Inertia and Mass. 7. Mass and velocity values for a variety of objects are listed below. Rank the objects from smallest to greatest inertia.

Save this PDF as:

Size: px
Start display at page:

Download "Inertia and Mass. 7. Mass and velocity values for a variety of objects are listed below. Rank the objects from smallest to greatest inertia."

Transcription

1 Inertia and Mass Read from Lesson 1 of the Newton's Laws chapter at The Physics Classroom: MOP Connection: Newton's Laws: sublevel 1 1. Inertia is 2. The amount of inertia possessed by an object is dependent solely upon its. 3. Two bricks are resting on edge of the lab table. Shirley Sheshort stands on her toes and spots the two bricks. She acquires an intense desire to know which of the two bricks are most massive. Since Shirley is vertically challenged, she is unable to reach high enough and lift the bricks; she can however reach high enough to give the bricks a push. Discuss how the process of pushing the bricks will allow Shirley to determine which of the two bricks is most massive. What difference will Shirley observe and how can this observation lead to the necessary conclusion? 4. Would Shirley Sheshort be able to conduct this same study if she was on a spaceship in a location in space far from the influence of significant gravitational forces? Explain your answer. 5. If a moose were chasing you through the woods, its enormous mass would be very threatening. But if you zigzagged, then its great mass would be to your advantage. Explain why. 6. Inertia can best be described as. a. the force which keeps moving objects moving an stationary objects at rest. b. the willingness of an object to eventually lose its motion c. the force which causes all objects to stop d. the tendency of any object to resist change and keep doing whatever its doing 7. Mass and velocity values for a variety of objects are listed below. Rank the objects from smallest to greatest inertia. < < < The Physics Classroom, 2009 Page 1

2 Net Force Help Sheet Understanding the influence of individual forces upon the acceleration of objects demands familiarity with the variety of types of forces. Quickly internalize the following. Type of Force Weight (W) or Force of Gravity (Fgrav) Normal Force (Fnorm or FN) Spring (Fspring or Fs) Sliding Friction Forces (Ffrict or Ff) Air Resistance (Fair or R) Tension (Ftens or T) Applied Force (Fapp or Fa) Explanation The force of gravity is the force at which the earth, moon, or other massively large object attracts another object towards itself. By definition, this is the weight of the object. All objects upon earth experience a force of gravity which is directed "downward" towards the center of the earth. The force of gravity on earth is always equal to the weight of the object as found by the equation: Fgrav = m * g where g = 9.8 N/kg (on Earth) The normal force is the support force exerted upon an object which is in contact with another stable object. For example, if a book is resting upon a surface, then the surface is exerting an upward force upon the book in order to support the weight of the book. On occasions, a normal force is exerted horizontally between two objects which are in contact with each other. The spring force is exerted by a spring upon the objects connected to each of its two ends. Spring forces may result from either a compressed or a stretched spring. The magnitude of a spring force is dependent upon the elasticity of the spring (usually denoted by its spring constant k) and upon the amount of compression or stretch (x) of the spring from its equilibrium position. The general equation for spring force is Fspring = k * x The frictional force is the force exerted by a surface as an object moves across it. The sliding friction force opposes the motion of the object. For example, if a book moves across the surface of a desk, then the desk exerts a frictional force in the opposite direction of its motion. The frictional force can often be calculated using the equation: Ffrict = µ * Fnorm The air resistance is a special type of frictional force which acts upon objects as they travel through the air. The force of air resistance always opposes the motion of the object. This force will frequently be neglected due to its negligible magnitude. It is most noticeable for objects which travel at high speeds (e.g., a skydiver or a downhill skier) or for objects with large surface areas. The tension is the force which is transmitted through a string, rope, wire or cable when it is pulled tight by forces acting from each end. The tensional force is directed along the wire and pulls equally on the objects on either end of the wire. The applied force is the force which is applied to an object by a person or another object. If a person is pushing a desk across a room, then there is an applied force acting upon the object. The applied force is the force exerted on the desk by the person. The Physics Classroom, 2009 Page 5

