D-branes in non-abelian gauged linear sigma models

Size: px
Start display at page:

Download "D-branes in non-abelian gauged linear sigma models"

Transcription

1 D-branes in non-abelian gauged linear sigma models Johanna Knapp Vienna University of Technology Bonn, September 29, 2014

2 Outline CYs and GLSMs D-branes in GLSMs Conclusions

3 CYs and GLSMs A Calabi-Yau space (CY) can be realized as the low energy configuration of a supersymmetric N = (2, 2) gauge theory in two dimensions - the gauged linear sigma model (GLSM). [Witten 93] The choice of gauge groups and matter content determines the CY. Hypersurfaces and complete intersections in toric ambient spaces are realized by GLSMs with gauge groups G = U(1) k. Non-abelian gauge groups lead to exotic CYs (e.g. Pfaffian CYs). Phase: by tuning coupling constants (FI parameters) in the gauge theory, we can probe the (enlarged) Kähler moduli space of a CY.

4 GLSM Data Gauge group G = U(1)l H {±1,±1}. This talk: H = USp(k) or H = O(k), l = 1. Matter Chiral fields p i, i = 1,..., M, U(1) l -charges Q l p, trivial rep. of H i xi a, i = 1,..., N, a = 1,..., k, U(1) l -charges Qx l i, fundamental rep. of H Twisted chiral fields σ k, take values in the maximal torus of G. Superpotential W H = SU(2) : W = H = O(2) : W = N A ij (p)[x i x j ] = i,j=1 N S ij (p)(x i x j ) = i,j=1 N 2 i,j=1 a,b=1 N 2 i,j=1 a,b=1 A ij (p)x a i ε ab x b j S ij (p)x a i δ ab x b j

5 Equations of motion I The vacua, i.e. solutions to the equations of motion, determine the CY. On the Higgs branch σ = 0. D-terms U(1) l : M N Q l p i pi 2 + Qx l j x j 2 = r l i=1 j=1 SU(2) : xx 1 2 x = 0 O(2) : xx (xx ) T = 0. r l R are the FI parameters. Together with the θ-angle they can be identified with the complexified Kähler modulus of the CY: t = r iθ. By changing the value of the r l we can probe the Kähler moduli space of the CY.

6 Equations of motion II E.o.ms continued... F-terms W p i = 0 W x a i = 0. Phases of the GLSM Different FI parameter regions have different solutions of the e.o.ms. Gauge group gets broken to a subgroup in different phases. strong coupling effects if broken to continuous subgroup CYs in phases are not necessarily birational, yet share the same Kähler moduli space. Conjecture: The derived categories associated to the CYs in the various phases are equivalent.

7 CY data CY condition Dimension: M Q l p + k N Q l i x j = 0 rkh = k i=1 dim = M 1 j=1 k(k ± 1) USp(k),... O(k) Hodge number estimate h 1,1 number of FI-parameters h 2,1 number of monomials in W modulo reparametrization Quantum corrections on the Coulomb branch determine the conifold point(s).

8 Non-abelian Duality There is a duality between models with different non-abelian gauge groups. [Hori 11] original dual G G = U(1) l USp(k) G = U(1) l USp(N k 1) fields W p i x i p i x i a ij = a ji Q l Q l p i x i Q l Q l p i x i Q xi + Q xj W = N i,j=1 Aij (p)[x i x j ] W = N i,j=1 [ x i x j ]a ij + A ij (p)a ij Similar structure for orthogonal gauge groups with O(k) SO(N k + 1) s ij = s ji Strong/weak coupling duality: Certain properties of the CY are more easily derived in the dual theory.

9 Non-abelian examples Notation: Models A k q and S k, q A k q: H = USp(k), with charges q S k, q : H = SO(k) ( = 0) or H = O(k) SO(k) Z 2 ( = ±) with charges q Rodland Model A 2 2 7,1 7 [Rodland 98][Hori-Tong 06] r 0: Complete intersection of codim. 7 in G(2, 7) r 0: Pfaffian CY rka(p) = 4 (strongly coupled) Hosono-Takagi S 2,+ 2 5,1 5 [Hosono-Takagi][Hori 11] r 0: Complete intersection of codim.5 in (P 4 P 4 )/Z 2 r 0: Determinantal variety rks(p) 4 (strongly coupled) Further interesting new one-parameter examples. [Hori-JK, 13] CYs with different Hodge numbers h 2,1 but same Kähler moduli space.

10 Matrix Factorizations D-branes are gauge-invariant, R-invariant matrix factorizations of the GLSM potential. [Herbst-Hori-Page 08][Honda-Okuda,Hori-Romo 13] Take a square matrix Q with polynomial entries such that Gauge invariance: R-invariance: Q 2 = W 1 ρ(g) 1 Q(gφ)ρ(g) = Q(φ) λ r Q(λ R φ)λ r = λq(φ) GLSM branes map to (trivial or non-trivial) branes in the individual phases.

11 Elementary matrix factorizations I To construct matrix factorizations for the Rodland and HT-examples we start with a toy model with gauge group U(2). Superpotential W = p[x 1 x 2 ] = p(x1 1 x2 2 x1 2 x2 1 ). ( ) a b Gauge transformations with g = U(2): c d p (ad bc) 1 p xi 1 axi 1 + bxi 2 xi 2 cxi 1 + dxi 2. R-charge: can choose [p] = 2, [x a i ] = 0.

12 Elementary matrix factorizations II Simplest one: ( Q = 0 p x 1 1 x 2 2 x 2 1 x ) ρ = ( det g ) Using a basis of 4 4 Clifford matrices {η i, η j } = δ ij : Q = x 1 1 η 1 + px 2 2 η 1 + x 2 1 η 2 px 1 2 η 2 Q = 0 0 x1 1 x px2 1 px2 2 px2 2 x px2 1 x ρ = det g d 0 0 det g 0 0 b det g c det g a det g For the models of interest we can obtain matrix factorizations by taking tensor products of these two elementary constructions.

