Algebraic approximation of semianalytic sets

Size: px
Start display at page:

Download "Algebraic approximation of semianalytic sets"

Transcription

1 Algebraic approximation of semianalytic sets M. Ferrarotti, E. Fortuna and L. Wilson Politecnico di Torino Università di Pisa University of Hawai i at Mānoa Liverpool, June 2012

2 An algebraic set in R n is defined by finitely many polynomial equalities.

3 An algebraic set in R n is defined by finitely many polynomial equalities. A semialgebraic set is defined by finite unions of sets defined by finitely many polynomial equalities and inequalities.

4 An algebraic set in R n is defined by finitely many polynomial equalities. A semialgebraic set is defined by finite unions of sets defined by finitely many polynomial equalities and inequalities. A subset of R n is a cone (with respect to 0) if it is closed under multiplication by positive reals.

5 An algebraic set in R n is defined by finitely many polynomial equalities. A semialgebraic set is defined by finite unions of sets defined by finitely many polynomial equalities and inequalities. A subset of R n is a cone (with respect to 0) if it is closed under multiplication by positive reals. The tangent cone to set A at 0 is C(A) = {t p : t 0, p n / p n p, p n A, p n 0 as n }

6 An algebraic set in R n is defined by finitely many polynomial equalities. A semialgebraic set is defined by finite unions of sets defined by finitely many polynomial equalities and inequalities. A subset of R n is a cone (with respect to 0) if it is closed under multiplication by positive reals. The tangent cone to set A at 0 is C(A) = {t p : t 0, p n / p n p, p n A, p n 0 as n } The point 0 can be replaced by any other point in the obvious way.

7 An algebraic set in R n is defined by finitely many polynomial equalities. A semialgebraic set is defined by finite unions of sets defined by finitely many polynomial equalities and inequalities. A subset of R n is a cone (with respect to 0) if it is closed under multiplication by positive reals. The tangent cone to set A at 0 is C(A) = {t p : t 0, p n / p n p, p n A, p n 0 as n } The point 0 can be replaced by any other point in the obvious way. We will henceforth drop the word tangent.

8 Example C(x 2 y 3 = 0)

9 Recall that the cone of an algebraic set is semialgebraic. Example C(x 2 y 3 = 0) = {x = 0, y 0}

10 Recall that the cone of an algebraic set is semialgebraic. Example C(x 2 y 3 = 0) = {x = 0, y 0} FFW, 2000, Pacific J. Math. Every semialgebraic cone of codimension at least 1 is the tangent cone of an algebraic set

11 Example: fit cusp surface to half-plane

12 Example continued: use the cusp trick again C((x 2 y 3 ) 2 z 7 = 0) = {x = 0, y 0, z 0}

13 Generalization of first result Our equivalence relation Two sets A and B are Hausdorff s-equivalent at x (written A s B) if the Pompeiu-Hausdorff distance H(A S r, B S r ) = o(r s ), where S r is the sphere of radius r centered at x.

14 Generalization of first result Our equivalence relation Two sets A and B are Hausdorff s-equivalent at x (written A s B) if the Pompeiu-Hausdorff distance H(A S r, B S r ) = o(r s ), where S r is the sphere of radius r centered at x. Relation to cones For any subanalytic set A and its tangent cone C(A) at x, A 1 C(A). So s gives higher order tangency of sets.

15 Generalization of first result Our equivalence relation Two sets A and B are Hausdorff s-equivalent at x (written A s B) if the Pompeiu-Hausdorff distance H(A S r, B S r ) = o(r s ), where S r is the sphere of radius r centered at x. Relation to cones For any subanalytic set A and its tangent cone C(A) at x, A 1 C(A). So s gives higher order tangency of sets. FFW, 2002, Ann. Scuola Norm. Sup. Pisa Every semialgebraic set of codimension at least 1 is, for every s 1, s-equivalent to an algebraic set

16 What if A is semianalytic or subanalytic? A closed, semianalytic

17 What if A is semianalytic or subanalytic? A closed, semianalytic C(A) is semianalytic

18 What if A is semianalytic or subanalytic? A closed, semianalytic C(A) is semianalytic C(A) is semialgebraic (Hironaka Oslo notes)

19 What if A is semianalytic or subanalytic? A closed, semianalytic C(A) is semianalytic C(A) is semialgebraic (Hironaka Oslo notes) So A 1 C(A) 1 an algebraic set.

20 What if A is semianalytic or subanalytic? A closed, semianalytic C(A) is semianalytic C(A) is semialgebraic (Hironaka Oslo notes) So A 1 C(A) 1 an algebraic set. What if A is subanalytic? Consider A defined by y = sin x, 0 x π, z = 1

21 What if A is semianalytic or subanalytic? A closed, semianalytic C(A) is semianalytic C(A) is semialgebraic (Hironaka Oslo notes) So A 1 C(A) 1 an algebraic set. What if A is subanalytic? Consider A defined by y = sin x, 0 x π, z = 1 A is semianalytic but not semialgebraic

22 What if A is semianalytic or subanalytic? A closed, semianalytic C(A) is semianalytic C(A) is semialgebraic (Hironaka Oslo notes) So A 1 C(A) 1 an algebraic set. What if A is subanalytic? Consider A defined by y = sin x, 0 x π, z = 1 A is semianalytic but not semialgebraic A = C(A, 0) is subanalytic but not semialgebraic since A {z = 1} isn t

23 What if A is semianalytic or subanalytic? A closed, semianalytic C(A) is semianalytic C(A) is semialgebraic (Hironaka Oslo notes) So A 1 C(A) 1 an algebraic set. What if A is subanalytic? Consider A defined by y = sin x, 0 x π, z = 1 A is semianalytic but not semialgebraic A = C(A, 0) is subanalytic but not semialgebraic since A {z = 1} isn t Suppose a semialgebraic B 1 A; then C(B) = A

24 What if A is semianalytic or subanalytic? A closed, semianalytic C(A) is semianalytic C(A) is semialgebraic (Hironaka Oslo notes) So A 1 C(A) 1 an algebraic set. What if A is subanalytic? Consider A defined by y = sin x, 0 x π, z = 1 A is semianalytic but not semialgebraic A = C(A, 0) is subanalytic but not semialgebraic since A {z = 1} isn t Suppose a semialgebraic B 1 A; then C(B) = A B semialgebraic implies so is A; contradiction!

