High-frequency data modelling using Hawkes processes

Size: px
Start display at page:

Download "High-frequency data modelling using Hawkes processes"

Transcription

1 High-frequency data modelling using Hawkes processes Valérie Chavez-Demoulin 1 joint work J.A McGill 1 Faculty of Business and Economics, University of Lausanne, Switzerland Boulder, April 2016 Boulder, April / 25

2 High frequency financial data The availability of high frequency data on transactions, quotes and order flow has revolutionized data processing and has led to statistical modeling challenges At the same time, the frequency of submission of orders has increased and the time to execution of market orders has dropped from more than 25 milliseconds in 2000 to less than a millisecond in Average number Number of price of orders in 10s changes (June 26, 2008) Citigroup General Electric General Motors Table: Taken from R.Cont, 2011, Boulder, April / 25

3 Trade database structure SYMBOL DATE TIME PRICE SIZE G127 CORR COND NVDA :30: NVDA :30: NVDA :30: NVDA :30: Price :30:03 10:15:19 11:35:30 13:54:00 15:02:55 15:45:54 Presence of erroneous trades: moving average filtering Irregularly spaced in time: linear interpolation Boulder, April / 25

4 NVDA negative log-returns from 2006 to 2008 (15-minutes linearly interpolated) Negative log returns Time(15min intervals) NVDA, July to December 2008 negative returns exceedances : Negative log returns Time(15min intervals) Boulder, April / 25

5 Extreme Value Theory: Classical Peaks-Over-Threshold (iid case) x Time The number of exceedances over u has a Poisson distribution with mean λ Conditional on n exceedances, their sizes W j = Z j u are a random sample of size n from the generalized Pareto distribution (GPD) G ξ,σ (w) = { 1 (1 + ξw/σ) 1/ξ +, ξ 0, 1 exp( w/σ), ξ = 0. Boulder, April / 25

6 NVDA log-returns from 2006 to 2008 (15-minutes interpolated) time differences between exceedances over high threshold Difference in time Exponential does not seem exponentially distributed higher than expected frequencies for short distance between extremes Boulder, April / 25

7 High-frequency financial data features Returns not iid Absolute returns highly correlated Volatility appears to change randomly with time Returns are leptokurtic or heavy tailed Extremes appear in clusters Boulder, April / 25

8 Declustering methods exist: An example for daily returns Original data Returns in % Declustered data Returns in % Boulder, April / 25

9 Idea the classical Peaks-Over-Thresholds (POT) model of EVT assumes an homogeneous Poisson process the inter-event times would be independent exponential random variables the Figures above contradict the classical model Aim: Treats the negative log-returns above a high threshold u as a realization of a marked point process: Using a first model that combines a self-exciting process for the threshold exceedance times with Generalized Pareto model for the threshold excess sizes (mark sizes) Using a second model that considers a self-exciting POT model Boulder, April / 25

10 Overall loglikelihood (POT method) Since number and mark size for the threshold exceedances are assumed independent n l(λ, σ, ξ) = log P(N u = n) g ξ,σ (w j ) j=1. = n log λ λ n log σ (1 + 1/ξ) n log(1 + ξw j /σ) + so inference can be performed separately for the frequency of exceedances and their sizes. j=1 Boulder, April / 25

11 Marked Point Processes (1) consider an event process (T i, W i ), i Z observed over the period (0; t 0 ] gives data (t 1, w 1 ),..., (t n, w n ) let H t, entire history of process up to time t the joint density of the data seen over (0, t 0 ] can be written n f Ti,W i H ti 1 (t i, w i H ti 1 )P(T n+1 > t 0 H tn ) i=1 Boulder, April / 25

12 Marked Point Processes (2) Assuming independence of times T i and marks W i the conditional density function is f Ti,W i H ti 1 (t i, w i H ti 1 ) = f Ti H ti 1 (t i H ti 1 ) f Wi H ti 1 (w i H ti 1 ) leading to the log-likelihood l = { n log f Ti H i 1 (t i ) + log P(T n+1 > t 0 H tn ) i=1 { n + log f Wi H ti 1 (w i H ti 1 ) i=1 } B } A Boulder, April / 25

13 Hawkes process Combining separately a Hawkes process for the counting process of the times (part A) and a GPD model for the contributions from the marks (part B), the likelihood becomes { n ( t0 ) } l = log λ(t i H ti ) exp λ(u H u )du i=1 0 n n log σ (1 + 1/ξ) log(1 + ξw i /σ) i=1 with λ(t H t ) being the conditional intensity Boulder, April / 25

14 Self-exciting process We chose the following general form with a constant loading µ 0 λ(t H t ) = µ 0 + ω(t t j ; w j ), j:t j <t where µ 0 > 0 and the self-exciting function ω(s) has to be positive when s 0 and 0 elsewhere. For example, the conditional intensity model proposed by Ogata (1988) is λ(t H t ) = µ 0 + ψ where µ 0, ψ, δ, γ, ρ > 0. j:t j <t e δw j (t t j + γ) 1+ρ ETAS Boulder, April / 25

15 Applications to high-frequency data: 15-minutes linearly interpolated NVDA 2008 negative log-returns Negative log returns Time(15min intervals) Estimated intensity Boulder, April / 25

16 Estimated cumulative events number ˆΛ Ht (t) = t 0 ˆλ(u H u )du and two-sided 95% and 99% confidence limits based on the Kolmogorov-Smirnov statistic Cumulative number of extreme losses Transformed time Boulder, April / 25