13 D-brane charges Quantum corrected D-brane central charges are computed by the hemisphere partition function. [Honda-Okuda,Hori-Romo 13] Z D 2(B) = C d l G τ α(τ) sinh(iπα(τ)) ( Γ Q i (τ) + R ) i e t R (τ) f B(τ) γ 2 α>0 i α > 0 positive roots τ = t C with t C = Lie(T G ) C (maximal torus) l G = rk(g) R i... R-charges, Q i... weights under the maximal torus t R = r iθ... complexified FI (Kähler) parameter γ... integration contour (s.t. integral is convergent) Brane factor ( f B (τ) = tr M ( 1) r e 2πiρ (τ)) M... Chan-Paton space The brane input is obtained by restricting the matrices ρ(g) and λ r to the maximal torus.

14 Structure Sheaf In geometric phases Z D 2 reduces to Z D 2(B) = ˆΓ(X )e B+ i 2π ω ch(b). X The structure sheaf encodes the topological data of the CY. Z(O X ) = mirror = H 3 3! ( ) 3 ( ) it it c2 H + 2π 2π 24 + i ζ(3) (2π) 3 χ(x ) + O(e t ) H 3 3! ϖ 3 + c 2H 24 ϖ 2 + i ζ(3)χ(x ) (2π) 3 ϖ 0 Different topological data for different (geometric) phases in the GLSM. Identify the brane factor/matrix factorization associated to the structure sheaf.

15 Structure Sheaf II For Rodland and HT matrix factorizations discussed above lead to a brane factors of type f B (a, b) = (1 e 2πi(τ1+τ2) ) a (1 e 2πiτ1 ) b (1 e 2πiτ2 ) b In r 0-phases the structure sheaf is given by the matrix factorization with brane factor f (N, 0) Q(N, 0) = N i=1 p i η i + W p i η i a, b Z 0 In the strongly-coupled r 0-phases no simple matrix factorization has been found. However, There are brane factors that give the right charges, e.g. for Rodland: f B = 2f (5, 1) 2f (3, 2) + f (6, 1) 2f (4, 2) f (5, 2) In the weakly-coupled dual theory the structure sheaf is described by a simple matrix factorization.

16 Conclusions We constructed matrix factorizations in examples of one-parameter non-abelian GLSMs. Using the hemisphere partition function we computed quantum-corrected D-brane charges. We identified the structure sheaf. We found many examples of lower-dimensional branes in all phases. These methods are very general. Not restricted to hypersurfaces/complete intersections in toric spaces. No mirror symmetry required. No Landau-Ginzburg point required for matrix factorizations.

17 Outlook D-brane transport By choosing integration contours such that Z D 2 converges one can derive a grade restriction rule. [HHP 08] This reproduces mathematical results. [Addington-Donovan-Segal 14] For strongly coupled phases, branes have to be grade restricted deep inside the phase. How do construct matrix factorizations for the structure sheaf in strongly coupled phases? How to classify matrix factorizations in (non-)abelian GLSMs? Interesting phenomenology on these CYs?

Gauged Linear Sigma Model and Hemisphpere Partition Function

Gauged Linear Sigma Model and Hemisphpere Partition Function Gauged Linear Sigma Model and Hemisphpere Partition Function [M. Romo, E. Scheidegger, JK: arxiv:1602.01382 [hep-th], in progress] [K. Hori, JK: arxiv:1612.06214 [hep-th]] [R. Eager, K. Hori, M. Romo,

More information

Looking Beyond Complete Intersection Calabi-Yau Manifolds. Work in progress with Hans Jockers, Joshua M. Lapan, Maurico Romo and David R.

Looking Beyond Complete Intersection Calabi-Yau Manifolds. Work in progress with Hans Jockers, Joshua M. Lapan, Maurico Romo and David R. Looking Beyond Complete Intersection Calabi-Yau Manifolds Work in progress with Hans Jockers, Joshua M. Lapan, Maurico Romo and David R. Morrison Who and Why Def: X is Calabi-Yau (CY) if X is a Ricci-flat,

More information

THE MASTER SPACE OF N=1 GAUGE THEORIES

THE MASTER SPACE OF N=1 GAUGE THEORIES THE MASTER SPACE OF N=1 GAUGE THEORIES Alberto Zaffaroni CAQCD 2008 Butti, Forcella, Zaffaroni hepth/0611229 Forcella, Hanany, Zaffaroni hepth/0701236 Butti,Forcella,Hanany,Vegh, Zaffaroni, arxiv 0705.2771

More information

Exact Results in D=2 Supersymmetric Gauge Theories And Applications

Exact Results in D=2 Supersymmetric Gauge Theories And Applications Exact Results in D=2 Supersymmetric Gauge Theories And Applications Jaume Gomis Miami 2012 Conference arxiv:1206.2606 with Doroud, Le Floch and Lee arxiv:1210.6022 with Lee N = (2, 2) supersymmetry on

More information

Instantons and Donaldson invariants

Instantons and Donaldson invariants Instantons and Donaldson invariants George Korpas Trinity College Dublin IFT, November 20, 2015 A problem in mathematics A problem in mathematics Important probem: classify d-manifolds up to diffeomorphisms.