25 Algebraic s > 1 approximation for analytic sets FFW, 2010, Proceedings AMS Assume V = F 1 (0), df surjective at a dense subset of V. Then for every s 1 V is s-equivalent to an algebraic set.

26 Algebraic s > 1 approximation for analytic sets FFW, 2010, Proceedings AMS Assume V = F 1 (0), df surjective at a dense subset of V. Then for every s 1 V is s-equivalent to an algebraic set. Principal methods of proof; inspired by jet sufficiency arguments

27 Algebraic s > 1 approximation for analytic sets FFW, 2010, Proceedings AMS Assume V = F 1 (0), df surjective at a dense subset of V. Then for every s 1 V is s-equivalent to an algebraic set. Principal methods of proof; inspired by jet sufficiency arguments Let G be a sufficiently high degree Taylor polynomial of F

28 Algebraic s > 1 approximation for analytic sets FFW, 2010, Proceedings AMS Assume V = F 1 (0), df surjective at a dense subset of V. Then for every s 1 V is s-equivalent to an algebraic set. Principal methods of proof; inspired by jet sufficiency arguments Let G be a sufficiently high degree Taylor polynomial of F Łojasiewicz inequality F x l off H t (V ) = horn neighborhood t > s implies:

29 Algebraic s > 1 approximation for analytic sets FFW, 2010, Proceedings AMS Assume V = F 1 (0), df surjective at a dense subset of V. Then for every s 1 V is s-equivalent to an algebraic set. Principal methods of proof; inspired by jet sufficiency arguments Let G be a sufficiently high degree Taylor polynomial of F Łojasiewicz inequality F x l off H t (V ) = horn neighborhood t > s implies: V (G) H t (V ), which implies V (G) s V

30 methods continued If df is surjective at x V, G maps some y near x to 0; so V (G) s V

31 Work of M. Bilski We learned in 2009 that Bilski had proved similar results for complex analytic sets V : For any such V and for every s 1, V is s-equivalent to an algebraic set.

32 Work of M. Bilski We learned in 2009 that Bilski had proved similar results for complex analytic sets V : For any such V and for every s 1, V is s-equivalent to an algebraic set. The local multiplicities agree for the analytic and algebraic sets

33 Work of M. Bilski We learned in 2009 that Bilski had proved similar results for complex analytic sets V : For any such V and for every s 1, V is s-equivalent to an algebraic set. The local multiplicities agree for the analytic and algebraic sets The method of proof is very different-does the real case follow?

34 Work of M. Bilski We learned in 2009 that Bilski had proved similar results for complex analytic sets V : For any such V and for every s 1, V is s-equivalent to an algebraic set. The local multiplicities agree for the analytic and algebraic sets The method of proof is very different-does the real case follow? Bilski and Rusek (2010): Nash approximation of analytic sets definable in an o-minimal structure

35 Semianalytic sets FFW, 2012, preliminary Assume A is a closed semi analytic set of codimension at least 1. Then, for every s 1, A is s-equivalent to an algebraic set.

36 Semianalytic sets FFW, 2012, preliminary Assume A is a closed semi analytic set of codimension at least 1. Then, for every s 1, A is s-equivalent to an algebraic set. Principal additional methods of proof

37 Semianalytic sets FFW, 2012, preliminary Assume A is a closed semi analytic set of codimension at least 1. Then, for every s 1, A is s-equivalent to an algebraic set. Principal additional methods of proof We can assume A = {F = 0} {g 1,..., g l 0} = closure of {F = 0} {g 1,..., g l > 0}, and the components of F generate the ideal of V (F)

38 Semianalytic sets FFW, 2012, preliminary Assume A is a closed semi analytic set of codimension at least 1. Then, for every s 1, A is s-equivalent to an algebraic set. Principal additional methods of proof We can assume A = {F = 0} {g 1,..., g l 0} = closure of {F = 0} {g 1,..., g l > 0}, and the components of F generate the ideal of V (F) If V (F) is not a complete intersection, we can find a projection π such that F = π F satisfies

39 Semianalytic sets FFW, 2012, preliminary Assume A is a closed semi analytic set of codimension at least 1. Then, for every s 1, A is s-equivalent to an algebraic set. Principal additional methods of proof We can assume A = {F = 0} {g 1,..., g l 0} = closure of {F = 0} {g 1,..., g l > 0}, and the components of F generate the ideal of V (F) If V (F) is not a complete intersection, we can find a projection π such that F = π F satisfies df is generically surjective on V (F ) and dim V (F ) = dim V (F )

