Fast Space varying Convolution, Fast Matrix Vector Multiplication,

Size: px
Start display at page:

Download "Fast Space varying Convolution, Fast Matrix Vector Multiplication,"

Transcription

1 Fas Space varyng Convoluon Fas Marx Vecor Mulplcaon l and FMRI Acvaon Deecon Janng We Advsors: Prof. Jan P. Allebach Prof. Ilya Pollak Prof. Charles A. Bouman Dr. Peer A. Jansson School of Elecrcal and Compuer Engneerng Purdue Unversy Augus 6 009

2 Fas Space-varyng Convoluon and Is Applcaon n Sray Lgh Reducon

3 Space-varyng Convoluon Space-varyng convoluon: convoluon wh a spaally varan pon spread funcon. Space-nvaran convoluon can be compued usng FFT. Space-varyng convoluon canno use FFT so s compuaonally expensve. Space-varyng convoluon fnds applcaons n sray lgh reducon Bls e. al. 007 and We e. al. 008 aberraon correcon Lam 003 mcroscopc magng Shaevz and Flecher 007 Our obecve: compue space-varyng convoluon much faser wh small error. 3

4 Sray Lgh Conamnaon Sray lgh lens flare n opcal magng sysems 1. Scaerng on lens surfaces. Scaerng whn ransparen glass or plasc lens elemens 3. Undesred reflecon beween opcal elemen surfaces y Ideal pon source Obec plane Dgal camera opcal sysem θ Image plane x Pon spread funcon capured resored 4

5 Model Formulaon Model of capured mage y = 1 β G + βs x x s he underlyng mage o be resored y s he capured mage S s he convoluon marx of sray lgh G accouns for dffracon and aberraon β represens he wegh of sray lgh 5

6 Sray Lgh Pon Spread Funcon Sray Lgh Pon Spread Funcon Feaures of sray lgh PSF y g Space-varyng Large suppor Model for sray lgh PSF α = 1 1 ; p p q q z s p p p q q p p p p p q p q p p p b c a c z z s a normalzng consan p p pon source locaon q q response pon locaon parameers a b c α are esmaed along wh β Bls e. al. 007 p g β and We e. al

7 Sray Lgh Reducon Sray lgh reducon algorhm Van Cer s mehod xˆ = 1 + β y βsy Compuaonal problem x = Sy Drecly compung Sy s que expensve. For example for a 6M pxel mage akes 3.6x G mulples. 7

8 Theory of Lossy Marx Source Codng Bg Dense x S y Compress S lossy marx source codng Sparse marx Save sorage and compuaon Queson: How s error due o marx compresson relaed o error n oupu δ ~ x? δs F Answer: when he emprcal auocorrelaon of y s ~ deny hen δx s equal o δs F. 8

9 Marx Source Codng Approach x = Sy = W WST Λ Λ 1 1 1/ 1/ Ty W and T are boh wavele ransforms decorrelaon Ty approxmaely decorrelaes y Λ 1/ s dagonal marx whch normalzes auocorrelaon of Ty Compress S ~ 1/ y = Λ Ty R y = [ ~ yy ~ ~ E ] = I Transform o a space where s sparse ~ S = WST Quanze o save sorage and compuaon: 1 Λ 1/ 1 [ WST ] 1/ [ S ~ ] = WST Λ 9

10 Fas Convoluon Usng Marx Source Codng Onlne compuaon: % = % % 1 x x W S y wavele ransforms on mage + sparse marx vecor mulply complexy OP where P s he number of pxels Offlne compuaon: [ S ~ ] = Λ 1 [ WST ] 1/ wavele ransforms along rows and columns of huge marx complexy OP need o be mproved o OP. 10

11 Reducon of Offlne Compuaon Problem: Offlne compuaon oo expensve -- order OP. Soluon: Two sage reducon o sparse marx 1 1/ S% W ST Λ wavele ransform W on sparse daa ST 1 Λ 1/ saves me ST 1 Λ 1/ can be drecly compued wh order OP resulng formula for convoluon x = W 1 1/ [ W [ ST Λ ] 1/ ] Λ Ty ~ 1 [] 11

12 Fas Compuaon of Sparse Haar Wavele Coeffcens Obecve: drecly compue Wha s ST 1 Λ 1/? ST Λ 1 1/ wavele ransform along he rows of S hen scale ST Our sraegy for each row of S TS Λ = Λ 1 1/ 1/ 1. Locae mporan wavele coeffcens 1/ Imporan : nonzero afer mulplyng wh Λ and quanzaon. Compue hese mporan wavele coeffcens a op-down approach based on recurson reduce he compuaon from OP o O1 1/ 3. Apply scalng facors Λ 1

13 Locae Imporan Wavele Coeffcens For mage sze 104x104 ake 49 PSFs due o 49 equally spaced pon sources. Compue Haar wavele ransform of hem. Apply scalng facors and quanze he resul so ha 1000 coeffcens survve. Fnd ou he relaonshp beween locaon of mporan wavele coeffcens and he locaon of pon source and level of ransform. 13

14 Locae Imporan Wavele Coeffcens connued logpsf locaon of mporan wavele coeffcens q q k= k=1 1 q 1 q r 1 Predcng locaon of mporan wavele coeffcens a level k locaon of red crcles are relaed o pon source locaon and level of ransform: k q = q / k k q = q / k radus r k s no relaed o q q. 14

15 Compuaon of Sparse Haar Wavele Coeffcens Use Haar wavele for smple and fas compuaon. Wavele deal coeffcens can be compued from approxmaon coeffcens. We only need o compue necessary approxmaon coeffcens snce many deal coeffcens are zero. Horzonal band Vercal band Dagonal band Approxmaon coeffcens 15

16 Compuaon of Sparse Haar Approxmaon Coeffcens Recursve approach for compung sparse approxmaon coeffcens a[k][m][n] 1 ak [ ][ m][ n] = ak [ 1][ m][ n] + ak [ 1][ m][n+ 1] + ak [ 1][m+ 1][ n] + ak [ 1][m+ 1][n+ 1] Top-down approach When all correspondng deals coeffcens are zeros means approxmaon s perfec. So sop and reurn value k k k ak [ ][ m][ n] = a[0][ m][ n] k+1 Approxmaon coeffcens a dfferen levels k k-1 16

17 Smulaon Expermens We use Cohen-Daubeches-Feauveau 5-3 wavele for W Haar wavele for T. Three ranng mages are used o oban gan facors Λ ake Haar wavele ransform of each ranng mage compue varance of wavele coeffcen n each band and average over all ranng mages Error merc: normalzed roo mean square error x x% NRMSE = x where x = Sy x = W 1 1/ [ W [ ST Λ ] 1/ ] Λ Ty ~ 1 a ranng mage he es mage 17

18 Dsoron-Rae Curves Comparson beween wh and whou ransform for mage sze 56x56 Comparson beween wo dfferen resoluons No ransform: ~ x = [ S]y Noe ha for mage sze 104x104 we reduce he mulples per oupu pon from 104 o 10 wh only % error. The sorage s 10M for 104x104 mage. 18