More information

arxiv: v1 [hep-th] 3 Feb 2016

arxiv: v1 [hep-th] 3 Feb 2016 TUW-6-0 Hemisphere Partition Function and Analytic Continuation to the Conifold Point arxiv:60.08v [hep-th] Feb 06 Johanna Knapp, Mauricio Romo and Emanuel Scheidegger Institute for Theoretical Physics,

More information

COUNTING BPS STATES IN CONFORMAL GAUGE THEORIES

COUNTING BPS STATES IN CONFORMAL GAUGE THEORIES COUNTING BPS STATES IN CONFORMAL GAUGE THEORIES Alberto Zaffaroni PISA, MiniWorkshop 2007 Butti, Forcella, Zaffaroni hepth/0611229 Forcella, Hanany, Zaffaroni hepth/0701236 Butti,Forcella,Hanany,Vegh,

More information

Solution Set 8 Worldsheet perspective on CY compactification

Solution Set 8 Worldsheet perspective on CY compactification MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics String Theory (8.821) Prof. J. McGreevy Fall 2007 Solution Set 8 Worldsheet perspective on CY compactification Due: Monday, December 18, 2007

More information

Generalized N = 1 orientifold compactifications

Generalized N = 1 orientifold compactifications Generalized N = 1 orientifold compactifications Thomas W. Grimm University of Wisconsin, Madison based on: [hep-th/0602241] Iman Benmachiche, TWG [hep-th/0507153] TWG Madison, Wisconsin, November 2006

More information

The geometry of Landau-Ginzburg models

The geometry of Landau-Ginzburg models Motivation Toric degeneration Hodge theory CY3s The Geometry of Landau-Ginzburg Models January 19, 2016 Motivation Toric degeneration Hodge theory CY3s Plan of talk 1. Landau-Ginzburg models and mirror

More information

On Flux Quantization in F-Theory

On Flux Quantization in F-Theory On Flux Quantization in F-Theory Raffaele Savelli MPI - Munich Bad Honnef, March 2011 Based on work with A. Collinucci, arxiv: 1011.6388 Motivations Motivations The recent attempts to find UV-completions

More information

Calabi-Yau Fourfolds with non-trivial Three-Form Cohomology

Calabi-Yau Fourfolds with non-trivial Three-Form Cohomology Calabi-Yau Fourfolds with non-trivial Three-Form Cohomology Sebastian Greiner arxiv: 1512.04859, 1702.03217 (T. Grimm, SG) Max-Planck-Institut für Physik and ITP Utrecht String Pheno 2017 Sebastian Greiner

More information

Predictions for GW inv ts of a noncommutative resolution

Predictions for GW inv ts of a noncommutative resolution Predictions for GW inv ts of a noncommutative resolution Eric Sharpe Virginia Tech T Pantev, ES, hepth/0502027, 0502044, 0502053 S Hellerman, A Henriques, T Pantev, ES, M Ando, hepth/0606034 R Donagi,

More information

Black Hole Microstate Counting using Pure D-brane Systems

Black Hole Microstate Counting using Pure D-brane Systems Black Hole Microstate Counting using Pure D-brane Systems HRI, Allahabad, India 11.19.2015 UC Davis, Davis based on JHEP10(2014)186 [arxiv:1405.0412] and upcoming paper with Abhishek Chowdhury, Richard

More information

F-theory effective physics via M-theory. Thomas W. Grimm!! Max Planck Institute for Physics (Werner-Heisenberg-Institut)! Munich

F-theory effective physics via M-theory. Thomas W. Grimm!! Max Planck Institute for Physics (Werner-Heisenberg-Institut)! Munich F-theory effective physics via M-theory Thomas W. Grimm Max Planck Institute for Physics (Werner-Heisenberg-Institut) Munich Ahrenshoop conference, July 2014 1 Introduction In recent years there has been

More information

An introduction to heterotic mirror symmetry. Eric Sharpe Virginia Tech

An introduction to heterotic mirror symmetry. Eric Sharpe Virginia Tech An introduction to heterotic mirror symmetry Eric Sharpe Virginia Tech I ll begin today by reminding us all of ordinary mirror symmetry. Most basic incarnation: String theory on a Calabi-Yau X = String

More information

Homological Mirror Symmetry and VGIT

Homological Mirror Symmetry and VGIT Homological Mirror Symmetry and VGIT University of Vienna January 24, 2013 Attributions Based on joint work with M. Ballard (U. Wisconsin) and Ludmil Katzarkov (U. Miami and U. Vienna). Slides available

More information

Overview of classical mirror symmetry

Overview of classical mirror symmetry Overview of classical mirror symmetry David Cox (notes by Paul Hacking) 9/8/09 () Physics (2) Quintic 3-fold (3) Math String theory is a N = 2 superconformal field theory (SCFT) which models elementary

More information

Aspects of (0,2) theories

Aspects of (0,2) theories Aspects of (0,2) theories Ilarion V. Melnikov Harvard University FRG workshop at Brandeis, March 6, 2015 1 / 22 A progress report on d=2 QFT with (0,2) supersymmetry Gross, Harvey, Martinec & Rohm, Heterotic

More information

Witten, Cardy, and Holonomy Saddles

Witten, Cardy, and Holonomy Saddles Witten, Cardy, and Holonomy Saddles PILJIN YI Korea Institute for Advanced Study APCTP, July 2018 K. Hori, H. Kim, P.Y. 2014 S-J. Lee, P.Y. 2016 S-J. Lee, P.Y. 2017 C. Hwang, P.Y. 2017 C. Hwang, S. Lee,

More information

arxiv: v2 [hep-th] 3 Jul 2015

arxiv: v2 [hep-th] 3 Jul 2015 Prepared for submission to JHEP NSF-KITP-15-068, MIT-CTP-4677 P 1 -bundle bases and the prevalence of non-higgsable structure in 4D F-theory models arxiv:1506.03204v2 [hep-th] 3 Jul 2015 James Halverson

More information

Phases of Supersymmetric D-branes on Kähler Manifolds. and the McKay correspondence