40 Semianalytic sets FFW, 2012, preliminary Assume A is a closed semi analytic set of codimension at least 1. Then, for every s 1, A is s-equivalent to an algebraic set. Principal additional methods of proof We can assume A = {F = 0} {g 1,..., g l 0} = closure of {F = 0} {g 1,..., g l > 0}, and the components of F generate the ideal of V (F) If V (F) is not a complete intersection, we can find a projection π such that F = π F satisfies df is generically surjective on V (F ) and dim V (F ) = dim V (F ) V (F ) = V (F) W, which are unions of irreducible components of V (F )

41 methods continued A is s-equivalent to V (F ) {g 1,..., g l 0} U, where U = { x 2m F 2 0}

42 methods continued A is s-equivalent to V (F ) {g 1,..., g l 0} U, where U = { x 2m F 2 0}

43 methods continued A is s-equivalent to V (F ) {g 1,..., g l 0} U, where U = { x 2m F 2 0} Induction on dimension of A

Resolution of Singularities in Algebraic Varieties

Resolution of Singularities in Algebraic Varieties Resolution of Singularities in Algebraic Varieties Emma Whitten Summer 28 Introduction Recall that algebraic geometry is the study of objects which are or locally resemble solution sets of polynomial equations.

More information

Analytic and Algebraic Geometry 2

Analytic and Algebraic Geometry 2 Analytic and Algebraic Geometry 2 Łódź University Press 2017, 179 188 DOI: http://dx.doi.org/10.18778/8088-922-4.20 ŁOJASIEWICZ EXPONENT OF OVERDETERMINED SEMIALGEBRAIC MAPPINGS STANISŁAW SPODZIEJA AND

More information

COMPLEX VARIETIES AND THE ANALYTIC TOPOLOGY

COMPLEX VARIETIES AND THE ANALYTIC TOPOLOGY COMPLEX VARIETIES AND THE ANALYTIC TOPOLOGY BRIAN OSSERMAN Classical algebraic geometers studied algebraic varieties over the complex numbers. In this setting, they didn t have to worry about the Zariski

More information

Math 147, Homework 1 Solutions Due: April 10, 2012

Math 147, Homework 1 Solutions Due: April 10, 2012 1. For what values of a is the set: Math 147, Homework 1 Solutions Due: April 10, 2012 M a = { (x, y, z) : x 2 + y 2 z 2 = a } a smooth manifold? Give explicit parametrizations for open sets covering M

More information

Globalization and compactness of McCrory Parusiński conditions. Riccardo Ghiloni 1

Globalization and compactness of McCrory Parusiński conditions. Riccardo Ghiloni 1 Globalization and compactness of McCrory Parusiński conditions Riccardo Ghiloni 1 Department of Mathematics, University of Trento, 38050 Povo, Italy ghiloni@science.unitn.it Abstract Let X R n be a closed

More information

Functional Analysis Exercise Class

Functional Analysis Exercise Class Functional Analysis Exercise Class Wee November 30 Dec 4: Deadline to hand in the homewor: your exercise class on wee December 7 11 Exercises with solutions Recall that every normed space X can be isometrically

More information

Part III. 10 Topological Space Basics. Topological Spaces

Part III. 10 Topological Space Basics. Topological Spaces Part III 10 Topological Space Basics Topological Spaces Using the metric space results above as motivation we will axiomatize the notion of being an open set to more general settings. Definition 10.1.

More information

Remarks on semi-algebraic functions

Remarks on semi-algebraic functions Remarks on semi-algebraic functions Seiichiro Wakabayashi April 5 2008 the second version on August 30 2010 In this note we shall give some facts and remarks concerning semi-algebraic functions which we

More information

CHEVALLEY S THEOREM AND COMPLETE VARIETIES

CHEVALLEY S THEOREM AND COMPLETE VARIETIES CHEVALLEY S THEOREM AND COMPLETE VARIETIES BRIAN OSSERMAN In this note, we introduce the concept which plays the role of compactness for varieties completeness. We prove that completeness can be characterized

More information

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X. Math 6342/7350: Topology and Geometry Sample Preliminary Exam Questions 1. For each of the following topological spaces X i, determine whether X i and X i X i are homeomorphic. (a) X 1 = [0, 1] (b) X 2

More information

MA651 Topology. Lecture 9. Compactness 2.

MA651 Topology. Lecture 9. Compactness 2. MA651 Topology. Lecture 9. Compactness 2. This text is based on the following books: Topology by James Dugundgji Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology

More information

Algebraic Varieties. Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra

Algebraic Varieties. Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra Algebraic Varieties Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra Algebraic varieties represent solutions of a system of polynomial

More information

div(f ) = D and deg(d) = deg(f ) = d i deg(f i ) (compare this with the definitions for smooth curves). Let:

div(f ) = D and deg(d) = deg(f ) = d i deg(f i ) (compare this with the definitions for smooth curves). Let: Algebraic Curves/Fall 015 Aaron Bertram 4. Projective Plane Curves are hypersurfaces in the plane CP. When nonsingular, they are Riemann surfaces, but we will also consider plane curves with singularities.