19 Capured Image 19

20 Resored Image 0

21 Concluson We characerzed sray lgh pon spread funcon and used a deconvoluon algorhm o resore mages. We appled marx source codng approach o space-varyng convoluon n he resoraon algorhm o acheve reducon n complexy. We developed recursve approach for compung sparse Haar wavele coeffcens o save offlne compuaon. Expermenal resuls showed ha our algorhm can reduce he compuaon by a sgnfcan amoun e.g. for 104x104 mage we can acheve a 10 5 :1 reducon n compuaon wh a small amoun of error. 1

22 Fas Marx Vecor Mulplcaon Usng Sparse Marx Transform

23 y = Ax x npu vecor Px1 y oupu vecor Px1 Compuaonal Problem A ransform marx PxP bg and dense! Wdely used: sray lgh reducon large scale elecromagnec negral equaon Problem: canno consruc or sore A when P s large complexy OP s oo hgh Obecve: compue Ax much faser wh small error 3

24 Background on SMT SMT of order K T = K k = 1 Each T k s a sparse marx T k = T1T LT K Each T k operaes on wo coordnaes SMT for compung ML esmae of covarance marx gven M M<P sample daa vecors [ T Λ ] = SMTCovEs{ a1 a K am {a m } are sample vecors T s a SMT marx Λ s dagonal TΛT s an esmae of E[ a ] a m m } 4

25 Our Approach Basc dea: use N N<<P ranng npu X O and oupu Y Z vecors o fnd approxmae SVD of A. Y = AX Z = A O X O: mpulses a random locaons Jonly ran rows and columns of A Mnmze cos c U V Σ = U Y ΣV X F where U and V are orhonormal SMT marces Σ s dagonal Approxmae SVD of A: U Σ V Approxmae Ax wh UΣV x + V Z ΣU much faser when order of SMT s low <<P furher sudy needed: wha knd of marx A makes a good approxmaon? 5 O F

26 Deals of Our Algorhm Deals of Our Algorhm Two sage approach: g pp 1. Pre-processng: perform SMT on npu and oupu make second sage opmzaon easer. Fnd and o mnmze cos ~ ~ ~ ~ ~ ~ ~ ~ O U Z V X V U Y V U c Σ + Σ = Σ U ~ V ~ Σ F F O U Z V X V U Y V U c Σ + Σ Σ where and are orhonormal SMT marces are processed npu and oupu from frs sage U ~ V ~ ~ ~ ~ ~ Z O Y X processed npu and oupu from frs sage. 6

27 SMT Pre-processng Sample M rows of marx A o ge A r of sze MxP. ~ E 0 Λ ] = SMTCovEs A r ~ E approxmaely decorrelaes he columns of A. [ 1 0 Sample M columns of marx A o ge A c of sze PxM. ~ [ F 0 Λ ] = SMTCovEs Ac ~ F approxmaely decorrelaes he rows of 0 Process ranng daa ~ ~ ~ X 0 = E0 X Y0 = ~ ~ ~ O0 = F0 O Z0 = ~ F0 Y ~ E Z 0 A. ~ ~ E A F 0 A 0 7

28 Ierave Approach for Mnmzng Cos Idea: only operae on wo coordnaes n each eraon o reduce he cos Keep updang ranng npu and oupu by orhonormal sparse ransforms n order o dagonalze he marx relang hem 8

29 Opmzaon Algorhm Inalzaon: frs esmae of Σ For each eraon k fnd a par of coordnaes wh maxmum cos reducon compue SVD of correspondng opmal ransform marx T k updae ranng vecors and dagonal marx a coordnaes updae cos reducon for relaed coordnaes 9

30 Opmal Transform for Two Coordnaes Opmal ransform for coordnaes a eraon k: Tk arg max where = k 1 c c k Soluon remove and k sub/sup scrps: where vec means sackng columns o form a vecor means Kronecker produc. 30

31 Updae Tranng Vecors Updae Tranng Vecors For coordnaes wh maxmum cos reducon Perform SVD of ransform marx k k k k V D U T = Updae npu and oupu vecors 1 1 ~ ~ ~ ~ ~ ~ k k k k k k Y U Y X V X = = Updae esmae of 1 1 ~ ~ ~ ~ k k k k k k Z V Z O U O = = Σ Updae esmae of Σ 11 k k k k D D = Σ = Σ 31

32 SVD Usng SMT SVD Usng SMT Afer K eraons we have O F U U Z E V V X E V V Y F U U K K K K K K L L L L Σ Σ Approxmae SVD of A Fas marx vecor mulplcaon X E V V U F U A K K K L L Σ Fas marx vecor mulplcaon x E V V U F U y K K K ˆ L L Σ = 3

33 Compuaonal Complexy Searchng for wh maxmum cos reducon n each eraon s logp Neghborhood based search Red-Black ree daa srucure SVD usng SMT coss OK+K 0 logp 0 Regular SVD coss OP 3 Fas marx vecor mulplcaon coss OK+K 0 +P Rgorous mplemenaon coss OP 33

34 A Smple Expermen Image sze 56x56 whch means P=65536 Marx A s a convoluon marx A = a x y ; x y where ax y ;x y s he PSF due o pon source x y H y y W x x a x y ; x y = HW We se M=56 N=56. Tesng on a naural mage Error s measured n normalzed roo mean square error 34

35 Dsoron vs. Number of Roaons K 0 =8 K 0 =1 y ŷy NRMSE = y 35

36 Concluson and Fuure Work Concluson: We developed an algorhm o perform approxmae SVD of a huge dense marx usng SMT. We reduced he compuaon of marx vecor mulplcaon from OP o OK+K 0 +P wh a small amoun of error. Fuure work: Furher speed up by quanzng esmaed sngular values Expermen wh more marces PSFs Work wh larger mages 36

37 FMRI Acvaon Deecon

38 Problem Descrpon FMRI daa s 3D/4D daa whch conans a emporal dmenson and wo or hree spaal dmensons. Daa colleced whle he subec s presened wh a smulus n our case a vsual smulus. Obecve: deec acvaed regons n he bran from a sequence of fmri mages. =1 =5 =10 =15 38

39 Conrbuons We propose p a forward model whch smulaneously capures spaal and emporal dependences of he daa. We develop an effecve algorhm for esmang model parameers. We nroduce oal-varaon based resoraon as a very effecve pre-processng processng ool for fmri daa. We adop Markov random feld MRF model n fmri analyss whch resuls n spaally regularzed and robus esmae of he parameer map. 39

40 Model Formulaon y = g h + w + η k l k l k l k l y observed daa a locaon me. h hemodynamc response funcon HRF a locaon me. w physologcal nose a locaon me. Modeled by AR1 process w = ρ w + ε where ε s whe 1 nose wh mean zero and sandard devaon σ ε η scanner nose a locaon me modeled as whe nose wh mean zero and sandard devaon σ η. g kl Gaussan blurrng kernel characerzed by wdh σ. 40

