The Gaussian transform. ALECU, Teodor, VOLOSHYNOVSKYY, Svyatoslav, PUN, Thierry. Abstract

Size: px
Start display at page:

Download "The Gaussian transform. ALECU, Teodor, VOLOSHYNOVSKYY, Svyatoslav, PUN, Thierry. Abstract"

Transcription

1 Proceedings Chapter The aussian transform ALECU, Teodor, VOLOSHYNOVSKYY, Svyatoslav, PUN, Thierry Abstract This paper introduces the general purpose aussian Transform, which aims at representing a generic symmetric distribution as an infinite mixture of aussian distributions We start by the mathematical formulation of the problem and continue with the investigation of the conditions of existence of such a transform Our analysis leads to the derivation of analytical and numerical tools for the computation of the aussian Transform, mainly based on the Laplace and Fourier transforms, as well as of the afferent properties set (eg the transform of sums of independent variables Finally, the aussian Transform is exemplified in analytical form for typical distributions (eg aussian, Laplacian, and in numerical form for the eneralized aussian and eneralized Cauchy distributions families Reference ALECU, Teodor, VOLOSHYNOVSKYY, Svyatoslav, PUN, Thierry The aussian transform In: Proceedings of the 3th European Signal Processing Conference, EUSIPCO 5 5 p -4 Available at: Disclaimer: layout of this document may differ from the published version

2 THE AUSSIAN TRANSFORM Teodor Iulian Alecu, Sviatoslav Voloshynovskiy and Thierry Pun Computer Vision and Multimedia Laboratory, University of eneva, 4 Rue énéral-dufour, 4 eneva, Switzerland phone: + ( , fax: + ( , TeodorAlecu@cuiunigech ABSTRACT This paper introduces the general purpose aussian Transform, which aims at representing a generic symmetric distribution as an infinite mixture of aussian distributions We start by the mathematical formulation of the problem and continue with the investigation of the conditions of existence of such a transform Our analysis leads to the derivation of analytical and numerical tools for the computation of the aussian Transform, mainly based on the Laplace and Fourier transforms, as well as of the afferent properties set (eg the transform of sums of independent variables Finally, the aussian Transform is exemplified in analytical form for typical distributions (eg aussian, Laplacian, and in numerical form for the eneralized aussian and eneralized Cauchy distributions families INTRODUCTION aussian distributions are extensively used in the (broad sense signal processing community, mainly for computational benefits For instance, in an estimation problem aussian priors yield quadratic functionals and linear solutions In rate-distortion and coding theories, closed form results are mostly available for aussian source and channel descriptions Real data, however, is generally not aussian distributed The goal of the work presented in this paper is to describe non-aussian distributions through an infinite mixture of aussian distributions In a related work [4], it was proven that any distribution can be approximated through a mixture of aussian up to an arbitrary level of precision However, no hint was given by the author on how to obtain the desired mixture in the general case In [5], an analytical formula is given for an infinite mixture of aussians equivalent to the Laplacian distribution, and used in a source coding application Unfortunately, no generalization was attempted by the authors The work presented here has the roots in their proof and extends the concept to a wide range of symmetric distributions through the introduced aussian Transform The aussian Transform concept and the results presented in this paper can be extensively used in various applications of signal and image processing and communications including estimation, detection, source and channel coding etc The rest of the paper is divided in two main blocks In Section we define the aussian Transform, analyze its existence, investigate its properties and derive the mathematical tools for analytical and/or numerical computation, whereas in Section 3 we exemplify both the transform for some typical distributions such as eneralized aussian and eneralized Cauchy, and some of the properties deduced in Section AUSSIAN TRANSFORM Definition and existence We consider a generic symmetric distribution p(x As we are aiming at representing it through an infinite mixture of aussians, we can safely disregard the mean, and assume for simplicity reasons that p(x is zero-mean We are looking for an integral representation in the form: ( N ( x d p( x, ( where N ( x is the zero-mean aussian distribution: x N ( x e, π and ( is the mixing function that should reproduce the original p(x We can now introduce the aussian Transform Definition (aussian Transform The direct aussian Transform is defined as the operator which transforms p( x into, and the Inverse aussian Transform - is defined as the operator which maps ( to p( x : : p( x ( ; : ( p( x Obviously, - is simply given by (: ( ( N x d ( We look now for the direct aussian Transform We need to prove that for a given p x a mixing distribution exists such as to comply with ( This can be summarized in three conditions Condition For a given p(x, a function ( defined according to ( exists Condition This function is non-negative Condition 3 Its integral ( d is equal to The last condition is a consequence of Condition Indeed, if exists, then, integrating both sides of ( with respect to x and inverting the integration order of the left side:

3 ( N ( x d dx p( x dx, thus ( N ( x dxd Finally, since ( x ( N is a distribution: d In order to investigate Condition, the existence of (, perform the following variable substitutions: s x and Since p(x is symmetric, it can be rewritten as: p( x p( x p( s The left hand side of ( transforms to: ( ( st N x d e dt tt π t According to the definition of the Laplace Transform L [], equation ( finally takes the form: L p( s (3 tt π t Thus, ( is linked to the original probability distribution p(x through the Laplace Transform and can be computed using the Inverse Laplace Transform L - The direct aussian Transform is therefore given by: π ( p( x ( p( s ( t L (4 t Consequently, the existence of the aussian Transform is conditioned by the existence of the Inverse Laplace Transform of p( s From the general properties of the Laplace Transform, it is sufficient [] to prove that the limit at infinity of s p( s is bounded, or equivalently : lim x x p x < (5 The above condition is satisfied by all the distributions from the exponential family, as well as by all the distributions with finite variance (4 allows for straightforward identification of aussian Transforms for distributions whose Laplace Transforms are known, by simply using handbook tables Unfortunately, it does not guarantee compliance with the Condition : non-negativity As it is rather difficult to verify a priori this constraint, the test should be performed a posteriori, either analytically or numerically Properties of the aussian Transform We derive the first property of the aussian Transform using the initial value theorem for the Laplace Transform [], the direct formula (4 and the existence condition (5 Final Value Property The aussian Transform tends asymptotically to when tends to infinity: ( lim (6 We also expect the transform to preserve the data variance Mean Value Property The mean value of the aussian Transform is equal to the variance of the original distribution: x p( x dx ( d (7 x p( x dx x ( N ( x d dx Proof: N x x dx d d qed Another crucial property of the aussian Transform applies to the transform of the sum of independent variables Convolution Property If and are independent random variables with ( p ( x ( and p x, then the aussian Transform of their sum is the convolution of their respective aussian Transforms (the result can be generalized for the sum of multiple independent variables: ( p + x + x (8 Proof: consider the random variable + Since exists, is a random aussian variable with variance distributed according to the distribution probability Similarly, is a random aussian variable with variance distributed according to Then is also a random aussian variable with variance + But and are independent variables drawn from and It follows that is a random variable described by the probability distribution, qed Corollary If and are independent random variables and is aussian distributed p ( x N x, then the aussian transform of their sum is a shifted version of :, < + (9 (, 3 Numerical computation The computation of the aussian Transform for distributions not available in handbooks is still possible through the complex inversion method for Laplace Transforms known as the Bromwich integral [3]: ( ε + i ut L f s f ( u e du π i, ( ε i where ε is a real positive constant satisfying ε > sup Re poles f and u is an auxiliary variable ( ( ( can be rearranged as a Fourier Transform, allowing the use of the numerous numerical and/or symbolical packages available (with ω the variable in the Fourier space:

4 εt ( f ( s e ( f ( ε + iω L F ( Very often p(x has no poles, being a continuous and bounded function, and in this case it might be very practical to evaluate ( at the limit ε Using (4 and (: π ( ( F ( p( iω ( When the original distribution is only numerically known, approximation of ( is still possible either through analytical approximations of p(x, followed by (4 (or (, or through solving the inverse problem yielded by ( 3 EAMPLES OF AUSSIAN TRANSFORMS L λ λx L λ λ s p x λ e ; p s λ e Laplacian: λ L λ ( p ( s λ e As mentioned, the result (4 was already proven in [5] C b C b p ( x b ; p ( s b π b + x π b + s Cauchy: b C ( p ( x b e π The results (3, (4 and (5 are plotted in Fig (4 (5 3 Analytic aussian transforms The most obvious and natural example is the aussian Transform of a aussian distribution One would expect to have (with δ the Dirac function: ( N ( x δ ( (3 Indeed, from (4: s t ( N ( x t L e Then, using the Laplace Transform tables: ( N ( x δ t Since the aussian Transform is a function of []: δ ( ( δ, and ( ( x ( ( δ δ N Thus the aussian Transform of a aussian distribution N x is a Dirac function centered in ( The convolution property (8 can now be used to prove a well known result in statistics: the sum of two independent aussian variables, with respective probability laws x N x, is another aussian variable N ( and ( with probability distribution ( x + N (the extension to non-zero mean distributions is trivial Proof: ( p δ ( ; p δ thus ( p * ( + p p δ + Then, inverting the aussian Transform: p + δ + N x + ( ( Similarly to (3, it is possible to compute the aussian transforms of other usual symmetric distributions using the Laplace transform tables [] We exemplify with the Laplacian and Cauchy distributions Figure aussian Transforms To exemplify the Convolution Property, consider now Cauchy data contaminated with independent additive white aussian noise Then the aussian Transform of the measured data (Fig 3 is a shifted version of the original data transform (9 Figure 3 Shift of the aussian Transform The previous analytical results will be generalized in subsection B through numerical computations 3 Numeric aussian transforms This part illustrates the numerical computation of the aussian Transform through ( for the eneralized aussian and eneralized Cauchy distributions families eneralized aussian Distribution (D The D family is described by an exponential probability density function with parameters and : η ( x p ( x, e η, Γ ( where η( 3 ( ( Γ Γ For the D particularizes to the Laplacian distribution, while for one obtains the aussian distribution The aussian Transform of the eneralized aussian distribution can not be obtained in

5 analytical form using (4 However, it does exist (5 and can be calculated numerically through (: ( ( π ( F ( ω, p i, η ( η ( p ( iω e ( iω, Γ ( The aussian Transforms for ranging from 5 to with fixed are plotted in Fig 6 The transforms evolve from a Dirac-like distribution centered on for small to exponential for, then Rayleigh-like for, bellshaped for 5 and again Dirac-like centered on for As expected, the aussian Transform of the Laplacian distribution ( is exponential (4 Corresponding plots are given in Fig7 Figure 7 aussian Transforms of CD As a remark, the variance of the Cauchy distribution being infinite, its aussian Transform has infinite mean value (7 The CD family possesses finite variance only for ν > 4 CONCLUSION We introduced in this paper the aussian Transform, which allows for the representation of symmetric distributions as an infinite aussian mixture The scope of applicability of the aussian Transform is potentially very broad, from denoising and regularization to filtering, coding,compression, watermarking etc However, an extension of the concept to nonsymmetric distribution would be required for some specific applications Further investigation of the existence conditions, especially non-negativity, is also necessary Finally, one would need adapted numerical packages (most likely based on existing Laplace and Fourier transform computational packages for the computation of aussian Transforms of both analytically and numerically defined distributions ACKNOWLEDMENT This work is supported in part by the Swiss NCCR (National Centre of Research IM (Interactive Multimodal Information Management, and the EU Network of Excellence Similar ( The authors thank Dr Oleksiy Koval for careful reading and fruitful discussions Figure 6 aussian Transforms of D Unfortunately, the real part of the complex probability function diverges for periodical values of, which impedes on the computation of the transform through this method for > However, real data is mostly confined to << [6] eneralized Cauchy Distribution (CD The CD probability density function is given by Γ ( ν + ν C b px x ν, b, ν + 5 πγ ( ν ( b + x and it particularizes to the Cauchy distribution for ν 5 Its aussian Transform can be computed through: ν b Γ ( ν + 5 ν 5 ν, b( ( F (( b + iω Γ ν REFERENCES A D Poularikas, S Seely, Laplace Transforms The Transforms and Applications Handbook: Second Edition Ed Alexander D Poularikas Boca Raton: CRC Press LLC, Arfken, Mathematical Methods for Physicists, 3rd ed Orlando, FL: Academic Press, pp , Arfken, "Inverse Laplace Transformation" 5 in Mathematical Methods for Physicists, 3rd ed Orlando, FL: Academic Press, pp , R Wilson, MMM: Multiresolution aussian Mixture Models for Computer Vision, in IEEE International Conference on Pattern Recognition, Barcelona, Spain, September 5 A Hjørungnes, J M Lervik, and T A Ramstad, Entropy Coding of Composite Sources Modeled by Infinite Mixture aussian Distributions, in Proc 996 IEEE Digital Signal Processing Workshop, Loen, Norway, September S Mallat, A Theory for Multiresolution Signal Decomposition: The Wavelet Representation, in IEEE Transactions on Pattern Analysis and Machine Intelligence Volume, Issue 7 (July 989 p