More information

Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem

Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem 56 Chapter 7 Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem Recall that C(X) is not a normed linear space when X is not compact. On the other hand we could use semi

More information

SPECIAL POINTS AND LINES OF ALGEBRAIC SURFACES

SPECIAL POINTS AND LINES OF ALGEBRAIC SURFACES SPECIAL POINTS AND LINES OF ALGEBRAIC SURFACES 1. Introduction As we have seen many times in this class we can encode combinatorial information about points and lines in terms of algebraic surfaces. Looking

More information

Functional Analysis HW #5

Functional Analysis HW #5 Functional Analysis HW #5 Sangchul Lee October 29, 2015 Contents 1 Solutions........................................ 1 1 Solutions Exercise 3.4. Show that C([0, 1]) is not a Hilbert space, that is, there

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

Introduction to Topology

Introduction to Topology Introduction to Topology Randall R. Holmes Auburn University Typeset by AMS-TEX Chapter 1. Metric Spaces 1. Definition and Examples. As the course progresses we will need to review some basic notions about

More information

Math 209B Homework 2

Math 209B Homework 2 Math 29B Homework 2 Edward Burkard Note: All vector spaces are over the field F = R or C 4.6. Two Compactness Theorems. 4. Point Set Topology Exercise 6 The product of countably many sequentally compact

More information

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12 MATH 8253 ALGEBRAIC GEOMETRY WEEK 2 CİHAN BAHRAN 3.2.. Let Y be a Noetherian scheme. Show that any Y -scheme X of finite type is Noetherian. Moreover, if Y is of finite dimension, then so is X. Write f

More information

A REMARK ON THE THEOREM OF OHSAWA-TAKEGOSHI

A REMARK ON THE THEOREM OF OHSAWA-TAKEGOSHI K. Diederich and E. Mazzilli Nagoya Math. J. Vol. 58 (2000), 85 89 A REMARK ON THE THEOREM OF OHSAWA-TAKEGOSHI KLAS DIEDERICH and EMMANUEL MAZZILLI. Introduction and main result If D C n is a pseudoconvex

More information

π X : X Y X and π Y : X Y Y

π X : X Y X and π Y : X Y Y Math 6130 Notes. Fall 2002. 6. Hausdorffness and Compactness. We would like to be able to say that all quasi-projective varieties are Hausdorff and that projective varieties are the only compact varieties.

More information

Topological properties

Topological properties CHAPTER 4 Topological properties 1. Connectedness Definitions and examples Basic properties Connected components Connected versus path connected, again 2. Compactness Definition and first examples Topological

More information

Projective Schemes with Degenerate General Hyperplane Section II

Projective Schemes with Degenerate General Hyperplane Section II Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Volume 44 (2003), No. 1, 111-126. Projective Schemes with Degenerate General Hyperplane Section II E. Ballico N. Chiarli S. Greco

More information

Lipschitz continuity properties

Lipschitz continuity properties properties (joint work with G. Comte and F. Loeser) K.U.Leuven, Belgium MODNET Barcelona Conference 3-7 November 2008 1/26 1 Introduction 2 3 2/26 Introduction Definition A function f : X Y is called Lipschitz

More information

Math 145. Codimension

Math 145. Codimension Math 145. Codimension 1. Main result and some interesting examples In class we have seen that the dimension theory of an affine variety (irreducible!) is linked to the structure of the function field in

More information

Homework set 4 - Solutions

Homework set 4 - Solutions Homework set 4 - Solutions Math 407 Renato Feres 1. Exercise 4.1, page 49 of notes. Let W := T0 m V and denote by GLW the general linear group of W, defined as the group of all linear isomorphisms of W

More information

Geometry of subanalytic and semialgebraic sets, by M. Shiota, Birkhäuser, Boston, MA, 1997, xii+431 pp., $89.50, ISBN

Geometry of subanalytic and semialgebraic sets, by M. Shiota, Birkhäuser, Boston, MA, 1997, xii+431 pp., $89.50, ISBN BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 36, Number 4, ages 523 527 S 0273-0979(99)00793-4 Article electronically published on July 27, 1999 Geometry of subanalytic and semialgebraic

More information

Definition 2.1. A metric (or distance function) defined on a non-empty set X is a function d: X X R that satisfies: For all x, y, and z in X :

Definition 2.1. A metric (or distance function) defined on a non-empty set X is a function d: X X R that satisfies: For all x, y, and z in X : MATH 337 Metric Spaces Dr. Neal, WKU Let X be a non-empty set. The elements of X shall be called points. We shall define the general means of determining the distance between two points. Throughout we

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #17 11/05/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #17 11/05/2013 18.782 Introduction to Arithmetic Geometry Fall 2013 Lecture #17 11/05/2013 Throughout this lecture k denotes an algebraically closed field. 17.1 Tangent spaces and hypersurfaces For any polynomial f k[x

More information

MASTERS EXAMINATION IN MATHEMATICS SOLUTIONS

MASTERS EXAMINATION IN MATHEMATICS SOLUTIONS MASTERS EXAMINATION IN MATHEMATICS PURE MATHEMATICS OPTION SPRING 010 SOLUTIONS Algebra A1. Let F be a finite field. Prove that F [x] contains infinitely many prime ideals. Solution: The ring F [x] of

More information

Exercise Sheet 7 - Solutions

Exercise Sheet 7 - Solutions Algebraic Geometry D-MATH, FS 2016 Prof. Pandharipande Exercise Sheet 7 - Solutions 1. Prove that the Zariski tangent space at the point [S] Gr(r, V ) is canonically isomorphic to S V/S (or equivalently

More information

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3 Index Page 1 Topology 2 1.1 Definition of a topology 2 1.2 Basis (Base) of a topology 2 1.3 The subspace topology & the product topology on X Y 3 1.4 Basic topology concepts: limit points, closed sets,

More information

Metric Spaces and Topology

Metric Spaces and Topology Chapter 2 Metric Spaces and Topology From an engineering perspective, the most important way to construct a topology on a set is to define the topology in terms of a metric on the set. This approach underlies

More information

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2.

