Theory of Applied Robotics

Size: px
Start display at page:

Download "Theory of Applied Robotics"

Transcription

1 Theory of Applied Robotics

2

3 Reza N. Jazar Theory of Applied Robotics Kinematics, Dynamics, and Control Second Edition 123

4 Prof.RezaN.Jazar School of Aerospace, Mechanical, and Manufacturing Engineering RMIT University Melbourne, Victoria Australia ISBN e-isbn DOI / Springer New York Dordrecht Heidelberg London Library of Congress Control Number: c Springer Science+Business Media, LLC 2006, 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Cover illustration c Konstantin Inozemtsev Printed on acid-free paper Springer is part of Springer Science+Business Media (

5 Dedicated to my wife, Mojgan and our children, Vazan and Kavosh.

6

7 I am Cyrus, king of the world, great king, mighty king, king of Babylon, king of Sumer and Akkad, king of the four quarters. I ordered to write books, many books, books to teach my people, I ordered to make schools, many schools, to educate my people. Marduk, the lord of the gods, said burning books is the greatest sin. I, Cyrus, and my people, and my army will protect books and schools. They will fight whoever burns books and burns schools, the great sin. Cyrus the great

8

9 Preface to the Second Edition The second edition of this book would not have been possible without the comments and suggestions from my students, especially those at Columbia University. Many of the new topics introduced here are a direct result of student feedback that helped me refine and clarify the material. My intention when writing this book was to develop material that I would have liked to had available as a student. Hopefully, I have succeeded in developing a reference that covers all aspects of robotics with sufficient detail and explanation. The first edition of this book was published in 2007 and soon after its publication it became a very popular reference in the field of robotics. I wish to thank the many students and instructors who have used the book or referenced it. Your questions, comments and suggestions have helped me create the second edition.

10

11 Preface This book is designed to serve as a text for engineering students. It introduces the fundamental knowledge used in robotics. This knowledge can be utilized to develop computer programs for analyzing the kinematics, dynamics, and control of robotic systems. The subject of robotics may appear overdosed by the number of available texts because the field has been growing rapidly since However,the topic remains alive with modern developments, which are closely related to the classical material. It is evident that no single text can cover the vast scope of classical and modern materials in robotics. Thus the demand for new books arises because the field continues to progress. Another factor is the trend toward analytical unification of kinematics, dynamics, and control. Classical kinematics and dynamics of robots has its roots in the work of great scientists of the past four centuries who established the methodology and understanding of the behavior of dynamic systems. The development of dynamic science, since the beginning of the twentieth century, has moved toward analysis of controllable man-made systems. Therefore, merging the kinematics and dynamics with control theory is the expected development for robotic analysis. The other important development is the fast growing capability of accurate and rapid numerical calculations, along with intelligent computer programming. Level of the Book This book has evolved from nearly a decade of research in nonlinear dynamic systems, and teaching undergraduate-graduate level courses in robotics. It is addressed primarily to the last year of undergraduate study and the first year graduate student in engineering. Hence, it is an intermediate textbook. This book can even be the first exposure to topics in spatial kinematics and dynamics of mechanical systems. Therefore, it provides both fundamental and advanced topics on the kinematics and dynamics of robots. The whole book can be covered in two successive courses however, it is possible to jump over some sections and cover the book in one course. The students are required to know the fundamentals of kinematics and dynamics, as well as a basic knowledge of numerical methods.

12 xii Preface The contents of the book have been kept at a fairly theoretical-practical level. Many concepts are deeply explained and their use emphasized, and most of the related theory and formal proofs have been explained. Throughout the book, a strong emphasis is put on the physical meaning of the concepts introduced. Topics that have been selected are of high interest in the field. An attempt has been made to expose the students to a broad range of topics and approaches. Organization of the Book The text is organized so it can be used for teaching or for self-study. Chapter 1 Introduction, contains general preliminaries with a brief review of the historical development and classification of robots. Part I Kinematics, presents the forward and inverse kinematics of robots. Kinematics analysis refers to position, velocity, and acceleration analysis of robots in both joint and base coordinate spaces. It establishes kinematic relations among the end-effecter and the joint variables. The method of Denavit-Hartenberg for representing body coordinate frames is introduced and utilized for forward kinematics analysis. The concept of modular treatment of robots is well covered to show how we may combine simple links to make the forward kinematics of a complex robot. For inverse kinematics analysis, the idea of decoupling, the inverse matrix method, and the iterative technique are introduced. It is shown that the presence of a spherical wrist is what we need to apply analytic methods in inverse kinematics. Part II Dynamics, presents a detailed discussion of robot dynamics. An attempt is made to review the basic approaches and demonstrate how these can be adapted for the active displacement framework utilized for robot kinematics in the earlier chapters. The concepts of the recursive Newton-Euler dynamics, Lagrangian function, manipulator inertia matrix, and generalized forces are introduced and applied for derivation of dynamic equations of motion. Part III Control, presents the floating time technique for time-optimal control of robots. The outcome of the technique is applied for an openloop control algorithm. Then, a computed-torque method is introduced, in which a combination of feedforward and feedback signals are utilized to render the system error dynamics. Method of Presentation The structure of presentation is in a "fact-reason-application" fashion. The "fact" is the main subject we introduce in each section. Then the reason is given as a "proof." Finally the application of the fact is examined in some "examples." The "examples" are a very important part of the book because they show how to implement the knowledge introduced in "facts." They also cover some other facts that are needed to expand the subject.

