Advanced Calculus I Chapter 2 & 3 Homework Solutions October 30, Prove that f has a limit at 2 and x + 2 find it. f(x) = 2x2 + 3x 2 x + 2

Size: px
Start display at page:

Download "Advanced Calculus I Chapter 2 & 3 Homework Solutions October 30, Prove that f has a limit at 2 and x + 2 find it. f(x) = 2x2 + 3x 2 x + 2"

Transcription

1 Advanced Calculus I Chapter 2 & 3 Homework Solutions October 30, Define f : ( 2, 0) R by f(x) = 2x2 + 3x 2. Prove that f has a limit at 2 and x + 2 find it. Note that when x 2 we have f(x) = 2x2 + 3x 2 x + 2 = 2x 1. Because the one value of x we never have to consider when talking about the limit at 2 is exactly 2 itself, it suffices to show that g(x) = 2x 1 has a limit at 2. We will guess that this limit is 5. To this end, let ǫ > 0 be given. We seek δ > 0 so that (2x 1) ( 5) < ǫ whenever 0 < x ( 2) < δ. Set δ = ǫ/2. Then we have as required. 0 < x + 2 < δ 2x + 4 < ǫ (2x 1) ( 5) < ǫ, 3. Give an example of a function f : (0, 1) R that has a limit at every point of (0, 1) except 1. Use the definition of limit of a function to justify the example. 2 Perhaps the simplest example is the following: { 0 if x (0, 1 2 f(x) = ) 1 if x [ 1, 1) 2 Suppose this function has a limit at 1/2 and call it L. Set ǫ = 1 3. Then there is some δ > 0 so that Choose x 1 and x 2 with Then 0 < x 1 2 < δ implies f(x) L < δ < x 1 < 1 2 < x 2 < δ. 1 = f(x 2 ) f(x 1 ) = f(x 2 ) L + L f(x 1 ) f(x 2 ) L + f(x 1 ) L < 2 3, a contradiction. Thus f has no limit at 1/2. I ll leave it as an exercise that f does have a limit at all other x (0, 1). (Hint: δ = ǫ.)

2 5. Suppose f : D R with x 0 an accumulation point of D. Assume L 1 and L 2 are limits of f at x 0. Prove L 1 = L 2. (Use only the definition; in later theorem, this uniqueness is assumed.) We show that L 1 = L 2 in essentially the same way we showed that the function in the problem above has no limit at 1/2: if L 1 L 2, then there s a gap between them, and we can choose ǫ > 0 small enough to prevent the function form being arbitrarily close to both of them. To this end, set ǫ = 1 3 L 2 L 1. Because L 1 is a limit at x 0, there is some δ 1 > 0 so that f(x) L 1 < ǫ whenever x D, 0 < x x 0 < δ 1. Similarly, there is some δ 2 > 0 so that f(x) L 2 < ǫ whenever x D, 0 < x x 0 < δ 2. Set δ = min{δ 1, δ 2 }. Then for any x D with 0 < x x 0 < δ, we have L 2 L 1 = L 2 f(x)+f(x) L 1 f(x) L 1 + f(x) L 2 < 2ǫ = 2 3 L 2 L 1. This is only possible if L 2 L 1 = 0, so that L 1 = L Consider f : (0, 2) R defined by f(x) = x x. Assume that f has a limit at 0 and find that limit. (Hint: Choose a sequence {x n } n=1 converging to 0 such that the limit of the sequence {f(x n )} n=1 is easy to determine.) Consider the sequence x n = 1 n. Then f(x n ) = ( ) 1/n 1 = 1 n n. n Assuming you know that lim n n = 1, it follows that lim f(x n ) = 1. If we further assume that f has a limit at zero, then this limit is Suppose f, g, and h : D R where x 0 is accumulation point of D, f(x) g(x) h(x) for all x D, and f and h have limits at x 0 with lim x x0 f(x) = lim x x0 h(x). Prove that g has a limit at x 0 and lim f(x) = lim g(x) = lim h(x). x x 0 x x0 x x0

3 Set L equal to the limit of f and h at x 0, and let ǫ > 0 be given. Then there is some δ 1 > 0 so that f(x) L < ǫ whenever x D, 0 < x x 0 < δ 1. Similarly there is δ 2 > 0 so that h(x) L < ǫ whenever x D, 0 < x x 0 < δ 2. Set δ = min{δ 1, δ 2 }. Then for x D with 0 < x x 0 < δ we have as required. L ǫ < f(x) g(x) h(x) < L + ǫ, Note that this result also follows from problem 20 below. 15. Let f : D R with x 0 as an accumulation point of D. Prove that f has a limit at x 0 if for each ǫ > 0, there is a neighborhood Q of x 0 such that, for any x, y Q D, x x 0, y x 0, we have f(x) f(y) < ǫ. Let ǫ > 0 be given. Then by assumption, there is some neighborhood Q of x 0 so that f(x) f(y) < ǫ whenever x, y Q D with x x 0 y. Because x 0 is an accumulation point of D, we may choose a sequence {x n } n=1 of points in D converging to x 0. Thus there is some N so that x n Q D whenever n N. Thus given ǫ > 0, we have found N so that n, m N x n, x m Q D f(x n ) f(x m ) < ǫ. In other words, the sequence {f(x n )} n=1 is Cauchy, and hence converges. The result now follows from Theorem BLAH. 18. Define g : (0, 1) R by g(x) = 1 + x 1. Prove that g has a limit at 0 and find it. x Using some calculus, we guess that lim x 0 g(x) = 1. To prove this, 2 let ǫ > 0 be given. We seek δ > 0 so that g(x) 1/2 < ǫ whenever 0 < x < δ. Choose δ = ǫ (in fact, we could get away with δ = 8ǫ). Suppose 0 < x < δ with 0 < x < 1. Then g(x) 1/2 = 1 + x 1 1 x 2 = x 2 x 2x