17 Alternative models (1) Hawkes process with exponential decay λ(t H t ) = µ 0 + ψ exp{δw j γ(t t j )}. j:t j <t First order Markov chain for the marks W i W i 1 = w i GPD(ξ, σ i = exp(a + bw i 1 )) whose parameters a, b and ξ can be estimated by maximising n f Wi W i 1 (w i w i 1 )f w1 (w 1 ) i=2 Diagnostic for the marginal distribution based on the residuals R j = ˆξ 1 log (1 + ˆξw j /ˆσ j ), j = 1,..., n approximately independent unit exponential variables Boulder, April / 25

18 Alternative models (2): A self-exciting POT model A model with predictable marks λ (t, w) = τ + α ( 1ν(t) w u 1 + ξ σ + α 2 ν(t) σ + α 2 ν(t) ) 1/ξ 1 Where ν(t) = j:t j <t ω(t t j ) uses a self-exciting function ω. This uses the two-dimensional re-parametrisation of the POT: Homogeneous Poisson process for the exceedances of the level u with intensity τ = ln H(u; µ, β, ξ) = {1 + ξ(u µ)/β} 1/ξ +, where H(y; µ, β, ξ) is the GEV distribution and σ = β + ξ(u µ) Inhomogeneous Poisson process for their sizes with intensity λ(t, w) = λ(w) = 1 σ ( 1 + ξ w u ) 1/ξ 1 σ Boulder, April / 25

19 Estimated intensity of exceeding the threshold from self-exciting POT model for NVDA with Ogata function Marks amplitude in percent Time (15 min intervals) Intensity Time (15 min intervals) mean of the GPD Time (15 min intervals) Boulder, April / 25

20 Conditional risk measures The conditional approach models the intraday clustering of extremes and is used to calculate instantaneous conditional p =95% or 99% VaR over the next period z t+1 p = F 1 Z t+1 H (p), t F Zt+1 H (z) = P(Z t+1 > z H t ) which is t P(Z t+1 u > z Z t+1 > u, H t ) P(Z t+1 > u H t ). P(Z t+1 > u H t ) represents the conditional probability of an event in (t, t + 1) that is: ( t+1 ) 1 P{N(t, t + 1) = 0 H t } = 1 exp λ(u H u )du P(Z T +1 u > z Z t+1 > u, H t ) is estimated using the GPD model with parameters σ and ξ. t Boulder, April / 25

21 Conditional VaR and Expected Shortfall The VaR z t+1 p is then the solution of the equation P(Z T +1 > z t+1 p H t ) = 1 p, Using the self-exciting POT model the condition VaR is z t+1 p = u + σ + α 2ν(t+) ξ { ( ) 1 p ξ 1} τ + α 1 ν(t+) From the estimated conditional VaR it is straightforward to get an estimation of the conditional Expected Shortfall (ES) ES t+1 p = zt+1 p 1 ξ + σ ξu 1 ξ. with parameters replaced by their maximum likelihood estimates Boulder, April / 25

22 15-minutes 95%VaR (red) and 95%ES (blue) estimates for NVDA negative log-returns using self-exciting POT models and 95%VaR using classical POT (green) Negative log returns Times (15 min intervals) Boulder, April / 25

23 15-minutes 95%VaR and 95%ES estimates for NVDA negative log-returns using a competitor model (Chavez-Demoulin et al. (2014)) Negative log returns Time Boulder, April / 25

24 Backtesting results 0.95 Quantile Expected 25 POT 59 (0) ETAS ρ = 0 21 (0.24) ETAS ρ 0 22 (0.31) ETAS ρ = 0 24 (0.47) ETAS ρ 0 23 (0.39) exp 25 (0.55) NPOT 26 (0.39) 0.99 Quantile Expected 5 POT 14 (0) ETAS ρ = 0 6 (0.39) exp 6 (0.39) ETAS ρ = 0 6 (0.39) exp 7 (0.24) NPOT 9 (0.11) Boulder, April / 25

25 References A.G. Hawkes, 1971, Point spectra of some mutually exciting point processes, Biometrika. Y. Ogata, 1988, Statistical models for earthquake Occurrences and residuals analysis for point processes, JASA. E. Errais, K. Giesecke and L.R. Goldberg, 2010, Affine point processes and portfolio credit risk, SIAM J. Financial Math. Y. AIt-Sahalia, J. Cacho-Diaz, and R. J. A. Laeven, 2010, Modeling financial contagion using mutually exciting jump processes, The Review of Financial Studies. V. Chavez-Demoulin, A.C. Davison, A.J. McNeil, 2005, A point process approach to Value-at-Risk estimation, Quantitative Finance. V. Chavez-Demoulin, P. Embrechts, S.Sardy, 2014 Extreme-quantile tracking for financial time series Journal of Econometrics. Boulder, April / 25

High-frequency data modelling using Hawkes processes

High-frequency data modelling using Hawkes processes Valérie Chavez-Demoulin joint work with High-frequency A.C. Davison data modelling and using A.J. Hawkes McNeil processes(2005), J.A EVT2013 McGill 1 /(201 High-frequency data modelling using Hawkes processes

More information

Generalized additive modelling of hydrological sample extremes

Generalized additive modelling of hydrological sample extremes Generalized additive modelling of hydrological sample extremes Valérie Chavez-Demoulin 1 Joint work with A.C. Davison (EPFL) and Marius Hofert (ETHZ) 1 Faculty of Business and Economics, University of

More information

Introduction to Algorithmic Trading Strategies Lecture 10

Introduction to Algorithmic Trading Strategies Lecture 10 Introduction to Algorithmic Trading Strategies Lecture 10 Risk Management Haksun Li haksun.li@numericalmethod.com www.numericalmethod.com Outline Value at Risk (VaR) Extreme Value Theory (EVT) References