13 Preface xiii Prerequisites Since the book is written for senior undergraduate and first-year graduate level students of engineering, the assumption is that users are familiar with matrix algebra as well as basic feedback control. Prerequisites for readers of this book consist of the fundamentals of kinematics, dynamics, vector analysis, and matrix theory. These basics are usually taught in the first three undergraduate years. Unit System The system of units adopted in this book is, unless otherwise stated, the international system of units (SI). The units of degree (deg) or radian ( rad) are utilized for variables representing angular quantities. Symbols Lowercase bold letters indicate a vector. Vectors may be expressed in an n dimensional Euclidian space. Example: r, s, d, a, b, c p, q, v, w, y, z ω, α, ², θ, δ, φ Uppercase bold letters indicate a dynamic vector or a dynamic matrix. Example: F, M, J Lowercase letters with a hat indicate a unit vector. Unit vectors are not bolded. Example: î, ĵ, ˆk, ê, û, ˆn Î, Ĵ, ˆK, êθ, ê ϕ, ê ψ Lowercase letters with a tilde indicate a 3 3 skew symmetric matrix associated to a vector. Example: ã = 0 a 3 a 2 a 3 0 a 1, a = a 1 a 2 a 2 a 1 0 a 3 An arrow above two uppercase letters indicates the start and end points of a position vector. Example: ON = a position vector from point O to point N

14 xiv Preface A double arrow above a lowercase letter indicates a 4 4 matrix associated to a quaternion. Example: q 0 q 1 q 2 q 3 q = q 1 q 0 q 3 q 2 q 2 q 3 q 0 q 1 q 3 q 2 q 1 q 0 q = q 0 + q 1 i + q 2 j + q 3 k The length of a vector is indicated by a non-bold lowercase letter. Example: r = r, a = a, b = b, s = s Capital letters A, Q, R, andt indicate rotation or transformation matrices. Example: cα 0 sα 1 cos α sin α 0 Q Z,α = sin α cos α 0, G T B = sα 0 cα Capital letter B is utilized to denote a body coordinate frame. Example: B(oxyz), B(Oxyz), B 1 (o 1 x 1 y 1 z 1 ) Capital letter G is utilized to denote a global, inertial, or fixed coordinate frame. Example: G, G(XY Z), G(OXY Z) Right subscript on a transformation matrix indicates the departure frames. Example: T B = transformation matrix from frame B(oxyz) Left superscript on a transformation matrix indicates the destination frame. Example: G T B = transformation matrix from frame B(oxyz) to frame G(OXY Z) Whenever there is no sub or superscript, the matrices are shown in a bracket. Example: cα 0 sα 1 [T ]= sα 0 cα

15 Preface xv Left superscript on a vector denotes the frame in which the vector is expressed. That superscript indicates the frame that the vector belongs to; so the vector is expressed using the unit vectors of that frame. Example: G r = position vector expressed in frame G(OXY Z) Right subscript on a vector denotes the tip point that the vector is referred to. Example: G r P = position vector of point P expressed in coordinate frame G(OXY Z) Left subscript on a vector indicates the frame that the angular vector is measured with respect to. Example: G B v P = velocity vector of point P in coordinate frame B(oxyz) expressed in the global coordinate frame G(OXY Z) We drop the left subscript if it is the same as the left superscript. Example: B Bv P B v P Right subscript on an angular velocity vector indicates the frame that the angular vector is referred to. Example: ω B = angular velocity of the body coordinate frame B(oxyz) Left subscript on an angular velocity vector indicates the frame that the angular vector is measured with respect to. Example: Gω B = angular velocity of the body coordinate frame B(oxyz) with respect to the global coordinate frame G(OXY Z) Left superscript on an angular velocity vector denotes the frame in which the angular velocity is expressed. Example: B 2 G ω B 1 = angular velocity of the body coordinate frame B 1 with respect to the global coordinate frame G, and expressed in body coordinate frame B 2 Whenever the left subscript and superscript of an angular velocity are the same, we usually drop the left superscript. Example: Gω B G Gω B