3 Recognizing Forces Read from Lesson 2 of the Newton's Laws chapter at The Physics Classroom: MOP Connection: Newton's Laws: sublevel 4 There are several situations described below. For each situation, fill in the list provided by indicating which forces are present and stating which features of the situation you used to determine the presence or absence of the force. To facilitate this exercise, utilize the Net Force Help Sheet. Upon completion of this assignment, check your answers using the available Web page. Description of Situation Force Present (P) or Absent (A)? Explanation 1. A block hangs at rest from the ceiling by a piece of rope. Consider the forces acting on the block. 2. A block hangs from the ceiling by a spring. Consider the forces acting on the block when it is at rest (at its equilibrium position). The Physics Classroom, 2009 Page 7

4 Description of Situation Force Present (P) or Absent (A)? Explanation 3. A ball is shot into the air with a spring-loaded cannon. Consider the forces acting on the ball while it is in the air. 4. A skydiver (who hasn't opened his parachute yet) falls at terminal velocity. Consider the forces acting on the skydiver. 5. A block rests on top of a table. Consider only the forces acting upon the block. The Physics Classroom, 2009 Page 8

5 Description of Situation Force Present (P) or Absent (A)? Explanation 6. A block is being pushed across the top of a table. Consider only the forces acting upon the block. 7. A block slides across the top of a table. Consider only the forces acting upon the block. 8. The driver of a car has her foot on the gas pedal. The wheels are turning as the car accelerates down the road. Consider only the forces acting upon the car. The Physics Classroom, 2009 Page 9

6 Description of Situation Force Present (P) or Absent (A)? Explanation 9. A person is sitting on a sled and gliding across loosely packed snow along a horizontal surface. Consider only the forces acting on the person. 10. The wheels of a car are locked as it skids to a stop while moving across a level highway. Consider only the forces acting on the car. 11. A bucket of water, attached by a rope, is being pulled out of a well. Consider only the forces acting on the bucket. The Physics Classroom, 2009 Page 10

7 Mass and Weight Read from Lesson 2 of the Newton's Laws chapter at The Physics Classroom: MOP Connection: Newton's Laws: sublevel 6 1. The standard metric unit for mass is and the standard metric unit for weight is. 2. An object's mass refers to and an object's weight refers to. Fill in each blank. a. the amount of space it takes up b. the force of gravitational attraction to Earth c. how dense an object is d. the amount of stuff present in the object 3. Complete the following table showing the relationship between mass and weight. Object Mass Approx. Weight Melon 1 kg Apple ~1.0 N Pat Eatladee 25 kg 4. Different masses are hung on a spring scale calibrated in Newtons. The force exerted by gravity on 1 kg = ~10 N. The force exerted by gravity on 5 kg = ~ N. The force exerted by gravity on 70 kg = ~ N. 5. The value of g in the British system is 32 ft/sec 2. The unit of force is pounds. The unit of mass is the slug. Use your weight in pounds to calculate your mass in units of slugs. PSYW 6. You might be wondering about your metric weight. Using conversion factors, convert your weight in pounds to units of N. (Use 1 N = 0.22 pounds) PSYW 7. What is the mass and weight of a 10-kg object on earth? Mass = Weight = What is the mass and weight of a 10-kg object on the moon where the force of gravity is 1/6-th that of the Earth's? Mass = Weight = 8. Conclusion: The of an object is independent of the object's location in space. The Physics Classroom, 2009 Page 11

8 Newton's Second Law of Motion Read from Lesson 3 of the Newton's Laws chapter at The Physics Classroom: MOP Connection: Newton's Laws: sublevel 7 1. The acceleration of an object is related to the net force exerted upon it and related to the mass of the object. In equation form: a = Fnet / m. a. directly, inversely b. inversely, directly c. directly, directly d. inversely, inversely 2. Use Newton's second law to predict the effect of an alteration in mass or net force upon the acceleration of an object. a. An object is accelerating at a rate of 8 m/s 2 when it suddenly has the net force exerted upon increased by a factor of 2. The new acceleration will be m/s 2. b. An object is accelerating at a rate of 8 m/s 2 when it suddenly has the net force exerted upon increased by a factor of 4. The new acceleration will be m/s 2. c. An object is accelerating at a rate of 8 m/s 2 when it suddenly has the net force exerted upon decreased by a factor of 2. The new acceleration will be m/s 2. d. An object is accelerating at a rate of 8 m/s 2 when it suddenly has its mass increased by a factor of 2. The new acceleration will be m/s 2. e. An object is accelerating at a rate of 8 m/s 2 when it suddenly has its mass decreased by a factor of 4. The new acceleration will be m/s 2. f. An object is accelerating at a rate of 8 m/s 2 when it suddenly has the net force exerted upon increased by a factor of 2 and its mass decreased by a factor of 4. The new acceleration will be m/s 2. g. An object is accelerating at a rate of 8 m/s 2 when it suddenly has the net force exerted upon increased by a factor of 4 and its mass increased by a factor of 2. The new acceleration will be m/s 2. h. An object is accelerating at a rate of 8 m/s 2 when it suddenly has the net force exerted upon increased by a factor of 3 and its mass decreased by a factor of 4. The new acceleration will be m/s These force diagrams depict the magnitudes and directions of the forces acting upon four objects. In each case, the down force is the force of gravity. Rank these objects in order of their acceleration, from largest to smallest: > > > The Physics Classroom, 2009 Page 12