More information

Applied Probability Trust (7 March 2011)

Applied Probability Trust (7 March 2011) Applied Probability Trust (7 March 2011) TITLE Multivariate Hawkes Processes: an Application to Financial Data. PAUL EMBRECHTS, ETH Zurich and Swiss Finance Institute THOMAS LINIGER, ETH Zurich LU LIN,

More information

Extreme Value Analysis and Spatial Extremes

Extreme Value Analysis and Spatial Extremes Extreme Value Analysis and Department of Statistics Purdue University 11/07/2013 Outline Motivation 1 Motivation 2 Extreme Value Theorem and 3 Bayesian Hierarchical Models Copula Models Max-stable Models

More information

Overview of Extreme Value Theory. Dr. Sawsan Hilal space

Overview of Extreme Value Theory. Dr. Sawsan Hilal space Overview of Extreme Value Theory Dr. Sawsan Hilal space Maths Department - University of Bahrain space November 2010 Outline Part-1: Univariate Extremes Motivation Threshold Exceedances Part-2: Bivariate

More information

EVA Tutorial #2 PEAKS OVER THRESHOLD APPROACH. Rick Katz

EVA Tutorial #2 PEAKS OVER THRESHOLD APPROACH. Rick Katz 1 EVA Tutorial #2 PEAKS OVER THRESHOLD APPROACH Rick Katz Institute for Mathematics Applied to Geosciences National Center for Atmospheric Research Boulder, CO USA email: rwk@ucar.edu Home page: www.isse.ucar.edu/staff/katz/

More information

Financial Econometrics and Volatility Models Extreme Value Theory

Financial Econometrics and Volatility Models Extreme Value Theory Financial Econometrics and Volatility Models Extreme Value Theory Eric Zivot May 3, 2010 1 Lecture Outline Modeling Maxima and Worst Cases The Generalized Extreme Value Distribution Modeling Extremes Over

More information

Shape of the return probability density function and extreme value statistics

Shape of the return probability density function and extreme value statistics Shape of the return probability density function and extreme value statistics 13/09/03 Int. Workshop on Risk and Regulation, Budapest Overview I aim to elucidate a relation between one field of research

More information

Contagious default: application of methods of Statistical Mechanics in Finance

Contagious default: application of methods of Statistical Mechanics in Finance Contagious default: application of methods of Statistical Mechanics in Finance Wolfgang J. Runggaldier University of Padova, Italy www.math.unipd.it/runggaldier based on joint work with : Paolo Dai Pra,

More information

Bayesian Point Process Modeling for Extreme Value Analysis, with an Application to Systemic Risk Assessment in Correlated Financial Markets

Bayesian Point Process Modeling for Extreme Value Analysis, with an Application to Systemic Risk Assessment in Correlated Financial Markets Bayesian Point Process Modeling for Extreme Value Analysis, with an Application to Systemic Risk Assessment in Correlated Financial Markets Athanasios Kottas Department of Applied Mathematics and Statistics,

More information

Modeling Ultra-High-Frequency Multivariate Financial Data by Monte Carlo Simulation Methods

Modeling Ultra-High-Frequency Multivariate Financial Data by Monte Carlo Simulation Methods Outline Modeling Ultra-High-Frequency Multivariate Financial Data by Monte Carlo Simulation Methods Ph.D. Student: Supervisor: Marco Minozzo Dipartimento di Scienze Economiche Università degli Studi di

More information

Time Series Models for Measuring Market Risk

Time Series Models for Measuring Market Risk Time Series Models for Measuring Market Risk José Miguel Hernández Lobato Universidad Autónoma de Madrid, Computer Science Department June 28, 2007 1/ 32 Outline 1 Introduction 2 Competitive and collaborative

More information

Symmetric btw positive & negative prior returns. where c is referred to as risk premium, which is expected to be positive.

Symmetric btw positive & negative prior returns. where c is referred to as risk premium, which is expected to be positive. Advantages of GARCH model Simplicity Generates volatility clustering Heavy tails (high kurtosis) Weaknesses of GARCH model Symmetric btw positive & negative prior returns Restrictive Provides no explanation

More information

Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC

Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC EXTREME VALUE THEORY Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC 27599-3260 rls@email.unc.edu AMS Committee on Probability and Statistics

More information

Investigation of an Automated Approach to Threshold Selection for Generalized Pareto

Investigation of an Automated Approach to Threshold Selection for Generalized Pareto Investigation of an Automated Approach to Threshold Selection for Generalized Pareto Kate R. Saunders Supervisors: Peter Taylor & David Karoly University of Melbourne April 8, 2015 Outline 1 Extreme Value

More information

Sharp statistical tools Statistics for extremes

Sharp statistical tools Statistics for extremes Sharp statistical tools Statistics for extremes Georg Lindgren Lund University October 18, 2012 SARMA Background Motivation We want to predict outside the range of observations Sums, averages and proportions

More information

HIERARCHICAL MODELS IN EXTREME VALUE THEORY

HIERARCHICAL MODELS IN EXTREME VALUE THEORY HIERARCHICAL MODELS IN EXTREME VALUE THEORY Richard L. Smith Department of Statistics and Operations Research, University of North Carolina, Chapel Hill and Statistical and Applied Mathematical Sciences

More information

Temporal Point Processes the Conditional Intensity Function

Temporal Point Processes the Conditional Intensity Function Temporal Point Processes the Conditional Intensity Function Jakob G. Rasmussen Department of Mathematics Aalborg University Denmark February 8, 2010 1/10 Temporal point processes A temporal point process

