmuda Set 5a Pulsed Lasers 22
23 Laser Dynamics Q Switching Giant Pulses Here however, spontaneous emission causes another difficulty; it is amplified by the population inversion, and if the round trip gain exceeds 1, it will build up to a steady state value whose intensity is limited by the rate at which energy can be pumped into the system. This must be stopped from happening. To do this, the laser is prevented from oscillating by making the loss per pass very high while pumping the system. If amplified spontaneous emission can be prevented from saturating the active medium with a singlepass gain length, then considerable energy can be stored in the population difference N 2 N , Henry Zmuda Set 5a Pulsed Lasers 23
24 Laser Dynamics Q Switching Giant Pulses This stored energy can be extracted by suddenly lowering the loss. Then the gain greatly exceeds the loss and the intensity rapidly builds up from spontaneous noise, reaching a level where further growth is impossible (i.e., when the gain per pass equals the loss per pass). The result in an intense pulse. The intensity at which further growth is impossible represents the energy stored in the initial population inversion, not the intensity given by the CW oscillation condition. As we will see, the peak intensity can be many times the CW level. 2014, Henry Zmuda Set 5a Pulsed Lasers 24
25 Laser Dynamics Q Switching Giant Pulses Consider a simple laser where a shutter has been added to spoil the cavity Q. T g T g I Gain I R + R 1 2 Shutter Pump We continually pump energy into the population inversion until some sort of equilibrium is reached between the pump and the spontaneous decay processes of the system. This initial population inversion may be many times that required for CW oscillation in the absence of the shutter. 2014, Henry Zmuda Set 5a Pulsed Lasers 25
26 Laser Dynamics Q Switching Giant Pulses Consider a simple laser where a shutter has been added to spoil the cavity Q. T g T g I Gain I R + R 1 2 Shutter opens at t = 0 Pump The shutter opens at t = 0, and we (almost instantly) have a system that is far above threshold, so the spontaneous emission along the axis of the cavity is greatly amplified and builds up to a value sufficiently strong to start depleting the population inversion. All this can happen very quickly. 2014, Henry Zmuda Set 5a Pulsed Lasers 26
27 Laser Dynamics Q Switching Giant Pulses Suppose that the net singlepass gain is 5: R 1 R 2 e γ o = 5 After only five round trips the photon flux would be amplified by a factor of 5 10 = , thus we can neglect any pumping that occurs after t = 0. Because of this large increase in photon flux, the population inversion will become depleted as the photon number increases. Note that the optical power reaches a peak when the inversion crosses the threshold value. Shutter opens at t = , Henry Zmuda Set 5a Pulsed Lasers 27
28 Laser Dynamics Q Switching The math Time dynamics: In one round trip the number of photons in the cavity will increase by a factor of: e 2 ( N 2 N 1 )σ g as well as decrease due to attenuation and transmissivity with a factor of: R 1 R 2 T s 2 T g 2 e 2α s s = e 2g th Where g th is the threshold gain. T s T g T g σ, n g I α s,n s Gain Section Length g I R + R 1 2 Shutter Thus: ΔN p Δt Pump = e 2g th ( e2 N 2 N 1 )σ g 1 N 2 dn p τ RT dt This approximation for the derivative requires that the change in N p is small in a roundtrip time interval 2014, Henry Zmuda Set 5a Pulsed Lasers 28
29 Laser Dynamics Q Switching The math Let = N 2 ( t) N 1 ( t) g t σ g be the lineintegrated gain, hence dn p dt = e 2g th e2g 1 τ RT N p Also recall the photon lifetime for the passive cavity: τ p = τ RT 1 e 2g th Thus dn p dt = e 2g th e2g 1 1 e 2g th N p τ p ( = e2 g gth ) 1 1 e 2g th N p τ p 2014, Henry Zmuda Set 5a Pulsed Lasers 29
30 Laser Dynamics Q Switching The math Since the variation in N p is small over one roundtrip, dn p dt ( = e2 g g ) th 1 1 e 2g th N p τ p 1+ 2 ( g g th ) g th e N p τ p = g g th g th N p τ p = N p τ p g 1 g th, = N 2 ( t) N 1 ( t) g t σ g τ p = τ RT 1 e 2g th τ RT 2g th, = N 2 ( t) N 1 ( t) n t A g Total number of inverted atoms interacting with an optical mode of cross sectional area A This all gives, dn p dt = N p τ p n 1 n th (very intuitive) 2014, Henry Zmuda Set 5a Pulsed Lasers 30
31 Laser Dynamics Q Switching The math Now study the time dynamics. Recall that while stimulated emission increases the photon count it also depletes the inversion with a 2for1 split. Usually the time scale for the buildup or decay of the photons is on the order of a few photon lifetimes, and this time is much shorter than the lifetime of state 2 atoms and/or the characteristic time for pumping. Because of this we can examine the change in populations caused by stimulated emission only ignoring other causes. For stimulated emission we have Similarly, dn 2 dt dn 1 dt = σ I + + I hf = + σ ( I + + I ) hf ( N 2 N 1 ) ( N 2 N 1 ) 2014, Henry Zmuda Set 5a Pulsed Lasers 31