9 4. For each force diagram, determine the net or resultant force ( F), the mass and the acceleration of the object. Identify the direction (the second blank) of the two vector quantities. NOTE: Fgrav stands for the weight of the object. a. b. F =, m = a =, c. F =, m = a =, d. F =, m = a =, e. F =, m = a =, f. F =, m = a =, F =, m = a =, The Physics Classroom, 2009 Page 14

10 Free-Body Diagrams Read from Lesson 2 of the Newton's Laws chapter at The Physics Classroom: MOP Connection: Newton's Laws: sublevel 5 Construct free-body diagrams for the following physical situations. Label all forces (e.g, Fgrav, Fnorm, Fapp, Ffrict, Fair, Ftens, etc. ). a. A physics book rests upon a level table. b. A skydiver is falling and has reached a terminal velocity. c. A large crate is being pushed leftward at a constant velocity. d. A sledder has reached the bottom of a hill and is coasting rightward while slowing down. e. A ball is moving upwards towards its peak. Ignore air resistance. f. An air track glider moves rightward at constant speed. g. The brakes are applied to a rightward moving car and it skids to a stop. h. A spider is slowly descending a thin silk thread at constant speed. i. A projectile is moving upwards and rightwards towards the peak of its trajectory. j. An elevator is rising at a constant velocity; it is not touching the elevator shaft. k. An upward rising elevator is slowing down; it is not touching the elevator shaft. l. A force is applied to accelerate a crate across a rough horizontal surface. The Physics Classroom, 2009 Page 15

11 Newton's Second Law Read from Lesson 3 of the Newton's Laws chapter at The Physics Classroom: MOP Connection: Newton's Laws: sublevels 8 and 9 Free-body diagrams are shown for a variety of physical situations. Use Newton's second law of motion ( F=m a) to fill in all blanks. Use the approximation that g = ~10 m/s/s. a. b. c. m=10000 kg a = 8.0 m/s/s, down ΣF = d. e. m=800 kg a = 6.0 m/s/s, up ΣF = f. m=0.500 kg a = ΣF = 124 N, right m= a = 1.50 m/s/s, right ΣF = g. h. i. m=15.0 kg a = 0.50 m/s/s, right ΣF = The Physics Classroom, 2009 Page 16

12 The Elephant and the Feather Study the two animations from the Multimedia Physics Studios MOP Connection: Newton's Laws: sublevels 10 and 11 Without Air Resistance Suppose that an elephant and a feather are dropped off a very tall building from the same height at the same time. Suppose also that air resistance could be eliminated such that neither the elephant nor the feather would experience any air drag during the course of their fall. Which object - the elephant or the feather - will hit the ground first? Many people are surprised by the fact that in the absence of air resistance, the elephant and the feather strike the ground at the same time. Why is this so? Test your understanding by identifying the following statements as being either True (T) or False (F). 1. The elephant and the feather each have the same force of gravity. 2. The elephant has more mass, yet they both experience the same force of gravity. 3. The elephant experiences a greater force of gravity, yet both the elephant and the feather have the same mass. 4. On earth, all objects (whether an elephant or a feather) have the same force of gravity. 5. The elephant weighs more than the feather, yet they each have the same mass. 6. The elephant clearly has more mass than the feather, yet they each weigh the same. 7. The elephant clearly has more mass than the feather, yet the amount of gravity (force) is the same for each. 8. The elephant has the greater acceleration, yet the amount of gravity is the same for each. With Air Resistance Now consider the realistic situation that both feather and elephant encounter air resistance. Which object - the elephant or the feather - will hit the ground first? Most people are not surprised by the fact that the elephant strikes the ground before the feather. But why does the elephant fall faster? Test your understanding by identifying the following statements as being either True (T) or False (F). 1. The elephant encounters a smaller force of air resistance and therefore falls faster. 2. The elephant has the greater acceleration of gravity and therefore falls faster. 3. Both elephant and feather have the same force of gravity, yet the acceleration of gravity is greatest for the elephant. 4. Both elephant and feather have the same force of gravity, yet the feather experiences a greater air resistance. 5. Each object experiences the same amount of air resistance, yet the elephant experiences the greatest force of gravity. 6. Each object experiences the same amount of air resistance, yet the feather experiences the greatest force of gravity. 7. The feather weighs more, and therefore will not accelerate as rapidly as the elephant. 8. Both elephant and feather weigh the same amount, yet the greater mass of the feather leads to a smaller acceleration. 9. The elephant experiences less air resistance and reaches a larger terminal velocity. 10. The feather experiences more air resistance and thus reaches a smaller terminal velocity. 11. The elephant and the feather encounter the same amount of air resistance, yet the elephant has a greater terminal velocity. The Physics Classroom, 2009 Page 22