More information

MULTIDIMENSIONAL COVARIATE EFFECTS IN SPATIAL AND JOINT EXTREMES

MULTIDIMENSIONAL COVARIATE EFFECTS IN SPATIAL AND JOINT EXTREMES MULTIDIMENSIONAL COVARIATE EFFECTS IN SPATIAL AND JOINT EXTREMES Philip Jonathan, Kevin Ewans, David Randell, Yanyun Wu philip.jonathan@shell.com www.lancs.ac.uk/ jonathan Wave Hindcasting & Forecasting

More information

STATISTICAL METHODS FOR RELATING TEMPERATURE EXTREMES TO LARGE-SCALE METEOROLOGICAL PATTERNS. Rick Katz

STATISTICAL METHODS FOR RELATING TEMPERATURE EXTREMES TO LARGE-SCALE METEOROLOGICAL PATTERNS. Rick Katz 1 STATISTICAL METHODS FOR RELATING TEMPERATURE EXTREMES TO LARGE-SCALE METEOROLOGICAL PATTERNS Rick Katz Institute for Mathematics Applied to Geosciences National Center for Atmospheric Research Boulder,

More information

Efficient Estimation of Distributional Tail Shape and the Extremal Index with Applications to Risk Management

Efficient Estimation of Distributional Tail Shape and the Extremal Index with Applications to Risk Management Journal of Mathematical Finance, 2016, 6, 626-659 http://www.scirp.org/journal/jmf ISSN Online: 2162-2442 ISSN Print: 2162-2434 Efficient Estimation of Distributional Tail Shape and the Extremal Index

More information

A Dynamic Contagion Process with Applications to Finance & Insurance

A Dynamic Contagion Process with Applications to Finance & Insurance A Dynamic Contagion Process with Applications to Finance & Insurance Angelos Dassios Department of Statistics London School of Economics Angelos Dassios, Hongbiao Zhao (LSE) A Dynamic Contagion Process

More information

Specification testing in Hawkes models

Specification testing in Hawkes models Specification testing in Hawkes models Francine Gresnigt Erik Kole Philip Hans Franses Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam Tinbergen Institute, Erasmus University

More information

Temporal point processes: the conditional intensity function

Temporal point processes: the conditional intensity function Temporal point processes: the conditional intensity function Jakob Gulddahl Rasmussen December 21, 2009 Contents 1 Introduction 2 2 Evolutionary point processes 2 2.1 Evolutionarity..............................

More information

Peaks-Over-Threshold Modelling of Environmental Data

Peaks-Over-Threshold Modelling of Environmental Data U.U.D.M. Project Report 2014:33 Peaks-Over-Threshold Modelling of Environmental Data Esther Bommier Examensarbete i matematik, 30 hp Handledare och examinator: Jesper Rydén September 2014 Department of

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER.

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER. Two hours MATH38181 To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER EXTREME VALUES AND FINANCIAL RISK Examiner: Answer any FOUR

More information

RISK AND EXTREMES: ASSESSING THE PROBABILITIES OF VERY RARE EVENTS

RISK AND EXTREMES: ASSESSING THE PROBABILITIES OF VERY RARE EVENTS RISK AND EXTREMES: ASSESSING THE PROBABILITIES OF VERY RARE EVENTS Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC 27599-3260 rls@email.unc.edu

More information

Interpreting Financial Market Crashes as Earthquakes: A New early Warning System for Medium Term Crashes

Interpreting Financial Market Crashes as Earthquakes: A New early Warning System for Medium Term Crashes TI 2014-067/III Tinbergen Institute Discussion Paper Interpreting Financial Market Crashes as Earthquakes: A New early Warning System for Medium Term Crashes Francine Gresnigt Erik Kole Philip Hans Franses

More information

Statistics for extreme & sparse data

Statistics for extreme & sparse data Statistics for extreme & sparse data University of Bath December 6, 2018 Plan 1 2 3 4 5 6 The Problem Climate Change = Bad! 4 key problems Volcanic eruptions/catastrophic event prediction. Windstorms

More information

A marked point process model for intraday financial returns: Modelling extreme risk

A marked point process model for intraday financial returns: Modelling extreme risk A marked point process model for intraday financial returns: Modelling extreme risk December 1, 2016 Abstract Forecasting the risk of extreme losses is an important issue in the management of financial

More information

Dependence and VaR Estimation:An Empirical Study of Chinese Stock Markets using Copula. Baoliang Li WISE, XMU Sep. 2009

Dependence and VaR Estimation:An Empirical Study of Chinese Stock Markets using Copula. Baoliang Li WISE, XMU Sep. 2009 Dependence and VaR Estimation:An Empirical Study of Chinese Stock Markets using Copula Baoliang Li WISE, XMU Sep. 2009 Outline Question: Dependence between Assets Correlation and Dependence Copula:Basics

More information

Simulation and Calibration of a Fully Bayesian Marked Multidimensional Hawkes Process with Dissimilar Decays

Simulation and Calibration of a Fully Bayesian Marked Multidimensional Hawkes Process with Dissimilar Decays Simulation and Calibration of a Fully Bayesian Marked Multidimensional Hawkes Process with Dissimilar Decays Kar Wai Lim, Young Lee, Leif Hanlen, Hongbiao Zhao Australian National University Data61/CSIRO

More information

Extreme Value Theory and Applications

Extreme Value Theory and Applications Extreme Value Theory and Deauville - 04/10/2013 Extreme Value Theory and Introduction Asymptotic behavior of the Sum Extreme (from Latin exter, exterus, being on the outside) : Exceeding the ordinary,

More information

Probabilities & Statistics Revision

Probabilities & Statistics Revision Probabilities & Statistics Revision Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 January 6, 2017 Christopher Ting QF

More information

Random Processes. DS GA 1002 Probability and Statistics for Data Science.