4 = x (2 + x) 2x x + (2 + x) x + (2 + x) = x 2 2x(2 1 + x + (2 + x)) < x 8 < x < δ = ǫ. (For the first inequality in the last displayed line, we use the fact that x > 0, so that 1 + x > 1 and 2 + x > 2 to get the 8 in the denominator.) 20. Prove Theorem 2.5: Suppose f : D R and g : D R, x 0 is an accumulation point of D, and f and g have limits at x 0. If f(x) g(x) for all x D, then lim f(x) lim g(x). x x 0 x x0 Let {x n } n=1 be a sequence of points in D coverging to x 0. Then {f(x n )} n=1 converges to lim x x0 f(x), and {g(x n )} n=1 converges to lim x x 0 g(x). Applying a previous result about sequences gives lim f(x) = lim {f(x n )} lim {g(x n )} = lim g(x). x x 0 x x0 22. Show by example that, even though f and g fail to have limits at x 0, it is possible for f + g to have a limit at x 0. Give similar examples for fg and f g. Suppose f(x) is any function that does not have a limit at x 0. Then g(x) = f(x) also fails to have a limit at x 0. On the other hand, (f + g)(x) = 0 for all x, and so has a limit at x 0. Similarly, if one assumes that f(x) 0 for all x, then f not having a limit at x 0 implies neither does g(x) = 1. On the other hand, f(x) (fg)(x) = 1 for all x, and so has a limit at x 0. Finally, if f(x) has no limit at x 0 and is never zero, then f f (x) = 1 for all x, and so has a limit at x 0. For all these to work, we need only know that there are functions that are never zero that fail to have limits at prescribed points. These are actually rather easy to come by. Here s an example that s far worse than necessary. Define { 1 if x Q f(x) = 1 if x / Q Then f(x) is never zero, and f fails to have a limit at any point. 24. Let f : [a, b] R be monotone. Prove that f has a limit both at a and at b.

5 Assume without loss that f is increasing. We first show that f has a limit at b. Because f is increasing, f(b) is an upper bound for B = {f(x) x < b}. It follows that this set has a least upper bound (a sup). Denote this by L = sup B. (This is what is called L(b) in the proof from class about monotone functions.) We will show that lim x b f(x) = L. Let ǫ > 0 be given. Then because U is the least upper bound of B, it follows that L ǫ is not an upper bound for B at all. Thus there is some x 0 < b so that L ǫ < f(x 0 ) L. Moreover, because f is increasing, we know that L ǫ < f(x 0 ) f(x) L whenever x 0 < x < b. Thus if we take δ = b x 0, then f(x) L < ǫ whenever 0 < x b < δ, as required. The argument for a, as well as for decreasing f, is similar. 25. Suppose f : [a, b] R and define g : [a, b] R as follows: g(x) = sup{f(t) a t x}. Prove that g has a limit at x 0 if f has a limit at x 0 and lim t x0 f(t) = f(x 0 ). 1. Define f : R R by f(x) = 3x 2 2x + 1. Show that f is continuous at 2. We will do this two ways. First we use the theorem that f is continuous at 2 if and only if lim x 2 f(x) = f(2). Let ǫ > 0 be given. We need to show that lim x 2 f(x) = 9. For this we need δ > 0 so that f(x) 9 = 3x 2 2x = 3x + 4 x 2 < ǫ when x 2 < δ. We can make x 2 as small as we like by choosing δ small. To bound 3x + 4, note that x 2 < 1 1 < x < 3 7 < 3x + 4 < 13 3x + 4 < 13. Thus assuming x 2 < 1 ensures 3x + 4 < 13. So if we also assume x 2 < ǫ/13, the product of the two will be less than ǫ. Here s the formal proof: Let ǫ > 0 be given, and set δ = min{1, ǫ/13}. Then x 2 < δ implies 3x + 4 < 13, so (3x 2 2x + 1) 9 = 3x + 4 x 2 < 13(ǫ/13) = ǫ when x 2 < δ.

6 6. Prove that f(x) = x is continuous for all x Suppose f : R R is continuous and f(r) = r 2 for each rational number r. Determine f( 2) and justify your conclusion. Let {x n } n=0 be a sequence of rational numbers converging to 2 (one may take x n to be the decimal expansion of 2 truncated at n decimal places, for instance). The because f is continuous, we know that f( 2) = lim {f(x n )} = lim {x 2 n} = ( lim {x n} )( ) lim {x n} = ( 2) 2 = 2. Note that the third equality is a result of the fact that, for sequences, the limit of the products is the product of the limits. 9. Define f : (0, 1) R by f(x) = sin 1. Can one define f(0) to make f continuous at 0? x Explain. No. Take ǫ = 1. Then for any δ > 0, there are points x 1 and x 2, with 0 < x 1, x 2 < δ so that f(x 1 ) = 1 and f(x 2 ) = 1. In particular, for any potential value f(0) we have 2 = f(x 1 ) f(x 2 ) = f(x 1 ) f(0)+f(0) f(x 2 ) f(x 1 ) f(0) + f(x 2 ) f(0). Thus it is impossible that both f(x 2 ) f(0) and f(x 1 ) f(0) both be less than ǫ = Define f : R R by f(x) = 8x if x is rational and f(x) = 2x is x is irrational. Prove from the definition of continuity that f is continuous at 2 and discontinuous at 1.

