Noise-enhanced propagation in a dissipative chain of triggers

Size: px
Start display at page:

Download "Noise-enhanced propagation in a dissipative chain of triggers"

Transcription

1 Noise-enhanced propagation in a dissipative chain of triggers S. Morfu.C. Comte.M. Bilbault and P. Marquié Université de Bourgogne, LE2I, (F.R.E.) C.N.R.S BP DION cedex, FRANCE smorfu@u-bourgogne.fr February 24, 2002 Abstract: We study the influence of spatiotemporal noise on the propagation of square waves in an electrical dissipative chain of triggers. By numerical simulation, we show that noise plays an active role to improve signal transmission. Using the Signal to Noise Ratio at each cell, we estimate the propagation length. It appears that there s an optimum amount of noise that maximizes this length. This specific case of stochastic resonance shows that noise enhances propagation. 1 Introduction In linear systems, noise induces negative effects since the output Signal to Noise Ratio (S.N.R.) is a monotonous decreasing function of noise intensity, whereas the behavior is completely different with nonlinear systems. Indeed, in such systems, it has been shown that an appropriate external noise added to a weak signal of information, called subthreshold signal, can enhance the S.N.R. and then the signal detection [Gammaitoni et al., 199]. This effect known as Stochastic Resonance (SR), since its introduction to explain the periodic recurrence of ice ages in climate dynamics [Benzi et al., 191; Benzi et al., 193; Nicolis, 192], has been investigated in many fields [Gammaitoni et al., 199] like visual perception [Simonotto et al., 199; Ditzinger et al., 2000] or biology [Longtin, 1993; Gebeshuber, 2000; Zeng et al., 2000]. This phenomenon has been studied first in unicellular nonlinear systems, like the Schmitt trigger [Fauve & Heslot, 193; Melnikov, 1993; Godivier & Chapeau-Blondeau, 199; Gammaitoni et al., 1999], and more recently, considering lattices of coupled excitable cells [Lindner et al., 1995; Zhang et al., 199; Locher et al., 199; Lindner et al., 199; Chapeau-Blondeau, 1999; Chapeau- Blondeau & Rojas-Varela, 2000]. In particular, Chapeau-Blondeau [Chapeau-Blondeau, 1999] has shown that the propagation of a low amplitude or subthreshold wave in a nonlinear line of two states threshold elements could be assisted by the addition of noise. Considering overthreshold signals in a dissipative lattice, one might wonder if a spatiotemporal noise could also improve their propagation. In this paper, we study the response of a discrete dissipative electrical line to an initial periodic rectangular pulse train in presence of noise. For an appropriate value of the noise amplitude, we show that the propagation length is enhanced, compared to the case without noise. First, we present the discrete electrical transmission line and study the propagation of square pulses without noise. Adding noise and by a measurement of the S.N.R., a stochastic resonant behavior will appear, leading to the enhancement of the propagation length. 1

2 Presentation of the electrical lattice The electrical lattice consists in the succession of elementary cells. Each cell contains an RC low pass filter and a simple comparator with saturation and threshold voltages V OH and U th (figure 1). Figure 1: Schematic representation of the electrical lattice. R and C are linear components, while the comparators present an infinite input impedance and a threshold voltage U th. Applying Kirchoff laws leads to the differential equation between voltages U n 1 and U n, respectively at capacitors n and n 1: τ du n dt + U n = f(u n 1 ), (1) where τ = RC is the time constant of the low pass filters. In eq. (1), the nonlinear function f is the comparator characteristic expressed by: f(u n ) = V n = V OH 2 ( 1+tanh [k(u n U th )] ), (2) where k is the slope of the transfert characteristic. Let us consider, in this section, the response of the system without noise. The signal V 0 (t) launched at the input of the line is a periodic rectangular pulse train of amplitude V OH, period T s = 9τ and width t 0. The low state duration between two successive pulses is sufficient to consider separately each pulse (see figure 2), that is, the capacitors have time enough to be completely discharged (U n (T s ) 0). Let us consider now the case k in the nonlinearity. Then, f tends to an Heaviside function H, and therefore: V n = V OH H(U n U th ). (3) Expressing the charge and discharge of the first capacitor leads straightforwardly to the width t 1 of a pulse after the first comparator: [ ( VOH U th t 1 = t 0 + τ ln 1 exp ( t )] 0 τ ). U th In figure 2 are represented two pulses of the initial voltage signal V 0 (t), and the input and output voltages of the first comparator, respectively U 1 and V 1. Simple calculations allow to determine the recursion expression for the width t n of the resulting rectangular pulse V n (t) at the output of comparator n, that is: [ ( VOH U th t n = t n 1 +τ ln U th τ (4) 0 D 0 1 exp ( t n 1 Figure 2: Propagation of the initial train of pulses V 0 (t) throught the first cell. Voltages U 1 (t) and V 1 (t) represent respectively the voltages at the input and output of the first comparator. )] ). 2

3 & & ' ' ' & % = C A D + A I = N I Figure 3: Propagation of the square wave in the lattice. The solid lines represent, from left to right, one pulse at the output of comparators 1, 12 and 19, the dashed lines the voltages U 1, U 12, U 19 at their input (for a sake of clarity, only one period of each voltage U n (t) and V n (t) is represented). Results have been obtained by direct simulation of equations (1) and (2). The value of the width at the input of the line is t 0 = 3τ, while the other parameters are U th = 0.5 V, V OH = 1 V, k = 100, τ = 1 s. Figure 4: Propagation length n max versus the width of the pulses t 0 at the input: the solid line is the theoretical law obtained by the series (4); crosses are simulation results from equations (1) and (2). Parameters are U th = 0.5 V, V OH = 1 V, k = 100, τ = 1 s. This expression shows that t n decreases versus n, revealing the dissipative effect. As a consequence, there exists a maximal propagation length n max (last cell number for which t n > 0) over which propagation stops (see figure 3 for the special case n max =19). Indeed, the charge of capacitor at cell n = n max + 1 is not sufficient to reach the threshold value U th. The propagation length has been obtained by direct simulation of eqs. (1) and (2) with a fourth order Runge-Kutta algorithm. Figure 4 shows a good agreement between theoretical and simulation results and provides a measurement of the propagation length n max without noise. 3 Noise effects As we have defined the propagation properties in the lattice without noise, we will present, in this section, the results obtained by considering spatiotemporal noise effects. So, spatiotemporal zero mean white noise of amplitude A is added to % & ' &. H A G K A? O 0 Figure 5: Power Spectrum of the cell number 22. Parameters are U th = 0.5 V, V OH = 1 V, k = 100, τ = 1 s, T S = 9τ, t 0 = 3 τ, A = 0.15 V. each voltage U n (t). For a given zero mean uniform noise over [ A, A], one hundred simulations are performed with the same initial condition (periodic square pulse train with period T S = 9τ and width 3τ). We calculate then, for each cell, the Power Spectrum (P.S.) of signal V n (t). Each P.S. consists of an amount of spectral peaks at multiple integers of 1/T s emerging from a 1/f background noise (figure 5). 3

