A Study for the Moment of Wishart Distribution

Size: px
Start display at page:

Download "A Study for the Moment of Wishart Distribution"

Transcription

1 Applied Mathematical Sciences, Vol. 9, 2015, no. 73, HIKARI Ltd, A Study for the Moment of Wishart Distribution Changil Kim Department of Mathematics Education Dankook University 126 Jukjeon-dong, Yongin-si, Kyunggi-do , Korea Chul Kang Department of Applied Mathematics Hankyong National University 67 Seokjeong-dong, Anseong-si, Kyunggi-do , Korea Corresponding author Copyright c 2015 Changil Kim and Chul Kang. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract The skewness of a matrix quadratic form XX is obtained using the expectation of stochastic matrix and applying the properties of commutation matrices, where X N p,n (0, Σ, I n ). Keywords: Commutation matrix, Moment, Wishart distribution 1 Introduction Let p n stochastic matrix X be distributed as N p,n (0, Σ, Φ), where Σ : p p and Φ : n n are positive semidefinite, and E(X) = 0. Then, the variancecovariance matrix of the vectorization of X is Cov (vecx, vecx) = Φ Σ. For Φ = I n, XX is said to have Wishart distribution with scale matrix Σ and degrees of freedom parameter n, where I n is an n n identity matrix. Von Rosen (1988) has obtained moments of arbitrary order of matrix X, and using these has calculated the second order moment of quadratic form XAX, where A : n n is an arbitrary non-stochastic matrix. Neudecker and Wansbeek (1987) have also obtained the second order moment of XAX by calculating

2 3644 Changil Kim and Chul Kang the expectation of Y AY CY BY, where Y = X + M is the matrix of means, and A, B and C are n n arbitrary non-stochastic matrices. Tracy and Sultan (1993) obtained the third order moment of XAX using the sixth moment of matrix X. Kang and Kim (1996a) derived the vectorization of the general moment of XAX. Also Kang and Kim (1996b) derived the vectorization of the general moment of non-central Wishart distribution, using the vectorization of the general moment of XAX. We obtain the skewness of XX using the third moment of XX. Commutation matrices play a major role here. These and some useful results are presented in Section 2. The skewness of matrix quadratic form XX is obtained in Section 3. 2 Some Useful Results Definition 2.1 Let A = (a ij ) be an m n matrix and B = (b ij ) be a p q matrix. Then the Kronecker product A B of A and B is defined as A B = a 11 B a 12 B a 1n B a 21 B a 22 B a 2n B a m1 B a m2 B a mn B. Definition 2.2 Let A be an m n matrix and a i the ith column of A ; then veca is the mn column vector veca = [a 1, a 2,, a n]. Definition 2.3 Commutation matrix I m,n is an mn mn matrix containing mn blocks of order m n such that (ij)th blcok has a 1 in its (ji)th position and zeroes elsewhere. One has n m I m,n = (H i,j H i,j) i=1 j=1 where H i,j is an n m matrix with a 1 in its (ij)th position and zeroes elsewhere, and can be written as H i,j = e i e j, where e i is the ith unit column vector of order n. For an m m identity matrix I m and n n identity matrix I n, I m I n = I mn, (1) I 1 m,n = I m,n = I n,m, (2)

3 A Study for the moment of Wishart distribution 3645 and (I n I n,n I n ) (I n I n I n,n ) (I n I n,n I n ) = (I n I n I n,n ) (I n I n,n I n ) (I n I n I n,n ). For an m n matrix A, I n,m veca = veca, (A B) = A B. For A, B, C, and D conformable matrices, (A B) (C D) = (A B) + (A D) + (B C) + (B D). For A and B conformable matrices, vec A vecb = tr (AB). For an m n matrix A and a p q matrix B, vec (A B) = (I n I m,q I p ) (veca vecb). For A, B, and C conformable matrices, vec(acb) = (B A) vecc. For A, B, C, and D conformable matrices, (AB) (CD) = (A C) (B D). (3) For an m n matrix A and a p q matrix B, I m,p (A B) = (B A) I n,q. (4) For an m n matrix A and a p q matrix B, and an r s matrix C, A B C = I r,mp (C A B)I qm,s = I pr,s (B C A)I n,sq. (5) For an m n matrix A and a p q matrix B, and an r s matrix C, vec(a B C) = (I m I m,qs I pr ) (I mnq I p,s I r ) (veca vecb vecc). Balestra (1976) and Neudecker and Wansbeek (1983) discussed higher order commutation matrices, for which I ab,c = (I a,c I b ) (I a I b,c ) = (I b,c I a ) (I b I a,c ), (6) I a,bc = (I b I a,c ) (I a,b I c ) = (I c I a,b ) (I a,c I b ), (7)

4 3646 Changil Kim and Chul Kang I n,n 2I n,n 2 = I n 2,n and I n 2,nI n 2,n = I n,n 2. (8) When A = I n = Φ, E(XX ) = nσ where E(XX ) is the first moment of XX according to Magnus and Neudecker (1979). Von Resen (1988) obtained the second moment of XX, E ( 2 (XX ) ) = n(vecσvec Σ) + n 2 ( 2 Σ ) + ni p,p ( 2 Σ ). 3 Skewness of Wishart Distribution Notation P (k, l; m) = I p k,p l I p m, P (k; l, m) = I p k I p l,p m, V = (vecσvec Σ) Σ, and S X = XX. Tracy and Sultan(1993) gave the third moment of matrix quadratic form XX, in square matrix form, E ( 3 S X ) = n 3 ( 3 Σ) + n 2 V + n 2 Q ( 3 Σ) + nqp V P + np Q ( 3 Σ) + n 2 QP V P Q +nqp V +n 2 QP ( 3 Σ)+nV P +nv P Q+n 2 P ( 3 Σ)+nP V +np V P Q +n 2 P V P + n 2 QP Q ( 3 Σ). In fact, XX is distributed as Wishart distribution. Lemma 3.1 Let P = P (1; 1, 1), Q = P (1, 1; 1). Then (a) P 2 = I p 3 Q 2 = I p 3. (b) P 1 = P, Q 1 = Q. (c) P QP Q = QP, QP QP = P Q. P roof. (a) Using (1) and (2), we get Q 1 = Q. P 2 = (I p I p,p )(I p I p,p ) = I p I p 2 = I p 3. Similarly, we get Q 2 = I p 3. (b) They are trivial because of (a) in lemma 3.1. (c) Using (6), (7), and (8), we can derive and P QP Q = (I p I p,p )(I p,p I p )(I p I p,p )(I p,p I p ) = I p,p 2I p,p 2 = I p 2,p = QP QP QP = (I p,p I p )(I p I p,p )(I p,p I p )(I p I p,p ) = I p 2,pI p 2,p = I p,p 2 = P Q.