Economics 204 Fall 2011 Problem Set 2 Suggested Solutions

Economics 204 Fall 2011 Problem Set 2 Suggested Solutions Economics 24 Fall 211 Problem Set 2 Suggested Solutions 1. Determine whether the following sets are open, closed, both or neither under the topology induced by the usual metric. (Hint: think about limit

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

MATH 409 Advanced Calculus I Lecture 10: Continuity. Properties of continuous functions.

MATH 409 Advanced Calculus I Lecture 10: Continuity. Properties of continuous functions. MATH 409 Advanced Calculus I Lecture 10: Continuity. Properties of continuous functions. Continuity Definition. Given a set E R, a function f : E R, and a point c E, the function f is continuous at c if

More information

Induction, sequences, limits and continuity

Induction, sequences, limits and continuity Induction, sequences, limits and continuity Material covered: eclass notes on induction, Chapter 11, Section 1 and Chapter 2, Sections 2.2-2.5 Induction Principle of mathematical induction: Let P(n) be

More information

HOMEWORK ASSIGNMENT 6

HOMEWORK ASSIGNMENT 6 HOMEWORK ASSIGNMENT 6 DUE 15 MARCH, 2016 1) Suppose f, g : A R are uniformly continuous on A. Show that f + g is uniformly continuous on A. Solution First we note: In order to show that f + g is uniformly

More information

HOMEWORK ASSIGNMENT 5

HOMEWORK ASSIGNMENT 5 HOMEWORK ASSIGNMENT 5 DUE 1 MARCH, 2016 1) Let f(x) = 1 if x is rational and f(x) = 0 if x is irrational. Show that f is not continuous at any real number. Solution Fix any x R. We will show that f is

More information

Math 341 Summer 2016 Midterm Exam 2 Solutions. 1. Complete the definitions of the following words or phrases:

Math 341 Summer 2016 Midterm Exam 2 Solutions. 1. Complete the definitions of the following words or phrases: Math 34 Summer 06 Midterm Exam Solutions. Complete the definitions of the following words or phrases: (a) A sequence (a n ) is called a Cauchy sequence if and only if for every ɛ > 0, there exists and

More information

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous: MATH 51H Section 4 October 16, 2015 1 Continuity Recall what it means for a function between metric spaces to be continuous: Definition. Let (X, d X ), (Y, d Y ) be metric spaces. A function f : X Y is

More information

Iowa State University. Instructor: Alex Roitershtein Summer Homework #5. Solutions

Iowa State University. Instructor: Alex Roitershtein Summer Homework #5. Solutions Math 50 Iowa State University Introduction to Real Analysis Department of Mathematics Instructor: Alex Roitershtein Summer 205 Homework #5 Solutions. Let α and c be real numbers, c > 0, and f is defined

More information

Chapter 2: Functions, Limits and Continuity

Chapter 2: Functions, Limits and Continuity Chapter 2: Functions, Limits and Continuity Functions Limits Continuity Chapter 2: Functions, Limits and Continuity 1 Functions Functions are the major tools for describing the real world in mathematical

More information

Chapter 8: Taylor s theorem and L Hospital s rule

Chapter 8: Taylor s theorem and L Hospital s rule Chapter 8: Taylor s theorem and L Hospital s rule Theorem: [Inverse Mapping Theorem] Suppose that a < b and f : [a, b] R. Given that f (x) > 0 for all x (a, b) then f 1 is differentiable on (f(a), f(b))

More information

Solutions Final Exam May. 14, 2014

Solutions Final Exam May. 14, 2014 Solutions Final Exam May. 14, 2014 1. (a) (10 points) State the formal definition of a Cauchy sequence of real numbers. A sequence, {a n } n N, of real numbers, is Cauchy if and only if for every ɛ > 0,

More information

MA 301 Test 4, Spring 2007

MA 301 Test 4, Spring 2007 MA 0 Test 4, Spring 007 hours, calculator allowed, no notes. Provide paper for the students to do work on. Students should not write answers on test sheet. TA Grades, 5, 6, 7 All answers must be justified.

More information

x y More precisely, this equation means that given any ε > 0, there exists some δ > 0 such that

x y More precisely, this equation means that given any ε > 0, there exists some δ > 0 such that Chapter 2 Limits and continuity 21 The definition of a it Definition 21 (ε-δ definition) Let f be a function and y R a fixed number Take x to be a point which approaches y without being equal to y If there

More information

Section 1.4 Tangents and Velocity

Section 1.4 Tangents and Velocity Math 132 Tangents and Velocity Section 1.4 Section 1.4 Tangents and Velocity Tangent Lines A tangent line to a curve is a line that just touches the curve. In terms of a circle, the definition is very

More information

REAL ANALYSIS II: PROBLEM SET 2

REAL ANALYSIS II: PROBLEM SET 2 REAL ANALYSIS II: PROBLEM SET 2 21st Feb, 2016 Exercise 1. State and prove the Inverse Function Theorem. Theorem Inverse Function Theorem). Let f be a continuous one to one function defined on an interval,