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2. 1. Complex numbers A complex number z is defined as an ordered pair z = (x, y), where x and y are a pair of real numbers. In usual notation, we write z = x + iy, where i is a symbol. The operations of

More information

Math 730 Homework 6. Austin Mohr. October 14, 2009

Math 730 Homework 6. Austin Mohr. October 14, 2009 Math 730 Homework 6 Austin Mohr October 14, 2009 1 Problem 3A2 Proposition 1.1. If A X, then the family τ of all subsets of X which contain A, together with the empty set φ, is a topology on X. Proof.

More information

Course 212: Academic Year Section 1: Metric Spaces

Course 212: Academic Year Section 1: Metric Spaces Course 212: Academic Year 1991-2 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........

More information

LECTURE 11: TRANSVERSALITY

LECTURE 11: TRANSVERSALITY LECTURE 11: TRANSVERSALITY Let f : M N be a smooth map. In the past three lectures, we are mainly studying the image of f, especially when f is an embedding. Today we would like to study the pre-image

More information

LECTURE 15: COMPLETENESS AND CONVEXITY

LECTURE 15: COMPLETENESS AND CONVEXITY LECTURE 15: COMPLETENESS AND CONVEXITY 1. The Hopf-Rinow Theorem Recall that a Riemannian manifold (M, g) is called geodesically complete if the maximal defining interval of any geodesic is R. On the other

More information

Topology of Nonarchimedean Analytic Spaces

Topology of Nonarchimedean Analytic Spaces Topology of Nonarchimedean Analytic Spaces AMS Current Events Bulletin Sam Payne January 11, 2013 Complex algebraic geometry Let X C n be an algebraic set, the common solutions of a system of polynomial

More information

MH 7500 THEOREMS. (iii) A = A; (iv) A B = A B. Theorem 5. If {A α : α Λ} is any collection of subsets of a space X, then

MH 7500 THEOREMS. (iii) A = A; (iv) A B = A B. Theorem 5. If {A α : α Λ} is any collection of subsets of a space X, then MH 7500 THEOREMS Definition. A topological space is an ordered pair (X, T ), where X is a set and T is a collection of subsets of X such that (i) T and X T ; (ii) U V T whenever U, V T ; (iii) U T whenever

More information

Math 426 Homework 4 Due 3 November 2017

Math 426 Homework 4 Due 3 November 2017 Math 46 Homework 4 Due 3 November 017 1. Given a metric space X,d) and two subsets A,B, we define the distance between them, dista,b), as the infimum inf a A, b B da,b). a) Prove that if A is compact and

More information

(dim Z j dim Z j 1 ) 1 j i

(dim Z j dim Z j 1 ) 1 j i Math 210B. Codimension 1. Main result and some interesting examples Let k be a field, and A a domain finitely generated k-algebra. In class we have seen that the dimension theory of A is linked to the

More information

arxiv:math/ v1 [math.dg] 5 Dec 2005

arxiv:math/ v1 [math.dg] 5 Dec 2005 arxiv:math/0512089v1 [math.dg] 5 Dec 2005 ALGEBRAIC PROPERTIES OF DUPIN HYPERSURFACES THOMAS E. CECIL, QUO-SHIN CHI, AND GARY R. JENSEN Abstract. We prove that any connected proper Dupin hypersurface in

More information

DIFFERENTIAL GEOMETRY 1 PROBLEM SET 1 SOLUTIONS

DIFFERENTIAL GEOMETRY 1 PROBLEM SET 1 SOLUTIONS DIFFERENTIAL GEOMETRY PROBLEM SET SOLUTIONS Lee: -4,--5,-6,-7 Problem -4: If k is an integer between 0 and min m, n, show that the set of m n matrices whose rank is at least k is an open submanifold of

More information

Problem 3. Give an example of a sequence of continuous functions on a compact domain converging pointwise but not uniformly to a continuous function

Problem 3. Give an example of a sequence of continuous functions on a compact domain converging pointwise but not uniformly to a continuous function Problem 3. Give an example of a sequence of continuous functions on a compact domain converging pointwise but not uniformly to a continuous function Solution. If we does not need the pointwise limit of

More information

A generic property of families of Lagrangian systems

A generic property of families of Lagrangian systems Annals of Mathematics, 167 (2008), 1099 1108 A generic property of families of Lagrangian systems By Patrick Bernard and Gonzalo Contreras * Abstract We prove that a generic Lagrangian has finitely many

More information

Math General Topology Fall 2012 Homework 8 Solutions

Math General Topology Fall 2012 Homework 8 Solutions Math 535 - General Topology Fall 2012 Homework 8 Solutions Problem 1. (Willard Exercise 19B.1) Show that the one-point compactification of R n is homeomorphic to the n-dimensional sphere S n. Note that

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES. 1. Compact Sets

FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES. 1. Compact Sets FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES CHRISTOPHER HEIL 1. Compact Sets Definition 1.1 (Compact and Totally Bounded Sets). Let X be a metric space, and let E X be

More information

Principles of Real Analysis I Fall I. The Real Number System

Principles of Real Analysis I Fall I. The Real Number System 21-355 Principles of Real Analysis I Fall 2004 I. The Real Number System The main goal of this course is to develop the theory of real-valued functions of one real variable in a systematic and rigorous

More information

INTRODUCTION TO REAL ANALYTIC GEOMETRY

INTRODUCTION TO REAL ANALYTIC GEOMETRY INTRODUCTION TO REAL ANALYTIC GEOMETRY KRZYSZTOF KURDYKA 1. Analytic functions in several variables 1.1. Summable families. Let (E, ) be a normed space over the field R or C, dim E

More information

Lecture Notes on Metric Spaces

Lecture Notes on Metric Spaces Lecture Notes on Metric Spaces Math 117: Summer 2007 John Douglas Moore Our goal of these notes is to explain a few facts regarding metric spaces not included in the first few chapters of the text [1],

More information

Math 203A, Solution Set 6.