Random Processes. DS GA 1002 Probability and Statistics for Data Science. Random Processes DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Aim Modeling quantities that evolve in time (or space)

More information

Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures

Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures Denisa Banulescu 1 Christophe Hurlin 1 Jérémy Leymarie 1 Olivier Scaillet 2 1 University of Orleans 2 University of Geneva & Swiss

More information

Bayesian Inference for Clustered Extremes

Bayesian Inference for Clustered Extremes Newcastle University, Newcastle-upon-Tyne, U.K. lee.fawcett@ncl.ac.uk 20th TIES Conference: Bologna, Italy, July 2009 Structure of this talk 1. Motivation and background 2. Review of existing methods Limitations/difficulties

More information

Elicitability and backtesting

Elicitability and backtesting Elicitability and backtesting Johanna F. Ziegel University of Bern joint work with Natalia Nolde, UBC 17 November 2017 Research Seminar at the Institute for Statistics and Mathematics, WU Vienna 1 / 32

More information

MFM Practitioner Module: Quantitiative Risk Management. John Dodson. October 14, 2015

MFM Practitioner Module: Quantitiative Risk Management. John Dodson. October 14, 2015 MFM Practitioner Module: Quantitiative Risk Management October 14, 2015 The n-block maxima 1 is a random variable defined as M n max (X 1,..., X n ) for i.i.d. random variables X i with distribution function

More information

On Backtesting Risk Measurement Models

On Backtesting Risk Measurement Models On Backtesting Risk Measurement Models Hideatsu Tsukahara Department of Economics, Seijo University e-mail address: tsukahar@seijo.ac.jp 1 Introduction In general, the purpose of backtesting is twofold:

More information

SFB 823. A simple and focused backtest of value at risk. Discussion Paper. Walter Krämer, Dominik Wied

SFB 823. A simple and focused backtest of value at risk. Discussion Paper. Walter Krämer, Dominik Wied SFB 823 A simple and focused backtest of value at risk Discussion Paper Walter Krämer, Dominik Wied Nr. 17/2015 A simple and focused backtest of value at risk 1 by Walter Krämer and Dominik Wied Fakultät

More information

Threshold estimation in marginal modelling of spatially-dependent non-stationary extremes

Threshold estimation in marginal modelling of spatially-dependent non-stationary extremes Threshold estimation in marginal modelling of spatially-dependent non-stationary extremes Philip Jonathan Shell Technology Centre Thornton, Chester philip.jonathan@shell.com Paul Northrop University College

More information

Assessing Dependence in Extreme Values

Assessing Dependence in Extreme Values 02/09/2016 1 Motivation Motivation 2 Comparison 3 Asymptotic Independence Component-wise Maxima Measures Estimation Limitations 4 Idea Results Motivation Given historical flood levels, how high should

More information

Bayesian Modelling of Extreme Rainfall Data

Bayesian Modelling of Extreme Rainfall Data Bayesian Modelling of Extreme Rainfall Data Elizabeth Smith A thesis submitted for the degree of Doctor of Philosophy at the University of Newcastle upon Tyne September 2005 UNIVERSITY OF NEWCASTLE Bayesian

More information

arxiv: v1 [q-fin.st] 18 Sep 2017

arxiv: v1 [q-fin.st] 18 Sep 2017 A new approach to the modeling of financial volumes arxiv:179.583v1 [q-fin.st] 18 Sep 17 Guglielmo D Amico Department of Pharmacy, University G. d Annunzio of Chieti-Pescara e-mail: g.damico@unich.it Filippo

More information

CONTAGION VERSUS FLIGHT TO QUALITY IN FINANCIAL MARKETS

CONTAGION VERSUS FLIGHT TO QUALITY IN FINANCIAL MARKETS EVA IV, CONTAGION VERSUS FLIGHT TO QUALITY IN FINANCIAL MARKETS Jose Olmo Department of Economics City University, London (joint work with Jesús Gonzalo, Universidad Carlos III de Madrid) 4th Conference

More information

Econometrics A. Simple linear model (2) Keio University, Faculty of Economics. Simon Clinet (Keio University) Econometrics A October 16, / 11

Econometrics A. Simple linear model (2) Keio University, Faculty of Economics. Simon Clinet (Keio University) Econometrics A October 16, / 11 Econometrics A Keio University, Faculty of Economics Simple linear model (2) Simon Clinet (Keio University) Econometrics A October 16, 2018 1 / 11 Estimation of the noise variance σ 2 In practice σ 2 too

More information

Generalized quantiles as risk measures

Generalized quantiles as risk measures Generalized quantiles as risk measures Bellini, Klar, Muller, Rosazza Gianin December 1, 2014 Vorisek Jan Introduction Quantiles q α of a random variable X can be defined as the minimizers of a piecewise

More information

Volatility. Gerald P. Dwyer. February Clemson University

Volatility. Gerald P. Dwyer. February Clemson University Volatility Gerald P. Dwyer Clemson University February 2016 Outline 1 Volatility Characteristics of Time Series Heteroskedasticity Simpler Estimation Strategies Exponentially Weighted Moving Average Use

More information

Risk Aggregation and Model Uncertainty

Risk Aggregation and Model Uncertainty Risk Aggregation and Model Uncertainty Paul Embrechts RiskLab, Department of Mathematics, ETH Zurich Senior SFI Professor www.math.ethz.ch/ embrechts/ Joint work with A. Beleraj, G. Puccetti and L. Rüschendorf

More information

RISK ANALYSIS AND EXTREMES

RISK ANALYSIS AND EXTREMES RISK ANALYSIS AND EXTREMES Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC 27599-3260 rls@email.unc.edu Opening Workshop SAMSI program on

More information

Extreme Value Theory.