32 Laser Dynamics Q Switching The math Subtract, d( N 2 N 1 ) dt = n t d A( N 2 N 1 ) g dt dn( t) dt Number of photons in cavity: = 2 σ ( I + + I ) hf ( N 2 N 1 ) ( = 2 I + + I )A = g t σ g ( N 2 N 1 ) hf ( = 2 I + + I )A hf g( t) N p = I τ RT 2 Area 1 hf 2014, Henry Zmuda Set 5a Pulsed Lasers 32
33 Laser Dynamics Q Switching The math N p = I τ RT 2 Area 1 hf dn( t) dt ( = 2 I + + I ) A τ RT hf 2 g( t) 2 τ RT N p dn( t) dt dn( t) dt = 2N p g( t) 2, τ RT = 4N p g( t) = 2 N p τ p n t n th τ p τ RT 2g th 1 = 2 N p τ p 2g th τ p g( t) g th = 2 N p τ p n( t) n th 2014, Henry Zmuda Set 5a Pulsed Lasers 33
34 Laser Dynamics Q Switching The math dn( t) dt dn t τ p dt dn( T ) dt = 2 N p τ p and from Slide 107, n( t) n th = 2N p n t = 2N p n th dn t d t τ p Remember, N p is the total number of photons in the cavity while n(t) is the total number of inverted atoms interacting with an optical mode of cross sectional area A. n( T ), T = t τ p n th dn p dt = N p = 2N p n 1 n th n( t) n th 2014, Henry Zmuda Set 5a Pulsed Lasers 34
35 Laser Dynamics Q Switching The math dn( T ) dt dn p dt = N p = 2N p These equations are nonlinear and require a numerical solution. Let s take a different approach. n( T ) n th n 1 n th 2014, Henry Zmuda Set 5a Pulsed Lasers 35
36 Laser Dynamics Q Switching The math The chain rule: Integrate: dn p dt = dn p dn 2N p dn p dn = 1 2 dt dn T = 2 N p dn dt n( T ) n th n n th dn p dn = N p n th n n = N p 1 n th n 1 n th n 1 n th = 1 2 n th n 1 N p max dn p = N p initial 0 n th n initial 1 2 n th n 1 dn 2014, Henry Zmuda Set 5a Pulsed Lasers 36
37 Laser Dynamics Q Switching The math Integrate: N p max dn p = N p initial 0 n th n initial 1 2 n th n 1 dn N p max = 1 2 n th n initial n th = n initial n th 2 n 1 dn = n th n initial 2 n th 2 ln n initial + n th 2 lnn n th n initial Now if the cavity contains N p t photons, then it stores an energy of hfn p ( t) joules, and that power is being lost through the various losses in the cavity, Qswitch, mirrors, interfaces, etc. n th 2014, Henry Zmuda Set 5a Pulsed Lasers 37
38 Laser Dynamics Q Switching The math The output power equals the stored energy times the fraction lost per roundtrip divided by the time for a roundtrip. P out = hfn p hfn p fraction lost through coupling per round trip ( t) τ RT ( t) coupling loss per round trip total loss per round trip coupling efficiency η coupling < 1 total loss per round trip τ RT ( photon lifetime) 1 If the output mirror is R 2, then (recall the photon survival factor S) P out = hfn p ( t) 1 R 2 1 = N p ( t) hfη coupling P max out = N hfη max coupling p 1 S τ p τ p τ p η coupling We ve determined the maximum output power. 2014, Henry Zmuda Set 5a Pulsed Lasers 38
39 Laser Dynamics Q Switching The math Let us now estimate the pulse width. 0 = n final n initial 1 2 n th n 1 dn N p final 0 0 = dn p = N p initial 0 n final n initial 1 2 n th n 1 dn = n initial n final 2 n th 2 ln n initial n final 2014, Henry Zmuda Set 5a Pulsed Lasers 39
40 Laser Dynamics Q Switching The math Numerical solution: 0 = n i n f 2 ln n i n f n th 2 ln n i = n n i f n th n f n f = n i exp n n i f n th 2014, Henry Zmuda Set 5a Pulsed Lasers 40
41 Laser Dynamics Q Switching The math How much of the initial inversion is converted to photons? The fraction: η external = n i n f n i The total energy generated in the form of photons is this fraction times the maximum available. From Slide 107: but: n i = N 2i n f = N 2 f N 2i N 2 f N 1i N 1f A g A g A = N = N g p 1 f N 1i A g 2014, Henry Zmuda Set 5a Pulsed Lasers 41
42 Laser Dynamics Q Switching The math Subtracting: n f n i = N 2 f N 1f = N 1f N 1i A N g 2 i N 1i ( N 2i N ) 2 f A g A g = 2N p N p = n i n f 2 Photon Energy: using: η external = n n i f n i Output Energy: W p = hfn p = hf n i n f 2 W out = hfη external η coupling n i = hfη external n i 2014, Henry Zmuda Set 5a Pulsed Lasers 42
43 Laser Dynamics Q Switching The math A reasonable estimate for the pulse width is: Δt W out P = hfη externalη coupling n i max out N hfη max coupling p τ p n = η external τ i p N = η N 2i N 1i max externalτ p p N p max A g This number can be quite small. 2014, Henry Zmuda Set 5a Pulsed Lasers 43