41 HRF Models Gamma varae model Dale and Buckner 1997 h δ δ τ x e δ τ = 0 < δ parameer se θ = x δ τ x amplude parameer τ dsperson parameer { } Model wh undershoo Frson e al a h = x 1 1 e c e a b a b parameer se a b a a b 1 b b θ x amplude parameer 1 dsperson parameer b = { x a 1 b 1 a b c } 41

42 Overall Acvaon Deecon Sraegy Resore each frame usng consraned oal varaon mnmzaon Goldfarb and Yn 005 Esmae he HRF parameers usng spaal regularzaon assume he parameers follow generalzed Gaussan Markov Random Feld GGMRF dsrbuon perform maxmum a poseror esmaon Threshold he amplude parameers o oban he acvaon map 4

43 Consraned Toal Varaon Mnmzaon The opmzaon problem s formulaed as: mn h h + h h { h } subec o y = g h v and 1 N + k l k l k l v σ v Noaon: {h } mage o be resored {y } he observed mage {g kl } blurrng kernel {v } auxlary varables N number of pxels σ ε where σv = gk l + ση. kl 1 ρ σ ρ σ ε σ η are esmaed based on spaal and emporal correlaons of he daa pror o resoraon We Talavage and Pollak 007 Solved wh an neror pon mehod 43

44 Models for Parameers and Resored Daa We model he daa afer resoraon as θ h = h + e ˆ e --..d. Gaussan random varables Condonal dsrbuon: ˆ 1 p h θ = exp hˆ h θ T/ T π σe σe Pror dsrbuon of parameers GGMRF 1 1 p θ = exp K θ θ r r r p k l k l zr pσσ r and k l neghbors p r=1 R. E.g. for he Gamma varae HRF 1 3 θ = x θ = δ θ = τ assume he R parameers are muually ndependen 44

45 Regularzed HRF Parameer Esmaon Jon poseror dsrbuon p 1 R ˆ 1 R 1 R θ θ K θ h p h θ θ K θ p θ L p θ = Maxmum a poseror esmae R { K } 1 R θ θ θ argmax θ θ θ hˆ 1 1 R = p K θ θ K θ / pˆ h Cos funcon o mnmze c 1 1 θ θ θ h h θ K R 1 R ˆ r r = + K k l θ θk l p σe and k l neghbors r= 1 p σr erave coordnae descend ICD algorhm s used p 45

46 GLM Framework General lnear model GLM hˆ = Gx + e ˆ G s he regressor wh hree columns HRF fed by he averaged emporal daa HRF emporal and dsperson dervaves o accoun for emporal shf and change n shape of response orhonormalze hese hree vecors o buld G leas squares esmae of regresson coeffcens 1 ˆ = G' G G' hˆ x oban acvaon map by hresholdng he -sasc c xˆ = ˆ ˆ 1 h Gxˆ h Gx ˆ c G G c / T 3 c s a conras vecor se o n our expermen 46

47 GLM Implemenaon Pre-processng: Gaussan smoohng Advanage: fas Problem: performance s very sgnfcanly affeced by changng he wdh of Gaussan kernel Summary: spaal regularzaon + lnear emporal analyss 47

48 Smulaed Expermen Acve regon Image a =5 peak me Resored mage Regularzed amplude esmae Deecon resul 48

49 Smulaon Resuls ROC curve for Gamma Varae model ROC curve for HRF model wh undershoo Noe ha n hese expermens: CNR=0.5 Daa sze 64x64x135 represenng mage sze 64x64 and 9 rals wh 15 me pons n each ral. 49

50 Robusness of Our Algorhm Cox waveform s used o generae he daa whereas he Gamma Varae model s used for deecon. If we change regularzaon parameers σ e σ 1 σ R separaely by 50% he maxmum change n correc deecon rae under he same false alarm rae s 1%. 50

51 Dfferen Acvaon Waveform a Dfferen Locaon Two acvaon regons Each wh dfferen HRF 51

52 Real Daa Expermen Two ypes of vsual checkerboard smul: lef hemfeld smulus and rgh hemfeld smulus. Deermne regularzaon parameers from lef hemfeld smulus daa ranng and use on rgh hemfeld smulus daa. Threshold he acvaon map such ha 16 pxels are declared acve for all mehods. 5

53 Real Daa Resuls proposed mehod Smulus 1 Smulus 53

54 Real Daa Resuls GLM mehod Smulus 1 Smulus 54

55 Benchmark Resuls Smulus 1 Smulus Benchmark resuls are obaned from block paradgm expermens whch are supposed o have hgher deecon power. 55

56 Thank you! 56

57 Backup Sldes 57

58 Appendx: Ideal Image Consrucon Capured mage Horzonal cross-secon of mage Ideal mage 58

59 Model Parameer Esmaon Expermen Take pcures of a lgh box a dfferen posons n he feld of vew Canon EOS 350D: focal lengh 55mm ISO100 f8.0 Olympus SP-510UZ: ISO 50 f8.0 59

60 Model parameer esmaon Model parameer esmaon Consruc deal mages from hese pcures Consruc deal mages from hese pcures Esmae parameers by mnmzng he cos funcon ; ˆ ˆ = = = n I n n n y s x y y ξ where I n s he se of pxels where we compue he error 1 ; = = n I n p p p p n n p p y s x a poson n. 60

61 Wha f we furher ncrease K 0? 61

Robustness Experiments with Two Variance Components

Robustness Experiments with Two Variance Components Naonal Insue of Sandards and Technology (NIST) Informaon Technology Laboraory (ITL) Sascal Engneerng Dvson (SED) Robusness Expermens wh Two Varance Componens by Ana Ivelsse Avlés avles@ns.gov Conference

More information

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany Herarchcal Markov Normal Mxure models wh Applcaons o Fnancal Asse Reurns Appendx: Proofs of Theorems and Condonal Poseror Dsrbuons John Geweke a and Gann Amsano b a Deparmens of Economcs and Sascs, Unversy

More information

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance INF 43 3.. Repeon Anne Solberg (anne@f.uo.no Bayes rule for a classfcaon problem Suppose we have J, =,...J classes. s he class label for a pxel, and x s he observed feaure vecor. We can use Bayes rule

More information

Lecture 6: Learning for Control (Generalised Linear Regression)

Lecture 6: Learning for Control (Generalised Linear Regression) Lecure 6: Learnng for Conrol (Generalsed Lnear Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure 6: RLSC - Prof. Sehu Vjayakumar Lnear Regresson

More information

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!) i+1,q - [(! ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL The frs hng o es n wo-way ANOVA: Is here neracon? "No neracon" means: The man effecs model would f. Ths n urn means: In he neracon plo (wh A on he horzonal

More information

Introduction to Boosting

Introduction to Boosting Inroducon o Boosng Cynha Rudn PACM, Prnceon Unversy Advsors Ingrd Daubeches and Rober Schapre Say you have a daabase of news arcles, +, +, -, -, +, +, -, -, +, +, -, -, +, +, -, + where arcles are labeled