4 & & Using the P.S., the S.N.R. can be defined, at frequency 1/T S, as the ratio between the coherent signal and the background noise powers, respectively ( ) S S.N.R. = 10 log 10. (5) N = N Here, the signal power S is obtained by subtracting the noise background N, estimated around 1/T s, from the total power at the frequency 1/T s [Lindner et al., 199]. On figure 6 is represented the S.N.R. as a function of noise amplitude A for several cell numbers. Two behaviors appear then: (i) Cells 10, 15 and 1 for which n n max = 19, display a monotonous decreasing S.N.R. curve versus noise amplitude. Indeed, the coherent signal can reach these cells in absence of noise, so noise has a negative influence on propagation. (ii) The S.N.R. curves of more distant cells (n > n max ) show that there exists an amount of noise amplitude that maximizes the S.N.R., revealing the S.R. effect. In coupled noisy systems, a standard propagation length n max definition, for a given noise amplitude, 5 * ) Figure : Propagation length n max versus noise amplitude A. Parameters are U th = 0.5 V, V OH = 1 V, k = 100, T S = 9τ, t 0 = 3 τ, τ = 1 s. corresponds to the last cell whose S.N.R. is greater than a reference level, 0 db for instance [Chapeau- Blondeau, 1999]. Under these conditions, figure shows this propagation length with respect to noise amplitude A. There is a range of noise amplitudes, namely 0 < A < 0.35 V, that give a propagation length greater than n max. An optimum appears then for A = allowing the information signal to reach the 31 th cell (instead of the 19 th without noise). In that sense, this increasing of propagation performance shows that noise enhances propagation. Note that, in the case of temporal noise (the same noise is added to each signal U n (t)), a more spectacular enhancement of propagation is obtained with an optimum reached for A = 0.2, giving a propagation length three times greater than without noise. 4 Conclusion ) Figure 6: S.N.R. versus noise amplitude A. From top to bottom cell numbers 10, 15, 1, 22, 23, and 2. Parameters are U th = 0.5 V, V OH = 1 V, k = 100, T S = 9τ, t 0 = 3 τ, τ = 1 s. In this letter, we have considered the propagation of an overthreshold signal through a nonlinear dissipative chain of triggers. We have analytically proved in this exemple that, without noise, the dissipation leads to a maximal distance of propagation n max. Then, adding an appropriate amount of noise enhances propagation, since it allows the information signal to propagate farther in the lat- 4

5 tice (n max > n max ). References Benzi R., Sutera A. & Vulpiani A. [191] The mechanism of stochastic resonance. Phys. A, 14, Benzi R., G. Parisi, A. Sutera, & A. Vulpiani [192] Stochastic resonance in climate changes Tellus, 34, Chapeau-Blondeau F. [1999] Noise-assisted propagation over a nonlinear line of threshold elements Electron. Lett., 13, Chapeau-Blondeau F. & Rojas-Varela. [2000] Nonlinear signal propagation enhanced by noise via stochastic resonance Int.. Bifurcation and Chaos, 10, Ditzinger T., Stadler M., Struber D., & Kelso.A.S. [2000] Noise improves three-dimensional perception: Stochastic resonance and other impacts of noise to the perception of autostereograms Phys. Rev. E, 2, Fauve S. & F. Heslot [193] Stochastic resonance in a bistable system Phys. Lett. A, 9, 5-. Gammaitoni L., Hng P.ung P. & Marchesoni F. [199] Stochastic Resonance Rev. Mod. Phys., 0, Gammaitoni L., Lcher M., Bulsara A., Hnggi P., Neff., Wiesenfeld K., Ditto W. & Inchiosa M. E. [1999] Controlling stochastic resonance Phys. Rev. Lett., 23, Lindner. F., Meadows B. K., Ditto W. L., Inchiosa M. E. & Bulsara A.R. [1995] Array enhanced stochastic resonance and spatiotemporal synchronization Phys. Rev. Lett., 5, 3-6. Lindner. F., Chandramouli S., Bulsara A. R., Lcher M. & Ditto W. L. [199] Noise enhanced propagation Phys. Rev. Lett., 23, Löcher M., Cigna D. & Hunt E. R., [199] Noise substained propagation of a signal in coupled bistable electronic elements Phys. Rev. Lett., 0, Longtin A. [1993] Stochastic resonance in neuron models. Statist. Phys., 0, Melkinov V.I. [1993] Schmitt trigger: a solvable model of stochastic resonance Phys. Rev. E, 4, Nicolis C. [192] Stochastic aspects of climatic transitions-response to periodic forcing Tellus, 34, 1-9. Simonotto E., Riani M., Seife C., Roberts M., Twitty., & Moss F. [199] Visual perception of stochastic resonance Phys. Rev. Lett., 6, Zeng F., Fu Q. & Morse R. [2000] Human hearing enhanced by noise Brain Research, 69, Zhang Y., Hu G., & Gammaitoni L., [199] Signal transmission in one-way coupled bistable systems: Noise effect Phys. Rev. E, 3, Gebeshuber I. C. [2000] The influence of stochastic behavior on the human threshold of hearing Chaos, Solitons and Fractals, 11, Godivier X. & Chapeau-Blondeau F. [199] Noiseassisted signal transmission in a nonlinear electronic comparator: Experiment and theory Signal Processing, 56,

March 9, :18 Int J. Bifurcation and Chaos/INSTRUCTION FILE Morfu2v2 EFFECT OF NOISE AND STRUCTURAL INHOMOGENEITIES IN REACTION DIFFUSION MEDIA

March 9, :18 Int J. Bifurcation and Chaos/INSTRUCTION FILE Morfu2v2 EFFECT OF NOISE AND STRUCTURAL INHOMOGENEITIES IN REACTION DIFFUSION MEDIA March 9, 2007 10:18 Int J. Bifurcation and Chaos/INSTRUCTION FILE Int J. Bifurcation and Chaos Submission Style EFFECT OF NOISE AND STRUCTURAL INHOMOGENEITIES IN REACTION DIFFUSION MEDIA S. Morfu Laboratoire