13 Newton's Third Law Read from Lesson 4 of the Newton's Laws chapter at The Physics Classroom: MOP Connection: Newton's Laws: sublevel 12 A force is a push or pull resulting from an interaction between two objects. Whenever there is a force, there are two objects involved - with both objects pushing (or pulling) on each other in opposite directions. While the direction of the pushes (or pulls) is opposite, the strength or magnitude is equal. This is sometimes stated as Newton's Third Law of motion: for every action, there is an equal and opposite reaction. A force is a push or a pull and it always results from an interaction between two objects. These forces always come in pairs. 1. For each stated action force, identify the reaction force. Bat hits ball. Man pushes car. Bus hits bug. 2. Identify by words the action-reaction force pairs in each of the following diagrams. The Physics Classroom, 2009 Page 23

Inertia and Mass. 7. Mass and velocity values for a variety of objects are listed below. Rank the objects from smallest to greatest inertia.

Name: Inertia and Mass Read from Lesson 1 of the Newton's Laws chapter at The Physics Classroom: http://www.physicsclassroom.com/class/newtlaws/u2l1a.html http://www.physicsclassroom.com/class/newtlaws/u2l1b.html

Inertia and Mass. Newton's Laws

Inertia and Mass Read from Lesson 1 of the Newton's Laws chapter at The hysics Classroom: http://www.physicsclassroom.com/class/newtlaws/u2l1a.cfm http://www.physicsclassroom.com/class/newtlaws/u2l1b.cfm

Free Body Diagram Practice

Name: Free Body Diagram Practice Per: Read each scenario and draw a diagram of the forces acting upon the object(s). 1. A book is at rest on a table top. Diagram the forces acting on the book. 2. A girl

VEL A Distance & Displacement & VEL B Speed and Velocity 1. You run from your house to a friend's house that is 3 miles away. You then walk home.

VEL A Distance & Displacement & VEL B Speed and Velocity 1. You run from your house to a friend's house that is 3 miles away. You then walk home. a. What distance did you travel? b. What was the displacement

Chapter Four Holt Physics. Forces and the Laws of Motion

Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces - a. Force - a push or a pull. It can change the motion of an object; start or stop movement; and,

Forces I. Newtons Laws

Forces I Newtons Laws Kinematics The study of how objects move Dynamics The study of why objects move Newton s Laws and Forces What is force? What are they? Force A push or a pull Symbol is F Unit is N

Chapter 4: Newton's Second Law of Motion

Lecture Outline Chapter 4: Newton's Second Law of Motion This lecture will help you understand: Force Causes Acceleration Friction Mass and Weight Newton's Second Law of Motion Free Fall Nonfree Fall Force

Work-Energy Relationships

Work-Energy Relationships Read from Lesson 2 of the Work, Energy and Power chapter at The Physics Classroom: http://www.physicsclassroom.com/class/energy/u5l2a.html MOP Connection: Work and Energy: sublevel

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

Newton s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

AP Physics 1- Dynamics Practice Problems FACT: Inertia is the tendency of an object to resist a change in state of motion. A change in state of motion means a change in an object s velocity, therefore

Types of Force. Example. F gravity F friction F applied F air resistance F normal F spring F magnetism F tension. Contact/ Non-Contact

Types of Force Example Contact/ Non-Contact F gravity F friction F applied F air resistance F normal F spring F magnetism F tension Force Diagrams A force diagram, is a sketch in which all the forces acting

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

1. Which statement about the movement of an object with zero acceleration is true? The object must be at rest. The object must be slowing down. The object may be speeding up. The object may be in motion.