More information

Fall 2010 Graduate Course on Dynamic Learning

Fall 2010 Graduate Course on Dynamic Learning Fall 200 Graduae Course on Dynamc Learnng Chaper 4: Parcle Flers Sepember 27, 200 Byoung-Tak Zhang School of Compuer Scence and Engneerng & Cognve Scence and Bran Scence Programs Seoul aonal Unversy hp://b.snu.ac.kr/~bzhang/

More information

Lecture VI Regression

Lecture VI Regression Lecure VI Regresson (Lnear Mehods for Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure VI: MLSC - Dr. Sehu Vjayakumar Lnear Regresson Model M

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4 CS434a/54a: Paern Recognon Prof. Olga Veksler Lecure 4 Oulne Normal Random Varable Properes Dscrmnan funcons Why Normal Random Varables? Analycally racable Works well when observaon comes form a corruped

More information

Single-loop System Reliability-Based Design & Topology Optimization (SRBDO/SRBTO): A Matrix-based System Reliability (MSR) Method

Single-loop System Reliability-Based Design & Topology Optimization (SRBDO/SRBTO): A Matrix-based System Reliability (MSR) Method 10 h US Naonal Congress on Compuaonal Mechancs Columbus, Oho 16-19, 2009 Sngle-loop Sysem Relably-Based Desgn & Topology Opmzaon (SRBDO/SRBTO): A Marx-based Sysem Relably (MSR) Mehod Tam Nguyen, Junho

More information

Outline. Probabilistic Model Learning. Probabilistic Model Learning. Probabilistic Model for Time-series Data: Hidden Markov Model

Outline. Probabilistic Model Learning. Probabilistic Model Learning. Probabilistic Model for Time-series Data: Hidden Markov Model Probablsc Model for Tme-seres Daa: Hdden Markov Model Hrosh Mamsuka Bonformacs Cener Kyoo Unversy Oulne Three Problems for probablsc models n machne learnng. Compung lkelhood 2. Learnng 3. Parsng (predcon

More information

Machine Learning Linear Regression

Machine Learning Linear Regression Machne Learnng Lnear Regresson Lesson 3 Lnear Regresson Bascs of Regresson Leas Squares esmaon Polynomal Regresson Bass funcons Regresson model Regularzed Regresson Sascal Regresson Mamum Lkelhood (ML)

More information

CHAPTER 5: MULTIVARIATE METHODS

CHAPTER 5: MULTIVARIATE METHODS CHAPER 5: MULIVARIAE MEHODS Mulvarae Daa 3 Mulple measuremens (sensors) npus/feaures/arbues: -varae N nsances/observaons/eamples Each row s an eample Each column represens a feaure X a b correspons o he

More information

An introduction to Support Vector Machine

An introduction to Support Vector Machine An nroducon o Suppor Vecor Machne 報告者 : 黃立德 References: Smon Haykn, "Neural Neworks: a comprehensve foundaon, second edon, 999, Chaper 2,6 Nello Chrsann, John Shawe-Tayer, An Inroducon o Suppor Vecor Machnes,

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition INTRODUCTION TO Lecure Sldes for Machne Learnng nd Edon ETHEM ALPAYDIN, modfed by Leonardo Bobadlla and some pars from hp://www.cs.au.ac.l/~aparzn/machnelearnng/ The MIT Press, 00 alpaydn@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/mle

More information

Robust and Accurate Cancer Classification with Gene Expression Profiling

Robust and Accurate Cancer Classification with Gene Expression Profiling Robus and Accurae Cancer Classfcaon wh Gene Expresson Proflng (Compuaonal ysems Bology, 2005) Auhor: Hafeng L, Keshu Zhang, ao Jang Oulne Background LDA (lnear dscrmnan analyss) and small sample sze problem

More information

TSS = SST + SSE An orthogonal partition of the total SS

TSS = SST + SSE An orthogonal partition of the total SS ANOVA: Topc 4. Orhogonal conrass [ST&D p. 183] H 0 : µ 1 = µ =... = µ H 1 : The mean of a leas one reamen group s dfferen To es hs hypohess, a basc ANOVA allocaes he varaon among reamen means (SST) equally

More information

January Examinations 2012

January Examinations 2012 Page of 5 EC79 January Examnaons No. of Pages: 5 No. of Quesons: 8 Subjec ECONOMICS (POSTGRADUATE) Tle of Paper EC79 QUANTITATIVE METHODS FOR BUSINESS AND FINANCE Tme Allowed Two Hours ( hours) Insrucons

More information

Variants of Pegasos. December 11, 2009

Variants of Pegasos. December 11, 2009 Inroducon Varans of Pegasos SooWoong Ryu bshboy@sanford.edu December, 009 Youngsoo Cho yc344@sanford.edu Developng a new SVM algorhm s ongong research opc. Among many exng SVM algorhms, we wll focus on

More information

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s Ordnary Dfferenal Equaons n Neuroscence wh Malab eamples. Am - Gan undersandng of how o se up and solve ODE s Am Undersand how o se up an solve a smple eample of he Hebb rule n D Our goal a end of class

More information

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model BGC1: Survval and even hsory analyss Oslo, March-May 212 Monday May 7h and Tuesday May 8h The addve regresson model Ørnulf Borgan Deparmen of Mahemacs Unversy of Oslo Oulne of program: Recapulaon Counng

More information

On One Analytic Method of. Constructing Program Controls

On One Analytic Method of. Constructing Program Controls Appled Mahemacal Scences, Vol. 9, 05, no. 8, 409-407 HIKARI Ld, www.m-hkar.com hp://dx.do.org/0.988/ams.05.54349 On One Analyc Mehod of Consrucng Program Conrols A. N. Kvko, S. V. Chsyakov and Yu. E. Balyna

More information

WiH Wei He

WiH Wei He Sysem Idenfcaon of onlnear Sae-Space Space Baery odels WH We He wehe@calce.umd.edu Advsor: Dr. Chaochao Chen Deparmen of echancal Engneerng Unversy of aryland, College Par 1 Unversy of aryland Bacground

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Ths documen s downloaded from DR-NTU, Nanyang Technologcal Unversy Lbrary, Sngapore. Tle A smplfed verb machng algorhm for word paron n vsual speech processng( Acceped verson ) Auhor(s) Foo, Say We; Yong,

More information

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Journal of Appled Mahemacs and Compuaonal Mechancs 3, (), 45-5 HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Sansław Kukla, Urszula Sedlecka Insue of Mahemacs,

More information

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005 Dynamc Team Decson Theory EECS 558 Proec Shruvandana Sharma and Davd Shuman December 0, 005 Oulne Inroducon o Team Decson Theory Decomposon of he Dynamc Team Decson Problem Equvalence of Sac and Dynamc