Math 203A, Solution Set 6. Math 203A, Solution Set 6. Problem 1. (Finite maps.) Let f 0,..., f m be homogeneous polynomials of degree d > 0 without common zeros on X P n. Show that gives a finite morphism onto its image. f : X P

More information

Contents Ordered Fields... 2 Ordered sets and fields... 2 Construction of the Reals 1: Dedekind Cuts... 2 Metric Spaces... 3

Contents Ordered Fields... 2 Ordered sets and fields... 2 Construction of the Reals 1: Dedekind Cuts... 2 Metric Spaces... 3 Analysis Math Notes Study Guide Real Analysis Contents Ordered Fields 2 Ordered sets and fields 2 Construction of the Reals 1: Dedekind Cuts 2 Metric Spaces 3 Metric Spaces 3 Definitions 4 Separability

More information

Chapter 3: Baire category and open mapping theorems

Chapter 3: Baire category and open mapping theorems MA3421 2016 17 Chapter 3: Baire category and open mapping theorems A number of the major results rely on completeness via the Baire category theorem. 3.1 The Baire category theorem 3.1.1 Definition. A

More information

Tangent spaces, normals and extrema

Tangent spaces, normals and extrema Chapter 3 Tangent spaces, normals and extrema If S is a surface in 3-space, with a point a S where S looks smooth, i.e., without any fold or cusp or self-crossing, we can intuitively define the tangent

More information

MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION. Problem 1

MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION. Problem 1 MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION ELEMENTS OF SOLUTION Problem 1 1. Let X be a Hausdorff space and K 1, K 2 disjoint compact subsets of X. Prove that there exist disjoint open sets U 1 and

More information

Unbounded Convex Semialgebraic Sets as Spectrahedral Shadows

Unbounded Convex Semialgebraic Sets as Spectrahedral Shadows Unbounded Convex Semialgebraic Sets as Spectrahedral Shadows Shaowei Lin 9 Dec 2010 Abstract Recently, Helton and Nie [3] showed that a compact convex semialgebraic set S is a spectrahedral shadow if the

More information

ON FRACTAL DIMENSION OF INVARIANT SETS

ON FRACTAL DIMENSION OF INVARIANT SETS ON FRACTAL DIMENSION OF INVARIANT SETS R. MIRZAIE We give an upper bound for the box dimension of an invariant set of a differentiable function f : U M. Here U is an open subset of a Riemannian manifold

More information

Binomial Exercises A = 1 1 and 1

Binomial Exercises A = 1 1 and 1 Lecture I. Toric ideals. Exhibit a point configuration A whose affine semigroup NA does not consist of the intersection of the lattice ZA spanned by the columns of A with the real cone generated by A.

More information

Nonisomorphic algebraic models of Nash manifolds and compactifiable C^ manifolds. Osaka Journal of Mathematics. 31(4) P.831-P.835

Nonisomorphic algebraic models of Nash manifolds and compactifiable C^ manifolds. Osaka Journal of Mathematics. 31(4) P.831-P.835 Title Author(s) Nonisomorphic algebraic models of Nash manifolds and compactifiable C^ manifolds Kawakami, Tomohiro Citation Osaka Journal of Mathematics. 31(4) P.831-P.835 Issue Date 1994 Text Version

More information

MATH 8. Unit 1: Rational and Irrational Numbers (Term 1) Unit 2: Using Algebraic Properties to Simplify Expressions - Probability

MATH 8. Unit 1: Rational and Irrational Numbers (Term 1) Unit 2: Using Algebraic Properties to Simplify Expressions - Probability MATH 8 Unit 1: Rational and Irrational Numbers (Term 1) 1. I CAN write an algebraic expression for a given phrase. 2. I CAN define a variable and write an equation given a relationship. 3. I CAN use order

More information

arxiv: v2 [math.ag] 24 Jun 2015

arxiv: v2 [math.ag] 24 Jun 2015 TRIANGULATIONS OF MONOTONE FAMILIES I: TWO-DIMENSIONAL FAMILIES arxiv:1402.0460v2 [math.ag] 24 Jun 2015 SAUGATA BASU, ANDREI GABRIELOV, AND NICOLAI VOROBJOV Abstract. Let K R n be a compact definable set

More information

ALGEBRAIC GROUPS. Disclaimer: There are millions of errors in these notes!

ALGEBRAIC GROUPS. Disclaimer: There are millions of errors in these notes! ALGEBRAIC GROUPS Disclaimer: There are millions of errors in these notes! 1. Some algebraic geometry The subject of algebraic groups depends on the interaction between algebraic geometry and group theory.

More information

BI-LIPSCHITZ GEOMETRY OF COMPLEX SURFACE SINGULARITIES

BI-LIPSCHITZ GEOMETRY OF COMPLEX SURFACE SINGULARITIES BI-LIPSCHITZ GEOMETRY OF COMPLEX SURFACE SINGULARITIES LEV BIRBRAIR, ALEXANDRE FERNANDES, AND WALTER D. NEUMANN Abstract. We discuss the bi-lipschitz geometry of an isolated singular point of a complex

More information

Rational curves on general type hypersurfaces

Rational curves on general type hypersurfaces Rational curves on general type hypersurfaces Eric Riedl and David Yang May 5, 01 Abstract We develop a technique that allows us to prove results about subvarieties of general type hypersurfaces. As an

More information

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM Contents 1. The Atiyah-Guillemin-Sternberg Convexity Theorem 1 2. Proof of the Atiyah-Guillemin-Sternberg Convexity theorem 3 3. Morse theory

More information

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi Real Analysis Math 3AH Rudin, Chapter # Dominique Abdi.. If r is rational (r 0) and x is irrational, prove that r + x and rx are irrational. Solution. Assume the contrary, that r+x and rx are rational.