16 xvi Preface If the right subscript on a force vector is a number, it indicates the number of coordinate frame in a serial robot. Coordinate frame B i is set up at joint i +1.Example: F i = force vector at joint i +1 measured at the origin of B i (oxyz) At joint i there is always an action force F i, that link (i) applies on link (i +1), and a reaction force F i, that link (i +1) applies on link (i). On link (i) there is always an action force F i 1 coming from link (i 1), and a reaction force F i coming from link (i +1). Action force is called driving force, and reaction force is called driven force. If the right subscript on a moment vector is a number, it indicates the number of coordinate frames in a serial robot. Coordinate frame B i issetupatjointi +1.Example: M i = moment vector at joint i +1 measured at the origin of B i (oxyz) At joint i there is always an action moment M i,thatlink(i) applies on link (i +1), and a reaction moment M i, that link (i +1) applies on link (i). On link (i) there is always an action moment M i 1 coming from link (i 1), and a reaction moment M i coming from link (i+1). Action moment is called driving moment, and reaction moment is called driven moment. Left superscript on derivative operators indicates the frame in which the derivative of a variable is taken. Example: G d G dt x, d B r P, dt B d G dt Br P If the variable is a vector function, and also the frame in which the vector is defined is the same as the frame in which a time derivative is taken, we may use the following short notation, G d G r P = G ṙ P, dt and write equations simpler. Example: B d B o r P = B o ṙ P dt G G d v = G r(t) = G ṙ dt If followed by angles, lowercase c and s denote cos and sin functions in mathematical equations. Example: cα =cosα, sϕ =sinϕ

17 Preface xvii Capital bold letter I indicates a unit matrix, which, depending on the dimension of the matrix equation, could be a 3 3 or a 4 4 unit matrix. I 3 or I 4 are also being used to clarify the dimension of I. Example: I = I 3 = An asterisk F indicates a more advanced subject or example that is not designed for undergraduate teaching and can be dropped in the first reading. Two parallel joint axes are indicated by a parallel sign, (k). Two orthogonal joint axes are indicated by an orthogonal sign, (`). Two orthogonal joint axes are intersecting at a right angle. Two perpendicular joint axes are indicated by a perpendicular sign, ( ). Two perpendicular joint axes are at a right angle with respect to their common normal.

18

19 Contents 1 Introduction HistoricalDevelopment RobotComponents Link Joint Manipulator Wrist End-effector Actuators Sensors Controller Robot Classifications Geometry Workspace Actuation Control Application Introduction to Robot s Kinematics, Dynamics, and Control F Triad UnitVectors ReferenceFrameandCoordinateSystem VectorFunction ProblemsofRobotDynamics PreviewofCoveredTopics RobotsasMulti-disciplinaryMachines Summary Exercises I Kinematics 29 2 Rotation Kinematics RotationAboutGlobalCartesianAxes SuccessiveRotationAboutGlobalCartesianAxes GlobalRoll-Pitch-YawAngles RotationAboutLocalCartesianAxes SuccessiveRotationAboutLocalCartesianAxes... 50

20 xx Contents 2.6 EulerAngles LocalRoll-Pitch-YawAngles LocalAxesVersusGlobalAxesRotation GeneralTransformation ActiveandPassiveTransformation Summary KeySymbols Exercises Orientation Kinematics Axis-angleRotation F EulerParameters F DeterminationofEulerParameters F Quaternions F SpinorsandRotators F ProblemsinRepresentingRotations F Rotationmatrix F Angle-axis F Eulerangles F Quaternion F Eulerparameters F CompositionandDecompositionofRotations Summary KeySymbols Exercises Motion Kinematics RigidBodyMotion HomogeneousTransformation InverseHomogeneousTransformation CompoundHomogeneousTransformation F ScrewCoordinates F InverseScrew F CompoundScrewTransformation F ThePlückerLineCoordinate F TheGeometryofPlaneandLine F Moment F AngleandDistance F PlaneandLine F ScrewandPlückerCoordinate Summary KeySymbols Exercises