Extreme Value Theory. Bank of England Centre for Central Banking Studies CEMLA 2013 Extreme Value Theory. David G. Barr November 21, 2013 Any views expressed are those of the author and not necessarily those of the Bank of

More information

FORECAST VERIFICATION OF EXTREMES: USE OF EXTREME VALUE THEORY

FORECAST VERIFICATION OF EXTREMES: USE OF EXTREME VALUE THEORY 1 FORECAST VERIFICATION OF EXTREMES: USE OF EXTREME VALUE THEORY Rick Katz Institute for Study of Society and Environment National Center for Atmospheric Research Boulder, CO USA Email: rwk@ucar.edu Web

More information

SDS-5. November 2017

SDS-5. November 2017 SDS-5 The Simultaneous Multivariate Hawkes-type Point Processes and their application to Financial Markets Naoto Kunitomo, Daisuke Kurisu and Naoki Awaya November 2017 Statistics & Data Science Series

More information

Non-Life Insurance: Mathematics and Statistics

Non-Life Insurance: Mathematics and Statistics Exercise sheet 1 Exercise 1.1 Discrete Distribution Suppose the random variable N follows a geometric distribution with parameter p œ (0, 1), i.e. ; (1 p) P[N = k] = k 1 p if k œ N \{0}, 0 else. (a) Show

More information

Quantitative Finance II Lecture 10

Quantitative Finance II Lecture 10 Quantitative Finance II Lecture 10 Wavelets III - Applications Lukas Vacha IES FSV UK May 2016 Outline Discrete wavelet transformations: MODWT Wavelet coherence: daily financial data FTSE, DAX, PX Wavelet

More information

Solutions of the Financial Risk Management Examination

Solutions of the Financial Risk Management Examination Solutions of the Financial Risk Management Examination Thierry Roncalli January 9 th 03 Remark The first five questions are corrected in TR-GDR and in the document of exercise solutions, which is available

More information

6. The econometrics of Financial Markets: Empirical Analysis of Financial Time Series. MA6622, Ernesto Mordecki, CityU, HK, 2006.

6. The econometrics of Financial Markets: Empirical Analysis of Financial Time Series. MA6622, Ernesto Mordecki, CityU, HK, 2006. 6. The econometrics of Financial Markets: Empirical Analysis of Financial Time Series MA6622, Ernesto Mordecki, CityU, HK, 2006. References for Lecture 5: Quantitative Risk Management. A. McNeil, R. Frey,

More information

Generalized Autoregressive Score Models

Generalized Autoregressive Score Models Generalized Autoregressive Score Models by: Drew Creal, Siem Jan Koopman, André Lucas To capture the dynamic behavior of univariate and multivariate time series processes, we can allow parameters to be

More information

Lecture 2 APPLICATION OF EXREME VALUE THEORY TO CLIMATE CHANGE. Rick Katz

Lecture 2 APPLICATION OF EXREME VALUE THEORY TO CLIMATE CHANGE. Rick Katz 1 Lecture 2 APPLICATION OF EXREME VALUE THEORY TO CLIMATE CHANGE Rick Katz Institute for Study of Society and Environment National Center for Atmospheric Research Boulder, CO USA email: rwk@ucar.edu Home

More information

The Slow Convergence of OLS Estimators of α, β and Portfolio. β and Portfolio Weights under Long Memory Stochastic Volatility

The Slow Convergence of OLS Estimators of α, β and Portfolio. β and Portfolio Weights under Long Memory Stochastic Volatility The Slow Convergence of OLS Estimators of α, β and Portfolio Weights under Long Memory Stochastic Volatility New York University Stern School of Business June 21, 2018 Introduction Bivariate long memory

More information

Vast Volatility Matrix Estimation for High Frequency Data

Vast Volatility Matrix Estimation for High Frequency Data Vast Volatility Matrix Estimation for High Frequency Data Yazhen Wang National Science Foundation Yale Workshop, May 14-17, 2009 Disclaimer: My opinion, not the views of NSF Y. Wang (at NSF) 1 / 36 Outline

More information

New stylized facts in financial markets: The Omori law and price impact of a single transaction in financial markets

New stylized facts in financial markets: The Omori law and price impact of a single transaction in financial markets Observatory of Complex Systems, Palermo, Italy Rosario N. Mantegna New stylized facts in financial markets: The Omori law and price impact of a single transaction in financial markets work done in collaboration

More information

Week 1 Quantitative Analysis of Financial Markets Distributions A

Week 1 Quantitative Analysis of Financial Markets Distributions A Week 1 Quantitative Analysis of Financial Markets Distributions A Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

Weak convergence to the t-distribution

Weak convergence to the t-distribution Weak convergence to the t-distribution Christian Schluter and Mark Trede 21/2011 DEFI, Aix-Marseille Université, France and University of Southampton, UK Department of Economics, University of Münster,

More information

Analysis methods of heavy-tailed data

Analysis methods of heavy-tailed data Institute of Control Sciences Russian Academy of Sciences, Moscow, Russia February, 13-18, 2006, Bamberg, Germany June, 19-23, 2006, Brest, France May, 14-19, 2007, Trondheim, Norway PhD course Chapter

More information

Location Multiplicative Error Model. Asymptotic Inference and Empirical Analysis

Location Multiplicative Error Model. Asymptotic Inference and Empirical Analysis : Asymptotic Inference and Empirical Analysis Qian Li Department of Mathematics and Statistics University of Missouri-Kansas City ql35d@mail.umkc.edu October 29, 2015 Outline of Topics Introduction GARCH