Phases of Supersymmetric D-branes on Kähler Manifolds. and the McKay correspondence CERN-TH/2000-315 hep-th/0010223 Phases of Supersymmetric D-branes on Kähler Manifolds arxiv:hep-th/0010223v3 9 Mar 2001 and the McKay correspondence P. Mayr CERN Theory Division CH-1211 Geneva 23 Switzerland

More information

Refined BPS Indices, Intrinsic Higgs States and Quiver Invariants

Refined BPS Indices, Intrinsic Higgs States and Quiver Invariants Refined BPS Indices, Intrinsic Higgs States and Quiver Invariants ddd (KIAS) USTC 26 Sep 2013 Base on: H. Kim, J. Park, ZLW and P. Yi, JHEP 1109 (2011) 079 S.-J. Lee, ZLW and P. Yi, JHEP 1207 (2012) 169

More information

Gauged Linear Sigma Model in the Geometric Phase

Gauged Linear Sigma Model in the Geometric Phase Gauged Linear Sigma Model in the Geometric Phase Guangbo Xu joint work with Gang Tian Princeton University International Conference on Differential Geometry An Event In Honour of Professor Gang Tian s

More information

Hilbert Series and Its Applications to SUSY Gauge Theories

Hilbert Series and Its Applications to SUSY Gauge Theories Hilbert Series and Its Applications to SUSY Gauge Theories NOPPADOL MEKAREEYA Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Progress in Quantum Field Theory and String Theory April 2012 Noppadol

More information

Little strings and T-duality

Little strings and T-duality Little strings and T-duality Jungmin Kim (Seoul National University) January 28, 2015 Talk based on [JK., Seok Kim, Kimyeong Lee] in progress. 6d N=(1,1) Little strings Outline NS5-branes in IIB string

More information

Pietro Fre' SISSA-Trieste. Paolo Soriani University degli Studi di Milano. From Calabi-Yau manifolds to topological field theories

Pietro Fre' SISSA-Trieste. Paolo Soriani University degli Studi di Milano. From Calabi-Yau manifolds to topological field theories From Calabi-Yau manifolds to topological field theories Pietro Fre' SISSA-Trieste Paolo Soriani University degli Studi di Milano World Scientific Singapore New Jersey London Hong Kong CONTENTS 1 AN INTRODUCTION

More information

Topological reduction of supersymmetric gauge theories and S-duality

Topological reduction of supersymmetric gauge theories and S-duality Topological reduction of supersymmetric gauge theories and S-duality Anton Kapustin California Institute of Technology Topological reduction of supersymmetric gauge theories and S-duality p. 1/2 Outline

More information

2d SCFT from M2-branes

2d SCFT from M2-branes 2d SCFT from M2-branes Chan Y. Park California Institute of Technology Sep. 5, 2013 @ KIAS K. Hori, CYP, Y. Tachikawa, to appear Outline 1. 2d SCFT from the IR limit of 2d N = (2, 2) theories 2. Supersymmetric

More information

Calabi-Yau Spaces in String Theory

Calabi-Yau Spaces in String Theory Habilitationsschrift Calabi-Yau Spaces in String Theory Johanna Knapp Institut fu r Theoretische Physik Technische Universita t Wien Wiedner Hauptstraße 8-0 040 Wien O sterreich Wien, September 05 Abstract

More information

Boundaries, Mirror Symmetry, and Symplectic Duality in 3d N = 4 Gauge Theory

Boundaries, Mirror Symmetry, and Symplectic Duality in 3d N = 4 Gauge Theory Prepared for submission to JHEP Boundaries, Mirror Symmetry, and Symplectic Duality in 3d N = 4 Gauge Theory arxiv:1603.08382v3 [hep-th] 25 Oct 2016 Mathew Bullimore 1,2 Tudor Dimofte 2,3,4 Davide Gaiotto

More information

Compactifications of F-Theory on Calabi Yau Threefolds II arxiv:hep-th/ v2 31 May 1996

Compactifications of F-Theory on Calabi Yau Threefolds II arxiv:hep-th/ v2 31 May 1996 DUKE-TH-96-107 HUTP-96/A012 hep-th/9603161 March, 1996 (Revised 5/96) Compactifications of F-Theory on Calabi Yau Threefolds II arxiv:hep-th/9603161v2 31 May 1996 David R. Morrison Department of Mathematics,

More information

Heterotic Standard Models

Heterotic Standard Models 19 August 2008 Strings 08 @ CERN The High Country region of the string landscape Goal: Study string vacua which reproduce the MSSM (or close cousins thereof) at low energies String landscape is huge, but

More information

Web of threefold bases in F-theory and machine learning

Web of threefold bases in F-theory and machine learning and machine learning 1510.04978 & 1710.11235 with W. Taylor CTP, MIT String Data Science, Northeastern; Dec. 2th, 2017 1 / 33 Exploring a huge oriented graph 2 / 33 Nodes in the graph Physical setup: 4D

More information

Cluster algebras from 2d gauge theories

Cluster algebras from 2d gauge theories Cluster algebras from 2d gauge theories Francesco Benini Simons Center for Geometry and Physics Stony Brook University Texas A&M University Heterotic Strings and (0,2) QFT 28 April 2014 with: D. Park,

More information

Contents 1 Introduction 2 2 The ON 0 Plane D-branes in the presence of an ON 0 Plane Including Orientifold Planes....