21 Contents xxi 5 Forward Kinematics Denavit-HartenbergNotation Transformation Between Two Adjacent Coordinate Frames ForwardPositionKinematicsofRobots SphericalWrist AssemblingKinematics F CoordinateTransformationUsingScrews F NonDenavit-HartenbergMethods Summary KeySymbols Exercises Inverse Kinematics DecouplingTechnique InverseTransformationTechnique F IterativeTechnique F ComparisonoftheInverseKinematicsTechniques F ExistenceandUniquenessofSolution F InverseKinematicsTechniques F Singular Configuration Summary KeySymbols Exercises Angular Velocity AngularVelocityVectorandMatrix F TimeDerivativeandCoordinateFrames RigidBodyVelocity F VelocityTransformationMatrix DerivativeofaHomogeneousTransformationMatrix Summary KeySymbols Exercises Velocity Kinematics F RigidLinkVelocity ForwardVelocityKinematics JacobianGeneratingVectors InverseVelocityKinematics Summary KeySymbols Exercises Numerical Methods in Kinematics LinearAlgebraicEquations MatrixInversion

22 xxii Contents 9.3 NonlinearAlgebraicEquations F Jacobian Matrix From Link Transformation Matrices Summary KeySymbols Exercises II Dynamics Acceleration Kinematics Angular Acceleration Vector and Matrix RigidBodyAcceleration F AccelerationTransformationMatrix Forward Acceleration Kinematics InverseAccelerationKinematics F RigidLinkRecursiveAcceleration Summary KeySymbols Exercises Motion Dynamics ForceandMoment RigidBodyTranslationalKinetics RigidBodyRotationalKinetics MassMomentofInertiaMatrix Lagrange sformofnewton sequations LagrangianMechanics Summary KeySymbols Exercises Robot Dynamics RigidLinkNewton-EulerDynamics F RecursiveNewton-EulerDynamics RobotLagrangeDynamics F Lagrange Equations and Link Transformation Matrices RobotStatics Summary KeySymbols Exercises III Control Path Planning CubicPath PolynomialPath

23 Contents xxiii 13.3 F Non-PolynomialPathPlanning ManipulatorMotionbyJointPath CartesianPath F RotationalPath Manipulator Motion by End-EffectorPath Summary KeySymbols Exercises F Time Optimal Control F MinimumTimeandBang-BangControl F FloatingTimeMethod F Time-OptimalControlforRobots Summary KeySymbols Exercises Control Techniques OpenandClosed-LoopControl ComputedTorqueControl LinearControlTechnique ProportionalControl IntegralControl DerivativeControl SensingandControl PositionSensors SpeedSensors AccelerationSensors Summary KeySymbols Exercises References 853 A Global Frame Triple Rotation 863 B Local Frame Triple Rotation 865 C Principal Central Screws Triple Combination 867 D Trigonometric Formula 869 Index 873

SpringerBriefs in Mathematics

SpringerBriefs in Mathematics SpringerBriefs in Mathematics For further volumes: http://www.springer.com/series/10030 George A. Anastassiou Advances on Fractional Inequalities 123 George A. Anastassiou Department of Mathematical Sciences

More information

Statistics for Social and Behavioral Sciences

Statistics for Social and Behavioral Sciences Statistics for Social and Behavioral Sciences Advisors: S.E. Fienberg W.J. van der Linden For other titles published in this series, go to http://www.springer.com/series/3463 Haruo Yanai Kei Takeuchi

More information

Numerical Approximation Methods for Elliptic Boundary Value Problems

Numerical Approximation Methods for Elliptic Boundary Value Problems Numerical Approximation Methods for Elliptic Boundary Value Problems Olaf Steinbach Numerical Approximation Methods for Elliptic Boundary Value Problems Finite and Boundary Elements Olaf Steinbach Institute

More information

The Theory of the Top Volume II

The Theory of the Top Volume II Felix Klein Arnold Sommerfeld The Theory of the Top Volume II Development of the Theory in the Case of the Heavy Symmetric Top Raymond J. Nagem Guido Sandri Translators Preface to Volume I by Michael Eckert

More information

8 Velocity Kinematics

8 Velocity Kinematics 8 Velocity Kinematics Velocity analysis of a robot is divided into forward and inverse velocity kinematics. Having the time rate of joint variables and determination of the Cartesian velocity of end-effector