Practice Honors Physics Test: Newtons Laws

Name: Class: Date: Practice Honors Physics Test: Newtons Laws Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Acceleration is defined as the CHANGE in

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, 2005 Mechanics Test Please answer the following questions on the supplied answer sheet. You may write on this test booklet,

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors

What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

Dynamics: Forces and Newton s Laws of Motion

Lecture 7 Chapter 5 Physics I Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass:

What Is a Force? Slide Pearson Education, Inc.

What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

Conceptual Physics Newton s Laws Outline Hewitt: Chapter 4, 5, 6 Exercises: 3 Forces. Fill in the Charts completely

Conceptual Physics Newton s Laws Outline Hewitt: Chapter 4, 5, 6 Exercises: 3 Forces Fill in the Charts completely Variables introduced or used in chapter: Quantity Symbol Units Force Mass Accelerated

Review 3: Forces. 1. Which graph best represents the motion of an object in equilibrium? A) B) C) D)

1. Which graph best represents the motion of an object in equilibrium? A) B) C) D) 2. A rock is thrown straight up into the air. At the highest point of the rock's path, the magnitude of the net force

Newton's Laws Applications Review

Newton's Laws Applications Review Part A: Drawing Free Body Diagrams 1. Construct free body diagrams for the following physical situations. a. A ball is dropped from rest from the top of a building. Assume

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

Free-Body Diagrams Worksheet

Free-Body Diagrams Worksheet No doubt you are aware of free body diagrams (otherwise known as FBD's). These are simplified representations of an object (the body) in a problem, and includes force vectors

Isaac Newton. What is the acceleration of the car? "If I have seen further it is by standing on the shoulders of giants" Isaac Newton to Robert Hooke

Aim: What did Isaac Newton teach us about motion? Do Now: 1. A 2009 Ford Mustang convertible is travelling at constant velocity on Interstate 95 south from Philadelphia to Wilmington Delaware. It passes

Physics Chapter 4 Newton s Laws of Motion

Physics Chapter 4 Newton s Classical Mechanics Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical

2. If a net horizontal force of 175 N is applied to a bike whose mass is 43 kg what acceleration is produced?

Chapter Problems Newton s 2nd Law: Class Work 1. A 0.40 kg toy car moves at constant acceleration of 2.3 m/s 2. Determine the net applied force that is responsible for that acceleration. 2. If a net horizontal

Forces and Newton s Laws Notes

Forces and Newton s Laws Notes Force An action exerted on an object which can change the motion of the object. The SI unit for force is the Newton (N) o N = (kg m)/s 2 o Pound is also a measure of force

AP Physics 1 - Test 05 - Force and Motion

P Physics 1 - Test 05 - Force and Motion Score: 1. brick slides on a horizontal surface. Which of the following will increase the magnitude of the frictional force on it? Putting a second brick on top

P11 Dynamics 1 Forces and Laws of Motion Bundle.notebook October 14, 2013

Dynamics 1 Definition of Dynamics Dynamics is the study of why an object moves. In order to understand why objects move, we must first study forces. Forces A force is defined as a push or a pull. Forces

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapter Goal: To establish a connection between force and motion. Slide 5-2 Chapter 5 Preview Slide 5-3 Chapter 5 Preview Slide 5-4 Chapter 5 Preview Slide 5-5 Chapter 5 Preview

According to Newton s 2 nd Law

According to Newton s 2 nd Law If the force is held constant the relationship between mass and acceleration is direct/inverse. If the mass is held constant the relationship between force and acceleration

I. What are forces? A. Characteristics:

Chapter 5: forces I. What are forces? A. Characteristics: 1. Forces result from the interaction of objects. A FORCE is a push or a pull that one object exerts on another. 2. How are forces measured: a.

PHYSICS 149: Lecture 5

PHYSICS 149: Lecture 5 Chapter.5 Newton s Third Law.6 Gravitational Forces.7 Contact Forces: Normal Force and Friction 1 Newton s Third Law All forces come in pairs Third law forces involve TWO OBJECTS.