More information

Thus f is continuous at x 0. Matthew Straughn Math 402 Homework 6

Thus f is continuous at x 0. Matthew Straughn Math 402 Homework 6 Matthew Straughn Math 402 Homework 6 Homework 6 (p. 452) 14.3.3, 14.3.4, 14.3.5, 14.3.8 (p. 455) 14.4.3* (p. 458) 14.5.3 (p. 460) 14.6.1 (p. 472) 14.7.2* Lemma 1. If (f (n) ) converges uniformly to some

More information

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N Problem 1. Let f : A R R have the property that for every x A, there exists ɛ > 0 such that f(t) > ɛ if t (x ɛ, x + ɛ) A. If the set A is compact, prove there exists c > 0 such that f(x) > c for all x

More information

Introductory Analysis I Fall 2014 Homework #9 Due: Wednesday, November 19

Introductory Analysis I Fall 2014 Homework #9 Due: Wednesday, November 19 Introductory Analysis I Fall 204 Homework #9 Due: Wednesday, November 9 Here is an easy one, to serve as warmup Assume M is a compact metric space and N is a metric space Assume that f n : M N for each

More information

Solutions Final Exam May. 14, 2014

Solutions Final Exam May. 14, 2014 Solutions Final Exam May. 14, 2014 1. Determine whether the following statements are true or false. Justify your answer (i.e., prove the claim, derive a contradiction or give a counter-example). (a) (10

More information

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote Real Variables, Fall 4 Problem set 4 Solution suggestions Exercise. Let f be of bounded variation on [a, b]. Show that for each c (a, b), lim x c f(x) and lim x c f(x) exist. Prove that a monotone function

More information

Limits and Continuity

Limits and Continuity Chapter Limits and Continuity. Limits of Sequences.. The Concept of Limit and Its Properties A sequence { } is an ordered infinite list x,x,...,,... The n-th term of the sequence is, and n is the index

More information

Limits and continuity

Limits and continuity CHAPTER 4 Limits and continuity Our first goal is to define and understand lim f(x) =L. Here f : D R where D R. We want the definition to mean roughly, as x gets close to a then f(x) iscloseto L. Perhaps

More information

AP Calculus Testbank (Chapter 9) (Mr. Surowski)

AP Calculus Testbank (Chapter 9) (Mr. Surowski) AP Calculus Testbank (Chapter 9) (Mr. Surowski) Part I. Multiple-Choice Questions n 1 1. The series will converge, provided that n 1+p + n + 1 (A) p > 1 (B) p > 2 (C) p >.5 (D) p 0 2. The series

More information

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1.

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1. Chapter 3 Sequences Both the main elements of calculus (differentiation and integration) require the notion of a limit. Sequences will play a central role when we work with limits. Definition 3.. A Sequence

More information

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero Chapter Limits of Sequences Calculus Student: lim s n = 0 means the s n are getting closer and closer to zero but never gets there. Instructor: ARGHHHHH! Exercise. Think of a better response for the instructor.

More information

Problem List MATH 5143 Fall, 2013

Problem List MATH 5143 Fall, 2013 Problem List MATH 5143 Fall, 2013 On any problem you may use the result of any previous problem (even if you were not able to do it) and any information given in class up to the moment the problem was

More information

4. We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x

4. We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x 4 We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x x, x > 0 Since tan x = cos x, from the quotient rule, tan x = sin

More information

MT804 Analysis Homework II

MT804 Analysis Homework II MT804 Analysis Homework II Eudoxus October 6, 2008 p. 135 4.5.1, 4.5.2 p. 136 4.5.3 part a only) p. 140 4.6.1 Exercise 4.5.1 Use the Intermediate Value Theorem to prove that every polynomial of with real

More information

Principle of Mathematical Induction

Principle of Mathematical Induction Advanced Calculus I. Math 451, Fall 2016, Prof. Vershynin Principle of Mathematical Induction 1. Prove that 1 + 2 + + n = 1 n(n + 1) for all n N. 2 2. Prove that 1 2 + 2 2 + + n 2 = 1 n(n + 1)(2n + 1)

More information

Continuity. Matt Rosenzweig

Continuity. Matt Rosenzweig Continuity Matt Rosenzweig Contents 1 Continuity 1 1.1 Rudin Chapter 4 Exercises........................................ 1 1.1.1 Exercise 1............................................. 1 1.1.2 Exercise

More information

Calculus I. 1. Limits and Continuity

Calculus I. 1. Limits and Continuity 2301107 Calculus I 1. Limits and Continuity Outline 1.1. Limits 1.1.1 Motivation:Tangent 1.1.2 Limit of a function 1.1.3 Limit laws 1.1.4 Mathematical definition of a it 1.1.5 Infinite it 1.1. Continuity

More information

Math 421, Homework #9 Solutions

Math 421, Homework #9 Solutions Math 41, Homework #9 Solutions (1) (a) A set E R n is said to be path connected if for any pair of points x E and y E there exists a continuous function γ : [0, 1] R n satisfying γ(0) = x, γ(1) = y, and

More information

Real Analysis - Notes and After Notes Fall 2008

Real Analysis - Notes and After Notes Fall 2008 Real Analysis - Notes and After Notes Fall 2008 October 29, 2008 1 Introduction into proof August 20, 2008 First we will go through some simple proofs to learn how one writes a rigorous proof. Let start

More information

ter. on Can we get a still better result? Yes, by making the rectangles still smaller. As we make the rectangles smaller and smaller, the

ter. on Can we get a still better result? Yes, by making the rectangles still smaller. As we make the rectangles smaller and smaller, the Area and Tangent Problem Calculus is motivated by two main problems. The first is the area problem. It is a well known result that the area of a rectangle with length l and width w is given by A = wl.