Contents 1 Introduction 2 2 The ON 0 Plane D-branes in the presence of an ON 0 Plane Including Orientifold Planes.... Issues on Orientifolds: On the brane construction of gauge theories with SO(2n) global symmetry Amihay Hanany 1 and Alberto Zaffaroni 2 March 30, 1999 1 Center for Theoretical Physics, Laboratory for Nuclear

More information

Heterotic Torsional Backgrounds, from Supergravity to CFT

Heterotic Torsional Backgrounds, from Supergravity to CFT Heterotic Torsional Backgrounds, from Supergravity to CFT IAP, Université Pierre et Marie Curie Eurostrings@Madrid, June 2010 L.Carlevaro, D.I. and M. Petropoulos, arxiv:0812.3391 L.Carlevaro and D.I.,

More information

Refined Donaldson-Thomas theory and Nekrasov s formula

Refined Donaldson-Thomas theory and Nekrasov s formula Refined Donaldson-Thomas theory and Nekrasov s formula Balázs Szendrői, University of Oxford Maths of String and Gauge Theory, City University and King s College London 3-5 May 2012 Geometric engineering

More information

G 2 manifolds and mirror symmetry

G 2 manifolds and mirror symmetry G 2 manifolds and mirror symmetry Simons Collaboration on Special Holonomy in Geometry, Analysis and Physics First Annual Meeting, New York, 9/14/2017 Andreas Braun University of Oxford based on [1602.03521]

More information

2 Type IIA String Theory with Background Fluxes in d=2

2 Type IIA String Theory with Background Fluxes in d=2 2 Type IIA String Theory with Background Fluxes in d=2 We consider compactifications of type IIA string theory on Calabi-Yau fourfolds. Consistency of a generic compactification requires switching on a

More information

Relating DFT to N=2 gauged supergravity

Relating DFT to N=2 gauged supergravity Relating DFT to N=2 gauged supergravity Erik Plauschinn LMU Munich Chengdu 29.07.2016 based on... This talk is based on :: Relating double field theory to the scalar potential of N=2 gauged supergravity

More information

Free fermion and wall-crossing

Free fermion and wall-crossing Free fermion and wall-crossing Jie Yang School of Mathematical Sciences, Capital Normal University yangjie@cnu.edu.cn March 4, 202 Motivation For string theorists It is called BPS states counting which

More information

The Toric SO(10) F-theory Landscape

The Toric SO(10) F-theory Landscape The Toric SO(10) F-theory Landscape Paul-Konstantin Oehlmann DESY/Hamburg University In preperation arxiv:170x.xxxx in collaboration with: W. Buchmueller, M. Dierigl, F. Ruehle Virginia Tech,Blacksburg

More information

Knots and Mirror Symmetry. Mina Aganagic UC Berkeley

Knots and Mirror Symmetry. Mina Aganagic UC Berkeley Knots and Mirror Symmetry Mina Aganagic UC Berkeley 1 Quantum physics has played a central role in answering the basic question in knot theory: When are two knots distinct? 2 Witten explained in 88, that

More information

Supersymmetric Gauge Theories in 3d

Supersymmetric Gauge Theories in 3d Supersymmetric Gauge Theories in 3d Nathan Seiberg IAS Intriligator and NS, arxiv:1305.1633 Aharony, Razamat, NS, and Willett, arxiv:1305.3924 3d SUSY Gauge Theories New lessons about dynamics of quantum

More information

The Langlands dual group and Electric-Magnetic Duality

The Langlands dual group and Electric-Magnetic Duality The Langlands dual group and Electric-Magnetic Duality DESY (Theory) & U. Hamburg (Dept. of Math) Nov 10, 2015 DESY Fellows Meeting Outline My hope is to answer the question : Why should physicists pay

More information

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Chern-Simons Theory and Its Applications The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Maxwell Theory Maxwell Theory: Gauge Transformation and Invariance Gauss Law Charge Degrees of

More information

Anomalies and Remnant Symmetries in Heterotic Constructions. Christoph Lüdeling

Anomalies and Remnant Symmetries in Heterotic Constructions. Christoph Lüdeling Anomalies and Remnant Symmetries in Heterotic Constructions Christoph Lüdeling bctp and PI, University of Bonn String Pheno 12, Cambridge CL, Fabian Ruehle, Clemens Wieck PRD 85 [arxiv:1203.5789] and work

More information

GAUGED LINEAR SIGMA MODEL SPACES

GAUGED LINEAR SIGMA MODEL SPACES GAUGED LINEAR SIGMA MODEL SPACES FELIPE CASTELLANO-MACIAS ADVISOR: FELIX JANDA Abstract. The gauged linear sigma model (GLSM) originated in physics but it has recently made it into mathematics as an enumerative

More information

Calabi-Yau Geometry and Mirror Symmetry Conference. Cheol-Hyun Cho (Seoul National Univ.) (based on a joint work with Hansol Hong and Siu-Cheong Lau)

Calabi-Yau Geometry and Mirror Symmetry Conference. Cheol-Hyun Cho (Seoul National Univ.) (based on a joint work with Hansol Hong and Siu-Cheong Lau) Calabi-Yau Geometry and Mirror Symmetry Conference Cheol-Hyun Cho (Seoul National Univ.) (based on a joint work with Hansol Hong and Siu-Cheong Lau) Mirror Symmetry between two spaces Mirror symmetry explains

More information

The Pfaffian-Grassmannian equivalence revisited

The Pfaffian-Grassmannian equivalence revisited The Pfaffian-Grassmannian equivalence revisited Nicolas Addington, Will Donovan and Ed Segal Abstract We give a new proof of the Pfaffian-Grassmannian derived equivalence between certain pairs of non-birational

More information

HYPERKÄHLER MANIFOLDS

HYPERKÄHLER MANIFOLDS HYPERKÄHLER MANIFOLDS PAVEL SAFRONOV, TALK AT 2011 TALBOT WORKSHOP 1.1. Basic definitions. 1. Hyperkähler manifolds Definition. A hyperkähler manifold is a C Riemannian manifold together with three covariantly

More information

Elliptic Genera of non-compact CFTs

Elliptic Genera of non-compact CFTs Elliptic Genera of non-compact CFTs Sujay K. Ashok IMSc, Chennai (work done with Jan Troost) Indian Strings Meeting, December 2012 arxiv:1101.1059 [hep-th] arxiv:1204.3802 [hep-th] arxiv:1212.xxxx [hep-th]