PHYSICS MIDTERM REVIEW PACKET

PHYSICS MIDTERM REVIEW PACKET PERIOD: TIME: DATE: ROOM: YOU NEED TO BRING: 1. #2 PENCIL W/ ERASER. 2. CALCULATOR (YOUR OWN). YOU WILL NOT BE ALLOWED TO SHARE OR BORROW!!! YOU WILL BE GIVEN: 1. FORMULA

Dynamics Multiple Choice Homework

Dynamics Multiple Choice Homework PSI Physics Name 1. In the absence of a net force, a moving object will A. slow down and eventually stop B. stop immediately C. turn right D. move with constant velocity

Chapter 4 Newton s Laws

Chapter 4 Newton s Laws Isaac Newton 1642-1727 Some inventions and discoveries: 3 laws of motion Universal law of gravity Calculus Ideas on: Sound Light Thermodynamics Reflecting telescope In this chapter,

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

Review PHYS114 Chapters 4-7

Review PHYS114 Chapters 4-7 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 27 kg object is accelerated at a rate of 1.7 m/s 2. What force does

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

Is there a net force?

Is there a net force? A net force (i.e., an unbalanced force) causes acceleration. In the motion unit, several means of representing accelerated motion were discussed. Combine your prior understanding

Unit 6: Forces II PRACTICE PROBLEMS

Regents Physics Mrs. Long Unit 6: Forces II PRACTICE PROBLEMS Essential Understanding for the Unit: The net force can be determined by using force diagrams in order to show all forces acting, and thereby

4 Study Guide. Forces in One Dimension Vocabulary Review

Date Period Name CHAPTER 4 Study Guide Forces in One Dimension Vocabulary Review Write the term that correctly completes the statement. Use each term once. agent force Newton s second law apparent weight

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 Name: Date: 1. A crate resting on a rough horizontal floor is to be moved horizontally. The coefficient of static friction

FORCES AND THE LAWS OF MOTION

FORCES AND THE LAWS OF MOTION FORCE A force is the cause of an acceleration, or the change in an object s velocity (speed or direction). Forces are usually thought of as a push or a pull. The SI unit of

1. A 7.0-kg bowling ball experiences a net force of 5.0 N. What will be its acceleration? a. 35 m/s 2 c. 5.0 m/s 2 b. 7.0 m/s 2 d. 0.

Newton's Laws 1. A 7.0-kg bowling ball experiences a net force of 5.0 N. What will be its acceleration? a. 35 m/s 2 c. 5.0 m/s 2 b. 7.0 m/s 2 d. 0.71 m/s 2 2. An astronaut applies a force of 500 N to an

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

5. A balloon of a known mass or weight is dropped from a known height and timed. Determine the average amount of air resistance that acts on it.

1. A satellite of mass 50.0 kg is pulled by 450 N of gravity. Small thrusters are used to maneuver the satellite in its orbit. (a) What thrust would cause the satellite to move with a constant velocity?

Friction and Pressure

Friction and Pressure Pre-Test - Post-Test 1. Pressure is defined as. A) force through distance. B) change in height per time. C) force per area. D) force per time. E) energy per area. 2. Which of the

FORCE. Definition: Combining Forces (Resultant Force)

1 FORCE Definition: A force is either push or pull. A Force is a vector quantity that means it has magnitude and direction. Force is measured in a unit called Newtons (N). Some examples of forces are:

1 In the absence of a net force, a moving object will. slow down and eventually stop stop immediately turn right move with constant velocity turn left

Slide 1 / 51 1 In the absence of a net force, a moving object will slow down and eventually stop stop immediately turn right move with constant velocity turn left Slide 2 / 51 2 When a cat sleeps on a

Dynamics; Newton s Laws of Motion

Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude

Name: Date: Period: AP Physics C Work HO11

Name: Date: Period: AP Physics C Work HO11 1.) Rat pushes a 25.0 kg crate a distance of 6.0 m along a level floor at constant velocity by pushing horizontally on it. The coefficient of kinetic friction

Web practice Chapter 4 Newton's Laws of Motion

Name: Class: _ Date: _ Web practice Chapter 4 Newton's Laws of Motion Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If we know an object is moving at

KINETIC ENERGY AND WORK

Chapter 7: KINETIC ENERGY AND WORK 1 Which of the following is NOT a correct unit for work? A erg B ft lb C watt D newton meter E joule 2 Which of the following groups does NOT contain a scalar quantity?