More information

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 2 Solutions Please write neatly, and in complete sentences when possible.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 2 Solutions Please write neatly, and in complete sentences when possible. Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 2 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book: 1.4.2, 1.4.4, 1.4.9, 1.4.11,

More information

Homework for MATH 4603 (Advanced Calculus I) Fall Homework 13: Due on Tuesday 15 December. Homework 12: Due on Tuesday 8 December

Homework for MATH 4603 (Advanced Calculus I) Fall Homework 13: Due on Tuesday 15 December. Homework 12: Due on Tuesday 8 December Homework for MATH 4603 (Advanced Calculus I) Fall 2015 Homework 13: Due on Tuesday 15 December 49. Let D R, f : D R and S D. Let a S (acc S). Assume that f is differentiable at a. Let g := f S. Show that

More information

Functions. Chapter Continuous Functions

Functions. Chapter Continuous Functions Chapter 3 Functions 3.1 Continuous Functions A function f is determined by the domain of f: dom(f) R, the set on which f is defined, and the rule specifying the value f(x) of f at each x dom(f). If f is

More information

Lemma 15.1 (Sign preservation Lemma). Suppose that f : E R is continuous at some a R.

Lemma 15.1 (Sign preservation Lemma). Suppose that f : E R is continuous at some a R. 15. Intermediate Value Theorem and Classification of discontinuities 15.1. Intermediate Value Theorem. Let us begin by recalling the definition of a function continuous at a point of its domain. Definition.

More information

Problems for Chapter 3.

Problems for Chapter 3. Problems for Chapter 3. Let A denote a nonempty set of reals. The complement of A, denoted by A, or A C is the set of all points not in A. We say that belongs to the interior of A, Int A, if there eists

More information

CHAPTER 6. Limits of Functions. 1. Basic Definitions

CHAPTER 6. Limits of Functions. 1. Basic Definitions CHAPTER 6 Limits of Functions 1. Basic Definitions DEFINITION 6.1. Let D Ω R, x 0 be a limit point of D and f : D! R. The limit of f (x) at x 0 is L, if for each " > 0 there is a ± > 0 such that when x

More information

M17 MAT25-21 HOMEWORK 6

M17 MAT25-21 HOMEWORK 6 M17 MAT25-21 HOMEWORK 6 DUE 10:00AM WEDNESDAY SEPTEMBER 13TH 1. To Hand In Double Series. The exercises in this section will guide you to complete the proof of the following theorem: Theorem 1: Absolute

More information

Logical Connectives and Quantifiers

Logical Connectives and Quantifiers Chapter 1 Logical Connectives and Quantifiers 1.1 Logical Connectives 1.2 Quantifiers 1.3 Techniques of Proof: I 1.4 Techniques of Proof: II Theorem 1. Let f be a continuous function. If 1 f(x)dx 0, then

More information

FIRST YEAR CALCULUS W W L CHEN

FIRST YEAR CALCULUS W W L CHEN FIRST YER CLCULUS W W L CHEN c W W L Chen, 994, 28. This chapter is available free to all individuals, on the understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

Econ Slides from Lecture 1

Econ Slides from Lecture 1 Econ 205 Sobel Econ 205 - Slides from Lecture 1 Joel Sobel August 23, 2010 Warning I can t start without assuming that something is common knowledge. You can find basic definitions of Sets and Set Operations

More information

Math 101: Course Summary

Math 101: Course Summary Math 101: Course Summary Rich Schwartz August 22, 2009 General Information: Math 101 is a first course in real analysis. The main purpose of this class is to introduce real analysis, and a secondary purpose

More information

Limit Theorems. MATH 464/506, Real Analysis. J. Robert Buchanan. Summer Department of Mathematics. J. Robert Buchanan Limit Theorems

Limit Theorems. MATH 464/506, Real Analysis. J. Robert Buchanan. Summer Department of Mathematics. J. Robert Buchanan Limit Theorems Limit s MATH 464/506, Real Analysis J. Robert Buchanan Department of Mathematics Summer 2007 Bounded Functions Definition Let A R, let f : A R, and let c R be a cluster point of A. We say that f is bounded

More information

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 7 Solutions Please write neatly, and in complete sentences when possible.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 7 Solutions Please write neatly, and in complete sentences when possible. Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 7 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book: 4.2.1, 4.2.3, 4.2.6, 4.2.8,

More information

ClassicalRealAnalysis.com

ClassicalRealAnalysis.com Chapter 5 CONTINUOUS FUNCTIONS 5.1 Introduction to Limits The definition of the limit of a function lim f(x) is given in calculus courses, but in many classes it is not explored to any great depth. Computation

More information

Examples 2: Composite Functions, Piecewise Functions, Partial Fractions

Examples 2: Composite Functions, Piecewise Functions, Partial Fractions Examples 2: Composite Functions, Piecewise Functions, Partial Fractions September 26, 206 The following are a set of examples to designed to complement a first-year calculus course. objectives are listed