More information

Volatility Interpolation

Volatility Interpolation Volaly Inerpolaon Prelmnary Verson March 00 Jesper Andreasen and Bran Huge Danse Mares, Copenhagen wan.daddy@danseban.com brno@danseban.com Elecronc copy avalable a: hp://ssrn.com/absrac=69497 Inro Local

More information

Department of Economics University of Toronto

Department of Economics University of Toronto Deparmen of Economcs Unversy of Torono ECO408F M.A. Economercs Lecure Noes on Heeroskedascy Heeroskedascy o Ths lecure nvolves lookng a modfcaons we need o make o deal wh he regresson model when some of

More information

Graduate Macroeconomics 2 Problem set 5. - Solutions

Graduate Macroeconomics 2 Problem set 5. - Solutions Graduae Macroeconomcs 2 Problem se. - Soluons Queson 1 To answer hs queson we need he frms frs order condons and he equaon ha deermnes he number of frms n equlbrum. The frms frs order condons are: F K

More information

Chapter 6 DETECTION AND ESTIMATION: Model of digital communication system. Fundamental issues in digital communications are

Chapter 6 DETECTION AND ESTIMATION: Model of digital communication system. Fundamental issues in digital communications are Chaper 6 DEECIO AD EIMAIO: Fundamenal ssues n dgal communcaons are. Deecon and. Esmaon Deecon heory: I deals wh he desgn and evaluaon of decson makng processor ha observes he receved sgnal and guesses

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION CHAPER : LINEAR DISCRIMINAION Dscrmnan-based Classfcaon 3 In classfcaon h K classes (C,C,, C k ) We defned dscrmnan funcon g j (), j=,,,k hen gven an es eample, e chose (predced) s class label as C f g

More information

FTCS Solution to the Heat Equation

FTCS Solution to the Heat Equation FTCS Soluon o he Hea Equaon ME 448/548 Noes Gerald Reckenwald Porland Sae Unversy Deparmen of Mechancal Engneerng gerry@pdxedu ME 448/548: FTCS Soluon o he Hea Equaon Overvew Use he forward fne d erence

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Lnear Response Theory: The connecon beween QFT and expermens 3.1. Basc conceps and deas Q: ow do we measure he conducvy of a meal? A: we frs nroduce a weak elecrc feld E, and hen measure

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

New M-Estimator Objective Function. in Simultaneous Equations Model. (A Comparative Study)

New M-Estimator Objective Function. in Simultaneous Equations Model. (A Comparative Study) Inernaonal Mahemacal Forum, Vol. 8, 3, no., 7 - HIKARI Ld, www.m-hkar.com hp://dx.do.org/.988/mf.3.3488 New M-Esmaor Objecve Funcon n Smulaneous Equaons Model (A Comparave Sudy) Ahmed H. Youssef Professor

More information

Let s treat the problem of the response of a system to an applied external force. Again,

Let s treat the problem of the response of a system to an applied external force. Again, Page 33 QUANTUM LNEAR RESPONSE FUNCTON Le s rea he problem of he response of a sysem o an appled exernal force. Agan, H() H f () A H + V () Exernal agen acng on nernal varable Hamlonan for equlbrum sysem

More information

Advanced Machine Learning & Perception

Advanced Machine Learning & Perception Advanced Machne Learnng & Percepon Insrucor: Tony Jebara SVM Feaure & Kernel Selecon SVM Eensons Feaure Selecon (Flerng and Wrappng) SVM Feaure Selecon SVM Kernel Selecon SVM Eensons Classfcaon Feaure/Kernel

More information

Hidden Markov Models

Hidden Markov Models 11-755 Machne Learnng for Sgnal Processng Hdden Markov Models Class 15. 12 Oc 2010 1 Admnsrva HW2 due Tuesday Is everyone on he projecs page? Where are your projec proposals? 2 Recap: Wha s an HMM Probablsc

More information

Math 128b Project. Jude Yuen

Math 128b Project. Jude Yuen Mah 8b Proec Jude Yuen . Inroducon Le { Z } be a sequence of observed ndependen vecor varables. If he elemens of Z have a on normal dsrbuon hen { Z } has a mean vecor Z and a varancecovarance marx z. Geomercally

More information

Introduction ( Week 1-2) Course introduction A brief introduction to molecular biology A brief introduction to sequence comparison Part I: Algorithms

Introduction ( Week 1-2) Course introduction A brief introduction to molecular biology A brief introduction to sequence comparison Part I: Algorithms Course organzaon Inroducon Wee -2) Course nroducon A bref nroducon o molecular bology A bref nroducon o sequence comparson Par I: Algorhms for Sequence Analyss Wee 3-8) Chaper -3, Models and heores» Probably

More information

Clustering (Bishop ch 9)

Clustering (Bishop ch 9) Cluserng (Bshop ch 9) Reference: Daa Mnng by Margare Dunham (a slde source) 1 Cluserng Cluserng s unsupervsed learnng, here are no class labels Wan o fnd groups of smlar nsances Ofen use a dsance measure

More information

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy Arcle Inernaonal Journal of Modern Mahemacal Scences, 4, (): - Inernaonal Journal of Modern Mahemacal Scences Journal homepage: www.modernscenfcpress.com/journals/jmms.aspx ISSN: 66-86X Florda, USA Approxmae

More information

Kernel-Based Bayesian Filtering for Object Tracking

Kernel-Based Bayesian Filtering for Object Tracking Kernel-Based Bayesan Flerng for Objec Trackng Bohyung Han Yng Zhu Dorn Comancu Larry Davs Dep. of Compuer Scence Real-Tme Vson and Modelng Inegraed Daa and Sysems Unversy of Maryland Semens Corporae Research

More information

Reactive Methods to Solve the Berth AllocationProblem with Stochastic Arrival and Handling Times

Reactive Methods to Solve the Berth AllocationProblem with Stochastic Arrival and Handling Times Reacve Mehods o Solve he Berh AllocaonProblem wh Sochasc Arrval and Handlng Tmes Nsh Umang* Mchel Berlare* * TRANSP-OR, Ecole Polyechnque Fédérale de Lausanne Frs Workshop on Large Scale Opmzaon November

More information

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5 TPG460 Reservor Smulaon 08 page of 5 DISCRETIZATIO OF THE FOW EQUATIOS As we already have seen, fne dfference appromaons of he paral dervaves appearng n he flow equaons may be obaned from Taylor seres

More information

Time-interval analysis of β decay. V. Horvat and J. C. Hardy

Time-interval analysis of β decay. V. Horvat and J. C. Hardy Tme-nerval analyss of β decay V. Horva and J. C. Hardy Work on he even analyss of β decay [1] connued and resuled n he developmen of a novel mehod of bea-decay me-nerval analyss ha produces hghly accurae

More information

Lecture 11 SVM cont

Lecture 11 SVM cont Lecure SVM con. 0 008 Wha we have done so far We have esalshed ha we wan o fnd a lnear decson oundary whose margn s he larges We know how o measure he margn of a lnear decson oundary Tha s: he mnmum geomerc