44 Laser Dynamics Q Switching Example A Ruby Laser T a = 0.98 T b = cm A = 0.8cm 2 2cm 10 cm R 1 = 0.99 n s = 2.7 Shutter α s = 0.1 cm 1 (when open) n g = 1.78 σ = cm 2 T c = 0.96 T d = 0.95 λ = 694.3µm Assume pumping to four times threshold and equal degeneracy states. n i g = 4 1 = 1 n RoundTrip Gain: th g 2 R 2 = = R 1 R 2 ( T a T b T c T d ) 2 e 2α s s e 2γ th g 2014, Henry Zmuda Set 5a Pulsed Lasers 44
45 Laser Dynamics Q Switching Example A Ruby Laser Solve for the threshold gain & inversion: 1 = R 1 R 2 ( T a T b T c T d ) 2 e 2α s s e 2γ th g 1 R 1 R 2 ( T a T b T c T d ) = 2 e2γ th g 2αs s 1 ln 2 g R 1 R T a T b T c T d + α s s = γ th g γ th = 1 1 ln 2 g R 1 ( T a T b T c T d ) 2 + α s 1 s + ln 1 g 2 g R 2 Cavity Losses Shutter Loss output coupling loss = γ th = ln ( 0.98) ( 0.97) ( 0.96) ( 0.95) = = 4.60 cm 1 γ th = ( N 2 N 1 ) th σ ( N 2 N 1 ) th = γ th σ = ln cm cm 2 = cm , Henry Zmuda Set 5a Pulsed Lasers 45
46 Laser Dynamics Q Switching Example A Ruby Laser Number of inverted atoms at threshold in the cavity: n th = ( N 2 N 1 ) th A g = ( 0.8) ( 10) = Initial inversion: n i = 4n th = RoundTrip time: 1 c = τ RT = 2 air + n s s + n g g Photon lifetime (passive cavity): 1 ( 2 + ( 1.78)10) = 1.75ns τ p = 1 R 1 R 2 ( T T T T a b c d ) 2 e 2α s s ( 2) = e τ RT 1.75 = τ p = 2.91ns 2014, Henry Zmuda Set 5a Pulsed Lasers 46
47 Laser Dynamics Q Switching Example A Ruby Laser Maximum (Peak) Power: P max out = N hfη max coupling p τ p = = watts S = R 1 R 2 η coupling = 1 R 2 1 S N p max = n initial n th 2 = 4n th n th 2 ( T a T b T c T d ) 2 e 2α s s = 0.595e 2 = = n th 2 ln n initial n th n th 2 ln 4n th n th = 3 2 ln 4 2 = n th = n th = , Henry Zmuda Set 5a Pulsed Lasers 47
48 Laser Dynamics Q Switching Example A Ruby Laser Output Energy: W out = hf η external 0.98 viamathcad = P max out = watts η couplingn i Approximate Pulse Width: Δt = W out P = 0.55 max out = 14.1ns = 0.55 joule 2014, Henry Zmuda Set 5a Pulsed Lasers 48
49 Laser Dynamics Q Switching Example A Ruby Laser More exact results require a numerical solution of the nonlinear differential equations. ΔT = N p initial = n i n th 10 4 Less initial photons means that more time is required to establish the pulse. N p initial = n i n th 10 3 Note that as the inversion ratio is increased, the time required to develop a more intense pulse is decreased. This is because: 1. With a higher inversion, the gain is higher, and thus the rate of growth is faster. 2. A higher inversion ratio means more atoms in the upper state which in turn will contribute more spontaneous power to seed the stimulated emission. 2014, Henry Zmuda Set 5a Pulsed Lasers 49
50 Laser Dynamics Q Switching Example A Ruby Laser Less initial photons means that more time is required to establish the pulse. How much more? If the initial number of photons is decreased by a factor of, say 10, the medium must use time ΔT to amplify the smaller number back to the original value. At these small photon numbers we can neglect eh depletion of the inversion and N p grows according to (slide 111): dn p dt = N p n 1 n th N p ( T ) = N p 0 e + n 1 n th T 2014, Henry Zmuda Set 5a Pulsed Lasers 50
51 Laser Dynamics Q Switching Example A Ruby Laser N p ( T 1 ) N p ( T 2 ) = 0 = N p1 0 N p 1 0 N p2 0 ΔT = = e+ n 1 n th n 1 n th T 2 T 1 1 e + ln N p 1 0 N p2 0 n 1 n th T 1 N p2 ( 0)e + n 1 n th T 2 ΔT = ( 6 1) 1 ln[ 10] = , Henry Zmuda Set 5a Pulsed Lasers 51
52 Laser Dynamics Q Switching Example A Ruby Laser We cannot increase the initial inversion too much and obtain arbitrarily high peak powers. Two reason why: 1. As the initial inversion is increased, the spontaneous emission rate increases proportionately, which is then amplified by the remaining section of the gain medium. Since the singlepass gain is very high (because of the high n i ), the amplified spontaneous emission may be sufficient to saturate the gain section. Indeed, this presents a fundamental limit on the amount of energy that can be stored in the population inversion in any laser. 2. The amplified spontaneous emission may be sufficient to damage the switch or at least change its characteristics. 2014, Henry Zmuda Set 5a Pulsed Lasers 52
53 Laser Dynamics NEXT Mode Locking 2014, Henry Zmuda Set 5a Pulsed Lasers 53
Ver Chap Lecture 15 ECE 240a. QSwitching. Mode Locking. ECE 240a Lasers  Fall 2017 Lecture QSwitch Discussion
ing Ver Chap. 9.3 Lasers  Fall 2017 Lecture 15 1 ing ing (Cavity Dumping) 1 Turnoff cavity  prevent lasing 2 Pump lots of energy into upper state  use pulsed pump 3 Turn cavity back on  all the energy
More informationThe Generation of Ultrashort Laser Pulses
The Generation of Ultrashort Laser Pulses The importance of bandwidth More than just a light bulb Two, three, and four levels rate equations Gain and saturation But first: the progress has been amazing!