More information

Hyperreal Calculus MAT2000 Project in Mathematics. Arne Tobias Malkenes Ødegaard Supervisor: Nikolai Bjørnestøl Hansen

Hyperreal Calculus MAT2000 Project in Mathematics. Arne Tobias Malkenes Ødegaard Supervisor: Nikolai Bjørnestøl Hansen Hyperreal Calculus MAT2000 Project in Mathematics Arne Tobias Malkenes Ødegaard Supervisor: Nikolai Bjørnestøl Hansen Abstract This project deals with doing calculus not by using epsilons and deltas, but

More information

MATH NEW HOMEWORK AND SOLUTIONS TO PREVIOUS HOMEWORKS AND EXAMS

MATH NEW HOMEWORK AND SOLUTIONS TO PREVIOUS HOMEWORKS AND EXAMS MATH. 4433. NEW HOMEWORK AND SOLUTIONS TO PREVIOUS HOMEWORKS AND EXAMS TOMASZ PRZEBINDA. Final project, due 0:00 am, /0/208 via e-mail.. State the Fundamental Theorem of Algebra. Recall that a subset K

More information

MAS331: Metric Spaces Problems on Chapter 1

MAS331: Metric Spaces Problems on Chapter 1 MAS331: Metric Spaces Problems on Chapter 1 1. In R 3, find d 1 ((3, 1, 4), (2, 7, 1)), d 2 ((3, 1, 4), (2, 7, 1)) and d ((3, 1, 4), (2, 7, 1)). 2. In R 4, show that d 1 ((4, 4, 4, 6), (0, 0, 0, 0)) =

More information

(a) For an accumulation point a of S, the number l is the limit of f(x) as x approaches a, or lim x a f(x) = l, iff

(a) For an accumulation point a of S, the number l is the limit of f(x) as x approaches a, or lim x a f(x) = l, iff Chapter 4: Functional Limits and Continuity Definition. Let S R and f : S R. (a) For an accumulation point a of S, the number l is the limit of f(x) as x approaches a, or lim x a f(x) = l, iff ε > 0, δ

More information

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi Real Analysis Math 3AH Rudin, Chapter # Dominique Abdi.. If r is rational (r 0) and x is irrational, prove that r + x and rx are irrational. Solution. Assume the contrary, that r+x and rx are rational.

More information

2.1 Convergence of Sequences

2.1 Convergence of Sequences Chapter 2 Sequences 2. Convergence of Sequences A sequence is a function f : N R. We write f) = a, f2) = a 2, and in general fn) = a n. We usually identify the sequence with the range of f, which is written

More information

Section 8.7. Taylor and MacLaurin Series. (1) Definitions, (2) Common Maclaurin Series, (3) Taylor Polynomials, (4) Applications.

Section 8.7. Taylor and MacLaurin Series. (1) Definitions, (2) Common Maclaurin Series, (3) Taylor Polynomials, (4) Applications. Section 8.7 Taylor and MacLaurin Series (1) Definitions, (2) Common Maclaurin Series, (3) Taylor Polynomials, (4) Applications. MATH 126 (Section 8.7) Taylor and MacLaurin Series The University of Kansas

More information

Math 328 Course Notes

Math 328 Course Notes Math 328 Course Notes Ian Robertson March 3, 2006 3 Properties of C[0, 1]: Sup-norm and Completeness In this chapter we are going to examine the vector space of all continuous functions defined on the

More information

Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011

Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011 Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011 Section 2.6 (cont.) Properties of Real Functions Here we first study properties of functions from R to R, making use of the additional structure

More information

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 8 Solutions Please write neatly, and in complete sentences when possible.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 8 Solutions Please write neatly, and in complete sentences when possible. Math 320: Real Analysis MWF pm, Campion Hall 302 Homework 8 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book: 4.3.5, 4.3.7, 4.3.8, 4.3.9,

More information

P-adic Functions - Part 1

P-adic Functions - Part 1 P-adic Functions - Part 1 Nicolae Ciocan 22.11.2011 1 Locally constant functions Motivation: Another big difference between p-adic analysis and real analysis is the existence of nontrivial locally constant

More information

Math 140A - Fall Final Exam

Math 140A - Fall Final Exam Math 140A - Fall 2014 - Final Exam Problem 1. Let {a n } n 1 be an increasing sequence of real numbers. (i) If {a n } has a bounded subsequence, show that {a n } is itself bounded. (ii) If {a n } has a

More information

A function is actually a simple concept; if it were not, history would have replaced it with a simpler one by now! Here is the definition:

A function is actually a simple concept; if it were not, history would have replaced it with a simpler one by now! Here is the definition: 1.2 Functions and Their Properties A function is actually a simple concept; if it were not, history would have replaced it with a simpler one by now! Here is the definition: Definition: Function, Domain,

More information

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n Solve the following 6 problems. 1. Prove that if series n=1 a nx n converges for all x such that x < 1, then the series n=1 a n xn 1 x converges as well if x < 1. n For x < 1, x n 0 as n, so there exists

More information

Math 5051 Measure Theory and Functional Analysis I Homework Assignment 3

Math 5051 Measure Theory and Functional Analysis I Homework Assignment 3 Math 551 Measure Theory and Functional Analysis I Homework Assignment 3 Prof. Wickerhauser Due Monday, October 12th, 215 Please do Exercises 3*, 4, 5, 6, 8*, 11*, 17, 2, 21, 22, 27*. Exercises marked with