IEEE Transactions on Signal Processing, accepted October 2005, in press

IEEE Transactions on Signal Processing, accepted October 2005, in press IEEE Personal use of this material is permitted However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution

More information

A Partial Differential Equation Approach to Image Zoom

A Partial Differential Equation Approach to Image Zoom A Partial Differential Equation Approach to Image Zoom Abdelmounim Belahmidi and Frédéric Guichard January 2004 Abstract We propose a new model for zooming digital image. This model, driven by a partial

More information

Computations Under Time Constraints: Algorithms Developed for Fuzzy Computations can Help

Computations Under Time Constraints: Algorithms Developed for Fuzzy Computations can Help Journal of Uncertain Systems Vol.6, No.2, pp.138-145, 2012 Online at: www.jus.org.uk Computations Under Time Constraints: Algorithms Developed for Fuzzy Computations can Help Karen Villaverde 1, Olga Kosheleva

More information

Modeling Multiscale Differential Pixel Statistics

Modeling Multiscale Differential Pixel Statistics Modeling Multiscale Differential Pixel Statistics David Odom a and Peyman Milanfar a a Electrical Engineering Department, University of California, Santa Cruz CA. 95064 USA ABSTRACT The statistics of natural

More information

Poularikas A. D. Fourier Transform The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC Press LLC,

Poularikas A. D. Fourier Transform The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC Press LLC, Poularikas A. D. Fourier Transform The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC Press LLC, 999 3 Fourier Transform 3. One-Dimensional Fourier Transform

More information

Rotation, scale and translation invariant digital image watermarking. O'RUANAIDH, Joséph John, PUN, Thierry. Abstract

Rotation, scale and translation invariant digital image watermarking. O'RUANAIDH, Joséph John, PUN, Thierry. Abstract Proceedings Chapter Rotation, scale and translation invariant digital image watermarking O'RUANAIDH, Joséph John, PUN, Thierry Abstract A digital watermark is an invisible mark embedded in a digital image

More information

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. XI Stochastic Stability - H.J. Kushner

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. XI Stochastic Stability - H.J. Kushner STOCHASTIC STABILITY H.J. Kushner Applied Mathematics, Brown University, Providence, RI, USA. Keywords: stability, stochastic stability, random perturbations, Markov systems, robustness, perturbed systems,

More information

EVALUATING SYMMETRIC INFORMATION GAP BETWEEN DYNAMICAL SYSTEMS USING PARTICLE FILTER

EVALUATING SYMMETRIC INFORMATION GAP BETWEEN DYNAMICAL SYSTEMS USING PARTICLE FILTER EVALUATING SYMMETRIC INFORMATION GAP BETWEEN DYNAMICAL SYSTEMS USING PARTICLE FILTER Zhen Zhen 1, Jun Young Lee 2, and Abdus Saboor 3 1 Mingde College, Guizhou University, China zhenz2000@21cn.com 2 Department

More information

Fourier transforms, Generalised functions and Greens functions

Fourier transforms, Generalised functions and Greens functions Fourier transforms, Generalised functions and Greens functions T. Johnson 2015-01-23 Electromagnetic Processes In Dispersive Media, Lecture 2 - T. Johnson 1 Motivation A big part of this course concerns

More information

On the Hilbert Transform of Wavelets

On the Hilbert Transform of Wavelets On the Hilbert Transform of Wavelets Kunal Narayan Chaudhury and Michael Unser Abstract A wavelet is a localized function having a prescribed number of vanishing moments. In this correspondence, we provide

More information

L2 gains and system approximation quality 1

L2 gains and system approximation quality 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.242, Fall 24: MODEL REDUCTION L2 gains and system approximation quality 1 This lecture discusses the utility

More information

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms.

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. Vector Spaces Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. For each two vectors a, b ν there exists a summation procedure: a +

More information

IN SIGNAL processing theory, a linear, time-invariant (LTI),

IN SIGNAL processing theory, a linear, time-invariant (LTI), 106 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 53, NO. 1, JANUARY 2006 A Note on Impulse Response for Continuous, Linear, Time-Invariant, Continuous-Time Systems Maurizio Ciampa,

More information

Wavelets and multiresolution representations. Time meets frequency

Wavelets and multiresolution representations. Time meets frequency Wavelets and multiresolution representations Time meets frequency Time-Frequency resolution Depends on the time-frequency spread of the wavelet atoms Assuming that ψ is centred in t=0 Signal domain + t

More information

SAMPLING JITTER CORRECTION USING FACTOR GRAPHS

SAMPLING JITTER CORRECTION USING FACTOR GRAPHS 19th European Signal Processing Conference EUSIPCO 11) Barcelona, Spain, August 9 - September, 11 SAMPLING JITTER CORRECTION USING FACTOR GRAPHS Lukas Bolliger and Hans-Andrea Loeliger ETH Zurich Dept.