5 A Study for the moment of Wishart distribution 3647 Lemma 3.2 QP Q ( 3 Σ) = P ( 3 Σ) QP P roof. Let L = QP Q ( 3 Σ). Then P LP Q = P (QP Q ( 3 Σ)) P Q = QP ( 3 Σ) P Q = 3 Σ by (5) and (c) in lemma 3.1. Using P = P 1 and QP = (P Q) 1, L = P ( 3 Σ) QP. Lemma 3.3 P Q ( 3 Σ) QP = QP ( 3 Σ) P Q = 3 Σ P roof. They are trivial using (4) and (5). Lemma 3.4 QP Q ( 3 Σ) P Q = P ( 3 Σ). P roof. Let N = QP Q ( 3 Σ) P Q. Then P N = P QP Q ( 3 Σ) P Q = QP ( 3 Σ) P Q = 3 Σ by (5) and (c) in lemma 3.1. Using P = P 1, N = P 1 ( 3 Σ) = P ( 3 Σ). Theorem 3.5 Let a p n random matrix X be distributed as N p,n (0, Σ, Φ). Then E (S X S X ES X ) = n 2 V + n 3 ( 3 Σ) + n 2 Q ( 3 Σ). P roof. Since ES X = nσ and E ( 2 S X ) = n(vecσvec Σ) + n 2 ( 2 Σ) + ni p,p ( 2 Σ), E (S X S X ES X ) = E ( 2 S X ) ES X = [nvecσvec Σ + n 2 ( 2 Σ) + ni p,p ( 2 Σ)] nσ = n 2 [(vecσvec Σ) Σ] + n 3 ( 3 Σ) + n 2 [I p,p ( 2 Σ) I p Σ] = n 2 V + n 3 ( 3 Σ) + n 2 Q ( 3 Σ) using (4). Theorem 3.6 Let a p n random matrix X be distributed as N p,n (0, Σ, Φ). Then E (S X ES X S X ) = n 2 P QV QP + n 3 ( 3 Σ) + n 2 P ( 3 Σ) QP. P roof. Using (5), lemma 3.2, and lemma 3.3, E (S X ES X S X ) = E [I p,p 2 (S X S X ES X ) I p 2,p] = I p,p 2E (S X S X ES X ) I p 2,p = P QE (S X S X ES X ) QP = P Q [n 2 V + n 3 ( 3 Σ) + n 2 Q ( 3 Σ)] QP = n 2 P QV QP + n 3 P Q ( 3 Σ) QP + n 2 P ( 3 Σ) QP = n 2 P QV QP + n 3 ( 3 Σ) + n 2 P ( 3 Σ) QP. Theorem 3.7 Let a p n random matrix X be distributed as N p,n (0, Σ, Φ). Then E (ES X S X S X ) = n 2 QP V P Q + n 3 ( 3 Σ) + n 2 P ( 3 Σ).

6 3648 Changil Kim and Chul Kang P roof. Using (5), lemma 3.3, and lemma 3.4, E (S X ES X S X ) = E [I p 2,p (S X S X ES X ) I p,p 2] = QP E (S X S X ES X ) P Q = QP [n 2 V + n 3 ( 3 Σ) + n 2 Q ( 3 Σ)] P Q = n 2 QP V P Q + n 3 QP ( 3 Σ) P Q + n 2 QP Q ( 3 Σ) P Q = n 2 QP V P Q + n 3 ( 3 Σ) + n 2 P ( 3 Σ). Here is the key result of this paper. Theorem 3.8 E [ 3 (S X ES X )] = n [P V + V P + QP V + V P Q + P V P Q + QP V P + P Q ( 3 Σ)] +n 2 [P V P P QV QP + QP ( 3 Σ)] 2n 3 ( 3 Σ). P roof. E [ 3 (S X ES X )] = E [( 3 S X ) + (ES X S X ES X ) + (ES X ES X S X ) + (S X ES X ES X )] E [(ES X S X S X ) + (S X S X ES X ) + (S X ES X S X ) + ( 3 ES X )] = E ( 3 S X ) E(S X S X ES X ) E(S X ES X S X ) E(ES X S X S X ) + ( 3 ES X ). Using theorem 3.6, theorem 3.7, and theorem 3.8, E [ 3 (S X ES X )] = n [P V + V P + QP V + V P Q + P V P Q + QP V P + P Q ( 3 Σ)] +n 2 [P V P P QV QP + QP ( 3 Σ)] 2n 3 ( 3 Σ). References [1] P. Balestra, La Derivation Matricielle Collection del IME. Sirey, Paris, [2] H. Neudecker, and T. Wansbeek, Some results on communication matrices, with statistical applications, Cadad. J. Statist., 11 (1983), [3] H. Neudecker, and T. Wansbeek, Fourth-order properties of normally distributed random matrices, Linear Alg. Appl., 97 (1987), no. 3, [4] Von Rosen, Moments for matrix normal variables, Statistics, 19 (1988), [5] D. S. Tracy and S. A. Sultan, Third moment of matrix quadratic form, Stat. Prob. Letters, 16 (1993), no. 1,