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the

AP Physics 1 Work Energy and Power Practice Test Name

AP Physics 1 Work Energy and Power Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two objects, one of mass m and the other

Ch 6 Using Newton s Laws. Applications to mass, weight, friction, air resistance, and periodic motion

Ch 6 Using Newton s Laws Applications to mass, weight, friction, air resistance, and periodic motion Newton s 2 nd Law Applied Galileo hypothesized that all objects gain speed at the same rate (have the

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

Lecture Presentation. Chapter 4 Forces and Newton s Laws of Motion. Chapter 4 Forces and Newton s Laws of Motion. Reading Question 4.

Chapter 4 Forces and Newton s Laws of Motion Lecture Presentation Chapter 4 Forces and Newton s Laws of Motion Chapter Goal: To establish a connection between force and motion. Slide 4-2 Chapter 4 Preview

Chapter 4. The Laws of Motion

Chapter 4 The Laws of Motion Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical Mechanics does not

PSI AP Physics B Dynamics

PSI AP Physics B Dynamics Multiple-Choice questions 1. After firing a cannon ball, the cannon moves in the opposite direction from the ball. This an example of: A. Newton s First Law B. Newton s Second

Phys101 Second Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1

Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1 Q1. Two forces are acting on a 2.00 kg box. In the overhead view of Figure 1 only one force F 1 and the acceleration of the box are shown.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

FLEX Physical Science AP Physics C Newton's Laws --- Conceptual Questions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You swing a bat and hit

FORCE AND MOTION. Conceptual Questions F G as seen in the figure. n, and a kinetic frictional force due to the rough table surface f k

FORCE AND MOTION 5 Conceptual Questions 5.1. Two forces are present, tension T in the cable and gravitational force 5.. F G as seen in the figure. Four forces act on the block: the push of the spring F

Regents Physics. Physics Midterm Review - Multiple Choice Problems

Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

Name: Unit 4 Newton s 1 st & 3 rd Law

Name: Period: Table #: Unit 4 Newton s 1 st & 3 rd Law 1 UNIT IV: Reading - Force Diagrams The analysis of a problem in dynamics usually involves the selection and analysis of the relevant forces acting

Unit 2 Part 2: Forces Note 1: Newton`s Universal Law of Gravitation. Newton`s Law of Universal Gravitation states: Gravity. Where: G = M = r =

Unit 2 Part 2: Forces Note 1: Newton`s Universal Law of Gravitation Gravity Newton`s Law of Universal Gravitation states: Where: G = = M = m = r = Ex 1: What is the force of gravity exerted on a 70.0 kg

Chapter 5 Lecture. Pearson Physics. Newton's Laws of Motion. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 5 Lecture Pearson Physics Newton's Laws of Motion Prepared by Chris Chiaverina Chapter Contents Newton's Laws of Motion Applying Newton's Laws Friction Newton's Laws of Motion Two of the most important

Yanbu University College. General Studies Department. Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions

1 Yanbu University College General Studies Department Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions 2 Chapter 2 Worksheet Part 1 Matching: Match the definitions with the given concepts. 1.

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (!

1. The angle between the vector! A = 3î! 2 ĵ! 5 ˆk and the positive y axis, in degrees, is closest to: A) 19 B) 71 C) 90 D) 109 E) 161 The dot product between the vector! A = 3î! 2 ĵ! 5 ˆk and the unit

CPS lesson Work and Energy ANSWER KEY

CPS lesson Work and Energy ANSWER KEY 1. A ball feeder slowly pushes a bowling ball up a 1-m ramp to a height of 0.5 m above the floor. Neglecting friction, what constant force must be exerted on the 5-kg

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

2. SKIP THIS YEAR What event will produce the greatest increase in the gravitational force between the two masses?

Forces Review: look over all labs and worksheets. Your answers should be in another color pen. This is not all inclusive of items on the test but a very close representation. 1. The table shows the results

PS113 Chapter 4 Forces and Newton s laws of motion

PS113 Chapter 4 Forces and Newton s laws of motion 1 The concepts of force and mass A force is described as the push or pull between two objects There are two kinds of forces 1. Contact forces where two

Old Exam. Question Chapter 7 072

Old Exam. Question Chapter 7 072 Q1.Fig 1 shows a simple pendulum, consisting of a ball of mass M = 0.50 kg, attached to one end of a massless string of length L = 1.5 m. The other end is fixed. If the