More information

NUMERICAL COMPUTATION OF THE CAPACITY OF CONTINUOUS MEMORYLESS CHANNELS

NUMERICAL COMPUTATION OF THE CAPACITY OF CONTINUOUS MEMORYLESS CHANNELS NUMERICAL COMPUTATION OF THE CAPACITY OF CONTINUOUS MEMORYLESS CHANNELS Justin Dauwels Dept. of Information Technology and Electrical Engineering ETH, CH-8092 Zürich, Switzerland dauwels@isi.ee.ethz.ch

More information

Piecewise Smooth Solutions to the Burgers-Hilbert Equation

Piecewise Smooth Solutions to the Burgers-Hilbert Equation Piecewise Smooth Solutions to the Burgers-Hilbert Equation Alberto Bressan and Tianyou Zhang Department of Mathematics, Penn State University, University Park, Pa 68, USA e-mails: bressan@mathpsuedu, zhang

More information

Cylindrical Coordinates

Cylindrical Coordinates SEARCH MATHWORLD Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational

More information

Computer Vision & Digital Image Processing

Computer Vision & Digital Image Processing Computer Vision & Digital Image Processing Image Restoration and Reconstruction I Dr. D. J. Jackson Lecture 11-1 Image restoration Restoration is an objective process that attempts to recover an image

More information

ECE 3620: Laplace Transforms: Chapter 3:

ECE 3620: Laplace Transforms: Chapter 3: ECE 3620: Laplace Transforms: Chapter 3: 3.1-3.4 Prof. K. Chandra ECE, UMASS Lowell September 21, 2016 1 Analysis of LTI Systems in the Frequency Domain Thus far we have understood the relationship between

More information

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space.

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Hilbert Spaces Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Vector Space. Vector space, ν, over the field of complex numbers,

More information

Capacity Penalty due to Ideal Zero-Forcing Decision-Feedback Equalization

Capacity Penalty due to Ideal Zero-Forcing Decision-Feedback Equalization Capacity Penalty due to Ideal Zero-Forcing Decision-Feedback Equalization John R. Barry, Edward A. Lee, and David. Messerschmitt John R. Barry, School of Electrical Engineering, eorgia Institute of Technology,

More information

BLIND DECONVOLUTION ALGORITHMS FOR MIMO-FIR SYSTEMS DRIVEN BY FOURTH-ORDER COLORED SIGNALS

BLIND DECONVOLUTION ALGORITHMS FOR MIMO-FIR SYSTEMS DRIVEN BY FOURTH-ORDER COLORED SIGNALS BLIND DECONVOLUTION ALGORITHMS FOR MIMO-FIR SYSTEMS DRIVEN BY FOURTH-ORDER COLORED SIGNALS M. Kawamoto 1,2, Y. Inouye 1, A. Mansour 2, and R.-W. Liu 3 1. Department of Electronic and Control Systems Engineering,

More information

Lecture 21 Representations of Martingales

Lecture 21 Representations of Martingales Lecture 21: Representations of Martingales 1 of 11 Course: Theory of Probability II Term: Spring 215 Instructor: Gordan Zitkovic Lecture 21 Representations of Martingales Right-continuous inverses Let

More information

A WAVELET BASED CODING SCHEME VIA ATOMIC APPROXIMATION AND ADAPTIVE SAMPLING OF THE LOWEST FREQUENCY BAND

A WAVELET BASED CODING SCHEME VIA ATOMIC APPROXIMATION AND ADAPTIVE SAMPLING OF THE LOWEST FREQUENCY BAND A WAVELET BASED CODING SCHEME VIA ATOMIC APPROXIMATION AND ADAPTIVE SAMPLING OF THE LOWEST FREQUENCY BAND V. Bruni, D. Vitulano Istituto per le Applicazioni del Calcolo M. Picone, C. N. R. Viale del Policlinico

More information

Legendre-Fenchel transforms in a nutshell

Legendre-Fenchel transforms in a nutshell 1 2 3 Legendre-Fenchel transforms in a nutshell Hugo Touchette School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS, UK Started: July 11, 2005; last compiled: August 14, 2007

More information

The integral test and estimates of sums

The integral test and estimates of sums The integral test Suppose f is a continuous, positive, decreasing function on [, ) and let a n = f (n). Then the series n= a n is convergent if and only if the improper integral f (x)dx is convergent.

More information

2. As we shall see, we choose to write in terms of σ x because ( X ) 2 = σ 2 x.

2. As we shall see, we choose to write in terms of σ x because ( X ) 2 = σ 2 x. Section 5.1 Simple One-Dimensional Problems: The Free Particle Page 9 The Free Particle Gaussian Wave Packets The Gaussian wave packet initial state is one of the few states for which both the { x } and

More information

MATH Solutions to Probability Exercises

MATH Solutions to Probability Exercises MATH 5 9 MATH 5 9 Problem. Suppose we flip a fair coin once and observe either T for tails or H for heads. Let X denote the random variable that equals when we observe tails and equals when we observe

More information

Exercises with solutions (Set D)

Exercises with solutions (Set D) Exercises with solutions Set D. A fair die is rolled at the same time as a fair coin is tossed. Let A be the number on the upper surface of the die and let B describe the outcome of the coin toss, where

More information

Laplace s Equation. Chapter Mean Value Formulas

Laplace s Equation. Chapter Mean Value Formulas Chapter 1 Laplace s Equation Let be an open set in R n. A function u C 2 () is called harmonic in if it satisfies Laplace s equation n (1.1) u := D ii u = 0 in. i=1 A function u C 2 () is called subharmonic

More information

On some weighted fractional porous media equations

On some weighted fractional porous media equations On some weighted fractional porous media equations Gabriele Grillo Politecnico di Milano September 16 th, 2015 Anacapri Joint works with M. Muratori and F. Punzo Gabriele Grillo Weighted Fractional PME

More information

Sums of exponentials of random walks

Sums of exponentials of random walks Sums of exponentials of random walks Robert de Jong Ohio State University August 27, 2009 Abstract This paper shows that the sum of the exponential of an oscillating random walk converges in distribution,