More information

Stability of Landau-Ginzburg Branes

Stability of Landau-Ginzburg Branes Stability of Landau-Ginzburg Branes hep-th/0412274 Johannes Walcher Institute for Advanced Study Talk at Duke CGTP, February 10, 2005 1 Introduction Goal: Understand stability conditions for D-branes on

More information

How to get a superconductor out of a black hole

How to get a superconductor out of a black hole How to get a superconductor out of a black hole Christopher Herzog Princeton October 2009 Quantum Phase Transition: a phase transition between different quantum phases (phases of matter at T = 0). Quantum

More information

Web Formalism and the IR limit of massive 2D N=(2,2) QFT. collaboration with Davide Gaiotto & Edward Witten

Web Formalism and the IR limit of massive 2D N=(2,2) QFT. collaboration with Davide Gaiotto & Edward Witten Web Formalism and the IR limit of massive 2D N=(2,2) QFT -or - A short ride with a big machine SCGP, Nov. 17, 2014 Gregory Moore, Rutgers University collaboration with Davide Gaiotto & Edward Witten draft

More information

Heterotic type IIA duality with fluxes and moduli stabilization

Heterotic type IIA duality with fluxes and moduli stabilization Heterotic type IIA duality with fluxes and moduli stabilization Andrei Micu Physikalisches Institut der Universität Bonn Based on hep-th/0608171 and hep-th/0701173 in collaboration with Jan Louis, Eran

More information

New Toric Swiss Cheese Solutions

New Toric Swiss Cheese Solutions String Phenomenology 2017 (Based on arxiv:1706.09070 [hep-th]) Northeastern University 1/31 Outline Motivation 1 Motivation 2 CY Geometry Large Volume Scenario 3 Explicit Toric 4 2/31 Abundance of Moduli

More information

Heterotic String Compactication with Gauged Linear Sigma Models

Heterotic String Compactication with Gauged Linear Sigma Models Heterotic String Compactication with Gauged Linear Sigma Models Fabian Rühle Bethe Center for Theoretical Physics Bonn University LMU Fields & Strings 04/25/2013 Based on: [Lüdeling,FR,Wieck: 1203.5789],

More information

Topological Strings and Donaldson-Thomas invariants

Topological Strings and Donaldson-Thomas invariants Topological Strings and Donaldson-Thomas invariants University of Patras Πανɛπιστήµιo Πατρών RTN07 Valencia - Short Presentation work in progress with A. Sinkovics and R.J. Szabo Topological Strings on

More information

A Landscape of Field Theories

A Landscape of Field Theories A Landscape of Field Theories Travis Maxfield Enrico Fermi Institute, University of Chicago October 30, 2015 Based on arxiv: 1511.xxxxx w/ D. Robbins and S. Sethi Summary Despite the recent proliferation

More information

String Phenomenology ???

String Phenomenology ??? String Phenomenology Andre Lukas Oxford, Theoretical Physics d=11 SUGRA IIB M IIA??? I E x E 8 8 SO(32) Outline A (very) basic introduction to string theory String theory and the real world? Recent work

More information

Mirror symmetry for G 2 manifolds

Mirror symmetry for G 2 manifolds Mirror symmetry for G 2 manifolds based on [1602.03521] [1701.05202]+[1706.xxxxx] with Michele del Zotto (Stony Brook) 1 Strings, T-duality & Mirror Symmetry 2 Type II String Theories and T-duality Superstring

More information

Dualities and Topological Strings

Dualities and Topological Strings Dualities and Topological Strings Strings 2006, Beijing - RD, C. Vafa, E.Verlinde, hep-th/0602087 - work in progress w/ C. Vafa & C. Beasley, L. Hollands Robbert Dijkgraaf University of Amsterdam Topological

More information

Extending Hori-Vafa. Richard S. Garavuso. University of Alberta. Collaboration: L. Katzarkov, M. Kreuzer, A. Noll

Extending Hori-Vafa. Richard S. Garavuso. University of Alberta. Collaboration: L. Katzarkov, M. Kreuzer, A. Noll Extending Hori-Vafa Richard S. Garavuso University of Alberta Collaboration: L. Katzarkov, M. Kreuzer, A. Noll Outline. Hori-Vafa (hep-th/000) review (a) Hypersurface in WCP m (b) Complete intersection

More information

Anomalous discrete symmetries in D-brane models

Anomalous discrete symmetries in D-brane models Anomalous discrete symmetries in D-brane models Shohei Uemura Maskawa Institute for Science and Culture, Kyoto Sangyo University based on a work in progress with Tatsuo Kobayashi (Hokkaido University),

More information

arxiv: v2 [hep-th] 21 Nov 2018

arxiv: v2 [hep-th] 21 Nov 2018 Prepared for submission to JHEP Surface operators, dual quivers and contours arxiv:807066v [hep-th] ov 08 S K Ashok, a S Ballav, a M Billò, b,c E Dell Aquila, b M Frau, b,c V Gupta, a R R John, b,c and

More information

Generalized complex geometry and topological sigma-models

Generalized complex geometry and topological sigma-models Generalized complex geometry and topological sigma-models Anton Kapustin California Institute of Technology Generalized complex geometry and topological sigma-models p. 1/3 Outline Review of N = 2 sigma-models

More information

An Algorithmic Approach to Heterotic Compactification

An Algorithmic Approach to Heterotic Compactification An Algorithmic Approach to Heterotic Compactification Lara B. Anderson Department of Physics, University of Pennsylvania, and Institute for Advanced Study, Princeton Work done in collaboration with: LBA,

More information

Topics in Geometry: Mirror Symmetry

Topics in Geometry: Mirror Symmetry MIT OpenCourseWare http://ocw.mit.edu 18.969 Topics in Geometry: Mirror Symmetry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MIRROR SYMMETRY:

More information

On the Construction and Cohomology of a Self-Dual Perverse Sheaf Motivated by String Theory

On the Construction and Cohomology of a Self-Dual Perverse Sheaf Motivated by String Theory On the Construction and Cohomology of a Self-Dual Perverse Sheaf Motivated by String Theory math.at/0704.3298 Abdul Rahman Howard University Acknowledgements Prof. R. MacPherson (IAS) for making the observation

More information

The derived category of a GIT quotient

The derived category of a GIT quotient September 28, 2012 Table of contents 1 Geometric invariant theory 2 3 What is geometric invariant theory (GIT)? Let a reductive group G act on a smooth quasiprojective (preferably projective-over-affine)

More information

Discrete symmetries in string theory and supergravity

Discrete symmetries in string theory and supergravity Discrete symmetries in string theory and supergravity Eric Sharpe Virginia Tech w/ J Distler, S Hellerman, T Pantev,..., 0212218, 0502027, 0502044, 0502053, 0606034, 0608056, 0709.3855, 1004.5388, 1008.0419,

More information

I. Why Quantum K-theory?

I. Why Quantum K-theory? Quantum groups and Quantum K-theory Andrei Okounkov in collaboration with M. Aganagic, D. Maulik, N. Nekrasov, A. Smirnov,... I. Why Quantum K-theory? mathematical physics mathematics algebraic geometry

More information

Counting black hole microstates as open string flux vacua

Counting black hole microstates as open string flux vacua Counting black hole microstates as open string flux vacua Frederik Denef KITP, November 23, 2005 F. Denef and G. Moore, to appear Outline Setting and formulation of the problem Black hole microstates and

More information

Wall Crossing and Quivers

Wall Crossing and Quivers Wall Crossing and Quivers ddd (KIAS,dddd) dd 2014d4d12d Base on: H. Kim, J. Park, ZLW and P. Yi, JHEP 1109 (2011) 079 S.-J. Lee, ZLW and P. Yi, JHEP 1207 (2012) 169 S.-J. Lee, ZLW and P. Yi, JHEP 1210

More information

5d SCFTs and instanton partition functions

5d SCFTs and instanton partition functions 5d SCFTs and instanton partition functions Hirotaka Hayashi (IFT UAM-CSIC) Hee-Cheol Kim and Takahiro Nishinaka [arxiv:1310.3854] Gianluca Zoccarato [arxiv:1409.0571] Yuji Tachikawa and Kazuya Yonekura

More information

Introduction to Orientifolds.

Introduction to Orientifolds. Introduction to Orientifolds http://www.physto.se/~mberg Overview Orientability in Quantum Field Theory: spinors S R(2π) ψ = ψ Orientability in Quantum Field Theory: spinors (S R(2π) ) 2 ψ =+ ψ S R(2π)

More information

Geometry and Physics. Amer Iqbal. March 4, 2010

Geometry and Physics. Amer Iqbal. March 4, 2010 March 4, 2010 Many uses of Mathematics in Physics The language of the physical world is mathematics. Quantitative understanding of the world around us requires the precise language of mathematics. Symmetries

More information

Calabi-Yau fourfolds for M- and F-Theory compactifications

Calabi-Yau fourfolds for M- and F-Theory compactifications hep-th/9609239 EFI-97-01 Calabi-Yau fourfolds for M- and F-Theory compactifications arxiv:hep-th/9701023 v2 19 Jan 1997 A. Klemm 1, B. Lian 2, S-S. Roan 3 and S-T. Yau 4 1 Enrico Fermi Institute, University

More information

Sphere Partition Functions, Topology, the Zamolodchikov Metric

Sphere Partition Functions, Topology, the Zamolodchikov Metric Sphere Partition Functions, Topology, the Zamolodchikov Metric, and Extremal Correlators Weizmann Institute of Science Efrat Gerchkovitz, Jaume Gomis, ZK [1405.7271] Jaume Gomis, Po-Shen Hsin, ZK, Adam

More information

D-branes and Normal Functions

D-branes and Normal Functions arxiv:0709.4028 D-branes and Normal Functions David R. Morrison a,b and Johannes Walcher c arxiv:0709.4028v1 [hep-th] 26 Sep 2007 a Center for Geometry and Theoretical Physics, Duke University, Durham,

More information

S-CONFINING DUALITIES

S-CONFINING DUALITIES DIMENSIONAL REDUCTION of S-CONFINING DUALITIES Cornell University work in progress, in collaboration with C. Csaki, Y. Shirman, F. Tanedo and J. Terning. 1 46 3D Yang-Mills A. M. Polyakov, Quark Confinement

More information

Supermatrix Models * Robbert Dijkgraaf Ins$tute for Advanced Study

Supermatrix Models * Robbert Dijkgraaf Ins$tute for Advanced Study Supermatrix Models * Robbert Dijkgraaf Ins$tute for Advanced Study Walter Burke Ins.tute for Theore.cal Physics Inaugural Symposium Caltech, Feb 24, 1015 * Work with Cumrun Vafa and Ben Heidenreich, in

More information

Predictions from F-theory GUTs. (High vs. low-scale SUSY; proton decay)

Predictions from F-theory GUTs. (High vs. low-scale SUSY; proton decay) Predictions from F-theory GUTs Arthur Hebecker (Heidelberg) (including some original work with James Unwin (Notre Dame)) Outline: Motivation (Why F-theory GUTs?) Proton decay Flavor; neutrino masses Gauge

More information

N = 2 supersymmetric gauge theory and Mock theta functions

N = 2 supersymmetric gauge theory and Mock theta functions N = 2 supersymmetric gauge theory and Mock theta functions Andreas Malmendier GTP Seminar (joint work with Ken Ono) November 7, 2008 q-series in differential topology Theorem (M-Ono) The following q-series