More information

arxiv: v1 [nlin.ps] 21 Sep 2008

arxiv: v1 [nlin.ps] 21 Sep 2008 Stochastic Resonance in the Fermi-Pasta-Ulam Chain George Miloshevich, Ramaz Khomeriki,, Stefano Ruffo () Physics Department, Tbilisi State University, 8 Tbilisi (Georgia) () Max-Planck-Institut fur Physik

More information

arxiv: v1 [nlin.ao] 4 Nov 2009

arxiv: v1 [nlin.ao] 4 Nov 2009 One-bit stochastic resonance storage device S. A. Ibáñez 1 P. I. Fierens 1 G. A. Patterson 2 R. P. J. Perazzo 1 D. F. Grosz 1,2,3 November 17, 2018 arxiv:0911.0878v1 [nlin.ao] 4 Nov 2009 Abstract The increasing

More information

Ordering periodic spatial structures by non-equilibrium uctuations

Ordering periodic spatial structures by non-equilibrium uctuations Physica A 277 (2000) 327 334 www.elsevier.com/locate/physa Ordering periodic spatial structures by non-equilibrium uctuations J.M.G. Vilar a;, J.M. Rub b a Departament de F sica Fonamental, Facultat de

More information

Stochastic resonance of electrochemical aperiodic spike trains

Stochastic resonance of electrochemical aperiodic spike trains Stochastic resonance of electrochemical aperiodic spike trains P. Parmananda, 1 Gerardo J. Escalera Santos, 1 M. Rivera, 1 and Kenneth Showalter 2 1 Facultad de Ciencias, UAEM, Avenida Universidad 1001,

More information

Nonlinear Stochastic Resonance with subthreshold rectangular pulses arxiv:cond-mat/ v1 [cond-mat.stat-mech] 15 Jan 2004.

Nonlinear Stochastic Resonance with subthreshold rectangular pulses arxiv:cond-mat/ v1 [cond-mat.stat-mech] 15 Jan 2004. Nonlinear Stochastic Resonance with subthreshold rectangular pulses arxiv:cond-mat/4163v1 [cond-mat.stat-mech] 15 Jan 4 Jesús Casado-Pascual, José Gómez-Ordóñez, and Manuel Morillo Física Teórica, Universidad

More information

Stochastic resonance and the benefit of noise in nonlinear systems

Stochastic resonance and the benefit of noise in nonlinear systems Noise, Oscillators and Algebraic Randomness From Noise in Communication Systems to Number Theory. pp. 137-155 ; M. Planat, ed., Lecture Notes in Physics, Vol. 550, Springer (Berlin) 2000. Stochastic resonance

More information

Enhancing aperiodic stochastic resonance through noise modulation

Enhancing aperiodic stochastic resonance through noise modulation CHAOS VOLUME 8, NUMBER 3 SEPTEMBER 1998 Enhancing aperiodic stochastic resonance through noise modulation Carson C. Chow Center for BioDynamics and Department of Mathematics, Boston University, Boston,

More information

Signal-to-noise ratio of a dynamical saturating system: Switching from stochastic resonator to signal processor

Signal-to-noise ratio of a dynamical saturating system: Switching from stochastic resonator to signal processor Physica A 387 (2008) 2394 2402 www.elsevier.com/locate/physa Signal-to-noise ratio of a dynamical saturating system: Switching from stochastic resonator to signal processor François Chapeau-Blondeau a,

More information

Aperiodic stochastic resonance and phase synchronization

Aperiodic stochastic resonance and phase synchronization Physics Letters A 326 (2004) 391 396 www.elsevier.com/locate/pla Aperiodic stochastic resonance and phase synchronization Kwangho Park a, Ying-Cheng Lai a,b,, Zonghua Liu a, Arje Nachman c a Department

More information

arxiv:chao-dyn/ v1 20 May 1994

arxiv:chao-dyn/ v1 20 May 1994 TNT 94-4 Stochastic Resonance in Deterministic Chaotic Systems A. Crisanti, M. Falcioni arxiv:chao-dyn/9405012v1 20 May 1994 Dipartimento di Fisica, Università La Sapienza, I-00185 Roma, Italy G. Paladin

More information

NOISE ENHANCED ANISOTROPIC DIFFUSION FOR SCALAR IMAGE RESTORATION. 6, avenue du Ponceau Cergy-Pontoise, France.

NOISE ENHANCED ANISOTROPIC DIFFUSION FOR SCALAR IMAGE RESTORATION. 6, avenue du Ponceau Cergy-Pontoise, France. NOISE ENHANCED ANISOTROPIC DIFFUSION FOR SCALAR IMAGE RESTORATION Aymeric HISTACE 1, David ROUSSEAU 2 1 Equipe en Traitement d'image et du Signal UMR CNRS 8051 6, avenue du Ponceau 95014 Cergy-Pontoise,

More information

STOCHASTIC RESONANCE IN MONOSTABLE SYSTEMS

STOCHASTIC RESONANCE IN MONOSTABLE SYSTEMS Published in J. Phys. A: Mat. Gen. 26, L385-39 (1993). STOCHASTIC RESONANCE IN MONOSTABLE SYSTEMS N G Stocks, N D Stein and P V E McClintock School of Physics and Materials, Lancaster University, Lancaster,

More information

Stochastic resonance in a monostable system driven by square-wave signal and dichotomous noise

Stochastic resonance in a monostable system driven by square-wave signal and dichotomous noise Stochastic resonance in a monostable system driven by square-wave signal and dichotomous noise Guo Feng( 郭锋 ) a), Luo Xiang-Dong( 罗向东 ) a), Li Shao-Fu( 李少甫 ) a), and Zhou Yu-Rong( 周玉荣 ) b) a) School of

More information

Characterization of stochastic resonance

Characterization of stochastic resonance EUROPHYSICS LETTERS 15 May 25 Europhys. Lett., 7 (4), pp. 432 438 (25) DOI: 1.129/epl/i25-121-7 Characterization of stochastic resonance K. Park 1 and Y.-C. Lai 2 1 Department of Mathematics, Arizona State

More information

Effects of colored noise on stochastic resonance in a bistable system subject to multiplicative and additive noise

Effects of colored noise on stochastic resonance in a bistable system subject to multiplicative and additive noise PHYSICAL REVIEW E, VOLUME 63, 031107 Effects of colored noise on stochastic resonance in a bistable system subject to multiplicative and additive noise Ya Jia, 1, * Xiao-ping Zheng, 1 Xiang-ming Hu, 1