More information

ANALYTIC SEMIGROUPS AND APPLICATIONS. 1. Introduction

ANALYTIC SEMIGROUPS AND APPLICATIONS. 1. Introduction ANALYTIC SEMIGROUPS AND APPLICATIONS KELLER VANDEBOGERT. Introduction Consider a Banach space X and let f : D X and u : G X, where D and G are real intervals. A is a bounded or unbounded linear operator

More information

Density Approximation Based on Dirac Mixtures with Regard to Nonlinear Estimation and Filtering

Density Approximation Based on Dirac Mixtures with Regard to Nonlinear Estimation and Filtering Density Approximation Based on Dirac Mixtures with Regard to Nonlinear Estimation and Filtering Oliver C. Schrempf, Dietrich Brunn, Uwe D. Hanebeck Intelligent Sensor-Actuator-Systems Laboratory Institute

More information

Jim Lambers ENERGY 281 Spring Quarter Homework Assignment 3 Solution. 2 Ei r2 D., 4t D and the late time approximation to this solution,

Jim Lambers ENERGY 281 Spring Quarter Homework Assignment 3 Solution. 2 Ei r2 D., 4t D and the late time approximation to this solution, Jim Lambers ENERGY 8 Spring Quarter 7-8 Homework Assignment 3 Solution Plot the exponential integral solution p D (r D,t D ) = ) ( Ei r D, 4t D and the late time approximation to this solution, p D (r

More information

Sample path large deviations of a Gaussian process with stationary increments and regularily varying variance

Sample path large deviations of a Gaussian process with stationary increments and regularily varying variance Sample path large deviations of a Gaussian process with stationary increments and regularily varying variance Tommi Sottinen Department of Mathematics P. O. Box 4 FIN-0004 University of Helsinki Finland

More information

Conjugate gradient acceleration of non-linear smoothing filters Iterated edge-preserving smoothing

Conjugate gradient acceleration of non-linear smoothing filters Iterated edge-preserving smoothing Cambridge, Massachusetts Conjugate gradient acceleration of non-linear smoothing filters Iterated edge-preserving smoothing Andrew Knyazev (knyazev@merl.com) (speaker) Alexander Malyshev (malyshev@merl.com)

More information

Bäcklund Transformations: a Link Between Diffusion Models and Hydrodynamic Equations

Bäcklund Transformations: a Link Between Diffusion Models and Hydrodynamic Equations Copyright 2014 Tech Science Press CMES, vol.103, no.4, pp.215-227, 2014 Bäcklund Transformations: a Link Between Diffusion Models and Hydrodynamic Equations J.R. Zabadal 1, B. Bodmann 1, V. G. Ribeiro

More information

Iowa State University. Instructor: Alex Roitershtein Summer Exam #1. Solutions. x u = 2 x v

Iowa State University. Instructor: Alex Roitershtein Summer Exam #1. Solutions. x u = 2 x v Math 501 Iowa State University Introduction to Real Analysis Department of Mathematics Instructor: Alex Roitershtein Summer 015 Exam #1 Solutions This is a take-home examination. The exam includes 8 questions.

More information

Lecture No 1 Introduction to Diffusion equations The heat equat

Lecture No 1 Introduction to Diffusion equations The heat equat Lecture No 1 Introduction to Diffusion equations The heat equation Columbia University IAS summer program June, 2009 Outline of the lectures We will discuss some basic models of diffusion equations and

More information

Multiscale Autoconvolution Histograms for Affine Invariant Pattern Recognition

Multiscale Autoconvolution Histograms for Affine Invariant Pattern Recognition Multiscale Autoconvolution Histograms for Affine Invariant Pattern Recognition Esa Rahtu Mikko Salo Janne Heikkilä Department of Electrical and Information Engineering P.O. Box 4500, 90014 University of

More information

The Method of Types and Its Application to Information Hiding

The Method of Types and Its Application to Information Hiding The Method of Types and Its Application to Information Hiding Pierre Moulin University of Illinois at Urbana-Champaign www.ifp.uiuc.edu/ moulin/talks/eusipco05-slides.pdf EUSIPCO Antalya, September 7,

More information

October 7, :8 WSPC/WS-IJWMIP paper. Polynomial functions are renable

October 7, :8 WSPC/WS-IJWMIP paper. Polynomial functions are renable International Journal of Wavelets, Multiresolution and Information Processing c World Scientic Publishing Company Polynomial functions are renable Henning Thielemann Institut für Informatik Martin-Luther-Universität

More information

A BAYESIAN APPROACH TO NONLINEAR DIFFUSION BASED ON A LAPLACIAN PRIOR FOR IDEAL IMAGE GRADIENT

A BAYESIAN APPROACH TO NONLINEAR DIFFUSION BASED ON A LAPLACIAN PRIOR FOR IDEAL IMAGE GRADIENT A BAYESIAN APPROACH TO NONLINEAR DIFFUSION BASED ON A LAPLACIAN PRIOR FOR IDEAL IMAGE GRADIENT Aleksandra Pižurica, Iris Vanhamel, Hichem Sahli, Wilfried Philips and Antonis Katartzis Ghent University,

More information

Invariant Pattern Recognition using Dual-tree Complex Wavelets and Fourier Features

Invariant Pattern Recognition using Dual-tree Complex Wavelets and Fourier Features Invariant Pattern Recognition using Dual-tree Complex Wavelets and Fourier Features G. Y. Chen and B. Kégl Department of Computer Science and Operations Research, University of Montreal, CP 6128 succ.