More informationQuantum Electronics Laser Physics. Chapter 5. The Laser Amplifier
Quantum Electronics Laser Physics Chapter 5. The Laser Amplifier 1 The laser amplifier 5.1 Amplifier Gain 5.2 Amplifier Bandwidth 5.3 Amplifier PhaseShift 5.4 Amplifier Power source and rate equations
More information22. Lasers. Stimulated Emission: Gain. Population Inversion. Rate equation analysis. Twolevel, threelevel, and fourlevel systems
. Lasers Stimulated Emission: Gain Population Inversion Rate equation analysis Twolevel, threelevel, and fourlevel systems What is a laser? LASER: Light Amplification by Stimulated Emission of Radiation
More informationComputer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber
Copyright 2009 by YASHKIR CONSULTING LTD Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber Yuri Yashkir 1 Introduction The
More information22. Lasers. Stimulated Emission: Gain. Population Inversion. Rate equation analysis. Twolevel, threelevel, and fourlevel systems
. Lasers Stimulated Emission: Gain Population Inversion Rate equation analysis Twolevel, threelevel, and fourlevel systems What is a laser? LASER: Light Amplification by Stimulated Emission of Radiation
More informationPaper Review. Special Topics in Optical Engineering II (15/1) Minkyu Kim. IEEE Journal of Quantum Electronics, Feb 1985
Paper Review IEEE Journal of Quantum Electronics, Feb 1985 Contents Semiconductor laser review High speed semiconductor laser Parasitic elements limitations Intermodulation products Intensity noise Large
More informationChapter 13. Phys 322 Lecture 34. Modern optics
Chapter 13 Phys 3 Lecture 34 Modern optics Blackbodies and Lasers* Blackbodies Stimulated Emission Gain and Inversion The Laser Fourlevel System Threshold Some lasers Pump Fast decay Laser Fast decay
More informationChapter9. Amplification of light. Lasers Part 2
Chapter9. Amplification of light. Lasers Part 06... Changhee Lee School of Electrical and Computer Engineering Seoul National Univ. chlee7@snu.ac.kr /9 9. Stimulated emission and thermal radiation The
More informationLASERS. Amplifiers: Broadband communications (avoid downconversion)
L LASERS Representative applications: Amplifiers: Broadband communications (avoid downconversion) Oscillators: Blasting: Energy States: Hydrogen atom Frequency/distance reference, local oscillators,
More informationγ c = rl = lt R ~ e (g l)t/t R Intensität 0 e γ c t Zeit, ns
There is however one main difference in this chapter compared to many other chapters. All loss and gain coefficients are given for the intensity and not the amplitude and are therefore a factor of 2 larger!
More informationPhotonic Devices. Light absorption and emission. Transitions between discrete states
Light absorption and emission Photonic Devices Transitions between discrete states Transition rate determined by the two states: Fermi s golden rule Absorption and emission of a semiconductor Vertical
More informationB 2 P 2, which implies that g B should be
Enhanced Summary of G.P. Agrawal Nonlinear Fiber Optics (3rd ed) Chapter 9 on SBS Stimulated Brillouin scattering is a nonlinear threewave interaction between a forwardgoing laser pump beam P, a forwardgoing
More informationWhat Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light
What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light amplification) Optical Resonator Cavity (greatly increase
More informationWhat Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light
What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light amplification) Optical Resonator Cavity (greatly increase
More informationExternal (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected
Semiconductor Lasers Comparison with LEDs The light emitted by a laser is generally more directional, more intense and has a narrower frequency distribution than light from an LED. The external efficiency
More informationLaser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful
What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light amplification) Optical Resonator Cavity (greatly increase
More informationIN RECENT YEARS, Cr doped crystals have attracted a
2286 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 33, NO. 12, DECEMBER 1997 Optimization of Cr Doped SaturableAbsorber Switched Lasers Xingyu Zhang, Shengzhi Zhao, Qingpu Wang, Qidi Zhang, Lianke Sun,
More informationPhysics 142 Steady Currents Page 1. Steady Currents
Physics 142 Steady Currents Page 1 Steady Currents If at first you don t succeed, try, try again. Then quit. No sense being a damn fool about it. W.C. Fields Electric current: the slow average drift of
More informationWhat happens when things change. Transient current and voltage relationships in a simple resistive circuit.
Module 4 AC Theory What happens when things change. What you'll learn in Module 4. 4.1 Resistors in DC Circuits Transient events in DC circuits. The difference between Ideal and Practical circuits Transient
More informationFigure 1 Relaxation processes within an excited state or the ground state.