More information

Tile-Based Geospatial Information Systems

Tile-Based Geospatial Information Systems Tile-Based Geospatial Information Systems John T. Sample Elias Ioup Tile-Based Geospatial Information Systems Principles and Practices 123 John T. Sample Naval Research Laboratory 1005 Balch Blvd. Stennis

More information

Linear Partial Differential Equations for Scientists and Engineers

Linear Partial Differential Equations for Scientists and Engineers Tyn Myint-U Lokenath Debnath Linear Partial Differential Equations for Scientists and Engineers Fourth Edition Birkhäuser Boston Basel Berlin Tyn Myint-U 5 Sue Terrace Westport, CT 06880 USA Lokenath Debnath

More information

Machine Tool Vibrations and Cutting Dynamics

Machine Tool Vibrations and Cutting Dynamics Machine Tool Vibrations and Cutting Dynamics Brandon C. Gegg l Albert C.J. Luo C. Steve Suh Machine Tool Vibrations and Cutting Dynamics Brandon C. Gegg Dynacon Inc. Winches and Handling Systems 831 Industrial

More information

PHASE PORTRAITS OF PLANAR QUADRATIC SYSTEMS

PHASE PORTRAITS OF PLANAR QUADRATIC SYSTEMS PHASE PORTRAITS OF PLANAR QUADRATIC SYSTEMS Mathematics and Its Applications Managing Editor: M. HAZEWINKEL Centre for Mathematics and Computer Science, Amsterdam, The Netherlands Volume 583 PHASE PORTRAITS

More information

Dissipative Ordered Fluids

Dissipative Ordered Fluids Dissipative Ordered Fluids Andr é M. Sonnet Epifanio G. Virga Dissipative Ordered Fluids Theories for Liquid Crystals Andr é M. Sonnet Department of Mathematics and Statistics University of Strathclyde

More information

Kazumi Tanuma. Stroh Formalism and Rayleigh Waves

Kazumi Tanuma. Stroh Formalism and Rayleigh Waves Kazumi Tanuma Stroh Formalism and Rayleigh Waves Previously published in the Journal of Elasticity Volume 89, Issues 1Y3, 2007 Kazumi Tanuma Department of Mathematics Graduate School of Engineering Gunma

More information

Controlled Markov Processes and Viscosity Solutions

Controlled Markov Processes and Viscosity Solutions Controlled Markov Processes and Viscosity Solutions Wendell H. Fleming, H. Mete Soner Controlled Markov Processes and Viscosity Solutions Second Edition Wendell H. Fleming H.M. Soner Div. Applied Mathematics

More information

Maximum Principles in Differential Equations

Maximum Principles in Differential Equations Maximum Principles in Differential Equations Springer New York Berlin Heidelberg Barcelona Hong Kong London Milan Paris Singapore Tokyo Murray H. Protter Hans F. Weinberger Maximum Principles in Differential

More information

A Linear Systems Primer

A Linear Systems Primer Panos J. Antsaklis Anthony N. Michel A Linear Systems Primer Birkhäuser Boston Basel Berlin Panos J. Antsaklis Department of Electrical Engineering University of Notre Dame Notre Dame, IN 46556 U.S.A.

More information

13 Path Planning Cubic Path P 2 P 1. θ 2

13 Path Planning Cubic Path P 2 P 1. θ 2 13 Path Planning Path planning includes three tasks: 1 Defining a geometric curve for the end-effector between two points. 2 Defining a rotational motion between two orientations. 3 Defining a time function

More information

Topics in Algebra and Analysis

Topics in Algebra and Analysis Radmila Bulajich Manfrino José Antonio Gómez Ortega Rogelio Valdez Delgado Topics in Algebra and Analysis Preparing for the Mathematical Olympiad Radmila Bulajich Manfrino Facultad de Ciencias Universidad

More information

PROBLEMS AND SOLUTIONS FOR COMPLEX ANALYSIS

PROBLEMS AND SOLUTIONS FOR COMPLEX ANALYSIS PROBLEMS AND SOLUTIONS FOR COMPLEX ANALYSIS Springer Science+Business Media, LLC Rami Shakarchi PROBLEMS AND SOLUTIONS FOR COMPLEX ANALYSIS With 46 III ustrations Springer Rami Shakarchi Department of

More information

Differential Kinematics

Differential Kinematics Differential Kinematics Relations between motion (velocity) in joint space and motion (linear/angular velocity) in task space (e.g., Cartesian space) Instantaneous velocity mappings can be obtained through

More information

ATOMIC SPECTROSCOPY: Introduction to the Theory of Hyperfine Structure

ATOMIC SPECTROSCOPY: Introduction to the Theory of Hyperfine Structure ATOMIC SPECTROSCOPY: Introduction to the Theory of Hyperfine Structure ATOMIC SPECTROSCOPY: Introduction to the Theory of Hyperfine Structure ANATOLI ANDREEV M.V. Lomonosov Moscow State University Moscow.