More information

Stochastic resonance in the absence and presence of external signals for a chemical reaction

Stochastic resonance in the absence and presence of external signals for a chemical reaction JOURNAL OF CHEMICAL PHYSICS VOLUME 110, NUMBER 7 15 FEBRUARY 1999 Stochastic resonance in the absence and presence of external signals for a chemical reaction Lingfa Yang, Zhonghuai Hou, and Houwen Xin

More information

On the use of multistability for image processing

On the use of multistability for image processing On the use of multistability for image processing S. Morfu, B. Nofiele, P. Marquié Laboratoire d Electronique, Informatique et Image (LE2i) UMR Cnrs 5158, Aile des Sciences de l Ingénieur, BP 80, 2108

More information

Suprathreshold stochastic resonance and signal-to-noise ratio improvement in arrays of comparators

Suprathreshold stochastic resonance and signal-to-noise ratio improvement in arrays of comparators Physics Letters A 321 (2004) 280 290 www.elsevier.com/locate/pla Suprathreshold stochastic resonance and signal-to-noise ratio improvement in arrays of comparators David Rousseau, François Chapeau-Blondeau

More information

Genetic transcriptional regulatory model driven by the time-correlated noises

Genetic transcriptional regulatory model driven by the time-correlated noises Brazilian Journal of Physics, vol. 40, no. 3, September, 010 95 Genetic transcriptional regulatory model driven by the time-correlated noises Xiao-miao Zhang, Bao-quan Ai, and Jian-wen Xiong Laboratory

More information

Pacemaker enhanced noise-induced synchrony in cellular arrays

Pacemaker enhanced noise-induced synchrony in cellular arrays Physics Letters A 353 (2006) 372 377 www.elsevier.com/locate/pla Pacemaker enhanced noise-induced synchrony in cellular arrays Matjaž Perc, Marko Marhl Department of Physics, Faculty of Education, University

More information

Application of nonlinear systems for designing low-power logic gates based on stochastic resonance

Application of nonlinear systems for designing low-power logic gates based on stochastic resonance NOLTA, IEICE Paper Application of nonlinear systems for designing low-power logic gates based on stochastic resonance Gonzalez-Carabarin Lizeth 1,TetsuyaAsai 1a), and Masato Motomura 1 1 Graduate School

More information

Coherence and stochastic resonance in a two-state system

Coherence and stochastic resonance in a two-state system PHYSICAL REVIEW E VOLUME 61, NUMBER 6 JUNE 2000 Coherence and stochastic resonance in a two-state system Benjamin Lindner and Lutz Schimansky-Geier Humboldt-University at Berlin, Invalidenstrasse 110,

More information

Bill Scheftic Feb 2nd 2008 Atmo595c

Bill Scheftic Feb 2nd 2008 Atmo595c Bill Scheftic Feb 2nd 2008 Atmo595c Review: White Noise and Red Noise ` ` Hasselman s noise forced climate External Climate forcings: Insolation Cycles Mechanisms for continuous climate variability Stochastic/Coherence

More information

Effect of common noise on phase synchronization in coupled chaotic oscillators

Effect of common noise on phase synchronization in coupled chaotic oscillators CHAOS 17, 013105 2007 Effect of common noise on phase synchronization in coupled chaotic oscillators Kwangho Park Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287 Ying-Cheng

More information

Linear and nonlinear approximations for periodically driven bistable systems

Linear and nonlinear approximations for periodically driven bistable systems Invited Paper Linear and nonlinear approximations for periodically driven bistable systems Alexander A. Dubkov a, Bernardo Spagnolo b, and Davide Valenti b a Radiophysics Department, Nizhni Novgorod State

More information

A Possible Model of Noise EnhancedVisual Perception in Human Vision

A Possible Model of Noise EnhancedVisual Perception in Human Vision A Possible Model of Noise EnhancedVisual Perception in Human Vision Ajanta Kundu Applied Nuclear Physics Division Saha Institute of Nuclear Physics 1/AF Bidhannagar, Kolkata, India ajanta.kundu@saha.ac.in

More information

Performance comparison of stochastic resonance receiver with Schmitt trigger, comparator, and three-level device for subthreshold signal reception

Performance comparison of stochastic resonance receiver with Schmitt trigger, comparator, and three-level device for subthreshold signal reception NOLTA, IEICE Paper Performance comparison of stochastic resonance receiver with Schmitt trigger, comparator, and three-level device for subthreshold signal reception Hiroya Tanaka 1a), Takaya Yamazato

More information

arxiv: v1 [nlin.ao] 12 Jun 2008

arxiv: v1 [nlin.ao] 12 Jun 2008 Diversity-induced resonance in a system of globally coupled linear oscillators Raúl Toral 1, Emilio Hernández-García 1, James D. Gunton 2 1- IFISC (Instituto de Física Interdisciplinar y Sistemas Complejos),

More information

Compactlike Kink Solutions in Reaction Diffusion Systems. Abstract

Compactlike Kink Solutions in Reaction Diffusion Systems. Abstract Compactlike Kink Solutions in Reaction Diffusion Systems J.C. Comte Physics Department, University of Crete and Foundation for Research and Technology-Hellas P. O. Box 2208, 71003 Heraklion, Crete, Greece

More information

Noise Induced Phase Transition in a Two-dimensional Coupled Map Lattice

Noise Induced Phase Transition in a Two-dimensional Coupled Map Lattice Noise Induced Phase Transition in a Two-dimensional Coupled Map Lattice Valery I. Sbitnev * Department of Condensed State Research, B. P. Konstantinov Petersburg Nuclear Physics Institute, Russian Academy

More information

The correlation between stochastic resonance and the average phase-synchronization time of a bistable system driven by colour-correlated noises

The correlation between stochastic resonance and the average phase-synchronization time of a bistable system driven by colour-correlated noises Chin. Phys. B Vol. 19, No. 1 (010) 01050 The correlation between stochastic resonance and the average phase-synchronization time of a bistable system driven by colour-correlated noises Dong Xiao-Juan(

More information

Lecture 4: Importance of Noise and Fluctuations

Lecture 4: Importance of Noise and Fluctuations Lecture 4: Importance of Noise and Fluctuations Jordi Soriano Fradera Dept. Física de la Matèria Condensada, Universitat de Barcelona UB Institute of Complex Systems September 2016 1. Noise in biological