Excited State Processes and Application to Lasers The technology of the laser (Light Amplified by Stimulated Emission of Radiation) was developed in the early 1960s. The technology is based on an understanding
More informationLecture 15: Optoelectronic devices: Introduction
Lecture 15: Optoelectronic devices: Introduction Contents 1 Optical absorption 1 1.1 Absorption coefficient....................... 2 2 Optical recombination 5 3 Recombination and carrier lifetime 6 3.1
More informationLecture 9. PMTs and Laser Noise. Lecture 9. Photon Counting. Photomultiplier Tubes (PMTs) Laser Phase Noise. Relative Intensity
s and Laser Phase Phase Density ECE 185 Lasers and Modulators Lab  Spring 2018 1 Detectors Continuous Output Internal Photoelectron Flux Thermal Filtered External Current w(t) Sensor i(t) External System
More informationANALYSIS OF AN INJECTIONLOCKED BISTABLE SEMICONDUCTOR LASER WITH THE FREQUENCY CHIRPING
Progress In Electromagnetics Research C, Vol. 8, 121 133, 2009 ANALYSIS OF AN INJECTIONLOCKED BISTABLE SEMICONDUCTOR LASER WITH THE FREQUENCY CHIRPING M. Aleshams Department of Electrical and Computer
More informationPrinciples of Lasers. Cheng Wang. Phone: Office: SEM 318
Principles of Lasers Cheng Wang Phone: 20685263 Office: SEM 318 wangcheng1@shanghaitech.edu.cn The course 2 4 credits, 64 credit hours, 16 weeks, 32 lectures 70% exame, 30% project including lab Reference:
More informationMODERN OPTICS. P47 Optics: Unit 9
MODERN OPTICS P47 Optics: Unit 9 Course Outline Unit 1: Electromagnetic Waves Unit 2: Interaction with Matter Unit 3: Geometric Optics Unit 4: Superposition of Waves Unit 5: Polarization Unit 6: Interference
More informationS. Blair February 15,
S Blair February 15, 2012 66 32 Laser Diodes A semiconductor laser diode is basically an LED structure with mirrors for optical feedback This feedback causes photons to retrace their path back through
More informationLaser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful
Main Requirements of the Laser Optical Resonator Cavity Laser Gain Medium of 2, 3 or 4 level types in the Cavity Sufficient means of Excitation (called pumping) eg. light, current, chemical reaction Population
More informationEngineering Medical Optics BME136/251 Winter 2017
Engineering Medical Optics BME136/251 Winter 2017 Monday/Wednesday 2:003:20 p.m. Beckman Laser Institute Library, MSTB 214 (lab) Teaching Assistants (Office hours: Every Tuesday at 2pm outside of the
More informationSolutions for Exercise session I
Solutions for Exercise session I 1. The maximally polarisationentangled photon state can be written as Ψ = 1 ( H 1 V V 1 H ). Show that the state is invariant (i.e. still maximally entangled) after a
More informationMTLE6120: Advanced Electronic Properties of Materials. Semiconductor pn junction diodes. Reading: Kasap ,
MTLE6120: Advanced Electronic Properties of Materials 1 Semiconductor pn junction diodes Reading: Kasap 6.16.5, 6.96.12 Metalsemiconductor contact potential 2 ptype ntype ptype ntype Same semiconductor
More informationThe effective factors on threshold conditions in laser diode Passive QSwitching
J. Basic. Appl. Sci. Res., (4)40794084, 0 0, TextRoad Publication ISSN 0904304 Journal of Basic and Applied Scientific Research www.textroad.com The effective factors on threshold conditions in laser
More informationIntroduction Fundamentals of laser Types of lasers Semiconductor lasers
Introduction Fundamentals of laser Types of lasers Semiconductor lasers Is it Light Amplification and Stimulated Emission Radiation? No. So what if I know an acronym? What exactly is Light Amplification
More informationLIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii
ate LIST OF TOPICS Preface xiii Units and Notation xv List of Symbols xvii BASIC LASER PHYSICS Chapter 1 An Introduction to Lasers 1.1 What Is a Laser? 2 1.2 Atomic Energy Levels and Spontaneous Emission
More informationFIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 17.
FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 17 Optical Sources Introduction to LASER Fiber Optics, Prof. R.K. Shevgaonkar,
More informationOptoelectronics ELECE3210
Optoelectronics ELECE3210 Lecture 3 Spring 2017 Semiconductor lasers I Outline 1 Introduction 2 The FabryPérot laser 3 Transparency and threshold current 4 Heterostructure laser 5 Power output and linewidth
More informationSignal regeneration  optical amplifiers
Signal regeneration  optical amplifiers In any atom or solid, the state of the electrons can change by: 1) Stimulated absorption  in the presence of a light wave, a photon is absorbed, the electron is
More informationComputational Physics Approaches to Model SolidState Laser Resonators
LASer Cavity Analysis & Design Computational Physics Approaches to Model SolidState Laser Resonators Konrad Altmann LASCAD GmbH, Germany www.lascad.com I will talk about four Approaches: Gaussian Mode
More informationStimulated Emission. Electrons can absorb photons from medium. Accelerated electrons emit light to return their ground state
Lecture 15 Stimulated Emission Devices Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and HeNe Laser The output spectrum of a gas laser Laser
More informationAdvanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay
Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture No. # 15 Laser  I In the last lecture, we discussed various
More informationNoise in voltagebiased scaled semiconductor laser diodes
Noise in voltagebiased scaled semiconductor laser diodes S. M. K. Thiyagarajan and A. F. J. Levi Department of Electrical Engineering University of Southern California Los Angeles, California 900891111
More informationExperimental characterization of Cr4+:YAG passively Qswitched Cr:Nd:GSGG lasers and comparison with a simple rate equation model
University of New Mexico UNM Digital Repository Optical Science and Engineering ETDs Engineering ETDs 7212008 Experimental characterization of Cr4+:YAG passively Qswitched Cr:Nd:GSGG lasers and comparison
More informationChapter 5. Semiconductor Laser
Chapter 5 Semiconductor Laser 5.0 Introduction Laser is an acronym for light amplification by stimulated emission of radiation. Albert Einstein in 1917 showed that the process of stimulated emission must
More informationStimulated Emission. ! Electrons can absorb photons from medium. ! Accelerated electrons emit light to return their ground state
Lecture 15 Stimulated Emission Devices Lasers! Stimulated emission and light amplification! Einstein coefficients! Optical fiber amplifiers! Gas laser and HeNe Laser! The output spectrum of a gas laser!