7 A Study for the moment of Wishart distribution 3649 [6] C. Kang and B. Kim, The N-th moment of matrix quadratic form, Stat. Prob. Letters, 16 (1996a), no. 18, [7] C. Kang and B. Kim, The general moment of noncentral Wishart distribution, J. Korean Statist. Soc., 25 (1996b), Received: March 11, 2015; Publsihed: May 2, 2015

A Generalization of Generalized Triangular Fuzzy Sets

A Generalization of Generalized Triangular Fuzzy Sets International Journal of Mathematical Analysis Vol, 207, no 9, 433-443 HIKARI Ltd, wwwm-hikaricom https://doiorg/02988/ijma2077350 A Generalization of Generalized Triangular Fuzzy Sets Chang Il Kim Department

More information

Diameter of the Zero Divisor Graph of Semiring of Matrices over Boolean Semiring

Diameter of the Zero Divisor Graph of Semiring of Matrices over Boolean Semiring International Mathematical Forum, Vol. 9, 2014, no. 29, 1369-1375 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.47131 Diameter of the Zero Divisor Graph of Semiring of Matrices over

More information

Hyers-Ulam-Rassias Stability of a Quadratic-Additive Type Functional Equation on a Restricted Domain

Hyers-Ulam-Rassias Stability of a Quadratic-Additive Type Functional Equation on a Restricted Domain Int. Journal of Math. Analysis, Vol. 7, 013, no. 55, 745-75 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.013.394 Hyers-Ulam-Rassias Stability of a Quadratic-Additive Type Functional Equation

More information

KKM-Type Theorems for Best Proximal Points in Normed Linear Space

KKM-Type Theorems for Best Proximal Points in Normed Linear Space International Journal of Mathematical Analysis Vol. 12, 2018, no. 12, 603-609 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2018.81069 KKM-Type Theorems for Best Proximal Points in Normed

More information

The Standard Polynomial in Verbally Prime Algebras

The Standard Polynomial in Verbally Prime Algebras International Journal of Algebra, Vol 11, 017, no 4, 149-158 HIKARI Ltd, wwwm-hikaricom https://doiorg/101988/ija01775 The Standard Polynomial in Verbally Prime Algebras Geraldo de Assis Junior Departamento

More information

Generalized Boolean and Boolean-Like Rings

Generalized Boolean and Boolean-Like Rings International Journal of Algebra, Vol. 7, 2013, no. 9, 429-438 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2013.2894 Generalized Boolean and Boolean-Like Rings Hazar Abu Khuzam Department

More information

International Journal of Algebra, Vol. 7, 2013, no. 3, HIKARI Ltd, On KUS-Algebras. and Areej T.

International Journal of Algebra, Vol. 7, 2013, no. 3, HIKARI Ltd,   On KUS-Algebras. and Areej T. International Journal of Algebra, Vol. 7, 2013, no. 3, 131-144 HIKARI Ltd, www.m-hikari.com On KUS-Algebras Samy M. Mostafa a, Mokhtar A. Abdel Naby a, Fayza Abdel Halim b and Areej T. Hameed b a Department

More information

A Family of Nonnegative Matrices with Prescribed Spectrum and Elementary Divisors 1

A Family of Nonnegative Matrices with Prescribed Spectrum and Elementary Divisors 1 International Mathematical Forum, Vol, 06, no 3, 599-63 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/0988/imf0668 A Family of Nonnegative Matrices with Prescribed Spectrum and Elementary Divisors Ricardo

More information

Classifications of Special Curves in the Three-Dimensional Lie Group

Classifications of Special Curves in the Three-Dimensional Lie Group International Journal of Mathematical Analysis Vol. 10, 2016, no. 11, 503-514 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2016.6230 Classifications of Special Curves in the Three-Dimensional

More information

Solving Homogeneous Systems with Sub-matrices

Solving Homogeneous Systems with Sub-matrices Pure Mathematical Sciences, Vol 7, 218, no 1, 11-18 HIKARI Ltd, wwwm-hikaricom https://doiorg/112988/pms218843 Solving Homogeneous Systems with Sub-matrices Massoud Malek Mathematics, California State

More information

On the Power of Standard Polynomial to M a,b (E)

On the Power of Standard Polynomial to M a,b (E) International Journal of Algebra, Vol. 10, 2016, no. 4, 171-177 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2016.6214 On the Power of Standard Polynomial to M a,b (E) Fernanda G. de Paula

More information

Approximations to the t Distribution

Approximations to the t Distribution Applied Mathematical Sciences, Vol. 9, 2015, no. 49, 2445-2449 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.52148 Approximations to the t Distribution Bashar Zogheib 1 and Ali Elsaheli

More information

Stability of a Functional Equation Related to Quadratic Mappings

Stability of a Functional Equation Related to Quadratic Mappings International Journal of Mathematical Analysis Vol. 11, 017, no., 55-68 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/ijma.017.610116 Stability of a Functional Equation Related to Quadratic Mappings

More information

Direct Product of BF-Algebras

Direct Product of BF-Algebras International Journal of Algebra, Vol. 10, 2016, no. 3, 125-132 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2016.614 Direct Product of BF-Algebras Randy C. Teves and Joemar C. Endam Department

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 4

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 4 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 4 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory April 12, 2012 Andre Tkacenko

More information

Group Inverse for a Class of. Centrosymmetric Matrix

Group Inverse for a Class of. Centrosymmetric Matrix International athematical Forum, Vol. 13, 018, no. 8, 351-356 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/imf.018.8530 Group Inverse for a Class of Centrosymmetric atrix ei Wang and Junqing Wang

More information

A Fixed Point Approach to the Stability of a Quadratic-Additive Type Functional Equation in Non-Archimedean Normed Spaces