More information

Extreme Precipitation: An Application Modeling N-Year Return Levels at the Station Level

Extreme Precipitation: An Application Modeling N-Year Return Levels at the Station Level Extreme Precipitation: An Application Modeling N-Year Return Levels at the Station Level Presented by: Elizabeth Shamseldin Joint work with: Richard Smith, Doug Nychka, Steve Sain, Dan Cooley Statistics

More information

Extreme value theory and high quantile convergence

Extreme value theory and high quantile convergence Journal of Operational Risk 51 57) Volume 1/Number 2, Summer 2006 Extreme value theory and high quantile convergence Mikhail Makarov EVMTech AG, Baarerstrasse 2, 6300 Zug, Switzerland In this paper we

More information

Using statistical methods to analyse environmental extremes.

Using statistical methods to analyse environmental extremes. Using statistical methods to analyse environmental extremes. Emma Eastoe Department of Mathematics and Statistics Lancaster University December 16, 2008 Focus of talk Discuss statistical models used to

More information

Are financial markets becoming systemically more unstable?

Are financial markets becoming systemically more unstable? Are financial markets becoming systemically more unstable? Lucio Maria Calcagnile joint work with Giacomo Bormetti, Michele Treccani, Stefano Marmi, Fabrizio Lillo www.list-group.com www.quantlab.it Parma,

More information

Market Risk. MFM Practitioner Module: Quantitiative Risk Management. John Dodson. February 8, Market Risk. John Dodson.

Market Risk. MFM Practitioner Module: Quantitiative Risk Management. John Dodson. February 8, Market Risk. John Dodson. MFM Practitioner Module: Quantitiative Risk Management February 8, 2017 This week s material ties together our discussion going back to the beginning of the fall term about risk measures based on the (single-period)

More information

Switching Regime Estimation

Switching Regime Estimation Switching Regime Estimation Series de Tiempo BIrkbeck March 2013 Martin Sola (FE) Markov Switching models 01/13 1 / 52 The economy (the time series) often behaves very different in periods such as booms

More information

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN SOLUTIONS

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN SOLUTIONS INSTITUTE AND FACULTY OF ACTUARIES Curriculum 09 SPECIMEN SOLUTIONS Subject CSA Risk Modelling and Survival Analysis Institute and Faculty of Actuaries Sample path A continuous time, discrete state process

More information

Multivariate Asset Return Prediction with Mixture Models

Multivariate Asset Return Prediction with Mixture Models Multivariate Asset Return Prediction with Mixture Models Swiss Banking Institute, University of Zürich Introduction The leptokurtic nature of asset returns has spawned an enormous amount of research into

More information

Semi-parametric estimation of non-stationary Pickands functions

Semi-parametric estimation of non-stationary Pickands functions Semi-parametric estimation of non-stationary Pickands functions Linda Mhalla 1 Joint work with: Valérie Chavez-Demoulin 2 and Philippe Naveau 3 1 Geneva School of Economics and Management, University of

More information

A simple graphical method to explore tail-dependence in stock-return pairs

A simple graphical method to explore tail-dependence in stock-return pairs A simple graphical method to explore tail-dependence in stock-return pairs Klaus Abberger, University of Konstanz, Germany Abstract: For a bivariate data set the dependence structure can not only be measured

More information

PROBABILITY DISTRIBUTIONS

PROBABILITY DISTRIBUTIONS Review of PROBABILITY DISTRIBUTIONS Hideaki Shimazaki, Ph.D. http://goo.gl/visng Poisson process 1 Probability distribution Probability that a (continuous) random variable X is in (x,x+dx). ( ) P x < X

More information

Poisson Processes. Particles arriving over time at a particle detector. Several ways to describe most common model.

Poisson Processes. Particles arriving over time at a particle detector. Several ways to describe most common model. Poisson Processes Particles arriving over time at a particle detector. Several ways to describe most common model. Approach 1: a) numbers of particles arriving in an interval has Poisson distribution,

More information

Order book modeling and market making under uncertainty.

Order book modeling and market making under uncertainty. Order book modeling and market making under uncertainty. Sidi Mohamed ALY Lund University sidi@maths.lth.se (Joint work with K. Nyström and C. Zhang, Uppsala University) Le Mans, June 29, 2016 1 / 22 Outline

More information

On the Application of the Generalized Pareto Distribution for Statistical Extrapolation in the Assessment of Dynamic Stability in Irregular Waves

On the Application of the Generalized Pareto Distribution for Statistical Extrapolation in the Assessment of Dynamic Stability in Irregular Waves On the Application of the Generalized Pareto Distribution for Statistical Extrapolation in the Assessment of Dynamic Stability in Irregular Waves Bradley Campbell 1, Vadim Belenky 1, Vladas Pipiras 2 1.

More information

Estimation of Operational Risk Capital Charge under Parameter Uncertainty

Estimation of Operational Risk Capital Charge under Parameter Uncertainty Estimation of Operational Risk Capital Charge under Parameter Uncertainty Pavel V. Shevchenko Principal Research Scientist, CSIRO Mathematical and Information Sciences, Sydney, Locked Bag 17, North Ryde,

More information

Modeling conditional distributions with mixture models: Applications in finance and financial decision-making

Modeling conditional distributions with mixture models: Applications in finance and financial decision-making Modeling conditional distributions with mixture models: Applications in finance and financial decision-making John Geweke University of Iowa, USA Journal of Applied Econometrics Invited Lecture Università

More information

Exploring non linearities in Hedge Funds

Exploring non linearities in Hedge Funds Exploring non linearities in Hedge Funds An application of Particle Filters to Hedge Fund Replication Guillaume Weisang 1 Thierry Roncalli 2 1 Bentley University, Waltham, MA 2 Lyxor AM January 28-29,

More information

On the L p -quantiles and the Student t distribution

On the L p -quantiles and the Student t distribution 1 On the L p -quantiles and the Student t distribution Valeria Bignozzi based on joint works with Mauro Bernardi, Luca Merlo and Lea Petrella MEMOTEF Department, Sapienza University of Rome Workshop Recent

More information

Models and estimation.