More informationThis is the 15th lecture of this course in which we begin a new topic, Excess Carriers. This topic will be covered in two lectures.
Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture  15 Excess Carriers This is the 15th lecture of this course
More informationLasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:454:45 PM Engineering Building 240
Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:454:45 PM Engineering Building 240 John D. Williams, Ph.D. Department of Electrical and Computer Engineering 406 Optics Building  UAHuntsville,
More informationPhoton Physics. Week 5 5/03/2013
Photon Physics Week 5 5/3/213 1 Rate equations including pumping dn 2 = R 2 N * σ 21 ( ω L ω ) I L N 2 R 2 2 dn 1 = R 1 + N * σ 21 ( ω L ω ) I L N 1 + N 2 A 21 ss solution: dn 2 = dn 1 = N 2 = R 2 N *
More informationChapter 32. Inductance
Chapter 32 Inductance Inductance Selfinductance A timevarying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying current. Basis of the electrical circuit
More information4. The interaction of light with matter
4. The interaction of light with matter The propagation of light through chemical materials is described by a wave equation similar to the one that describes light travel in a vacuum (free space). Again,
More informationProblem Set Number 02, j/2.036j MIT (Fall 2018)
Problem Set Number 0, 18.385j/.036j MIT (Fall 018) Rodolfo R. Rosales (MIT, Math. Dept., room 337, Cambridge, MA 0139) September 6, 018 Due October 4, 018. Turn it in (by 3PM) at the Math. Problem Set
More informationMar Yunsu Sung. Yunsu Sung. Special Topics in Optical Engineering II(15/1)
Mar 12 2015 Contents Twoport model Rate equation and damping Small signal response Conclusion Two Port Model I:Current V:Voltage P: Optical Power ν: Optical frequency shift Model summarize parasitic effects
More informationEE 6313 Homework Assignments
EE 6313 Homework Assignments 1. Homework I: Chapter 1: 1.2, 1.5, 1.7, 1.10, 1.12 [Lattice constant only] (Due Sept. 1, 2009). 2. Homework II: Chapter 1, 2: 1.17, 2.1 (a, c) (k = π/a at zone edge), 2.3
More informationQuantum Electronics Laser Physics PS Theory of the Laser Oscillation
Quantum Electronics Laser Physics PS407 6. Theory of the Laser Oscillation 1 I. Laser oscillator: Overview Laser is an optical oscillator. Resonant optical amplifier whose output is fed back into its input
More informationPhys 322 Lecture 34. Chapter 13. Modern optics. Note: 10 points will be given for attendance today and for the rest of the semester.
Chapter 13 Phys 322 Lecture 34 Modern optics Note: 10 points will be given for attendance today and for the rest of the semester. Presentation schedule Name Topic Date Alip, Abylaikhan lasers Nov. 30th
More informationAtoms and photons. Chapter 1. J.M. Raimond. September 6, J.M. Raimond Atoms and photons September 6, / 36
Atoms and photons Chapter 1 J.M. Raimond September 6, 2016 J.M. Raimond Atoms and photons September 6, 2016 1 / 36 Introduction Introduction The fundamental importance of the atomfield interaction problem
More informationFigure 5.1: Theodore Maiman constructed the first operational laser. Wikipedia). 5.1 Emission and absorption of electromagnetic radiation
5 Laser The word laser is an acronym for light amplification by stimulated emission of radiation. The first laser was demonstrated by Theodore Maiman in 1960. Figure 5.1: Theodore Maiman constructed the
More informationMathematical modeling of 3µm Erbium lasers Şerban Georgescu
Mathematical modeling of 3µm Erbium lasers Şerban Georgescu 1. Introduction Laser radiation at 3µm is of great interest in medical and biological applications because water and hydroxyapatite, which
More informationElements of Quantum Optics
Pierre Meystre Murray Sargent III Elements of Quantum Optics Fourth Edition With 124 Figures fya Springer Contents 1 Classical Electromagnetic Fields 1 1.1 Maxwell's Equations in a Vacuum 2 1.2 Maxwell's
More informationLaserphysik. Prof. Yong Lei & Dr. Yang Xu. Fachgebiet Angewandte Nanophysik, Institut für Physik
Laserphysik Prof. Yong Lei & Dr. Yang Xu Fachgebiet Angewandte Nanophysik, Institut für Physik Contact: yong.lei@tuilmenau.de; yang.xu@tuilmenau.de Office: Heisenbergbau V 202, Unterpörlitzer Straße
More informationPHYSICAL REVIEW LETTERS
PHYSICAL REVIEW LETTERS VOLUME 80 1 JUNE 1998 NUMBER 22 FieldInduced Stabilization of Activation Processes N. G. Stocks* and R. Mannella Dipartimento di Fisica, Università di Pisa, and Istituto Nazionale
More informationLast Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics
Last Lecture Overview and Introduction 1. Basic optics and spectroscopy. Lasers 3. Ultrafast lasers and nonlinear optics 4. Timeresolved spectroscopy techniques Jigang Wang, Feb, 009 Today 1. Spectroscopy
More informationNonlinear Optics (NLO)
Nonlinear Optics (NLO) (Manual in Progress) Most of the experiments performed during this course are perfectly described by the principles of linear optics. This assumes that interacting optical beams
More informationOPTICAL GAIN AND LASERS
OPTICAL GAIN AND LASERS 01021 BY DAVID ROCKWELL DIRECTOR, RESEARCH & DEVELOPMENT fsona COMMUNICATIONS MARCH 6, 2001 OUTLINE 01022 I. DEFINITIONS, BASIC CONCEPTS II. III. IV. OPTICAL GAIN AND ABSORPTION