More information

Useful Noise Effect for Nonlinear PDE Based Restoration of Scalar Images

Useful Noise Effect for Nonlinear PDE Based Restoration of Scalar Images International Journal of Computer Information Systems and Industrial Management Applications. ISSN 25-7988 Volume 4 (22) pp. 4 49 c MIR Labs, www.mirlabs.net/ijcisim/index.html Useful Noise Effect for

More information

Optimal Mean-Square Noise Benefits in Quantizer-Array Linear Estimation Ashok Patel and Bart Kosko

Optimal Mean-Square Noise Benefits in Quantizer-Array Linear Estimation Ashok Patel and Bart Kosko IEEE SIGNAL PROCESSING LETTERS, VOL. 17, NO. 12, DECEMBER 2010 1005 Optimal Mean-Square Noise Benefits in Quantizer-Array Linear Estimation Ashok Patel and Bart Kosko Abstract A new theorem shows that

More information

Nonlinear Systems for Image Processing

Nonlinear Systems for Image Processing Nonlinear Systems for Image Processing Saverio Morfu, Patrick Marquié, Brice Nofiele, Dominique Ginhac To cite this version: Saverio Morfu, Patrick Marquié, Brice Nofiele, Dominique Ginhac. Nonlinear Systems

More information

Signal amplification in NbN superconducting resonators via stochastic resonance

Signal amplification in NbN superconducting resonators via stochastic resonance Physics Letters A 370 (2007) 449 453 www.elsevier.com/locate/pla Signal amplification in NbN superconducting resonators via stochastic resonance Baleegh Abdo, Eran Segev, Oleg Shtempluck, Eyal Buks Microelectronics

More information

Vibrational resonance

Vibrational resonance Published in J. Phys. A: Math. Gen. 33, L433 L438 (2000). LETTER TO THE EDITOR Vibrational resonance P S Landa andpvemcclintock Department of Physics, Lomonosov Moscow State University, 119899 Moscow,

More information

A short tutorial on optical rogue waves

A short tutorial on optical rogue waves A short tutorial on optical rogue waves John M Dudley Institut FEMTO-ST CNRS-Université de Franche-Comté Besançon, France Experiments in collaboration with the group of Guy Millot Institut Carnot de Bourgogne

More information

arxiv:nlin/ v1 [nlin.ps] 17 Jun 2005

arxiv:nlin/ v1 [nlin.ps] 17 Jun 2005 Stochastic Resonance in Underdamped, Bistable Systems arxiv:nlin/0506039v1 [nlin.ps] 17 Jun 2005 Rajarshi Ray a,b and Supratim Sengupta c,d a Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai

More information

STOCHASTIC RESONANCE IN THE INFORMATION CAPACITY OF A NONLINEAR DYNAMIC SYSTEM

STOCHASTIC RESONANCE IN THE INFORMATION CAPACITY OF A NONLINEAR DYNAMIC SYSTEM International Journal of ifurcation and Chaos, Vol. 8, No. 3 (998) 58 589 c World Scientific Publishing Company STOCHSTIC RESONNCE IN THE INFORMTION CPCITY OF NONLINER DYNMIC SYSTEM XVIER GODIVIER and

More information

Group interactions of dissipative solitons in a laser cavity: the case of 2+1

Group interactions of dissipative solitons in a laser cavity: the case of 2+1 Group interactions of dissipative solitons in a laser cavity: the case of +1 Philippe Grelu and Nail Akhmediev * Laboratoire de Physique de l Université de Bourgogne, Unité Mixte de Recherche 507 du Centre

More information

arxiv:chao-dyn/ v1 5 Mar 1996

arxiv:chao-dyn/ v1 5 Mar 1996 Turbulence in Globally Coupled Maps M. G. Cosenza and A. Parravano Centro de Astrofísica Teórica, Facultad de Ciencias, Universidad de Los Andes, A. Postal 26 La Hechicera, Mérida 5251, Venezuela (To appear,

More information

Effect of Non Gaussian Noises on the Stochastic Resonance-Like Phenomenon in Gated Traps. Abstract

Effect of Non Gaussian Noises on the Stochastic Resonance-Like Phenomenon in Gated Traps. Abstract Effect of Non Gaussian Noises on the Stochastic Resonance-Like Phenomenon in Gated Traps Jorge A. Revelli 1 Alejandro D. Sánchez 2, and Horacio S. Wio 1 1) Grupo de Física Estadística Centro Atómico Bariloche

More information

Array enhanced coherence resonance and forced dynamics in. coupled FitzHugh Nagumo neurons with noise

Array enhanced coherence resonance and forced dynamics in. coupled FitzHugh Nagumo neurons with noise Array enhanced coherence resonance and forced dynamics in coupled FitzHugh Nagumo neurons with noise Yuji Shinohara, Takashi Kanamaru, Hideyuki Suzuki, Takehiko Horita, and Kazuyuki Aihara, Department

More information

Robust stochastic resonance for simple threshold neurons

Robust stochastic resonance for simple threshold neurons PHYSICAL REVIEW E 70, 031911 (004) Robust stochastic resonance for simple threshold neurons Bart Kosko 1 and Sanya Mitaim 1 Department of Electrical Engineering, Signal and Image Processing Institute,

More information

STUDY OF SYNCHRONIZED MOTIONS IN A ONE-DIMENSIONAL ARRAY OF COUPLED CHAOTIC CIRCUITS

STUDY OF SYNCHRONIZED MOTIONS IN A ONE-DIMENSIONAL ARRAY OF COUPLED CHAOTIC CIRCUITS International Journal of Bifurcation and Chaos, Vol 9, No 11 (1999) 19 4 c World Scientific Publishing Company STUDY OF SYNCHRONIZED MOTIONS IN A ONE-DIMENSIONAL ARRAY OF COUPLED CHAOTIC CIRCUITS ZBIGNIEW

More information

Noisy dynamics in nanoelectronic systems. Technische Physik, Universität Würzburg, Germany

Noisy dynamics in nanoelectronic systems. Technische Physik, Universität Würzburg, Germany Noisy dynamics in nanoelectronic systems Lukas Worschech Technische Physik, Universität Würzburg, Germany Team Transport: FH F. Hartmann, SK S. Kremling, S. SGöpfert, L. LGammaitoni i Technology: M. Emmerling,

More information

Stochastic resonance Evgeny Bogomolny ID

Stochastic resonance Evgeny Bogomolny ID Non-linear dynamics project Guided by prof. Y.Zarmi Stochastic resonance Evgeny Bogomolny ID 306654559 Preface Stochastic resonance (SR) provides a intriguing example of a noise-induced transition in a