More information

CS 268: Packet Scheduling

CS 268: Packet Scheduling Pace Schedulng Decde when and wha pace o send on oupu ln - Usually mplemened a oupu nerface CS 68: Pace Schedulng flow Ion Soca March 9, 004 Classfer flow flow n Buffer managemen Scheduler soca@cs.bereley.edu

More information

CS 536: Machine Learning. Nonparametric Density Estimation Unsupervised Learning - Clustering

CS 536: Machine Learning. Nonparametric Density Estimation Unsupervised Learning - Clustering CS 536: Machne Learnng Nonparamerc Densy Esmaon Unsupervsed Learnng - Cluserng Fall 2005 Ahmed Elgammal Dep of Compuer Scence Rugers Unversy CS 536 Densy Esmaon - Cluserng - 1 Oulnes Densy esmaon Nonparamerc

More information

Filtrage particulaire et suivi multi-pistes Carine Hue Jean-Pierre Le Cadre and Patrick Pérez

Filtrage particulaire et suivi multi-pistes Carine Hue Jean-Pierre Le Cadre and Patrick Pérez Chaînes de Markov cachées e flrage parculare 2-22 anver 2002 Flrage parculare e suv mul-pses Carne Hue Jean-Perre Le Cadre and Parck Pérez Conex Applcaons: Sgnal processng: arge rackng bearngs-onl rackng

More information

Boosted LMS-based Piecewise Linear Adaptive Filters

Boosted LMS-based Piecewise Linear Adaptive Filters 016 4h European Sgnal Processng Conference EUSIPCO) Boosed LMS-based Pecewse Lnear Adapve Flers Darush Kar and Iman Marvan Deparmen of Elecrcal and Elecroncs Engneerng Blken Unversy, Ankara, Turkey {kar,

More information

Chapter 4. Neural Networks Based on Competition

Chapter 4. Neural Networks Based on Competition Chaper 4. Neural Neworks Based on Compeon Compeon s mporan for NN Compeon beween neurons has been observed n bologcal nerve sysems Compeon s mporan n solvng many problems To classfy an npu paern _1 no

More information

ELASTIC MODULUS ESTIMATION OF CHOPPED CARBON FIBER TAPE REINFORCED THERMOPLASTICS USING THE MONTE CARLO SIMULATION

ELASTIC MODULUS ESTIMATION OF CHOPPED CARBON FIBER TAPE REINFORCED THERMOPLASTICS USING THE MONTE CARLO SIMULATION THE 19 TH INTERNATIONAL ONFERENE ON OMPOSITE MATERIALS ELASTI MODULUS ESTIMATION OF HOPPED ARBON FIBER TAPE REINFORED THERMOPLASTIS USING THE MONTE ARLO SIMULATION Y. Sao 1*, J. Takahash 1, T. Masuo 1,

More information

F-Tests and Analysis of Variance (ANOVA) in the Simple Linear Regression Model. 1. Introduction

F-Tests and Analysis of Variance (ANOVA) in the Simple Linear Regression Model. 1. Introduction ECOOMICS 35* -- OTE 9 ECO 35* -- OTE 9 F-Tess and Analyss of Varance (AOVA n he Smple Lnear Regresson Model Inroducon The smple lnear regresson model s gven by he followng populaon regresson equaon, or

More information

( ) [ ] MAP Decision Rule

( ) [ ] MAP Decision Rule Announcemens Bayes Decson Theory wh Normal Dsrbuons HW0 due oday HW o be assgned soon Proec descrpon posed Bomercs CSE 90 Lecure 4 CSE90, Sprng 04 CSE90, Sprng 04 Key Probables 4 ω class label X feaure

More information

Single and Multiple Object Tracking Using a Multi-Feature Joint Sparse Representation

Single and Multiple Object Tracking Using a Multi-Feature Joint Sparse Representation Sngle and Mulple Objec Trackng Usng a Mul-Feaure Jon Sparse Represenaon Wemng Hu, We L, and Xaoqn Zhang (Naonal Laboraory of Paern Recognon, Insue of Auomaon, Chnese Academy of Scences, Bejng 100190) {wmhu,

More information

2/20/2013. EE 101 Midterm 2 Review

2/20/2013. EE 101 Midterm 2 Review //3 EE Mderm eew //3 Volage-mplfer Model The npu ressance s he equalen ressance see when lookng no he npu ermnals of he amplfer. o s he oupu ressance. I causes he oupu olage o decrease as he load ressance

More information

Dual Approximate Dynamic Programming for Large Scale Hydro Valleys

Dual Approximate Dynamic Programming for Large Scale Hydro Valleys Dual Approxmae Dynamc Programmng for Large Scale Hydro Valleys Perre Carpener and Jean-Phlppe Chanceler 1 ENSTA ParsTech and ENPC ParsTech CMM Workshop, January 2016 1 Jon work wh J.-C. Alas, suppored

More information

Cubic Bezier Homotopy Function for Solving Exponential Equations

Cubic Bezier Homotopy Function for Solving Exponential Equations Penerb Journal of Advanced Research n Compung and Applcaons ISSN (onlne: 46-97 Vol. 4, No.. Pages -8, 6 omoopy Funcon for Solvng Eponenal Equaons S. S. Raml *,,. Mohamad Nor,a, N. S. Saharzan,b and M.

More information

M. Y. Adamu Mathematical Sciences Programme, AbubakarTafawaBalewa University, Bauchi, Nigeria

M. Y. Adamu Mathematical Sciences Programme, AbubakarTafawaBalewa University, Bauchi, Nigeria IOSR Journal of Mahemacs (IOSR-JM e-issn: 78-578, p-issn: 9-765X. Volume 0, Issue 4 Ver. IV (Jul-Aug. 04, PP 40-44 Mulple SolonSoluons for a (+-dmensonalhroa-sasuma shallow waer wave equaon UsngPanlevé-Bӓclund

More information

Econ107 Applied Econometrics Topic 5: Specification: Choosing Independent Variables (Studenmund, Chapter 6)

Econ107 Applied Econometrics Topic 5: Specification: Choosing Independent Variables (Studenmund, Chapter 6) Econ7 Appled Economercs Topc 5: Specfcaon: Choosng Independen Varables (Sudenmund, Chaper 6 Specfcaon errors ha we wll deal wh: wrong ndependen varable; wrong funconal form. Ths lecure deals wh wrong ndependen

More information

Lecture 9: Dynamic Properties

Lecture 9: Dynamic Properties Shor Course on Molecular Dynamcs Smulaon Lecure 9: Dynamc Properes Professor A. Marn Purdue Unversy Hgh Level Course Oulne 1. MD Bascs. Poenal Energy Funcons 3. Inegraon Algorhms 4. Temperaure Conrol 5.