A Fixed Point Approach to the Stability of a Quadratic-Additive Type Functional Equation in Non-Archimedean Normed Spaces International Journal of Mathematical Analysis Vol. 9, 015, no. 30, 1477-1487 HIKARI Ltd, www.m-hikari.com http://d.doi.org/10.1988/ijma.015.53100 A Fied Point Approach to the Stability of a Quadratic-Additive

More information

Complete Ideal and n-ideal of B-algebra

Complete Ideal and n-ideal of B-algebra Applied Mathematical Sciences, Vol. 11, 2017, no. 35, 1705-1713 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.75159 Complete Ideal and n-ideal of B-algebra Habeeb Kareem Abdullah University

More information

of a Two-Operator Product 1

of a Two-Operator Product 1 Applied Mathematical Sciences, Vol. 7, 2013, no. 130, 6465-6474 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.39501 Reverse Order Law for {1, 3}-Inverse of a Two-Operator Product 1 XUE

More information

On Symmetric Bi-Multipliers of Lattice Implication Algebras

On Symmetric Bi-Multipliers of Lattice Implication Algebras International Mathematical Forum, Vol. 13, 2018, no. 7, 343-350 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2018.8423 On Symmetric Bi-Multipliers of Lattice Implication Algebras Kyung Ho

More information

Permanents and Determinants of Tridiagonal Matrices with (s, t)-pell Numbers

Permanents and Determinants of Tridiagonal Matrices with (s, t)-pell Numbers International Mathematical Forum, Vol 12, 2017, no 16, 747-753 HIKARI Ltd, wwwm-hikaricom https://doiorg/1012988/imf20177652 Permanents and Determinants of Tridiagonal Matrices with (s, t)-pell Numbers

More information

Finite Groups with ss-embedded Subgroups

Finite Groups with ss-embedded Subgroups International Journal of Algebra, Vol. 11, 2017, no. 2, 93-101 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ija.2017.7311 Finite Groups with ss-embedded Subgroups Xinjian Zhang School of Mathematical

More information

Diophantine Equations. Elementary Methods

Diophantine Equations. Elementary Methods International Mathematical Forum, Vol. 12, 2017, no. 9, 429-438 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.7223 Diophantine Equations. Elementary Methods Rafael Jakimczuk División Matemática,

More information

Improvements in Newton-Rapshon Method for Nonlinear Equations Using Modified Adomian Decomposition Method

Improvements in Newton-Rapshon Method for Nonlinear Equations Using Modified Adomian Decomposition Method International Journal of Mathematical Analysis Vol. 9, 2015, no. 39, 1919-1928 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.54124 Improvements in Newton-Rapshon Method for Nonlinear

More information

Some Reviews on Ranks of Upper Triangular Block Matrices over a Skew Field

Some Reviews on Ranks of Upper Triangular Block Matrices over a Skew Field International Mathematical Forum, Vol 13, 2018, no 7, 323-335 HIKARI Ltd, wwwm-hikaricom https://doiorg/1012988/imf20188528 Some Reviews on Ranks of Upper Triangular lock Matrices over a Skew Field Netsai

More information

Solving Non-Homogeneous Coupled Linear Matrix Differential Equations in Terms of Matrix Convolution Product and Hadamard Product

Solving Non-Homogeneous Coupled Linear Matrix Differential Equations in Terms of Matrix Convolution Product and Hadamard Product Journal of Informatics and Mathematical Sciences Vol. 10, Nos. 1 & 2, pp. 237 245, 2018 ISSN 0975-5748 (online); 0974-875X (print) Published by RGN Publications http://www.rgnpublications.com http://dx.doi.org/10.26713/jims.v10i1-2.647

More information

A Generalization of p-rings

A Generalization of p-rings International Journal of Algebra, Vol. 9, 2015, no. 8, 395-401 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2015.5848 A Generalization of p-rings Adil Yaqub Department of Mathematics University

More information

Quadratic Optimization over a Polyhedral Set

Quadratic Optimization over a Polyhedral Set International Mathematical Forum, Vol. 9, 2014, no. 13, 621-629 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.4234 Quadratic Optimization over a Polyhedral Set T. Bayartugs, Ch. Battuvshin

More information

11-Dissection and Modulo 11 Congruences Properties for Partition Generating Function

11-Dissection and Modulo 11 Congruences Properties for Partition Generating Function Int. J. Contemp. Math. Sciences, Vol. 9, 2014, no. 1, 1-10 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijcms.2014.310116 11-Dissection and Modulo 11 Congruences Properties for Partition Generating

More information

Unit Group of Z 2 D 10

Unit Group of Z 2 D 10 International Journal of Algebra, Vol. 9, 2015, no. 4, 179-183 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2015.5420 Unit Group of Z 2 D 10 Parvesh Kumari Department of Mathematics Indian

More information

Double Total Domination on Generalized Petersen Graphs 1

Double Total Domination on Generalized Petersen Graphs 1 Applied Mathematical Sciences, Vol. 11, 2017, no. 19, 905-912 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.7114 Double Total Domination on Generalized Petersen Graphs 1 Chengye Zhao 2

More information

A Note on Linearly Independence over the Symmetrized Max-Plus Algebra

A Note on Linearly Independence over the Symmetrized Max-Plus Algebra International Journal of Algebra, Vol. 12, 2018, no. 6, 247-255 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ija.2018.8727 A Note on Linearly Independence over the Symmetrized Max-Plus Algebra

More information

Non Isolated Periodic Orbits of a Fixed Period for Quadratic Dynamical Systems

Non Isolated Periodic Orbits of a Fixed Period for Quadratic Dynamical Systems Applied Mathematical Sciences, Vol. 12, 2018, no. 22, 1053-1058 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.87100 Non Isolated Periodic Orbits of a Fixed Period for Quadratic Dynamical

More information

Quadratic Extended Filtering in Nonlinear Systems with Uncertain Observations

Quadratic Extended Filtering in Nonlinear Systems with Uncertain Observations Applied Mathematical Sciences, Vol. 8, 2014, no. 4, 157-172 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.12988/ams.2014.311636 Quadratic Extended Filtering in Nonlinear Systems with Uncertain Observations