More information

Energy harvesting in nanoelectronic devices. Technische Physik, Universität Würzburg, Germany

Energy harvesting in nanoelectronic devices. Technische Physik, Universität Würzburg, Germany Energy harvesting in nanoelectronic devices Lukas Worschech Technische Physik, Universität Würzburg, Germany Energy harvesting with nanoelectronics Energy harvesting: Energy provider+transducer+rectifier

More information

Persistency of noise-induced spatial periodicity in excitable media

Persistency of noise-induced spatial periodicity in excitable media EUROPHYSICS LETTERS 1 December 2005 Europhys. Lett., 72 (5), pp. 712 718 (2005) DOI: 10.1209/epl/i2005-10298-4 Persistency of noise-induced spatial periodicity in excitable media M. Perc Department of

More information

in a Chaotic Neural Network distributed randomness of the input in each neuron or the weight in the

in a Chaotic Neural Network distributed randomness of the input in each neuron or the weight in the Heterogeneity Enhanced Order in a Chaotic Neural Network Shin Mizutani and Katsunori Shimohara NTT Communication Science Laboratories, 2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 69-237 Japan shin@cslab.kecl.ntt.co.jp

More information

Asynchronous updating of threshold-coupled chaotic neurons

Asynchronous updating of threshold-coupled chaotic neurons PRAMANA c Indian Academy of Sciences Vol. 70, No. 6 journal of June 2008 physics pp. 1127 1134 Asynchronous updating of threshold-coupled chaotic neurons MANISH DEV SHRIMALI 1,2,3,, SUDESHNA SINHA 4 and

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 6 Sep 1999

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 6 Sep 1999 Enhanced Pulse Propagation in Non-Linear Arrays of Oscillators arxiv:cond-mat/996438v2 [cond-mat.stat-mech] 6 Sep 1999 Antonio Sarmiento, Ramon Reigada, Aldo H. Romero, and Katja Lindenberg Department

More information

STOCHASTIC RESONANCE (SR) is a nonlinear physical

STOCHASTIC RESONANCE (SR) is a nonlinear physical 3172 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 7, JULY 2007 Theory of the Stochastic Resonance Effect in Signal Detection: Part I Fixed Detectors Hao Chen, Student Member, IEEE, Pramod K. Varshney,

More information

Stochastic Resonance of a Flexible Chain Crossing over a Barrier

Stochastic Resonance of a Flexible Chain Crossing over a Barrier arxiv:0911.2825v2 [cond-mat.soft] 17 Nov 2009 Stochastic Resonance of a Flexible Chain Crossing over a Barrier Mesfin Asfaw a and Wokyung Sung b a Asian Pacific Center for Theoretical Physics, Pohang 790-784,

More information

Stochastic Oscillator Death in Globally Coupled Neural Systems

Stochastic Oscillator Death in Globally Coupled Neural Systems Journal of the Korean Physical Society, Vol. 52, No. 6, June 2008, pp. 19131917 Stochastic Oscillator Death in Globally Coupled Neural Systems Woochang Lim and Sang-Yoon Kim y Department of Physics, Kangwon

More information

This article was originally published in a journal published by Elsevier, and the attached copy is provided by Elsevier for the author s benefit and for the benefit of the author s institution, for non-commercial

More information

WEAK SIGNAL DETECTION BASED ON TWO DIMENSIONAL STOCHASTIC RESONANCE. Leonardo Barbini, Matthew O. T. Cole, Andrew J. Hillis, Jonathan L.

WEAK SIGNAL DETECTION BASED ON TWO DIMENSIONAL STOCHASTIC RESONANCE. Leonardo Barbini, Matthew O. T. Cole, Andrew J. Hillis, Jonathan L. WEAK SIGNAL DETECTION BASED ON TWO DIMENSIONAL STOCHASTIC RESONANCE Leonardo Barbini, Matthew O. T. Cole, Andrew J. Hillis, Jonathan L. du Bois University of Bath Department of Mechanical Engineering Claverton

More information

Parameter Diversity Induced Multiple Spatial Coherence Resonances and Spiral Waves in Neuronal Network with and Without Noise

Parameter Diversity Induced Multiple Spatial Coherence Resonances and Spiral Waves in Neuronal Network with and Without Noise Commun. Theor. Phys. 57 (2012) 817 824 Vol. 57, No. 5, May 15, 2012 Parameter Diversity Induced Multiple Spatial Coherence Resonances and Spiral Waves in Neuronal Network with and Without Noise LI Yu-Ye

More information

Bidirectional Coupling of two Duffing-type Circuits

Bidirectional Coupling of two Duffing-type Circuits Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation, Athens, Greece, August 4-6, 7 45 Bidirectional Coupling of two Duffing-type Circuits Ch. K. VOLOS, I.

More information

Optimizing the speckle noise for maximum efficacy of data acquisition in coherent imaging

Optimizing the speckle noise for maximum efficacy of data acquisition in coherent imaging Chapeau-Blondeau et al. Vol. 25, No. 6/ June 2008/J. Opt. Soc. Am. A 1287 Optimizing the speckle noise for maximum efficacy of data acquisition in coherent imaging François Chapeau-Blondeau, 1 David Rousseau,

More information

Stochastic resonance in noisy threshold neurons

Stochastic resonance in noisy threshold neurons Neural Networks 16 (2003) 755 761 2003 Special issue Stochastic resonance in noisy threshold neurons Bart Kosko a, *, Sanya Mitaim b www.elsevier.com/locate/neunet a Department of Electrical Engineering,

More information

Time Varying Circuit Analysis

Time Varying Circuit Analysis MAS.836 Sensor Systems for Interactive Environments th Distributed: Tuesday February 16, 2010 Due: Tuesday February 23, 2010 Problem Set # 2 Time Varying Circuit Analysis The purpose of this problem set

More information

ANALYTICAL DETERMINATION OF INITIAL CONDITIONS LEADING TO FIRING IN NERVE FIBERS

ANALYTICAL DETERMINATION OF INITIAL CONDITIONS LEADING TO FIRING IN NERVE FIBERS ANALYTICAL DETERMINATION OF INITIAL CONDITIONS LEADING TO FIRING IN NERVE FIBERS Sabir Jacquir, Stéphane Binczak, Jean-Marie Bilbault To cite this version: Sabir Jacquir, Stéphane Binczak, Jean-Marie Bilbault.