1. The property of matter that causes an object to resist changes in its state of motion is called:

SPH3U Exa Review 1. The property of atter that causes an object to resist changes in its state of otion is called: A. friction B. inertia C. the noral force D. tension 1. The property of atter that causes

CHAPTER 4 TEST REVIEW -- Answer Key

AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST

Forces and Motion in One Dimension

Nicholas J. Giordano www.cengage.com/physics/giordano Forces and Motion in One Dimension Applications of Newton s Laws We will learn how Newton s Laws apply in various situations We will begin with motion

Unit 2: Newton s Laws Note 1 : Forces

Unit 2: Newton s Laws Note 1 : Forces Force: The units of force are: There are four fundamental forces that make up all of the forces in the universe: 1) 2) 3) 4) Force of Gravity Force of Gravity: The

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( )

AP PHYSICS 1 WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton (1643-1727) Isaac Newton was the greatest English mathematician of his generation. He laid the foundation for differential

Newton s First Law and IRFs

Goals: Physics 207, Lecture 6, Sept. 22 Recognize different types of forces and know how they act on an object in a particle representation Identify forces and draw a Free Body Diagram Solve 1D and 2D

Reading Quiz. Chapter 5. Physics 111, Concordia College

Reading Quiz Chapter 5 1. The coefficient of static friction is A. smaller than the coefficient of kinetic friction. B. equal to the coefficient of kinetic friction. C. larger than the coefficient of kinetic

Chapter FOUR: Forces in One Dimension. kew. 7 1:30 PM. force: a push or pull exerted on an object. therefore, a force causes an acceleration

Chapter FOUR: Forces in One Dimension 4.1 Force and Motion force: a push or pull exerted on an object forces cause objects to: speed up slow down change direction = change in velocity therefore, a force

ConcepTest PowerPoints

ConcepTest PowerPoints Chapter 4 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

Physics Final Practice Exam Part 1

Physics Final Practice Exam Part 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which one of the following problems would NOT be a part of physics?

Tue Sept 15. Dynamics - Newton s Laws of Motion. Forces: Identifying Forces Free-body diagram Affect on Motion

Tue Sept 15 Assignment 4 Friday Pre-class Thursday Lab - Print, do pre-lab Closed toed shoes Exam Monday Oct 5 7:15-9:15 PM email me if class conflict or extended time Dynamics - Newton s Laws of Motion

Name: Class: Date: so sliding friction is better so sliding friction is better d. µ k

Name: Class: Date: Exam 2--PHYS 101-F08 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. You put your book on the seat next to you. When the bus stops,

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force.

Force Test Review 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force. 2. Define weight. The force of gravity on an object at the surface of

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron.

Lecture 3 The Laws of Motion OUTLINE 5.1 The Concept of Force 5.2 Newton s First Law and Inertial Frames 5.3 Mass 5.4 Newton s Second Law 5.5 The Gravitational Force and Weight 5.6 Newton s Third Law 5.8

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

How do objects interact?

Chapter 4 FORCES Objectives You will be able to understand the idea of force categorize forces into the two main types of force recognize when forces exist Draw Free Body Diagrams (FBD) Forces So far we

3/17/2018. Interacting Objects. Interacting Objects

Example 0 - Iris drags a sled containing her baby brother across the floor at a constant speed. She pulls the sled at a 20 degree above the horizontal. Draw a FBD and write out N2L for both x and y directions.

4) Vector = and vector = What is vector = +? A) B) C) D) E)

1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In

5. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

1. The greatest increase in the inertia of an object would be produced by increasing the A) mass of the object from 1.0 kg to 2.0 kg B) net force applied to the object from 1.0 N to 2.0 N C) time that

1N the force that a 100g bar of chocolate exerts on your hand.

Forces: - - > cause change in motions Newton's first law = law of inertia In absence of a net external force acting upon it, a body will either remain at rest or continue in its rectilinear uniform motion.

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm!

Wiley Plus Final Assignment (5) Is Due Today: Before 11 pm! Final Exam Review December 9, 009 3 What about vector subtraction? Suppose you are given the vector relation A B C RULE: The resultant vector

The Force Is with You

The Force Is with You Learning Objectives The learner will interpret free-body force diagrams Review: Newton s 1 st Law An object in motion stays in motion in a straight line, unless acted upon by unbalanced