More information2. THE RATE EQUATION MODEL 2.1 Laser Rate Equations The laser rate equations can be stated as follows. [23] dn dt
VOL. 4, NO., December 4 ISSN 577 4. All rights reserved. Characteristics of Quantum Noise in Semiconductor Lasers Operating in Single Mode Bijoya Paul, Rumana Ahmed Chayti, 3 Sazzad M.S. Imran,, 3 Department
More informationDesign and operation of antiresonant Fabry Perot saturable semiconductor absorbers for modelocked solidstate lasers
Brovelli et al. Vol. 12, No. 2/February 1995/J. Opt. Soc. Am. B 311 Design and operation of antiresonant Fabry Perot saturable semiconductor absorbers for modelocked solidstate lasers L. R. Brovelli
More informationStep 1. Step 2. g l = g v. dg = 0 We have shown that over a plane surface of water. g v g l = ρ v R v T ln e/e sat. this can be rewritten
The basic question is what makes the existence of a droplet thermodynamically preferable to the existence only of water vapor. We have already derived an expression for the saturation vapor pressure over
More informationLaser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.
What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. Electron energy levels in an hydrogen atom n=5 n=4  + n=3 n=2 13.6 = [ev]
More informationUC Berkeley UC Berkeley Previously Published Works
UC Berkeley UC Berkeley Previously Published Works Title Scaling of resonance frequency for strong injectionlocked lasers Permalink https://escholarship.org/uc/item/03d3z9bn Journal Optics Letters, 3(3)
More informationFIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 14.
FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 14 Optical Sources Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical Engineering,
More informationOPTI 511, Spring 2016 Problem Set 9 Prof. R. J. Jones
OPTI 5, Spring 206 Problem Set 9 Prof. R. J. Jones Due Friday, April 29. Absorption and thermal distributions in a 2level system Consider a collection of identical twolevel atoms in thermal equilibrium.
More informationCHAPTER FIVE. Optical Resonators Containing Amplifying Media
CHAPTER FIVE Optical Resonators Containing Amplifying Media 5 Optical Resonators Containing Amplifying Media 5.1 Introduction In this chapter we shall combine what we have learned about optical frequency
More informationEE 472 Solutions to some chapter 4 problems
EE 472 Solutions to some chapter 4 problems 4.4. Erbium doped fiber amplifier An EDFA is pumped at 1480 nm. N1 and N2 are the concentrations of Er 3+ at the levels E 1 and E 2 respectively as shown in
More informationIn Situ Imaging of Cold Atomic Gases
In Situ Imaging of Cold Atomic Gases J. D. Crossno Abstract: In general, the complex atomic susceptibility, that dictates both the amplitude and phase modulation imparted by an atom on a probing monochromatic
More informationICPY471. November 20, 2017 Udom Robkob, PhysicsMUSC
ICPY471 19 Laser Physics and Systems November 20, 2017 Udom Robkob, PhysicsMUSC Topics Laser light Stimulated emission Population inversion Laser gain Laser threshold Laser systems Laser Light LASER=
More informationMEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015
MEFT / Quantum Optics and Lasers Suggested problems Set 4 Gonçalo Figueira, spring 05 Note: some problems are taken or adapted from Fundamentals of Photonics, in which case the corresponding number is
More informationLaser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford
Laser Physics SIMON HOOKER and COLIN WEBB Department of Physics, University of Oxford OXFORD UNIVERSITY PRESS Contents 1 Introduction 1.1 The laser 1.2 Electromagnetic radiation in a closed cavity 1.2.1
More informationChapter 32. Inductance
Chapter 32 Inductance Joseph Henry 1797 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one of the first motors Discovered selfinductance Unit of
More informationMulticycle THz pulse generation in poled lithium niobate crystals
Laser Focus World April 2005 issue (pp. 6772). Multicycle THz pulse generation in poled lithium niobate crystals YunShik Lee and Theodore B. Norris YunShik Lee is an assistant professor of physics
More informationLaser Diodes. Revised: 3/14/14 14: , Henry Zmuda Set 6a Laser Diodes 1
Laser Diodes Revised: 3/14/14 14:03 2014, Henry Zmuda Set 6a Laser Diodes 1 Semiconductor Lasers The simplest laser of all. 2014, Henry Zmuda Set 6a Laser Diodes 2 Semiconductor Lasers 1. Homojunction
More information9 Atomic Coherence in ThreeLevel Atoms
9 Atomic Coherence in ThreeLevel Atoms 9.1 Coherent trapping  dark states In multilevel systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light
More informationL.A.S.E.R. LIGHT AMPLIFICATION. EMISSION of RADIATION
Lasers L.A.S.E.R. LIGHT AMPLIFICATION by STIMULATED EMISSION of RADIATION History of Lasers and Related Discoveries 1917 Stimulated emission proposed by Einstein 1947 Holography (Gabor, Physics Nobel Prize
More informationLASCAD Tutorial No. 4: Dynamic analysis of multimode competition and QSwitched operation
LASCAD Tutorial No. 4: Dynamic analysis of multimode competition and QSwitched operation Revised: January 17, 2014 Copyright 2014 LASCAD GmbH Table of Contents 1 Table of Contents 1 Introduction...