More information

K. Pyragas* Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania Received 19 March 1998

K. Pyragas* Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania Received 19 March 1998 PHYSICAL REVIEW E VOLUME 58, NUMBER 3 SEPTEMBER 998 Synchronization of coupled time-delay systems: Analytical estimations K. Pyragas* Semiconductor Physics Institute, LT-26 Vilnius, Lithuania Received

More information

Time Delay Induced Stochastic Resonance in One Species Competition Ecosystem without a Periodic Signal

Time Delay Induced Stochastic Resonance in One Species Competition Ecosystem without a Periodic Signal Commun. Theor. Phys. 57 (2012) 619 623 Vol. 57, No. 4, April 15, 2012 Time Delay Induced Stochastic Resonance in One Species Competition Ecosystem without a Periodic Signal WANG Xiu-Hua ( ), 1 BAI Li (Ü

More information

RICH VARIETY OF BIFURCATIONS AND CHAOS IN A VARIANT OF MURALI LAKSHMANAN CHUA CIRCUIT

RICH VARIETY OF BIFURCATIONS AND CHAOS IN A VARIANT OF MURALI LAKSHMANAN CHUA CIRCUIT International Journal of Bifurcation and Chaos, Vol. 1, No. 7 (2) 1781 1785 c World Scientific Publishing Company RICH VARIETY O BIURCATIONS AND CHAOS IN A VARIANT O MURALI LAKSHMANAN CHUA CIRCUIT K. THAMILMARAN

More information

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks Commun. Theor. Phys. (Beijing, China) 40 (2003) pp. 607 613 c International Academic Publishers Vol. 40, No. 5, November 15, 2003 Effects of Interactive Function Forms in a Self-Organized Critical Model

More information

Nature-inspired Analog Computing on Silicon

Nature-inspired Analog Computing on Silicon Nature-inspired Analog Computing on Silicon Tetsuya ASAI and Yoshihito AMEMIYA Division of Electronics and Information Engineering Hokkaido University Abstract We propose CMOS analog circuits that emulate

More information

Analysis of Neural Networks with Chaotic Dynamics

Analysis of Neural Networks with Chaotic Dynamics Chaos, Solitonr & Fructals Vol. 3, No. 2, pp. 133-139, 1993 Printed in Great Britain @60-0779/93$6.00 + 40 0 1993 Pergamon Press Ltd Analysis of Neural Networks with Chaotic Dynamics FRANCOIS CHAPEAU-BLONDEAU

More information

Emergence of resonances in neural systems: the interplay between adaptive threshold and short-term synaptic plasticity

Emergence of resonances in neural systems: the interplay between adaptive threshold and short-term synaptic plasticity Emergence of resonances in neural systems: the interplay between adaptive threshold and short-term synaptic plasticity Jorge F. Mejias 1,2 and Joaquín J. Torres 2 1 Department of Physics and Center for

More information

Chapter Three Theoretical Description Of Stochastic Resonance 24

Chapter Three Theoretical Description Of Stochastic Resonance 24 Table of Contents List of Abbreviations and Symbols 5 Chapter One Introduction 8 1.1 The Phenomenon of the Stochastic Resonance 8 1.2 The Purpose of the Study 10 Chapter Two The Experimental Set-up 12

More information

Optimal quantization for energy-efficient information transfer in a population of neuron-like devices

Optimal quantization for energy-efficient information transfer in a population of neuron-like devices Optimal quantization for energy-efficient information transfer in a population of neuron-like devices Mark D. McDonnell a, Nigel G. Stocks b, Charles E. M. Pearce c, Derek Abbott a a Centre for Biomedical

More information

arxiv: v1 [physics.bio-ph] 2 Jul 2008

arxiv: v1 [physics.bio-ph] 2 Jul 2008 Modeling Excitable Systems Jarrett L. Lancaster and Edward H. Hellen University of North Carolina Greensboro, Department of Physics and Astronomy, Greensboro, NC 27402 arxiv:0807.0451v1 [physics.bio-ph]

More information

Experimental and numerical realization of higher order autonomous Van der Pol-Duffing oscillator

Experimental and numerical realization of higher order autonomous Van der Pol-Duffing oscillator Indian Journal of Pure & Applied Physics Vol. 47, November 2009, pp. 823-827 Experimental and numerical realization of higher order autonomous Van der Pol-Duffing oscillator V Balachandran, * & G Kandiban

More information

Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback

Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback Gautam C Sethia and Abhijit Sen Institute for Plasma Research, Bhat, Gandhinagar 382 428, INDIA Motivation Neural Excitability

More information

Stable One-Dimensional Dissipative Solitons in Complex Cubic-Quintic Ginzburg Landau Equation

Stable One-Dimensional Dissipative Solitons in Complex Cubic-Quintic Ginzburg Landau Equation Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 5 Proceedings of the International School and Conference on Optics and Optical Materials, ISCOM07, Belgrade, Serbia, September 3 7, 2007 Stable One-Dimensional

More information

Demonstration of Chaos

Demonstration of Chaos revised 1/27/08 Demonstration of Chaos Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 Abstract A simple resonant inductor-resistor-diode series circuit can be used to

More information

Signal Processing and Control in Nonlinear Nanomechanical Systems

Signal Processing and Control in Nonlinear Nanomechanical Systems Signal Processing and Control in Nonlinear Nanomechanical Systems R. L. Badzey 1, G. Zolfagharkhani 1, S.-B. Shim 1,A.Gaidarzhy 1 and P. Mohanty 1 Department of Physics, Boston University, Boston, MA 2215,

More information

Wavelet Spectral Analysis of the Earth s Orbital Variations and Paleoclimatic Cycles

Wavelet Spectral Analysis of the Earth s Orbital Variations and Paleoclimatic Cycles 15 JANUARY 1998 LIU AND CHAO 227 Wavelet Spectral Analysis of the Earth s Orbital Variations and Paleoclimatic Cycles HAN-SHOU LIU AND BENJAMIN F. CHAO Geodynamics Branch, NASA/Goddard Space Flight Center,

More information

HSCoPP 2004 dynamics control in plasmas the experimentalist s point de vue

HSCoPP 2004 dynamics control in plasmas the experimentalist s point de vue HSCoPP 2004 dynamics control in plasmas the experimentalist s point de vue I. Controlling chaos II. III. Controlling noise Controlling turbulence Thomas Klinger - Max-Planck-Institut für Plasmaphysik Greifswald

More information

Stochastic resonance. Luca Gammaitoni. Peter Hänggi. Peter Jung. Fabio Marchesoni

Stochastic resonance. Luca Gammaitoni. Peter Hänggi. Peter Jung. Fabio Marchesoni Stochastic resonance Luca Gammaitoni Dipartimento di Fisica, Università di Perugia, and Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, VIRGO-Project, I-06100 Perugia, Italy Peter Hänggi Institut