More information

KRONECKER PRODUCT AND LINEAR MATRIX EQUATIONS

KRONECKER PRODUCT AND LINEAR MATRIX EQUATIONS Proceedings of the Second International Conference on Nonlinear Systems (Bulletin of the Marathwada Mathematical Society Vol 8, No 2, December 27, Pages 78 9) KRONECKER PRODUCT AND LINEAR MATRIX EQUATIONS

More information

Regular Generalized Star b-continuous Functions in a Bigeneralized Topological Space

Regular Generalized Star b-continuous Functions in a Bigeneralized Topological Space International Journal of Mathematical Analysis Vol. 9, 2015, no. 16, 805-815 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.5230 Regular Generalized Star b-continuous Functions in a

More information

Basins of Attraction for Optimal Third Order Methods for Multiple Roots

Basins of Attraction for Optimal Third Order Methods for Multiple Roots Applied Mathematical Sciences, Vol., 6, no., 58-59 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/ams.6.65 Basins of Attraction for Optimal Third Order Methods for Multiple Roots Young Hee Geum Department

More information

New Generalized Sub Class of Cyclic-Goppa Code

New Generalized Sub Class of Cyclic-Goppa Code International Journal of Contemporary Mathematical Sciences Vol., 206, no. 7, 333-34 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.2988/ijcms.206.6632 New Generalized Sub Class of Cyclic-Goppa Code

More information

On (m,n)-ideals in LA-Semigroups

On (m,n)-ideals in LA-Semigroups Applied Mathematical Sciences, Vol. 7, 2013, no. 44, 2187-2191 HIKARI Ltd, www.m-hikari.com On (m,n)-ideals in LA-Semigroups Muhammad Akram University of Gujrat Gujrat, Pakistan makram 69@yahoo.com Naveed

More information

Formula for Lucas Like Sequence of Fourth Step and Fifth Step

Formula for Lucas Like Sequence of Fourth Step and Fifth Step International Mathematical Forum, Vol. 12, 2017, no., 10-110 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.612169 Formula for Lucas Like Sequence of Fourth Step and Fifth Step Rena Parindeni

More information

Double Total Domination in Circulant Graphs 1

Double Total Domination in Circulant Graphs 1 Applied Mathematical Sciences, Vol. 12, 2018, no. 32, 1623-1633 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.811172 Double Total Domination in Circulant Graphs 1 Qin Zhang and Chengye

More information

PERTURBATION ANAYSIS FOR THE MATRIX EQUATION X = I A X 1 A + B X 1 B. Hosoo Lee

PERTURBATION ANAYSIS FOR THE MATRIX EQUATION X = I A X 1 A + B X 1 B. Hosoo Lee Korean J. Math. 22 (214), No. 1, pp. 123 131 http://dx.doi.org/1.11568/jm.214.22.1.123 PERTRBATION ANAYSIS FOR THE MATRIX EQATION X = I A X 1 A + B X 1 B Hosoo Lee Abstract. The purpose of this paper is

More information

When is the Ring of 2x2 Matrices over a Ring Galois?

When is the Ring of 2x2 Matrices over a Ring Galois? International Journal of Algebra, Vol. 7, 2013, no. 9, 439-444 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2013.3445 When is the Ring of 2x2 Matrices over a Ring Galois? Audrey Nelson Department

More information

Second Proof: Every Positive Integer is a Frobenius Number of Three Generators

Second Proof: Every Positive Integer is a Frobenius Number of Three Generators International Mathematical Forum, Vol., 5, no. 5, - 7 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/imf.5.54 Second Proof: Ever Positive Integer is a Frobenius Number of Three Generators Firu Kamalov

More information

Rainbow Connection Number of the Thorn Graph

Rainbow Connection Number of the Thorn Graph Applied Mathematical Sciences, Vol. 8, 2014, no. 128, 6373-6377 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.48633 Rainbow Connection Number of the Thorn Graph Yixiao Liu Department

More information

On a Certain Representation in the Pairs of Normed Spaces

On a Certain Representation in the Pairs of Normed Spaces Applied Mathematical Sciences, Vol. 12, 2018, no. 3, 115-119 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.712362 On a Certain Representation in the Pairs of ormed Spaces Ahiro Hoshida

More information

The Improved Arithmetic-Geometric Mean Inequalities for Matrix Norms

The Improved Arithmetic-Geometric Mean Inequalities for Matrix Norms Applied Mathematical Sciences, Vol 7, 03, no 9, 439-446 HIKARI Ltd, wwwm-hikaricom The Improved Arithmetic-Geometric Mean Inequalities for Matrix Norms I Halil Gumus Adıyaman University, Faculty of Arts

More information

Construction of Combined Charts Based on Combining Functions

Construction of Combined Charts Based on Combining Functions Applied Mathematical Sciences, Vol. 8, 2014, no. 84, 4187-4200 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.45359 Construction of Combined Charts Based on Combining Functions Hyo-Il

More information

The Greatest Common Divisor of k Positive Integers

The Greatest Common Divisor of k Positive Integers International Mathematical Forum, Vol. 3, 208, no. 5, 25-223 HIKARI Ltd, www.m-hiari.com https://doi.org/0.2988/imf.208.822 The Greatest Common Divisor of Positive Integers Rafael Jaimczu División Matemática,

More information

Convex Sets Strict Separation in Hilbert Spaces

Convex Sets Strict Separation in Hilbert Spaces Applied Mathematical Sciences, Vol. 8, 2014, no. 64, 3155-3160 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.44257 Convex Sets Strict Separation in Hilbert Spaces M. A. M. Ferreira 1