More information

Performance Analysis and Code Optimization of Low Density Parity-Check Codes on Rayleigh Fading Channels

Performance Analysis and Code Optimization of Low Density Parity-Check Codes on Rayleigh Fading Channels Performance Analysis and Code Optimization of Low Density Parity-Check Codes on Rayleigh Fading Channels Jilei Hou, Paul H. Siegel and Laurence B. Milstein Department of Electrical and Computer Engineering

More information

Spherical Coordinates

Spherical Coordinates SEARCH MATHWORLD Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational

More information

A GENERAL CLASS OF LOWER BOUNDS ON THE PROBABILITY OF ERROR IN MULTIPLE HYPOTHESIS TESTING. Tirza Routtenberg and Joseph Tabrikian

A GENERAL CLASS OF LOWER BOUNDS ON THE PROBABILITY OF ERROR IN MULTIPLE HYPOTHESIS TESTING. Tirza Routtenberg and Joseph Tabrikian A GENERAL CLASS OF LOWER BOUNDS ON THE PROBABILITY OF ERROR IN MULTIPLE HYPOTHESIS TESTING Tirza Routtenberg and Joseph Tabrikian Department of Electrical and Computer Engineering Ben-Gurion University

More information

Aspects of Continuous- and Discrete-Time Signals and Systems

Aspects of Continuous- and Discrete-Time Signals and Systems Aspects of Continuous- and Discrete-Time Signals and Systems C.S. Ramalingam Department of Electrical Engineering IIT Madras C.S. Ramalingam (EE Dept., IIT Madras) Networks and Systems 1 / 45 Scaling the

More information

Part 2 Continuous functions and their properties

Part 2 Continuous functions and their properties Part 2 Continuous functions and their properties 2.1 Definition Definition A function f is continuous at a R if, and only if, that is lim f (x) = f (a), x a ε > 0, δ > 0, x, x a < δ f (x) f (a) < ε. Notice

More information

Fraunhofer Institute for Computer Graphics Research Interactive Graphics Systems Group, TU Darmstadt Fraunhoferstrasse 5, Darmstadt, Germany

Fraunhofer Institute for Computer Graphics Research Interactive Graphics Systems Group, TU Darmstadt Fraunhoferstrasse 5, Darmstadt, Germany Scale Space and PDE methods in image analysis and processing Arjan Kuijper Fraunhofer Institute for Computer Graphics Research Interactive Graphics Systems Group, TU Darmstadt Fraunhoferstrasse 5, 64283

More information

On Stochastic Adaptive Control & its Applications. Bozenna Pasik-Duncan University of Kansas, USA

On Stochastic Adaptive Control & its Applications. Bozenna Pasik-Duncan University of Kansas, USA On Stochastic Adaptive Control & its Applications Bozenna Pasik-Duncan University of Kansas, USA ASEAS Workshop, AFOSR, 23-24 March, 2009 1. Motivation: Work in the 1970's 2. Adaptive Control of Continuous

More information

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi System Stability - 26 March, 2014

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi System Stability - 26 March, 2014 Prof. Dr. Eleni Chatzi System Stability - 26 March, 24 Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can

More information

Nondeterministic Kinetics Based Feature Clustering for Fractal Pattern Coding

Nondeterministic Kinetics Based Feature Clustering for Fractal Pattern Coding Nondeterministic Kinetics Based Feature Clustering for Fractal Pattern Coding Kohji Kamejima Faculty of Engineering, Osaka Institute of Technology 5-16-1 Omiya, Asahi, Osaka 535-8585 JAPAN Tel: +81 6 6954-4330;

More information

is a Borel subset of S Θ for each c R (Bertsekas and Shreve, 1978, Proposition 7.36) This always holds in practical applications.

is a Borel subset of S Θ for each c R (Bertsekas and Shreve, 1978, Proposition 7.36) This always holds in practical applications. Stat 811 Lecture Notes The Wald Consistency Theorem Charles J. Geyer April 9, 01 1 Analyticity Assumptions Let { f θ : θ Θ } be a family of subprobability densities 1 with respect to a measure µ on a measurable

More information

PRIVACY-PRESERVING BIOMETRIC PERSON IDENTIFICATION

PRIVACY-PRESERVING BIOMETRIC PERSON IDENTIFICATION PRIVACY-PRESERVIG BIOMETRIC PERSO IDETIFICATIO Oleksiy Koval, Sviatoslav Voloshynovskiy and Thierry Pun Department of Computer Science, University of Geneva 7, route de Drize, 1227, Geneva, Switzerland

More information

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Alberto Bressan ) and Khai T. Nguyen ) *) Department of Mathematics, Penn State University **) Department of Mathematics,

More information

From Fourier to Wavelets in 60 Slides

From Fourier to Wavelets in 60 Slides From Fourier to Wavelets in 60 Slides Bernhard G. Bodmann Math Department, UH September 20, 2008 B. G. Bodmann (UH Math) From Fourier to Wavelets in 60 Slides September 20, 2008 1 / 62 Outline 1 From Fourier

More information

Graph Matching & Information. Geometry. Towards a Quantum Approach. David Emms

Graph Matching & Information. Geometry. Towards a Quantum Approach. David Emms Graph Matching & Information Geometry Towards a Quantum Approach David Emms Overview Graph matching problem. Quantum algorithms. Classical approaches. How these could help towards a Quantum approach. Graphs

More information

Sparse Time-Frequency Transforms and Applications.

Sparse Time-Frequency Transforms and Applications. Sparse Time-Frequency Transforms and Applications. Bruno Torrésani http://www.cmi.univ-mrs.fr/~torresan LATP, Université de Provence, Marseille DAFx, Montreal, September 2006 B. Torrésani (LATP Marseille)

More information

Linear differential equations and related continuous LTI systems

Linear differential equations and related continuous LTI systems Linear differential equations and related continuous LTI systems Maurizio Ciampa, Marco Franciosi, Mario Poletti Dipartimento di Matematica Applicata U. Dini Università di Pisa via Buonarroti 1c, I-56126

More information

LQR, Kalman Filter, and LQG. Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin

LQR, Kalman Filter, and LQG. Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin LQR, Kalman Filter, and LQG Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin May 2015 Linear Quadratic Regulator (LQR) Consider a linear system

More information

STABILITY ANALYSIS OF DAMPED SDOF SYSTEMS WITH TWO TIME DELAYS IN STATE FEEDBACK

STABILITY ANALYSIS OF DAMPED SDOF SYSTEMS WITH TWO TIME DELAYS IN STATE FEEDBACK Journal of Sound and Vibration (1998) 214(2), 213 225 Article No. sv971499 STABILITY ANALYSIS OF DAMPED SDOF SYSTEMS WITH TWO TIME DELAYS IN STATE FEEDBACK H. Y. HU ANDZ. H. WANG Institute of Vibration