More information

Generalized Global Symmetries

Generalized Global Symmetries Generalized Global Symmetries Anton Kapustin Simons Center for Geometry and Physics, Stony Brook April 9, 2015 Anton Kapustin (Simons Center for Geometry and Physics, Generalized StonyGlobal Brook) Symmetries

More information

A-twisted Landau-Ginzburg models, gerbes, and Kuznetsov s homological projective duality

A-twisted Landau-Ginzburg models, gerbes, and Kuznetsov s homological projective duality A-twisted Landau-Ginzburg models, gerbes, and Kuznetsov s homological projective duality Eric Sharpe Virginia Tech J. Guffin, ES, arxiv: 0801.3836, 0803.3955 T Pantev, ES, hepth/0502027, 0502044, 0502053

More information

Knot Homology from Refined Chern-Simons Theory

Knot Homology from Refined Chern-Simons Theory Knot Homology from Refined Chern-Simons Theory Mina Aganagic UC Berkeley Based on work with Shamil Shakirov arxiv: 1105.5117 1 the knot invariant Witten explained in 88 that J(K, q) constructed by Jones

More information

arxiv:hep-th/ v1 12 Dec 1996

arxiv:hep-th/ v1 12 Dec 1996 February 7, 2008 LBNL-039707, UCB-PTH-96/58 hep-th/9623 arxiv:hep-th/9623v 2 Dec 996 Mirror Symmetry in Three-Dimensional Gauge Theories, SL(2, Z) and D-Brane Moduli Spaces Jan de Boer, Kentaro Hori, Hirosi

More information

Triality of Two-dimensional (0,2) Theories

Triality of Two-dimensional (0,2) Theories J.Guo,B.Jia,E.Sharpe,arXiv:1501.00987 April 11, 2015 Outline 1 2d N = (0,2) Gauge Theories 2 Triality Proposal Checks Low Energy Description 3 Chiral Rings Chiral Rings in (0,2) Theories Bott-Borel-Weil

More information

SCFTs, Compact CY 3-folds, and Topological Strings

SCFTs, Compact CY 3-folds, and Topological Strings SCFTs, Compact CY 3-folds, and Topological Strings Patrick Jefferson (to appear) in collaboration with: Hirotaka Hayashi, Hee-Cheol Kim, Kantaro Ohmori, and Cumrun Vafa This subject of this talk is SCFTs

More information

F-theory and the classification of elliptic Calabi-Yau manifolds

F-theory and the classification of elliptic Calabi-Yau manifolds F-theory and the classification of elliptic Calabi-Yau manifolds FRG Workshop: Recent progress in string theory and mirror symmetry March 6-7, 2015 Washington (Wati) Taylor, MIT Based in part on arxiv:

More information

A-twisted Landau-Ginzburg models

A-twisted Landau-Ginzburg models A-twisted Landau-Ginzburg models Eric Sharpe Virginia Tech J. Guffin, ES, arxiv: 0801.3836, 0803.3955 M. Ando, ES, to appear A Landau-Ginzburg model is a nonlinear sigma model on a space or stack X plus

More information

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions Frank FERRARI Université Libre de Bruxelles and International Solvay Institutes XVth Oporto meeting on Geometry, Topology and Physics:

More information

Intro to Geometry and Topology via G Physics and G 2 -manifolds. Bobby Samir Acharya. King s College London. and ICTP Trieste Ψ(1 γ 5 )Ψ

Intro to Geometry and Topology via G Physics and G 2 -manifolds. Bobby Samir Acharya. King s College London. and ICTP Trieste Ψ(1 γ 5 )Ψ Intro to Geometry and Topology via G 2 10.07.2014 Physics and G 2 -manifolds Bobby Samir Acharya King s College London. µf µν = j ν dϕ = d ϕ = 0 and ICTP Trieste Ψ(1 γ 5 )Ψ The Rich Physics-Mathematics

More information

t Hooft Loops and S-Duality

t Hooft Loops and S-Duality t Hooft Loops and S-Duality Jaume Gomis KITP, Dualities in Physics and Mathematics with T. Okuda and D. Trancanelli Motivation 1) Quantum Field Theory Provide the path integral definition of all operators

More information

F- 理論におけるフラックスコンパクト化. Hajime Otsuka( 大塚啓 ) (Waseda U.) Physics Lett. B. 774 (2017) 225 with Y. Honma (National Tsing-Hua U.) Sangyo U.

F- 理論におけるフラックスコンパクト化. Hajime Otsuka( 大塚啓 ) (Waseda U.) Physics Lett. B. 774 (2017) 225 with Y. Honma (National Tsing-Hua U.) Sangyo U. F- 理論におけるフラックスコンパクト化 Hajime Otsuka( 大塚啓 ) (Waseda U.) Physics Lett. B. 774 (2017) 225 with Y. Honma (National Tsing-Hua U.) 2018/1/29@Kyoto Sangyo U. Outline Introduction Flux compactification in type

More information

Instantons in string theory via F-theory

Instantons in string theory via F-theory Instantons in string theory via F-theory Andrés Collinucci ASC, LMU, Munich Padova, May 12, 2010 arxiv:1002.1894 in collaboration with R. Blumenhagen and B. Jurke Outline 1. Intro: From string theory to

More information

arxiv:hep-th/ v1 22 Aug 1995

arxiv:hep-th/ v1 22 Aug 1995 CLNS-95/1356 IASSNS-HEP-95/64 hep-th/9508107 TOWARDS MIRROR SYMMETRY AS DUALITY FOR TWO DIMENSIONAL ABELIAN GAUGE THEORIES arxiv:hep-th/9508107 v1 Aug 1995 DAVID R. MORRISON Department of Mathematics,

More information