More information

Explicit Expressions for Free Components of. Sums of the Same Powers

Explicit Expressions for Free Components of. Sums of the Same Powers Applied Mathematical Sciences, Vol., 27, no. 53, 2639-2645 HIKARI Ltd, www.m-hikari.com https://doi.org/.2988/ams.27.79276 Explicit Expressions for Free Components of Sums of the Same Powers Alexander

More information

Moore-Penrose Inverses of Operators in Hilbert C -Modules

Moore-Penrose Inverses of Operators in Hilbert C -Modules International Journal of Mathematical Analysis Vol. 11, 2017, no. 8, 389-396 HIKARI Ltd, www.m-hikari.com https//doi.org/10.12988/ijma.2017.7342 Moore-Penrose Inverses of Operators in Hilbert C -Modules

More information

β Baire Spaces and β Baire Property

β Baire Spaces and β Baire Property International Journal of Contemporary Mathematical Sciences Vol. 11, 2016, no. 5, 211-216 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijcms.2016.612 β Baire Spaces and β Baire Property Tugba

More information

A Present Position-Dependent Conditional Fourier-Feynman Transform and Convolution Product over Continuous Paths

A Present Position-Dependent Conditional Fourier-Feynman Transform and Convolution Product over Continuous Paths International Journal of Mathematical Analysis Vol. 9, 05, no. 48, 387-406 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/ijma.05.589 A Present Position-Dependent Conditional Fourier-Feynman Transform

More information

Remarks on Fuglede-Putnam Theorem for Normal Operators Modulo the Hilbert-Schmidt Class

Remarks on Fuglede-Putnam Theorem for Normal Operators Modulo the Hilbert-Schmidt Class International Mathematical Forum, Vol. 9, 2014, no. 29, 1389-1396 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.47141 Remarks on Fuglede-Putnam Theorem for Normal Operators Modulo the

More information

THE GENERALIZED HYERS-ULAM STABILITY OF ADDITIVE FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN 2-NORMED SPACE. Chang Il Kim and Se Won Park

THE GENERALIZED HYERS-ULAM STABILITY OF ADDITIVE FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN 2-NORMED SPACE. Chang Il Kim and Se Won Park Korean J. Math. 22 (2014), No. 2, pp. 339 348 http://d.doi.org/10.11568/kjm.2014.22.2.339 THE GENERALIZED HYERS-ULAM STABILITY OF ADDITIVE FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN 2-NORMED SPACE Chang

More information

m + q = p + n p + s = r + q m + q + p + s = p + n + r + q. (m + s) + (p + q) = (r + n) + (p + q) m + s = r + n.

m + q = p + n p + s = r + q m + q + p + s = p + n + r + q. (m + s) + (p + q) = (r + n) + (p + q) m + s = r + n. 9 The Basic idea 1 = { 0, 1, 1, 2, 2, 3,..., n, n + 1,...} 5 = { 0, 5, 1, 6, 2, 7,..., n, n + 5,...} Definition 9.1. Let be the binary relation on ω ω defined by m, n p, q iff m + q = p + n. Theorem 9.2.

More information

Locating Chromatic Number of Banana Tree

Locating Chromatic Number of Banana Tree International Mathematical Forum, Vol. 12, 2017, no. 1, 39-45 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.610138 Locating Chromatic Number of Banana Tree Asmiati Department of Mathematics

More information

Matrix Algebra, Class Notes (part 2) by Hrishikesh D. Vinod Copyright 1998 by Prof. H. D. Vinod, Fordham University, New York. All rights reserved.

Matrix Algebra, Class Notes (part 2) by Hrishikesh D. Vinod Copyright 1998 by Prof. H. D. Vinod, Fordham University, New York. All rights reserved. Matrix Algebra, Class Notes (part 2) by Hrishikesh D. Vinod Copyright 1998 by Prof. H. D. Vinod, Fordham University, New York. All rights reserved. 1 Converting Matrices Into (Long) Vectors Convention:

More information

Equivalent Multivariate Stochastic Processes

Equivalent Multivariate Stochastic Processes International Journal of Mathematical Analysis Vol 11, 017, no 1, 39-54 HIKARI Ltd, wwwm-hikaricom https://doiorg/101988/ijma01769111 Equivalent Multivariate Stochastic Processes Arnaldo De La Barrera

More information

A General Control Method for Inverse Hybrid Function Projective Synchronization of a Class of Chaotic Systems

A General Control Method for Inverse Hybrid Function Projective Synchronization of a Class of Chaotic Systems International Journal of Mathematical Analysis Vol. 9, 2015, no. 9, 429-436 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.47193 A General Control Method for Inverse Hybrid Function

More information

Some Properties of a Semi Dynamical System. Generated by von Forester-Losata Type. Partial Equations

Some Properties of a Semi Dynamical System. Generated by von Forester-Losata Type. Partial Equations Int. Journal of Math. Analysis, Vol. 7, 2013, no. 38, 1863-1868 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2013.3481 Some Properties of a Semi Dynamical System Generated by von Forester-Losata

More information

On J(R) of the Semilocal Rings

On J(R) of the Semilocal Rings International Journal of Algebra, Vol. 11, 2017, no. 7, 311-320 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ija.2017.61169 On J(R) of the Semilocal Rings Giovanni Di Gregorio Dipartimento di

More information

International Mathematical Forum, Vol. 9, 2014, no. 36, HIKARI Ltd,

International Mathematical Forum, Vol. 9, 2014, no. 36, HIKARI Ltd, International Mathematical Forum, Vol. 9, 2014, no. 36, 1751-1756 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.411187 Generalized Filters S. Palaniammal Department of Mathematics Thiruvalluvar

More information

The Automorphisms of a Lie algebra

The Automorphisms of a Lie algebra Applied Mathematical Sciences Vol. 9 25 no. 3 2-27 HIKARI Ltd www.m-hikari.com http://dx.doi.org/.2988/ams.25.4895 The Automorphisms of a Lie algebra WonSok Yoo Department of Applied Mathematics Kumoh