More information

Structure of R. Chapter Algebraic and Order Properties of R

Structure of R. Chapter Algebraic and Order Properties of R Chapter Structure of R We will re-assemble calculus by first making assumptions about the real numbers. All subsequent results will be rigorously derived from these assumptions. Most of the assumptions

More information

Solution of the 7 th Homework

Solution of the 7 th Homework Solution of the 7 th Homework Sangchul Lee December 3, 2014 1 Preliminary In this section we deal with some facts that are relevant to our problems but can be coped with only previous materials. 1.1 Maximum

More information

Summer Jump-Start Program for Analysis, 2012 Song-Ying Li

Summer Jump-Start Program for Analysis, 2012 Song-Ying Li Summer Jump-Start Program for Analysis, 01 Song-Ying Li 1 Lecture 6: Uniformly continuity and sequence of functions 1.1 Uniform Continuity Definition 1.1 Let (X, d 1 ) and (Y, d ) are metric spaces and

More information

means is a subset of. So we say A B for sets A and B if x A we have x B holds. BY CONTRAST, a S means that a is a member of S.

means is a subset of. So we say A B for sets A and B if x A we have x B holds. BY CONTRAST, a S means that a is a member of S. 1 Notation For those unfamiliar, we have := means equal by definition, N := {0, 1,... } or {1, 2,... } depending on context. (i.e. N is the set or collection of counting numbers.) In addition, means for

More information

MATH 131A: REAL ANALYSIS (BIG IDEAS)

MATH 131A: REAL ANALYSIS (BIG IDEAS) MATH 131A: REAL ANALYSIS (BIG IDEAS) Theorem 1 (The Triangle Inequality). For all x, y R we have x + y x + y. Proposition 2 (The Archimedean property). For each x R there exists an n N such that n > x.

More information

The function graphed below is continuous everywhere. The function graphed below is NOT continuous everywhere, it is discontinuous at x 2 and

The function graphed below is continuous everywhere. The function graphed below is NOT continuous everywhere, it is discontinuous at x 2 and Section 1.4 Continuity A function is a continuous at a point if its graph has no gaps, holes, breaks or jumps at that point. If a function is not continuous at a point, then we say it is discontinuous

More information

1 Fundamental Concepts From Algebra & Precalculus

1 Fundamental Concepts From Algebra & Precalculus Fundamental Concepts From Algebra & Precalculus. Review Exercises.. Simplify eac expression.. 5 7) [ 5)) ]. ) 5) 7) 9 + 8 5. 8 [ 5) 8 6)] [9 + 8 5 ]. 9 + 8 5 ) 8) + 5. 5 + [ )6)] 7) 7 + 6 5 6. 8 5 ) 6

More information

Mathematics 242 Principles of Analysis Solutions for Problem Set 5 Due: March 15, 2013

Mathematics 242 Principles of Analysis Solutions for Problem Set 5 Due: March 15, 2013 Mathematics Principles of Analysis Solutions for Problem Set 5 Due: March 15, 013 A Section 1. For each of the following sequences, determine three different subsequences, each converging to a different

More information

MATH 1910 Limits Numerically and Graphically Introduction to Limits does not exist DNE DOES does not Finding Limits Numerically

MATH 1910 Limits Numerically and Graphically Introduction to Limits does not exist DNE DOES does not Finding Limits Numerically MATH 90 - Limits Numerically and Graphically Introduction to Limits The concept of a limit is our doorway to calculus. This lecture will explain what the limit of a function is and how we can find such

More information

Functional Limits and Continuity

Functional Limits and Continuity Chapter 4 Functional Limits and Continuity 4.1 Discussion: Examples of Dirichlet and Thomae Although it is common practice in calculus courses to discuss continuity before differentiation, historically

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

MATH 23b, SPRING 2005 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Midterm (part 1) Solutions March 21, 2005

MATH 23b, SPRING 2005 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Midterm (part 1) Solutions March 21, 2005 MATH 23b, SPRING 2005 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Midterm (part 1) Solutions March 21, 2005 1. True or False (22 points, 2 each) T or F Every set in R n is either open or closed

More information

Part 2 Continuous functions and their properties

Part 2 Continuous functions and their properties Part 2 Continuous functions and their properties 2.1 Definition Definition A function f is continuous at a R if, and only if, that is lim f (x) = f (a), x a ε > 0, δ > 0, x, x a < δ f (x) f (a) < ε. Notice

More information

One-to-one functions and onto functions

One-to-one functions and onto functions MA 3362 Lecture 7 - One-to-one and Onto Wednesday, October 22, 2008. Objectives: Formalize definitions of one-to-one and onto One-to-one functions and onto functions At the level of set theory, there are

More information

Introduction to Real Analysis

Introduction to Real Analysis Christopher Heil Introduction to Real Analysis Chapter 0 Online Expanded Chapter on Notation and Preliminaries Last Updated: January 9, 2018 c 2018 by Christopher Heil Chapter 0 Notation and Preliminaries:

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need

More information

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS Math 473: Practice Problems for Test 1, Fall 011, SOLUTIONS Show your work: 1. (a) Compute the Taylor polynomials P n (x) for f(x) = sin x and x 0 = 0. Solution: Compute f(x) = sin x, f (x) = cos x, f

More information

The reference [Ho17] refers to the course lecture notes by Ilkka Holopainen.