More information

Time and Spatial Series and Transforms

Time and Spatial Series and Transforms Time and Spatial Series and Transforms Z- and Fourier transforms Gibbs' phenomenon Transforms and linear algebra Wavelet transforms Reading: Sheriff and Geldart, Chapter 15 Z-Transform Consider a digitized

More information

Expectation, variance and moments

Expectation, variance and moments Expectation, variance and moments John Appleby Contents Expectation and variance Examples 3 Moments and the moment generating function 4 4 Examples of moment generating functions 5 5 Concluding remarks

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems Dr. Guillaume Ducard Fall 2017 Institute for Dynamic Systems and Control ETH Zurich, Switzerland G. Ducard c 1 / 57 Outline 1 Lecture 13: Linear System - Stability

More information

Erkut Erdem. Hacettepe University February 24 th, Linear Diffusion 1. 2 Appendix - The Calculus of Variations 5.

Erkut Erdem. Hacettepe University February 24 th, Linear Diffusion 1. 2 Appendix - The Calculus of Variations 5. LINEAR DIFFUSION Erkut Erdem Hacettepe University February 24 th, 2012 CONTENTS 1 Linear Diffusion 1 2 Appendix - The Calculus of Variations 5 References 6 1 LINEAR DIFFUSION The linear diffusion (heat)

More information

The closed-form resolution of integrals is one of the

The closed-form resolution of integrals is one of the Construction of Generalized Integral Formulas By Means of Laplace Transformations Adam C. Buss, Department of Physics, Indiana University - Northwest Faculty Mentor: Dr. Axel Schulze-Halberg ABSTRACT We

More information

Some Expectations of a Non-Central Chi-Square Distribution With an Even Number of Degrees of Freedom

Some Expectations of a Non-Central Chi-Square Distribution With an Even Number of Degrees of Freedom Some Expectations of a Non-Central Chi-Square Distribution With an Even Number of Degrees of Freedom Stefan M. Moser April 7, 007 Abstract The non-central chi-square distribution plays an important role

More information

ON THE FRACTIONAL CAUCHY PROBLEM ASSOCIATED WITH A FELLER SEMIGROUP

ON THE FRACTIONAL CAUCHY PROBLEM ASSOCIATED WITH A FELLER SEMIGROUP Dedicated to Professor Gheorghe Bucur on the occasion of his 7th birthday ON THE FRACTIONAL CAUCHY PROBLEM ASSOCIATED WITH A FELLER SEMIGROUP EMIL POPESCU Starting from the usual Cauchy problem, we give

More information

MATH 426, TOPOLOGY. p 1.

MATH 426, TOPOLOGY. p 1. MATH 426, TOPOLOGY THE p-norms In this document we assume an extended real line, where is an element greater than all real numbers; the interval notation [1, ] will be used to mean [1, ) { }. 1. THE p

More information

On the Concept of Local Fractional Differentiation

On the Concept of Local Fractional Differentiation On the Concept of Local Fractional Differentiation Xiaorang Li, Matt Davison, and Chris Essex Department of Applied Mathematics, The University of Western Ontario, London, Canada, N6A 5B7 {xli5,essex,mdavison}@uwo.ca

More information

Boundary value problems for partial differential equations

Boundary value problems for partial differential equations Boundary value problems for partial differential equations Henrik Schlichtkrull March 11, 213 1 Boundary value problem 2 1 Introduction This note contains a brief introduction to linear partial differential

More information

Spectrum of Fractal Interpolation Functions

Spectrum of Fractal Interpolation Functions Spectrum of Fractal Interpolation Functions ikolaos Vasiloglou, Member, IEEE and Petros Maragos, Fellow, IEEE June 8, Abstract In this paper we compute the Fourier spectrum of the Fractal Interpolation

More information

INTEGRAL TRANSFORMS and THEIR APPLICATIONS

INTEGRAL TRANSFORMS and THEIR APPLICATIONS INTEGRAL TRANSFORMS and THEIR APPLICATIONS Lokenath Debnath Professor and Chair of Mathematics and Professor of Mechanical and Aerospace Engineering University of Central Florida Orlando, Florida CRC Press

More information

SPECTRAL PROPERTIES OF THE LAPLACIAN ON BOUNDED DOMAINS

SPECTRAL PROPERTIES OF THE LAPLACIAN ON BOUNDED DOMAINS SPECTRAL PROPERTIES OF THE LAPLACIAN ON BOUNDED DOMAINS TSOGTGEREL GANTUMUR Abstract. After establishing discrete spectra for a large class of elliptic operators, we present some fundamental spectral properties

More information

PCMI LECTURE NOTES ON PROPERTY (T ), EXPANDER GRAPHS AND APPROXIMATE GROUPS (PRELIMINARY VERSION)

PCMI LECTURE NOTES ON PROPERTY (T ), EXPANDER GRAPHS AND APPROXIMATE GROUPS (PRELIMINARY VERSION) PCMI LECTURE NOTES ON PROPERTY (T ), EXPANDER GRAPHS AND APPROXIMATE GROUPS (PRELIMINARY VERSION) EMMANUEL BREUILLARD 1. Lecture 1, Spectral gaps for infinite groups and non-amenability The final aim of

More information

We denote the space of distributions on Ω by D ( Ω) 2.

We denote the space of distributions on Ω by D ( Ω) 2. Sep. 1 0, 008 Distributions Distributions are generalized functions. Some familiarity with the theory of distributions helps understanding of various function spaces which play important roles in the study

More information

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values KleinInvariant Notations Traditional name Klein invariant modular function Traditional notation z Mathematica StandardForm notation KleinInvariant z Primary definition 09.50.0.0001.01 ϑ 0, Π z 8 ϑ 3 0,

More information

Which wavelet bases are the best for image denoising?