More information

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday January 20, 2015 (Day 1)

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday January 20, 2015 (Day 1) Tuesday January 20, 2015 (Day 1) 1. (AG) Let C P 2 be a smooth plane curve of degree d. (a) Let K C be the canonical bundle of C. For what integer n is it the case that K C = OC (n)? (b) Prove that if

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

Math General Topology Fall 2012 Homework 11 Solutions

Math General Topology Fall 2012 Homework 11 Solutions Math 535 - General Topology Fall 2012 Homework 11 Solutions Problem 1. Let X be a topological space. a. Show that the following properties of a subset A X are equivalent. 1. The closure of A in X has empty

More information

Rings With Topologies Induced by Spaces of Functions

Rings With Topologies Induced by Spaces of Functions Rings With Topologies Induced by Spaces of Functions Răzvan Gelca April 7, 2006 Abstract: By considering topologies on Noetherian rings that carry the properties of those induced by spaces of functions,

More information

Generic section of a hyperplane arrangement and twisted Hurewicz maps

Generic section of a hyperplane arrangement and twisted Hurewicz maps arxiv:math/0605643v2 [math.gt] 26 Oct 2007 Generic section of a hyperplane arrangement and twisted Hurewicz maps Masahiko Yoshinaga Department of Mathematice, Graduate School of Science, Kobe University,

More information

A ne Algebraic Varieties Undergraduate Seminars: Toric Varieties

A ne Algebraic Varieties Undergraduate Seminars: Toric Varieties A ne Algebraic Varieties Undergraduate Seminars: Toric Varieties Lena Ji February 3, 2016 Contents 1. Algebraic Sets 1 2. The Zariski Topology 3 3. Morphisms of A ne Algebraic Sets 5 4. Dimension 6 References

More information

Math 203A - Solution Set 1

Math 203A - Solution Set 1 Math 203A - Solution Set 1 Problem 1. Show that the Zariski topology on A 2 is not the product of the Zariski topologies on A 1 A 1. Answer: Clearly, the diagonal Z = {(x, y) : x y = 0} A 2 is closed in

More information

Boundary regularity of correspondences in C n

Boundary regularity of correspondences in C n Proc. Indian Acad. Sci. (Math. Sci.) Vol. 116, No. 1, February 2006, pp. 59 70. Printed in India Boundary regularity of correspondences in C n RASUL SHAFIKOV 1 and KAUSHAL VERMA 2 1 Department of Mathematics,

More information

Math 541 Fall 2008 Connectivity Transition from Math 453/503 to Math 541 Ross E. Staffeldt-August 2008

Math 541 Fall 2008 Connectivity Transition from Math 453/503 to Math 541 Ross E. Staffeldt-August 2008 Math 541 Fall 2008 Connectivity Transition from Math 453/503 to Math 541 Ross E. Staffeldt-August 2008 Closed sets We have been operating at a fundamental level at which a topological space is a set together

More information

Functional Analysis HW #3

Functional Analysis HW #3 Functional Analysis HW #3 Sangchul Lee October 26, 2015 1 Solutions Exercise 2.1. Let D = { f C([0, 1]) : f C([0, 1])} and define f d = f + f. Show that D is a Banach algebra and that the Gelfand transform

More information

Peak Point Theorems for Uniform Algebras on Smooth Manifolds

Peak Point Theorems for Uniform Algebras on Smooth Manifolds Peak Point Theorems for Uniform Algebras on Smooth Manifolds John T. Anderson and Alexander J. Izzo Abstract: It was once conjectured that if A is a uniform algebra on its maximal ideal space X, and if

More information

Math 320-2: Midterm 2 Practice Solutions Northwestern University, Winter 2015

Math 320-2: Midterm 2 Practice Solutions Northwestern University, Winter 2015 Math 30-: Midterm Practice Solutions Northwestern University, Winter 015 1. Give an example of each of the following. No justification is needed. (a) A metric on R with respect to which R is bounded. (b)

More information

9. Birational Maps and Blowing Up

9. Birational Maps and Blowing Up 72 Andreas Gathmann 9. Birational Maps and Blowing Up In the course of this class we have already seen many examples of varieties that are almost the same in the sense that they contain isomorphic dense

More information

Division with remainder in algebras with valuation

Division with remainder in algebras with valuation Monatsh Math (2011) 164:183 199 DOI 10.1007/s00605-010-0233-9 Division with remainder in algebras with valuation Tomasz Maszczyk Received: 22 January 2010 / Accepted: 15 June 2010 / Published online: 6

More information

Math 6140 Notes. Spring Codimension One Phenomena. Definition: Examples: Properties:

Math 6140 Notes. Spring Codimension One Phenomena. Definition: Examples: Properties: Math 6140 Notes. Spring 2003. 11. Codimension One Phenomena. A property of the points of a variety X holds in codimension one if the locus of points for which the property fails to hold is contained in

More information

Math General Topology Fall 2012 Homework 6 Solutions

Math General Topology Fall 2012 Homework 6 Solutions Math 535 - General Topology Fall 202 Homework 6 Solutions Problem. Let F be the field R or C of real or complex numbers. Let n and denote by F[x, x 2,..., x n ] the set of all polynomials in n variables