Models and estimation. Bivariate generalized Pareto distribution practice: Models and estimation. Eötvös Loránd University, Budapest, Hungary 7 June 2011, ASMDA Conference, Rome, Italy Problem How can we properly estimate the

More information

Rearrangement Algorithm and Maximum Entropy

Rearrangement Algorithm and Maximum Entropy University of Illinois at Chicago Joint with Carole Bernard Vrije Universiteit Brussel and Steven Vanduffel Vrije Universiteit Brussel R/Finance, May 19-20, 2017 Introduction An important problem in Finance:

More information

SIMULATING POINT PROCESSES BY INTENSITY PROJECTION. Kay Giesecke Hossein Kakavand Mohammad Mousavi

SIMULATING POINT PROCESSES BY INTENSITY PROJECTION. Kay Giesecke Hossein Kakavand Mohammad Mousavi Proceedings of the 28 Winter Simulation Conference S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds. SIMULATING POINT PROCESSES BY INTENSITY PROJECTION Kay Giesecke Hossein Kakavand

More information

Generalized Autoregressive Conditional Intensity Models with Long Range Dependence

Generalized Autoregressive Conditional Intensity Models with Long Range Dependence Generalized Autoregressive Conditional Intensity Models with Long Range Dependence Nikolaus Hautsch Klausurtagung SFB 649 Ökonomisches Risiko Motzen 15. Juni 2007 Nikolaus Hautsch (HU Berlin) GLMACI Models

More information

Asymptotic behaviour of multivariate default probabilities and default correlations under stress

Asymptotic behaviour of multivariate default probabilities and default correlations under stress Asymptotic behaviour of multivariate default probabilities and default correlations under stress 7th General AMaMeF and Swissquote Conference EPFL, Lausanne Natalie Packham joint with Michael Kalkbrener

More information

Modeling Operational Risk Depending on Covariates. An Empirical Investigation.

Modeling Operational Risk Depending on Covariates. An Empirical Investigation. Noname manuscript No. (will be inserted by the editor) Modeling Operational Risk Depending on Covariates. An Empirical Investigation. Paul Embrechts Kamil J. Mizgier Xian Chen Received: date / Accepted:

More information

Modelling Trades-Through in a Limit Order Book Using Hawkes Processes

Modelling Trades-Through in a Limit Order Book Using Hawkes Processes Vol. 6, 212-22 June 14, 212 http://dx.doi.org/1.518/economics-ejournal.ja.212-22 Modelling Trades-Through in a Limit Order Book Using Hawkes Processes Ioane Muni Toke Ecole Centrale Paris and University

More information

Extreme Values and Their Applications in Finance

Extreme Values and Their Applications in Finance Extreme Values and Their Applications in Finance by Ruey S. Tsay Booth School of Business, The University of Chicago and Risk Management Institute, National University of Singapore Extreme price movements

More information

An Academic Response to Basel 3.5

An Academic Response to Basel 3.5 An Academic Response to Basel 3.5 Risk Aggregation and Model Uncertainty Paul Embrechts RiskLab, Department of Mathematics, ETH Zurich Senior SFI Professor www.math.ethz.ch/ embrechts/ Joint work with

More information

Asymptotic distribution of the sample average value-at-risk

Asymptotic distribution of the sample average value-at-risk Asymptotic distribution of the sample average value-at-risk Stoyan V. Stoyanov Svetlozar T. Rachev September 3, 7 Abstract In this paper, we prove a result for the asymptotic distribution of the sample

More information

A New Class of Tail-dependent Time Series Models and Its Applications in Financial Time Series

A New Class of Tail-dependent Time Series Models and Its Applications in Financial Time Series A New Class of Tail-dependent Time Series Models and Its Applications in Financial Time Series Zhengjun Zhang Department of Mathematics, Washington University, Saint Louis, MO 63130-4899, USA Abstract

More information

Quantitative Modeling of Operational Risk: Between g-and-h and EVT

Quantitative Modeling of Operational Risk: Between g-and-h and EVT : Between g-and-h and EVT Paul Embrechts Matthias Degen Dominik Lambrigger ETH Zurich (www.math.ethz.ch/ embrechts) Outline Basel II LDA g-and-h Aggregation Conclusion and References What is Basel II?

More information

Portfolio Allocation using High Frequency Data. Jianqing Fan

Portfolio Allocation using High Frequency Data. Jianqing Fan Portfolio Allocation using High Frequency Data Princeton University With Yingying Li and Ke Yu http://www.princeton.edu/ jqfan September 10, 2010 About this talk How to select sparsely optimal portfolio?

More information

Intro VEC and BEKK Example Factor Models Cond Var and Cor Application Ref 4. MGARCH

Intro VEC and BEKK Example Factor Models Cond Var and Cor Application Ref 4. MGARCH ntro VEC and BEKK Example Factor Models Cond Var and Cor Application Ref 4. MGARCH JEM 140: Quantitative Multivariate Finance ES, Charles University, Prague Summer 2018 JEM 140 () 4. MGARCH Summer 2018

More information