More informationThe 5 basic equations of semiconductor device physics: We will in general be faced with finding 5 quantities:
6.012  Electronic Devices and Circuits Solving the 5 basic equations  2/12/08 Version The 5 basic equations of semiconductor device physics: We will in general be faced with finding 5 quantities: n(x,t),
More information850 nm EMISSION IN Er:YLiF 4 UPCONVERSION LASERS
LASERS AND PLASMA PHYSICS 850 nm EMISSION IN Er:YLiF 4 UPCONVERSION LASERS OCTAVIAN TOMA 1, SERBAN GEORGESCU 1 1 National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele,
More informationQuantum Electronics Prof. K. Thyagarajan Department of Physics Indian Institute of Technology, Delhi
Quantum Electronics Prof. K. Thyagarajan Department of Physics Indian Institute of Technology, Delhi Module No. # 03 Second Order Effects Lecture No. # 11 Non  Linear Optic (Refer Slide Time: 00:36) Before
More informationOPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19
OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19 1. (a) Suppose you want to use a lens focus a Gaussian laser beam of wavelength λ in order to obtain a beam waist radius w
More informationSelfinductance A timevarying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying current.
Inductance Selfinductance A timevarying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying current. Basis of the electrical circuit element called an
More informationEEE105 Teori Litar I Chapter 7 Lecture #3. Dr. Shahrel Azmin Suandi Emel:
EEE105 Teori Litar I Chapter 7 Lecture #3 Dr. Shahrel Azmin Suandi Emel: shahrel@eng.usm.my What we have learnt so far? Chapter 7 introduced us to firstorder circuit From the last lecture, we have learnt
More informationLasers and Electrooptics
Lasers and Electrooptics Second Edition CHRISTOPHER C. DAVIS University of Maryland III ^0 CAMBRIDGE UNIVERSITY PRESS Preface to the Second Edition page xv 1 Electromagnetic waves, light, and lasers 1
More informationF. Elohim Becerra Chavez
F. Elohim Becerra Chavez Email:fbecerra@unm.edu Office: P&A 19 Phone: 505 2772673 Lectures: Tuesday and Thursday, 9:3010:45 P&A Room 184. Textbook: Laser Electronics (3rd Edition) by Joseph T. Verdeyen.
More informationEE485 Introduction to Photonics
Pattern formed by fluorescence of quantum dots EE485 Introduction to Photonics Photon and Laser Basics 1. Photon properties 2. Laser basics 3. Characteristics of laser beams Reading: Pedrotti 3, Sec. 1.2,
More informationNuclear Lifetimes. = (Eq. 1) (Eq. 2)
Nuclear Lifetimes Theory The measurement of the lifetimes of excited nuclear states constitutes an important experimental technique in nuclear physics. The lifetime of a nuclear state is related to its
More informationExcess carriers: extra carriers of values that exist at thermal equilibrium
Ch. 4: Excess carriers In Semiconductors Excess carriers: extra carriers of values that exist at thermal equilibrium Excess carriers can be created by many methods. In this chapter the optical absorption
More informationECE 484 Semiconductor Lasers
ECE 484 Semiconductor Lasers Dr. Lukas Chrostowski Department of Electrical and Computer Engineering University of British Columbia January, 2013 Module Learning Objectives: Understand the importance of
More information3.1 The Plane Mirror Resonator 3.2 The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator
Quantum Electronics Laser Physics Chapter 3 The Optical Resonator 3.1 The Plane Mirror Resonator 3. The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator
More informationAnalog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras
Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras Lecture No  42 Fully Differential Single Stage Opamp Hello and welcome
More informationIntroduction to Quantum Mechanics Prof. Manoj Kumar Harbola Department of Physics Indian Institute of Technology, Kanpur
Introduction to Quantum Mechanics Prof. Manoj Kumar Harbola Department of Physics Indian Institute of Technology, Kanpur Lecture  06 Stimulated emission and amplification of light in a LASER (Refer Slide
More informationCavity decay rate in presence of a SlowLight medium
Cavity decay rate in presence of a SlowLight medium Laboratoire Aimé Cotton, Orsay, France Thomas Lauprêtre Fabienne Goldfarb Fabien Bretenaker School of Physical Sciences, Jawaharlal Nehru University,
More informationP653 HW11. Due Dec 1, 2005
P653 HW11 Due Dec 1, 2005 Problem 1. Deterministic laser model A laser involves a highq cavity containing a medium which is being pumped. Due to stimulated emission, the rate of photons produced by the
More informationChapter4 Stimulated emission devices LASERS
Semiconductor Laser Diodes Chapter4 Stimulated emission devices LASERS The Road Ahead Lasers Basic Principles Applications Gas Lasers Semiconductor Lasers Semiconductor Lasers in Optical Networks Improvement
More information