More information

Functional Analysis HW #1

Functional Analysis HW #1 Functional Analysis HW #1 Sangchul Lee October 9, 2015 1 Solutions Solution of #1.1. Suppose that X

More information

arxiv: v1 [math.ag] 9 May 2012

arxiv: v1 [math.ag] 9 May 2012 On the multiplicity of solutions of a system of algebraic equations arxiv:1205.1995v1 [math.ag] 9 May 2012 Introduction A.V.Pukhlikov We obtain upper bounds for the multiplicity of an isolated solution

More information

arxiv: v2 [math.oa] 19 Sep 2010

arxiv: v2 [math.oa] 19 Sep 2010 A GENERALIZED SPECTRAL RADIUS FORMULA AND OLSEN S QUESTION TERRY LORING AND TATIANA SHULMAN arxiv:1007.4655v2 [math.oa] 19 Sep 2010 Abstract. Let A be a C -algebra and I be a closed ideal in A. For x A,

More information

MATH 7 HONORS. Unit 1: Rational and Irrational Numbers (Term 1) Unit 2: Using Algebraic Properties to Simplify Expressions - Probability

MATH 7 HONORS. Unit 1: Rational and Irrational Numbers (Term 1) Unit 2: Using Algebraic Properties to Simplify Expressions - Probability MATH 7 HONORS Unit 1: Rational and Irrational Numbers (Term 1) 1. I CAN write an algebraic expression for a given phrase. 2. I CAN define a variable and write an equation given a relationship. 3. I CAN

More information

Math General Topology Fall 2012 Homework 13 Solutions

Math General Topology Fall 2012 Homework 13 Solutions Math 535 - General Topology Fall 2012 Homework 13 Solutions Note: In this problem set, function spaces are endowed with the compact-open topology unless otherwise noted. Problem 1. Let X be a compact topological

More information

3. The Sheaf of Regular Functions

3. The Sheaf of Regular Functions 24 Andreas Gathmann 3. The Sheaf of Regular Functions After having defined affine varieties, our next goal must be to say what kind of maps between them we want to consider as morphisms, i. e. as nice

More information

Chapter 8. P-adic numbers. 8.1 Absolute values

Chapter 8. P-adic numbers. 8.1 Absolute values Chapter 8 P-adic numbers Literature: N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd edition, Graduate Texts in Mathematics 58, Springer Verlag 1984, corrected 2nd printing 1996, Chap.

More information

ON KUIPER S CONJECTURE

ON KUIPER S CONJECTURE ON KUIPER S CONJECTURE THOMAS E. CECIL, QUO-SHIN CHI, AND GARY R. JENSEN Abstract. We prove that any connected proper Dupin hypersurface in R n is analytic algebraic and is an open subset of a connected

More information

METRIC HEIGHTS ON AN ABELIAN GROUP

METRIC HEIGHTS ON AN ABELIAN GROUP ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 44, Number 6, 2014 METRIC HEIGHTS ON AN ABELIAN GROUP CHARLES L. SAMUELS ABSTRACT. Suppose mα) denotes the Mahler measure of the non-zero algebraic number α.

More information

Characterizing generic global rigidity

Characterizing generic global rigidity Characterizing generic global rigidity The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Steven J. Gortler, Alexander

More information

On the Diffeomorphism Group of S 1 S 2. Allen Hatcher

On the Diffeomorphism Group of S 1 S 2. Allen Hatcher On the Diffeomorphism Group of S 1 S 2 Allen Hatcher This is a revision, written in December 2003, of a paper of the same title that appeared in the Proceedings of the AMS 83 (1981), 427-430. The main

More information

Exercise Solutions to Functional Analysis

Exercise Solutions to Functional Analysis Exercise Solutions to Functional Analysis Note: References refer to M. Schechter, Principles of Functional Analysis Exersize that. Let φ,..., φ n be an orthonormal set in a Hilbert space H. Show n f n

More information

Analysis III. Exam 1

Analysis III. Exam 1 Analysis III Math 414 Spring 27 Professor Ben Richert Exam 1 Solutions Problem 1 Let X be the set of all continuous real valued functions on [, 1], and let ρ : X X R be the function ρ(f, g) = sup f g (1)

More information

Complex Analysis Qualifying Exam Solutions

Complex Analysis Qualifying Exam Solutions Complex Analysis Qualifying Exam Solutions May, 04 Part.. Let log z be the principal branch of the logarithm defined on G = {z C z (, 0]}. Show that if t > 0, then the equation log z = t has exactly one

More information

SESHADRI CONSTANTS ON SURFACES

SESHADRI CONSTANTS ON SURFACES SESHADRI CONSTANTS ON SURFACES KRISHNA HANUMANTHU 1. PRELIMINARIES By a surface, we mean a projective nonsingular variety of dimension over C. A curve C on a surface X is an effective divisor. The group

More information

HOLOMORPHIC MAPPINGS INTO SOME DOMAIN IN A COMPLEX NORMED SPACE. Tatsuhiro Honda. 1. Introduction

HOLOMORPHIC MAPPINGS INTO SOME DOMAIN IN A COMPLEX NORMED SPACE. Tatsuhiro Honda. 1. Introduction J. Korean Math. Soc. 41 (2004), No. 1, pp. 145 156 HOLOMORPHIC MAPPINGS INTO SOME DOMAIN IN A COMPLEX NORMED SPACE Tatsuhiro Honda Abstract. Let D 1, D 2 be convex domains in complex normed spaces E 1,

More information