Which wavelet bases are the best for image denoising? Which wavelet bases are the best for image denoising? Florian Luisier a, Thierry Blu a, Brigitte Forster b and Michael Unser a a Biomedical Imaging Group (BIG), Ecole Polytechnique Fédérale de Lausanne

More information

Numerical Sequences and Series

Numerical Sequences and Series Numerical Sequences and Series Written by Men-Gen Tsai email: b89902089@ntu.edu.tw. Prove that the convergence of {s n } implies convergence of { s n }. Is the converse true? Solution: Since {s n } is

More information

5th-order differentiation

5th-order differentiation ARBITRARY-ORDER REAL-TIME EXACT ROBUST DIFFERENTIATION A. Levant Applied Mathematics Dept., Tel-Aviv University, Israel E-mail: levant@post.tau.ac.il Homepage: http://www.tau.ac.il/~levant/ 5th-order differentiation

More information

UNIVERSITY OF MANITOBA

UNIVERSITY OF MANITOBA Question Points Score INSTRUCTIONS TO STUDENTS: This is a 6 hour examination. No extra time will be given. No texts, notes, or other aids are permitted. There are no calculators, cellphones or electronic

More information

MATH 205C: STATIONARY PHASE LEMMA

MATH 205C: STATIONARY PHASE LEMMA MATH 205C: STATIONARY PHASE LEMMA For ω, consider an integral of the form I(ω) = e iωf(x) u(x) dx, where u Cc (R n ) complex valued, with support in a compact set K, and f C (R n ) real valued. Thus, I(ω)

More information

Can the sample being transmitted be used to refine its own PDF estimate?

Can the sample being transmitted be used to refine its own PDF estimate? Can the sample being transmitted be used to refine its own PDF estimate? Dinei A. Florêncio and Patrice Simard Microsoft Research One Microsoft Way, Redmond, WA 98052 {dinei, patrice}@microsoft.com Abstract

More information

Time series denoising with wavelet transform

Time series denoising with wavelet transform Paper Time series denoising with wavelet transform Bartosz Kozłowski Abstract This paper concerns the possibilities of applying wavelet analysis to discovering and reducing distortions occurring in time

More information

SINGULARITY DETECTION AND PROCESSING WITH WAVELETS

SINGULARITY DETECTION AND PROCESSING WITH WAVELETS SINGULARITY DETECTION AND PROCESSING WITH WAVELETS Stephane Mallat and Wen Liang Hwang Courant Institute of Mathematical Sciences New York University, New York, NY 10012 Technical Report March 1991 Abstract

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University The Residual and Error of Finite Element Solutions Mixed BVP of Poisson Equation

More information

Total Variation Theory and Its Applications

Total Variation Theory and Its Applications Total Variation Theory and Its Applications 2nd UCC Annual Research Conference, Kingston, Jamaica Peter Ndajah University of the Commonwealth Caribbean, Kingston, Jamaica September 27, 2018 Peter Ndajah

More information

Determining the Optimal Decision Delay Parameter for a Linear Equalizer

Determining the Optimal Decision Delay Parameter for a Linear Equalizer International Journal of Automation and Computing 1 (2005) 20-24 Determining the Optimal Decision Delay Parameter for a Linear Equalizer Eng Siong Chng School of Computer Engineering, Nanyang Technological

More information

Introduction to the z-transform

Introduction to the z-transform z-transforms and applications Introduction to the z-transform The z-transform is useful for the manipulation of discrete data sequences and has acquired a new significance in the formulation and analysis

More information

SIMPLE GABOR FEATURE SPACE FOR INVARIANT OBJECT RECOGNITION

SIMPLE GABOR FEATURE SPACE FOR INVARIANT OBJECT RECOGNITION SIMPLE GABOR FEATURE SPACE FOR INVARIANT OBJECT RECOGNITION Ville Kyrki Joni-Kristian Kamarainen Laboratory of Information Processing, Department of Information Technology, Lappeenranta University of Technology,

More information

Review of Linear Time-Invariant Network Analysis

Review of Linear Time-Invariant Network Analysis D1 APPENDIX D Review of Linear Time-Invariant Network Analysis Consider a network with input x(t) and output y(t) as shown in Figure D-1. If an input x 1 (t) produces an output y 1 (t), and an input x

More information

A new class of morphological pyramids for multiresolution image analysis

A new class of morphological pyramids for multiresolution image analysis new class of morphological pyramids for multiresolution image analysis Jos B.T.M. Roerdink Institute for Mathematics and Computing Science University of Groningen P.O. Box 800, 9700 V Groningen, The Netherlands

More information

Bayesian inverse problems with Laplacian noise

Bayesian inverse problems with Laplacian noise Bayesian inverse problems with Laplacian noise Remo Kretschmann Faculty of Mathematics, University of Duisburg-Essen Applied Inverse Problems 2017, M27 Hangzhou, 1 June 2017 1 / 33 Outline 1 Inverse heat

More information

The New Graphic Description of the Haar Wavelet Transform

The New Graphic Description of the Haar Wavelet Transform he New Graphic Description of the Haar Wavelet ransform Piotr Porwik and Agnieszka Lisowska Institute of Informatics, Silesian University, ul.b dzi ska 39, 4-00 Sosnowiec, Poland porwik@us.edu.pl Institute

More information

Bloch Wilson Hamiltonian and a Generalization of the Gell-Mann Low Theorem 1

Bloch Wilson Hamiltonian and a Generalization of the Gell-Mann Low Theorem 1 Bloch Wilson Hamiltonian and a Generalization of the Gell-Mann Low Theorem 1 Axel Weber 2 arxiv:hep-th/9911198v1 25 Nov 1999 Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de

More information

Notes on Fourier Series and Integrals Fourier Series

Notes on Fourier Series and Integrals Fourier Series Notes on Fourier Series and Integrals Fourier Series et f(x) be a piecewise linear function on [, ] (This means that f(x) may possess a finite number of finite discontinuities on the interval). Then f(x)

More information

Inverse Gravimetry Problem

Inverse Gravimetry Problem Inverse Gravimetry Problem Victor Isakov September 21, 2010 Department of M athematics and Statistics W ichita State U niversity W ichita, KS 67260 0033, U.S.A. e mail : victor.isakov@wichita.edu 1 Formulation.

More information