More information

Advanced Calculus of a Single Variable

Advanced Calculus of a Single Variable Advanced Calculus of a Single Variable Tunc Geveci Advanced Calculus of a Single Variable 123 Tunc Geveci Department of Mathematics and Statistics San Diego State University San Diego, CA, USA ISBN 978-3-319-27806-3

More information

For other titles in this series, go to Universitext

For other titles in this series, go to   Universitext For other titles in this series, go to www.springer.com/series/223 Universitext Anton Deitmar Siegfried Echterhoff Principles of Harmonic Analysis 123 Anton Deitmar Universität Tübingen Inst. Mathematik

More information

Dynamics. describe the relationship between the joint actuator torques and the motion of the structure important role for

Dynamics. describe the relationship between the joint actuator torques and the motion of the structure important role for Dynamics describe the relationship between the joint actuator torques and the motion of the structure important role for simulation of motion (test control strategies) analysis of manipulator structures

More information

Multiscale Modeling and Simulation of Composite Materials and Structures

Multiscale Modeling and Simulation of Composite Materials and Structures Multiscale Modeling and Simulation of Composite Materials and Structures Young W. Kwon David H. Allen Ramesh Talreja Editors Multiscale Modeling and Simulation of Composite Materials and Structures Edited

More information

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings:

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings: Introduction Up to this point we have considered only the kinematics of a manipulator. That is, only the specification of motion without regard to the forces and torques required to cause motion In this

More information

Igor Emri Arkady Voloshin. Statics. Learning from Engineering Examples

Igor Emri Arkady Voloshin. Statics. Learning from Engineering Examples Statics Igor Emri Arkady Voloshin Statics Learning from Engineering Examples Igor Emri University of Ljubljana Ljubljana, Slovenia Arkady Voloshin Lehigh University Bethlehem, PA, USA ISBN 978-1-4939-2100-3

More information

UNITEXT La Matematica per il 3+2. Volume 87

UNITEXT La Matematica per il 3+2. Volume 87 UNITEXT La Matematica per il 3+2 Volume 87 More information about this series at http://www.springer.com/series/5418 Sandro Salsa Gianmaria Verzini Partial Differential Equations in Action Complements

More information

Robotics I. Test November 29, 2013

Robotics I. Test November 29, 2013 Exercise 1 [6 points] Robotics I Test November 9, 013 A DC motor is used to actuate a single robot link that rotates in the horizontal plane around a joint axis passing through its base. The motor is connected

More information

Multivariable Calculus with MATLAB

Multivariable Calculus with MATLAB Multivariable Calculus with MATLAB Ronald L. Lipsman Jonathan M. Rosenberg Multivariable Calculus with MATLAB With Applications to Geometry and Physics Ronald L. Lipsman Department of Mathematics University

More information

Case Study: The Pelican Prototype Robot

Case Study: The Pelican Prototype Robot 5 Case Study: The Pelican Prototype Robot The purpose of this chapter is twofold: first, to present in detail the model of the experimental robot arm of the Robotics lab. from the CICESE Research Center,

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Semiconductor Physical Electronics Second Edition With 230 Figures Sheng S. Li Department of Electrical and Computer Engineering University of Florida Gainesville,

More information

Circuit Analysis for Power Engineering Handbook

Circuit Analysis for Power Engineering Handbook Circuit Analysis for Power Engineering Handbook Circuit Analysis for Power Engineering Handbook Arieh L. Shenkman SPRINGER SCIENCE+BUSINESS MEDIA, B.V A c.i.p. Catalogue record for this book is available

More information

SpringerBriefs in Statistics

SpringerBriefs in Statistics SpringerBriefs in Statistics For further volumes: http://www.springer.com/series/8921 Jeff Grover Strategic Economic Decision-Making Using Bayesian Belief Networks to Solve Complex Problems Jeff Grover

More information

Controlled Markov Processes and Viscosity Solutions

Controlled Markov Processes and Viscosity Solutions Controlled Markov Processes and Viscosity Solutions Wendell H. Fleming, H. Mete Soner Controlled Markov Processes and Viscosity Solutions Second Edition Wendell H. Fleming H.M. Soner Div. Applied Mathematics

More information

A Vector Space Approach to Models and Optimization

A Vector Space Approach to Models and Optimization A Vector Space Approach to Models and Optimization C. Nelson Dorny Moore School of Electrical Engineering University of Pennsylvania From a book originally published in 1975 by JOHN WILEY & SONS, INC.