More information

Research Article k-kernel Symmetric Matrices

Research Article k-kernel Symmetric Matrices Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 2009, Article ID 926217, 8 pages doi:10.1155/2009/926217 Research Article k-kernel Symmetric Matrices

More information

The Shifted Data Problems by Using Transform of Derivatives

The Shifted Data Problems by Using Transform of Derivatives Applied Mathematical Sciences, Vol. 8, 2014, no. 151, 7529-7534 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49784 The Shifted Data Problems by Using Transform of Derivatives Hwajoon

More information

Algebraic Models in Different Fields

Algebraic Models in Different Fields Applied Mathematical Sciences, Vol. 8, 2014, no. 167, 8345-8351 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.411922 Algebraic Models in Different Fields Gaetana Restuccia University

More information

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices Matrices A. Fabretti Mathematics 2 A.Y. 2015/2016 Table of contents Matrix Algebra Determinant Inverse Matrix Introduction A matrix is a rectangular array of numbers. The size of a matrix is indicated

More information

ENGG5781 Matrix Analysis and Computations Lecture 9: Kronecker Product

ENGG5781 Matrix Analysis and Computations Lecture 9: Kronecker Product ENGG5781 Matrix Analysis and Computations Lecture 9: Kronecker Product Wing-Kin (Ken) Ma 2017 2018 Term 2 Department of Electronic Engineering The Chinese University of Hong Kong Kronecker product and

More information

Uniform Coloured Hypergraphs and Blocking Sets

Uniform Coloured Hypergraphs and Blocking Sets Applied Mathematical Sciences, Vol. 7, 2013, no. 91, 4535-4548 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.36312 Uniform Coloured Hypergraphs and Blocking Sets Mario Gionfriddo Dipartimento

More information

Dynamical Behavior for Optimal Cubic-Order Multiple Solver

Dynamical Behavior for Optimal Cubic-Order Multiple Solver Applied Mathematical Sciences, Vol., 7, no., 5 - HIKARI Ltd, www.m-hikari.com https://doi.org/.988/ams.7.6946 Dynamical Behavior for Optimal Cubic-Order Multiple Solver Young Hee Geum Department of Applied

More information

Quotient and Homomorphism in Krasner Ternary Hyperrings

Quotient and Homomorphism in Krasner Ternary Hyperrings International Journal of Mathematical Analysis Vol. 8, 2014, no. 58, 2845-2859 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.410316 Quotient and Homomorphism in Krasner Ternary Hyperrings

More information

A Signed-Rank Test Based on the Score Function

A Signed-Rank Test Based on the Score Function Applied Mathematical Sciences, Vol. 10, 2016, no. 51, 2517-2527 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.66189 A Signed-Rank Test Based on the Score Function Hyo-Il Park Department

More information

Morera s Theorem for Functions of a Hyperbolic Variable

Morera s Theorem for Functions of a Hyperbolic Variable Int. Journal of Math. Analysis, Vol. 7, 2013, no. 32, 1595-1600 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2013.212354 Morera s Theorem for Functions of a Hyperbolic Variable Kristin

More information

MP-Dimension of a Meta-Projective Duo-Ring

MP-Dimension of a Meta-Projective Duo-Ring Applied Mathematical Sciences, Vol. 7, 2013, no. 31, 1537-1543 HIKARI Ltd, www.m-hikari.com MP-Dimension of a Meta-Projective Duo-Ring Mohamed Ould Abdelkader Ecole Normale Supérieure de Nouakchott B.P.

More information

Hyperbolic Functions and. the Heat Balance Integral Method

Hyperbolic Functions and. the Heat Balance Integral Method Nonl. Analysis and Differential Equations, Vol. 1, 2013, no. 1, 23-27 HIKARI Ltd, www.m-hikari.com Hyperbolic Functions and the Heat Balance Integral Method G. Nhawu and G. Tapedzesa Department of Mathematics,

More information

A Note of the Strong Convergence of the Mann Iteration for Demicontractive Mappings

A Note of the Strong Convergence of the Mann Iteration for Demicontractive Mappings Applied Mathematical Sciences, Vol. 10, 2016, no. 6, 255-261 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.511700 A Note of the Strong Convergence of the Mann Iteration for Demicontractive

More information

Mathematical Foundations of Applied Statistics: Matrix Algebra

Mathematical Foundations of Applied Statistics: Matrix Algebra Mathematical Foundations of Applied Statistics: Matrix Algebra Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/105 Literature Seber, G.

More information

A Note on the Carlitz s Type Twisted q-tangent. Numbers and Polynomials

A Note on the Carlitz s Type Twisted q-tangent. Numbers and Polynomials Applied Mathematical Sciences, Vol. 12, 2018, no. 15, 731-738 HIKARI Ltd www.m-hikari.com https://doi.org/10.12988/ams.2018.8585 A Note on the Carlitz s Type Twisted q-tangent Numbers and Polynomials Cheon

More information

More on Tree Cover of Graphs

More on Tree Cover of Graphs International Journal of Mathematical Analysis Vol. 9, 2015, no. 12, 575-579 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.410320 More on Tree Cover of Graphs Rosalio G. Artes, Jr.