The reference [Ho17] refers to the course lecture notes by Ilkka Holopainen. Department of Mathematics and Statistics Real Analysis I, Fall 207 Solutions to Exercise 6 (6 pages) riikka.schroderus at helsinki.fi Note. The course can be passed by an exam. The first possible exam

More information

Polynomial Approximations and Power Series

Polynomial Approximations and Power Series Polynomial Approximations and Power Series June 24, 206 Tangent Lines One of the first uses of the derivatives is the determination of the tangent as a linear approximation of a differentiable function

More information

Introduction to Proofs in Analysis. updated December 5, By Edoh Y. Amiran Following the outline of notes by Donald Chalice INTRODUCTION

Introduction to Proofs in Analysis. updated December 5, By Edoh Y. Amiran Following the outline of notes by Donald Chalice INTRODUCTION Introduction to Proofs in Analysis updated December 5, 2016 By Edoh Y. Amiran Following the outline of notes by Donald Chalice INTRODUCTION Purpose. These notes intend to introduce four main notions from

More information

Differentiation. Table of contents Definition Arithmetics Composite and inverse functions... 5

Differentiation. Table of contents Definition Arithmetics Composite and inverse functions... 5 Differentiation Table of contents. Derivatives................................................. 2.. Definition................................................ 2.2. Arithmetics...............................................

More information

Limits, Continuity, and the Derivative

Limits, Continuity, and the Derivative Unit #2 : Limits, Continuity, and the Derivative Goals: Study and define continuity Review limits Introduce the derivative as the limit of a difference quotient Discuss the derivative as a rate of change

More information

AP Calculus Summer Homework

AP Calculus Summer Homework Class: Date: AP Calculus Summer Homework Show your work. Place a circle around your final answer. 1. Use the properties of logarithms to find the exact value of the expression. Do not use a calculator.

More information

Advanced Calculus: MATH 410 Professor David Levermore 28 November 2006

Advanced Calculus: MATH 410 Professor David Levermore 28 November 2006 Advanced Calculus: MATH 410 Professor David Levermore 28 November 2006 1. Uniform Continuity Uniform continuity is a very useful concept. Here we introduce it in the context of real-valued functions with

More information

van Rooij, Schikhof: A Second Course on Real Functions

van Rooij, Schikhof: A Second Course on Real Functions vanrooijschikhofproblems.tex December 5, 2017 http://thales.doa.fmph.uniba.sk/sleziak/texty/rozne/pozn/books/ van Rooij, Schikhof: A Second Course on Real Functions Some notes made when reading [vrs].

More information

MATH 409 Advanced Calculus I Lecture 12: Uniform continuity. Exponential functions.

MATH 409 Advanced Calculus I Lecture 12: Uniform continuity. Exponential functions. MATH 409 Advanced Calculus I Lecture 12: Uniform continuity. Exponential functions. Uniform continuity Definition. A function f : E R defined on a set E R is called uniformly continuous on E if for every

More information

Math 104: Homework 7 solutions

Math 104: Homework 7 solutions Math 04: Homework 7 solutions. (a) The derivative of f () = is f () = 2 which is unbounded as 0. Since f () is continuous on [0, ], it is uniformly continous on this interval by Theorem 9.2. Hence for

More information

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13 MATH383W LECTURE NOTES: WEEK 6 //00 Recursive sequences (cont.) Examples: () a =, a n+ = 3 a n. The first few terms are,,, 5 = 5, 3 5 = 5 3, Since 5

More information

Notes on uniform convergence

Notes on uniform convergence Notes on uniform convergence Erik Wahlén erik.wahlen@math.lu.se January 17, 2012 1 Numerical sequences We begin by recalling some properties of numerical sequences. By a numerical sequence we simply mean

More information

Some Background Material

Some Background Material Chapter 1 Some Background Material In the first chapter, we present a quick review of elementary - but important - material as a way of dipping our toes in the water. This chapter also introduces important

More information

PRACTICE PROBLEM SET

PRACTICE PROBLEM SET PRACTICE PROBLEM SET NOTE: On the exam, you will have to show all your work (unless told otherwise), so write down all your steps and justify them. Exercise. Solve the following inequalities: () x < 3

More information

MATH 409 Advanced Calculus I Lecture 9: Limit supremum and infimum. Limits of functions.

MATH 409 Advanced Calculus I Lecture 9: Limit supremum and infimum. Limits of functions. MATH 409 Advanced Calculus I Lecture 9: Limit supremum and infimum. Limits of functions. Limit points Definition. A limit point of a sequence {x n } is the limit of any convergent subsequence of {x n }.

More information

A LITTLE REAL ANALYSIS AND TOPOLOGY

A LITTLE REAL ANALYSIS AND TOPOLOGY A LITTLE REAL ANALYSIS AND TOPOLOGY 1. NOTATION Before we begin some notational definitions are useful. (1) Z = {, 3, 2, 1, 0, 1, 2, 3, }is the set of integers. (2) Q = { a b : aεz, bεz {0}} is the set

More information

2.4 The Precise Definition of a Limit

2.4 The Precise Definition of a Limit 2.4 The Precise Definition of a Limit Reminders/Remarks: x 4 < 3 means that the distance between x and 4 is less than 3. In other words, x lies strictly between 1 and 7. So, x a < δ means that the distance

More information