More information

Robotics I. Classroom Test November 21, 2014

Robotics I. Classroom Test November 21, 2014 Robotics I Classroom Test November 21, 2014 Exercise 1 [6 points] In the Unimation Puma 560 robot, the DC motor that drives joint 2 is mounted in the body of link 2 upper arm and is connected to the joint

More information

Modern Power Systems Analysis

Modern Power Systems Analysis Modern Power Systems Analysis Xi-Fan Wang l Yonghua Song l Malcolm Irving Modern Power Systems Analysis 123 Xi-Fan Wang Xi an Jiaotong University Xi an People s Republic of China Yonghua Song The University

More information

Physics of Classical Electromagnetism

Physics of Classical Electromagnetism Physics of Classical Electromagnetism Minoru Fujimoto Physics of Classical Electromagnetism Minoru Fujimoto Department of Physics University of Guelph Guelph, Ontario Canada, N1G 2W1 Library of Congress

More information

Nadir Jeevanjee. An Introduction to Tensors and Group Theory for Physicists

Nadir Jeevanjee. An Introduction to Tensors and Group Theory for Physicists Nadir Jeevanjee An Introduction to Tensors and Group Theory for Physicists Nadir Jeevanjee Department of Physics University of California 366 LeConte Hall MC 7300 Berkeley, CA 94720 USA jeevanje@berkeley.edu

More information

CLASSICAL MECHANICS. The author

CLASSICAL MECHANICS.  The author CLASSICAL MECHANICS Gregory s Classical Mechanics is a major new textbook for undergraduates in mathematics and physics. It is a thorough, self-contained and highly readable account of a subject many students

More information

Lecture Notes - Modeling of Mechanical Systems

Lecture Notes - Modeling of Mechanical Systems Thomas Bak Lecture Notes - Modeling of Mechanical Systems February 19, 2002 Aalborg University Department of Control Engineering Fredrik Bajers Vej 7C DK-9220 Aalborg Denmark 2 Table of Contents Table

More information

Felipe Linares Gustavo Ponce. Introduction to Nonlinear Dispersive Equations ABC

Felipe Linares Gustavo Ponce. Introduction to Nonlinear Dispersive Equations ABC Felipe Linares Gustavo Ponce Introduction to Nonlinear Dispersive Equations ABC Felipe Linares Instituto Nacional de Matemática Pura e Aplicada (IMPA) Estrada Dona Castorina 110 Rio de Janeiro-RJ Brazil

More information

Undergraduate Texts in Mathematics

Undergraduate Texts in Mathematics Undergraduate Texts in Mathematics Editors S. Axler F.W. Gehring K.A. Ribet Springer Books on Elementary Mathematics by Serge Lang MATH! Encounters with High School Students 1985, ISBN 96129-1 The Beauty

More information

DYNAMICS OF PARALLEL MANIPULATOR

DYNAMICS OF PARALLEL MANIPULATOR DYNAMICS OF PARALLEL MANIPULATOR PARALLEL MANIPULATORS 6-degree of Freedom Flight Simulator BACKGROUND Platform-type parallel mechanisms 6-DOF MANIPULATORS INTRODUCTION Under alternative robotic mechanical

More information

Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202)

Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202) J = x θ τ = J T F 2018 School of Information Technology and Electrical Engineering at the University of Queensland Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202) 1 23-Jul Introduction + Representing

More information

(W: 12:05-1:50, 50-N202)

(W: 12:05-1:50, 50-N202) 2016 School of Information Technology and Electrical Engineering at the University of Queensland Schedule of Events Week Date Lecture (W: 12:05-1:50, 50-N202) 1 27-Jul Introduction 2 Representing Position

More information

Dynamics Formulas and Problems

Dynamics Formulas and Problems Dynamics Formulas and Problems Dietmar Gross Wolfgang Ehlers Peter Wriggers Jörg Schröder Ralf Müller Dynamics Formulas and Problems Engineering Mechanics 3 123 Dietmar Gross Division of Solid Mechanics