More information

On Two New Classes of Fibonacci and Lucas Reciprocal Sums with Subscripts in Arithmetic Progression

On Two New Classes of Fibonacci and Lucas Reciprocal Sums with Subscripts in Arithmetic Progression Applied Mathematical Sciences Vol. 207 no. 25 2-29 HIKARI Ltd www.m-hikari.com https://doi.org/0.2988/ams.207.7392 On Two New Classes of Fibonacci Lucas Reciprocal Sums with Subscripts in Arithmetic Progression

More information

Generalization of the Banach Fixed Point Theorem for Mappings in (R, ϕ)-spaces

Generalization of the Banach Fixed Point Theorem for Mappings in (R, ϕ)-spaces International Mathematical Forum, Vol. 10, 2015, no. 12, 579-585 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2015.5861 Generalization of the Banach Fixed Point Theorem for Mappings in (R,

More information

Application of Block Matrix Theory to Obtain the Inverse Transform of the Vector-Valued DFT

Application of Block Matrix Theory to Obtain the Inverse Transform of the Vector-Valued DFT Applied Mathematical Sciences, Vol. 9, 2015, no. 52, 2567-2577 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.52125 Application of Block Matrix Theory to Obtain the Inverse Transform

More information

Sequences from Heptagonal Pyramid Corners of Integer

Sequences from Heptagonal Pyramid Corners of Integer International Mathematical Forum, Vol 13, 2018, no 4, 193-200 HIKARI Ltd, wwwm-hikaricom https://doiorg/1012988/imf2018815 Sequences from Heptagonal Pyramid Corners of Integer Nurul Hilda Syani Putri,

More information

On the Laplacian Energy of Windmill Graph. and Graph D m,cn

On the Laplacian Energy of Windmill Graph. and Graph D m,cn International Journal of Contemporary Mathematical Sciences Vol. 11, 2016, no. 9, 405-414 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijcms.2016.6844 On the Laplacian Energy of Windmill Graph

More information

On Multivalent Functions Associated with Fixed Second Coefficient and the Principle of Subordination

On Multivalent Functions Associated with Fixed Second Coefficient and the Principle of Subordination International Journal of Mathematical Analysis Vol. 9, 015, no. 18, 883-895 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.015.538 On Multivalent Functions Associated with Fixed Second Coefficient

More information

Empirical Power of Four Statistical Tests in One Way Layout

Empirical Power of Four Statistical Tests in One Way Layout International Mathematical Forum, Vol. 9, 2014, no. 28, 1347-1356 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.47128 Empirical Power of Four Statistical Tests in One Way Layout Lorenzo

More information

A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating Polynomials

A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating Polynomials Applied Mathematical Sciences, Vol. 8, 2014, no. 35, 1723-1730 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.4127 A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating

More information

. a m1 a mn. a 1 a 2 a = a n

. a m1 a mn. a 1 a 2 a = a n Biostat 140655, 2008: Matrix Algebra Review 1 Definition: An m n matrix, A m n, is a rectangular array of real numbers with m rows and n columns Element in the i th row and the j th column is denoted by

More information

Research Article On the Marginal Distribution of the Diagonal Blocks in a Blocked Wishart Random Matrix

Research Article On the Marginal Distribution of the Diagonal Blocks in a Blocked Wishart Random Matrix Hindawi Publishing Corporation nternational Journal of Analysis Volume 6, Article D 59678, 5 pages http://dx.doi.org/.55/6/59678 Research Article On the Marginal Distribution of the Diagonal Blocks in

More information

Matrix Arithmetic. a 11 a. A + B = + a m1 a mn. + b. a 11 + b 11 a 1n + b 1n = a m1. b m1 b mn. and scalar multiplication for matrices via.

Matrix Arithmetic. a 11 a. A + B = + a m1 a mn. + b. a 11 + b 11 a 1n + b 1n = a m1. b m1 b mn. and scalar multiplication for matrices via. Matrix Arithmetic There is an arithmetic for matrices that can be viewed as extending the arithmetic we have developed for vectors to the more general setting of rectangular arrays: if A and B are m n

More information

Identities of Symmetry for Generalized Higher-Order q-euler Polynomials under S 3

Identities of Symmetry for Generalized Higher-Order q-euler Polynomials under S 3 Applied Mathematical Sciences, Vol. 8, 204, no. 3, 559-5597 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.2988/ams.204.4755 Identities of Symmetry for Generalized Higher-Order q-euler Polynomials under

More information

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections )

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections ) c Dr. Igor Zelenko, Fall 2017 1 10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections 7.2-7.4) 1. When each of the functions F 1, F 2,..., F n in right-hand side

More information

On the Efficiencies of Several Generalized Least Squares Estimators in a Seemingly Unrelated Regression Model and a Heteroscedastic Model

On the Efficiencies of Several Generalized Least Squares Estimators in a Seemingly Unrelated Regression Model and a Heteroscedastic Model Journal of Multivariate Analysis 70, 8694 (1999) Article ID jmva.1999.1817, available online at http:www.idealibrary.com on On the Efficiencies of Several Generalized Least Squares Estimators in a Seemingly

More information

The Credibility Estimators with Dependence Over Risks

The Credibility Estimators with Dependence Over Risks Applied Mathematical Sciences, Vol. 8, 2014, no. 161, 8045-8050 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.410803 The Credibility Estimators with Dependence Over Risks Qiang Zhang

More information

Symmetric Properties for the (h, q)-tangent Polynomials

Symmetric Properties for the (h, q)-tangent Polynomials Adv. Studies Theor. Phys., Vol. 8, 04, no. 6, 59-65 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/astp.04.43 Symmetric Properties for the h, q-tangent Polynomials C. S. Ryoo Department of Mathematics

More information

Research on Independence of. Random Variables

Research on Independence of. Random Variables Applied Mathematical Sciences, Vol., 08, no. 3, - 7 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/ams.08.8708 Research on Independence of Random Variables Jian Wang and Qiuli Dong School of Mathematics

More information

Common Fixed Point Theorems for Generalized (ψ, φ)-type Contactive Mappings on Metric Spaces

Common Fixed Point Theorems for Generalized (ψ, φ)-type Contactive Mappings on Metric Spaces Applied Mathematical Sciences, Vol. 7, 2013, no. 75, 3703-3713 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.35273 Common Fixed Point Theorems for Generalized (ψ, φ)-type Contactive

More information

Note on the Expected Value of a Function of a Fuzzy Variable

Note on the Expected Value of a Function of a Fuzzy Variable International Journal of Mathematical Analysis Vol. 9, 15, no. 55, 71-76 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.1988/ijma.15.5145 Note on the Expected Value of a Function of a Fuzzy Variable

More information