More information

Discrete Markov Process. Introduction. Example: Balls and Urns. Stochastic Automaton. INTRODUCTION TO Machine Learning 3rd Edition

Discrete Markov Process. Introduction. Example: Balls and Urns. Stochastic Automaton. INTRODUCTION TO Machine Learning 3rd Edition EHEM ALPAYDI he MI Press, 04 Lecure Sldes for IRODUCIO O Machne Learnng 3rd Edon alpaydn@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/ml3e Sldes from exboo resource page. Slghly eded and wh addonal examples

More information

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS R&RATA # Vol.) 8, March FURTHER AALYSIS OF COFIDECE ITERVALS FOR LARGE CLIET/SERVER COMPUTER ETWORKS Vyacheslav Abramov School of Mahemacal Scences, Monash Unversy, Buldng 8, Level 4, Clayon Campus, Wellngon

More information

Comb Filters. Comb Filters

Comb Filters. Comb Filters The smple flers dscussed so far are characered eher by a sngle passband and/or a sngle sopband There are applcaons where flers wh mulple passbands and sopbands are requred Thecomb fler s an example of

More information

Polymerization Technology Laboratory Course

Polymerization Technology Laboratory Course Prakkum Polymer Scence/Polymersaonsechnk Versuch Resdence Tme Dsrbuon Polymerzaon Technology Laboraory Course Resdence Tme Dsrbuon of Chemcal Reacors If molecules or elemens of a flud are akng dfferen

More information

Chapter 5 Mobile Radio Propagation: Small-Scale Scale Fading and Multipath

Chapter 5 Mobile Radio Propagation: Small-Scale Scale Fading and Multipath Chaper 5 Moble Rado Propagaon: Small-Scale Scale Fadng and Mulpah Ymn Zhang, Ph.D. Deparmen of Elecrcal & Compuer Engneerng Vllanova Unversy hp://ymnzhang.com/ece878 Ymn Zhang, Vllanova Unversy Oulnes

More information

Scattering at an Interface: Oblique Incidence

Scattering at an Interface: Oblique Incidence Course Insrucor Dr. Raymond C. Rumpf Offce: A 337 Phone: (915) 747 6958 E Mal: rcrumpf@uep.edu EE 4347 Appled Elecromagnecs Topc 3g Scaerng a an Inerface: Oblque Incdence Scaerng These Oblque noes may

More information

Supplementary Material to: IMU Preintegration on Manifold for E cient Visual-Inertial Maximum-a-Posteriori Estimation

Supplementary Material to: IMU Preintegration on Manifold for E cient Visual-Inertial Maximum-a-Posteriori Estimation Supplemenary Maeral o: IMU Prenegraon on Manfold for E cen Vsual-Ineral Maxmum-a-Poseror Esmaon echncal Repor G-IRIM-CP&R-05-00 Chrsan Forser, Luca Carlone, Fran Dellaer, and Davde Scaramuzza May 0, 05

More information

Learning Objectives. Self Organization Map. Hamming Distance(1/5) Introduction. Hamming Distance(3/5) Hamming Distance(2/5) 15/04/2015

Learning Objectives. Self Organization Map. Hamming Distance(1/5) Introduction. Hamming Distance(3/5) Hamming Distance(2/5) 15/04/2015 /4/ Learnng Objecves Self Organzaon Map Learnng whou Exaples. Inroducon. MAXNET 3. Cluserng 4. Feaure Map. Self-organzng Feaure Map 6. Concluson 38 Inroducon. Learnng whou exaples. Daa are npu o he syse

More information

Stochastic Maxwell Equations in Photonic Crystal Modeling and Simulations

Stochastic Maxwell Equations in Photonic Crystal Modeling and Simulations Sochasc Maxwell Equaons n Phoonc Crsal Modelng and Smulaons Hao-Mn Zhou School of Mah Georga Insue of Technolog Jon work wh: Al Adb ECE Majd Bade ECE Shu-Nee Chow Mah IPAM UCLA Aprl 14-18 2008 Parall suppored

More information

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue. Lnear Algebra Lecure # Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons

More information

ALLOCATING TOLERANCES FOR VEE-GROOVE FIBER ALIGNMENT

ALLOCATING TOLERANCES FOR VEE-GROOVE FIBER ALIGNMENT ALLOCATING TOLERANCES FOR VEE-GROOVE FIBER ALIGNMENT Maheu Barraa and R. Ryan Vallance Precson Sysems Laboraory Unversy of Kenucky Lengon KY * S. Kan J. Lehman and Burke Hunsaker Teradyne Connecon Sysems

More information

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015)

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) 5h Inernaonal onference on Advanced Desgn and Manufacurng Engneerng (IADME 5 The Falure Rae Expermenal Sudy of Specal N Machne Tool hunshan He, a, *, La Pan,b and Bng Hu 3,c,,3 ollege of Mechancal and

More information

Bayesian Inference of the GARCH model with Rational Errors

Bayesian Inference of the GARCH model with Rational Errors 0 Inernaonal Conference on Economcs, Busness and Markeng Managemen IPEDR vol.9 (0) (0) IACSIT Press, Sngapore Bayesan Inference of he GARCH model wh Raonal Errors Tesuya Takash + and Tng Tng Chen Hroshma

More information

Predicting and Preventing Emerging Outbreaks of Crime

Predicting and Preventing Emerging Outbreaks of Crime Predcng and Prevenng Emergng Oubreaks of Crme Danel B. Nell Even and Paern Deecon Laboraory H.J. Henz III College, Carnege Mellon Unversy nell@cs.cmu.edu Jon work wh Seh Flaxman, Amru Nagasunder, Wl Gorr

More information

Relative controllability of nonlinear systems with delays in control

Relative controllability of nonlinear systems with delays in control Relave conrollably o nonlnear sysems wh delays n conrol Jerzy Klamka Insue o Conrol Engneerng, Slesan Techncal Unversy, 44- Glwce, Poland. phone/ax : 48 32 37227, {jklamka}@a.polsl.glwce.pl Keywor: Conrollably.

More information

Sampling Procedure of the Sum of two Binary Markov Process Realizations

Sampling Procedure of the Sum of two Binary Markov Process Realizations Samplng Procedure of he Sum of wo Bnary Markov Process Realzaons YURY GORITSKIY Dep. of Mahemacal Modelng of Moscow Power Insue (Techncal Unversy), Moscow, RUSSIA, E-mal: gorsky@yandex.ru VLADIMIR KAZAKOV

More information

Machine Vision based Micro-crack Inspection in Thin-film Solar Cell Panel

Machine Vision based Micro-crack Inspection in Thin-film Solar Cell Panel Sensors & Transducers Vol. 179 ssue 9 Sepember 2014 pp. 157-161 Sensors & Transducers 2014 by FSA Publshng S. L. hp://www.sensorsporal.com Machne Vson based Mcro-crack nspecon n Thn-flm Solar Cell Panel

More information

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue. Mah E-b Lecure #0 Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons are

More information

Tools for Analysis of Accelerated Life and Degradation Test Data

Tools for Analysis of Accelerated Life and Degradation Test Data Acceleraed Sress Tesng and Relably Tools for Analyss of Acceleraed Lfe and Degradaon Tes Daa Presened by: Reuel Smh Unversy of Maryland College Park smhrc@umd.edu Sepember-5-6 Sepember 28-30 206, Pensacola