More information

Breather Modes Induced by Localized RF Radiation: Analytical and Numerical Approaches

Breather Modes Induced by Localized RF Radiation: Analytical and Numerical Approaches Proceedings of the 5th International Conference on Nonlinear Dynamics ND-KhPI2016 September 27-30, 2016, Kharkov, Ukraine Breather Modes Induced by Localized RF Radiation: Analytical and Numerical Approaches

More information

Cutoff and leakage properties of bi-soliton and its existent parameter range

Cutoff and leakage properties of bi-soliton and its existent parameter range Cutoff and leakage properties of bi-soliton and its existent parameter range Akihiro Maruta * and Yoshifumi Asao Graduate School of Engineering, Osaka University - Yamada-oka, Suita, Osaka, 565-87 Japan

More information

An Introductory Course in Computational Neuroscience

An Introductory Course in Computational Neuroscience An Introductory Course in Computational Neuroscience Contents Series Foreword Acknowledgments Preface 1 Preliminary Material 1.1. Introduction 1.1.1 The Cell, the Circuit, and the Brain 1.1.2 Physics of

More information

(Entropic) Stochastic Resonance in Biological Systems at Mesoscale

(Entropic) Stochastic Resonance in Biological Systems at Mesoscale (Entropic) Stochastic Resonance in Biological Systems at Mesoscale Wokyung Sung Department of Physics, POSTECH, IBS center for Self-assembly and Complexity, Pohang, 790-784, South Korea As interconnected,

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 5 Oct 2005

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 5 Oct 2005 Moment Equations for a Spatially Extended System of Two Competing Species arxiv:cond-mat/0510104v1 [cond-mat.stat-mech] 5 Oct 2005 D. Valenti a, L. Schimansky-Geier b, X. Sailer b, and B. Spagnolo a a

More information

Stochastic resonance driven by time-modulated correlated white noise sources

Stochastic resonance driven by time-modulated correlated white noise sources PHYSICAL REVIEW E VOLUME 6, NUMBER 4 OCTOBER 000 Stochastic resonance driven by time-modulated correlated white noise sources Claudio J. Tessone, 1, * Horacio S. Wio, 1, and Peter Hänggi, 1 Grupo de Física

More information

On The Exact Solution of Newell-Whitehead-Segel Equation Using the Homotopy Perturbation Method

On The Exact Solution of Newell-Whitehead-Segel Equation Using the Homotopy Perturbation Method On The Exact Solution of Newell-Whitehead-Segel Equation Using the Homotopy Perturbation Method S. Salman Nourazar, Mohsen Soori, Akbar Nazari-Golshan To cite this version: S. Salman Nourazar, Mohsen Soori,

More information

Q. 1 Q. 25 carry one mark each.

Q. 1 Q. 25 carry one mark each. GATE 5 SET- ELECTRONICS AND COMMUNICATION ENGINEERING - EC Q. Q. 5 carry one mark each. Q. The bilateral Laplace transform of a function is if a t b f() t = otherwise (A) a b s (B) s e ( a b) s (C) e as

More information

Pulsed Lasers Revised: 2/12/14 15: , Henry Zmuda Set 5a Pulsed Lasers

Pulsed Lasers Revised: 2/12/14 15: , Henry Zmuda Set 5a Pulsed Lasers Pulsed Lasers Revised: 2/12/14 15:27 2014, Henry Zmuda Set 5a Pulsed Lasers 1 Laser Dynamics Puled Lasers More efficient pulsing schemes are based on turning the laser itself on and off by means of an

More information

Electronic Implementation of the Mackey-Glass Delayed Model

Electronic Implementation of the Mackey-Glass Delayed Model TRANSACTIONS ON CIRCUITS AND SYSTEMS I, VOL. X, NO. Y, Electronic Implementation of the Mackey-Glass Delayed Model Pablo Amil, Cecilia Cabeza, Arturo C. Martí arxiv:.v [nlin.cd] Aug Abstract The celebrated

More information

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design Chapter 4 Receiver Design Chapter 4 Receiver Design Probability of Bit Error Pages 124-149 149 Probability of Bit Error The low pass filtered and sampled PAM signal results in an expression for the probability

More information

PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW LETTERS PHYSICAL REVIEW LETTERS VOLUME 80 1 JUNE 1998 NUMBER 22 Field-Induced Stabilization of Activation Processes N. G. Stocks* and R. Mannella Dipartimento di Fisica, Università di Pisa, and Istituto Nazionale

More information

arxiv: v1 [physics.flu-dyn] 14 Jun 2014

arxiv: v1 [physics.flu-dyn] 14 Jun 2014 Observation of the Inverse Energy Cascade in the modified Korteweg de Vries Equation D. Dutykh and E. Tobisch LAMA, UMR 5127 CNRS, Université de Savoie, Campus Scientifique, 73376 Le Bourget-du-Lac Cedex,

More information

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS CHAPTER 4 SIGNA GENERATORS AND WAEFORM SHAPING CIRCUITS Chapter Outline 4. Basic Principles of Sinusoidal Oscillators 4. Op Amp RC Oscillators 4.3 C and Crystal Oscillators 4.4 Bistable Multivibrators

More information

Activity Driven Adaptive Stochastic. Resonance. Gregor Wenning and Klaus Obermayer. Technical University of Berlin.

Activity Driven Adaptive Stochastic. Resonance. Gregor Wenning and Klaus Obermayer. Technical University of Berlin. Activity Driven Adaptive Stochastic Resonance Gregor Wenning and Klaus Obermayer Department of Electrical Engineering and Computer Science Technical University of Berlin Franklinstr. 8/9, 187 Berlin fgrewe,obyg@cs.tu-berlin.de

More information

Localization and electron-phonon interactions in disordered systems

Localization and electron-phonon interactions in disordered systems EUROPHYSICS LETTERS 20 February 1996 Europhys. Lett., 33 (6), pp. 459-464 (1996) Localization and electron-phonon interactions in disordered systems G. Kopidakis 1, C. M. Soukoulis 1 and E. N. Economou

More information

Noise-assisted spike propagation in myelinated neurons

Noise-assisted spike propagation in myelinated neurons PHYSICAL REVIEW E 7, Noise-assisted spike propagation in myelinated neurons Anna Ochab-Marcinek,, Gerhard Schmid, Igor Goychuk, and Peter Hänggi Institut für Physik, Universität Augsburg, Universitätsstra

More information