More information

GMM parameter estimation. Xiaoye Lu CMPS290c Final Project

GMM parameter estimation. Xiaoye Lu CMPS290c Final Project GMM paraeer esaon Xaoye Lu M290c Fnal rojec GMM nroducon Gaussan ure Model obnaon of several gaussan coponens Noaon: For each Gaussan dsrbuon:, s he ean and covarance ar. A GMM h ures(coponens): p ( 2π

More information

Lecture 2 L n i e n a e r a M od o e d l e s

Lecture 2 L n i e n a e r a M od o e d l e s Lecure Lnear Models Las lecure You have learned abou ha s machne learnng Supervsed learnng Unsupervsed learnng Renforcemen learnng You have seen an eample learnng problem and he general process ha one

More information

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190 Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon Alernae approach o second order specra: ask abou x magnezaon nsead of energes and ranson probables. If we say wh one bass se, properes vary

More information

Should Exact Index Numbers have Standard Errors? Theory and Application to Asian Growth

Should Exact Index Numbers have Standard Errors? Theory and Application to Asian Growth Should Exac Index umbers have Sandard Errors? Theory and Applcaon o Asan Growh Rober C. Feensra Marshall B. Rensdorf ovember 003 Proof of Proposon APPEDIX () Frs, we wll derve he convenonal Sao-Vara prce

More information

Particle Filter Based Robot Self-localization Using RGBD Cues and Wheel Odometry Measurements Enyang Gao1, a*, Zhaohua Chen1 and Qizhuhui Gao1

Particle Filter Based Robot Self-localization Using RGBD Cues and Wheel Odometry Measurements Enyang Gao1, a*, Zhaohua Chen1 and Qizhuhui Gao1 6h Inernaonal Conference on Elecronc, Mechancal, Informaon and Managemen (EMIM 206) Parcle Fler Based Robo Self-localzaon Usng RGBD Cues and Wheel Odomery Measuremens Enyang Gao, a*, Zhaohua Chen and Qzhuhu

More information

Simple Compression Algorithm for Memoryless Laplacian Source Based on the Optimal Companding Technique

Simple Compression Algorithm for Memoryless Laplacian Source Based on the Optimal Companding Technique Smple Compresson Algorhm for Memoryless Laplacan Source Based on he Opmal Compandng Technque Zoran H Perć Marko D Pekovć Mlan R Dnčć ) Faculy of Elecronc Engneerng Aleksandra Medvedeva 4 perc@elfaknacyu

More information

ISSN MIT Publications

ISSN MIT Publications MIT Inernaonal Journal of Elecrcal and Insrumenaon Engneerng Vol. 1, No. 2, Aug 2011, pp 93-98 93 ISSN 2230-7656 MIT Publcaons A New Approach for Solvng Economc Load Dspach Problem Ansh Ahmad Dep. of Elecrcal

More information

Algorithm Research on Moving Object Detection of Surveillance Video Sequence *

Algorithm Research on Moving Object Detection of Surveillance Video Sequence * Opcs and Phooncs Journal 03 3 308-3 do:0.436/opj.03.3b07 Publshed Onlne June 03 (hp://www.scrp.org/journal/opj) Algorhm Research on Movng Objec Deecon of Survellance Vdeo Sequence * Kuhe Yang Zhmng Ca

More information

Fitting a Conditional Linear Gaussian Distribution

Fitting a Conditional Linear Gaussian Distribution Fng a Condonal Lnear Gaussan Dsrbuon Kevn P. Murphy 28 Ocober 1998 Revsed 29 January 2003 1 Inroducon We consder he problem of fndng he maxmum lkelhood ML esmaes of he parameers of a condonal Gaussan varable

More information

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems Swss Federal Insue of Page 1 The Fne Elemen Mehod for he Analyss of Non-Lnear and Dynamc Sysems Prof. Dr. Mchael Havbro Faber Dr. Nebojsa Mojslovc Swss Federal Insue of ETH Zurch, Swzerland Mehod of Fne

More information

Appendix to Online Clustering with Experts

Appendix to Online Clustering with Experts A Appendx o Onlne Cluserng wh Expers Furher dscusson of expermens. Here we furher dscuss expermenal resuls repored n he paper. Ineresngly, we observe ha OCE (and n parcular Learn- ) racks he bes exper

More information

Video-Based Face Recognition Using Adaptive Hidden Markov Models

Video-Based Face Recognition Using Adaptive Hidden Markov Models Vdeo-Based Face Recognon Usng Adapve Hdden Markov Models Xaomng Lu and suhan Chen Elecrcal and Compuer Engneerng, Carnege Mellon Unversy, Psburgh, PA, 523, U.S.A. xaomng@andrew.cmu.edu suhan@cmu.edu Absrac

More information

Comparison of Supervised & Unsupervised Learning in βs Estimation between Stocks and the S&P500

Comparison of Supervised & Unsupervised Learning in βs Estimation between Stocks and the S&P500 Comparson of Supervsed & Unsupervsed Learnng n βs Esmaon beween Socks and he S&P500 J. We, Y. Hassd, J. Edery, A. Becker, Sanford Unversy T I. INTRODUCTION HE goal of our proec s o analyze he relaonshps

More information

A Tour of Modeling Techniques

A Tour of Modeling Techniques A Tour of Modelng Technques John Hooker Carnege Mellon Unversy EWO Semnar February 8 Slde Oulne Med neger lnear (MILP) modelng Dsuncve modelng Knapsack modelng Consran programmng models Inegraed Models

More information

Joint Channel Estimation and Resource Allocation for MIMO Systems Part I: Single-User Analysis

Joint Channel Estimation and Resource Allocation for MIMO Systems Part I: Single-User Analysis 624 IEEE RANSACIONS ON WIRELESS COUNICAIONS, VOL. 9, NO. 2, FEBRUARY 200 Jon Channel Esmaon and Resource Allocaon for IO Sysems Par I: Sngle-User Analyss Alkan Soysal, ember, IEEE, and Sennur Ulukus, ember,

More information

Planar truss bridge optimization by dynamic programming and linear programming

Planar truss bridge optimization by dynamic programming and linear programming IABSE-JSCE Jon Conference on Advances n Brdge Engneerng-III, Augus 1-, 015, Dhaka, Bangladesh. ISBN: 978-984-33-9313-5 Amn, Oku, Bhuyan, Ueda (eds.) www.abse-bd.org Planar russ brdge opmzaon by dynamc

More information

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC CH.3. COMPATIBILITY EQUATIONS Connuum Mechancs Course (MMC) - ETSECCPB - UPC Overvew Compably Condons Compably Equaons of a Poenal Vecor Feld Compably Condons for Infnesmal Srans Inegraon of he Infnesmal

More information

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION INTERNATIONAL TRADE T. J. KEHOE UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 27 EXAMINATION Please answer wo of he hree quesons. You can consul class noes, workng papers, and arcles whle you are workng on he

More information