More information

Use R! Series Editors: Robert Gentleman Kurt Hornik Giovanni Parmigiani

Use R! Series Editors: Robert Gentleman Kurt Hornik Giovanni Parmigiani Use R! Series Editors: Robert Gentleman Kurt Hornik Giovanni Parmigiani Use R! Albert: Bayesian Computation with R Bivand/Pebesma/Gomez-Rubio: Applied Spatial Data Analysis with R Claude:Morphometrics

More information

Undergraduate Texts in Mathematics

Undergraduate Texts in Mathematics Undergraduate Texts in Mathematics Editors S. Axler F.W. Gehring K.A. Ribet Paul Cull Mary Flahive Robby Robson Difference Equations From Rabbits to Chaos With 16 Illustrations Paul Cull Dept. Computer

More information

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J.

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J. Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik Robot Dynamics Dr.-Ing. John Nassour 25.1.218 J.Nassour 1 Introduction Dynamics concerns the motion of bodies Includes Kinematics

More information

QUANTUM SCATTERING THEORY FOR SEVERAL PARTICLE SYSTEMS

QUANTUM SCATTERING THEORY FOR SEVERAL PARTICLE SYSTEMS .: ' :,. QUANTUM SCATTERING THEORY FOR SEVERAL PARTICLE SYSTEMS Mathematical Physics and Applied Mathematics Editors: M. Plato, Universite de Bourgogne, Dijon, France The titles published in this series

More information

Probability Theory, Random Processes and Mathematical Statistics

Probability Theory, Random Processes and Mathematical Statistics Probability Theory, Random Processes and Mathematical Statistics Mathematics and Its Applications Managing Editor: M.HAZEWINKEL Centre for Mathematics and Computer Science, Amsterdam, The Netherlands Volume

More information

RECURSIVE INVERSE DYNAMICS

RECURSIVE INVERSE DYNAMICS We assume at the outset that the manipulator under study is of the serial type with n+1 links including the base link and n joints of either the revolute or the prismatic type. The underlying algorithm

More information

Latif M. Jiji. Heat Convection. With 206 Figures and 16 Tables

Latif M. Jiji. Heat Convection. With 206 Figures and 16 Tables Heat Convection Latif M. Jiji Heat Convection With 206 Figures and 16 Tables Prof. Latif M. Jiji City University of New York School of Engineering Dept. of Mechanical Engineering Convent Avenue at 138th

More information

DYNAMICS OF PARALLEL MANIPULATOR

DYNAMICS OF PARALLEL MANIPULATOR DYNAMICS OF PARALLEL MANIPULATOR The 6nx6n matrices of manipulator mass M and manipulator angular velocity W are introduced below: M = diag M 1, M 2,, M n W = diag (W 1, W 2,, W n ) From this definitions

More information

Graduate Texts in Mathematics 216. Editorial Board S. Axler F.W. Gehring K.A. Ribet

Graduate Texts in Mathematics 216. Editorial Board S. Axler F.W. Gehring K.A. Ribet Graduate Texts in Mathematics 216 Editorial Board S. Axler F.W. Gehring K.A. Ribet Denis Serre Matrices Theory and Applications Denis Serre Ecole Normale Supérieure de Lyon UMPA Lyon Cedex 07, F-69364

More information

Springer Texts in Electrical Engineering. Consulting Editor: John B. Thomas

Springer Texts in Electrical Engineering. Consulting Editor: John B. Thomas Springer Texts in Electrical Engineering Consulting Editor: John B. Thomas Springer Texts in Electrical Engineering Multivariable Feedback Systems P.M. Callier/C.A. Desoer Linear Programming M. Sakarovitch

More information

Robot Dynamics II: Trajectories & Motion

Robot Dynamics II: Trajectories & Motion Robot Dynamics II: Trajectories & Motion Are We There Yet? METR 4202: Advanced Control & Robotics Dr Surya Singh Lecture # 5 August 23, 2013 metr4202@itee.uq.edu.au http://itee.uq.edu.au/~metr4202/ 2013

More information

inertia of a body, principal axes of inertia, invariants of an inertia tensor, and inertia triangle inequalities are illustrated and discussed.

inertia of a body, principal axes of inertia, invariants of an inertia tensor, and inertia triangle inequalities are illustrated and discussed. Preface This book belongs to a series of three books written simultaneously (the remaining two are titled Classical Mechanics: Dynamics and Classical Mechanics: Applied MechanicsandMechatronics). This

More information

Chapter 2 Vibration Dynamics

Chapter 2 Vibration Dynamics Chapter 2 Vibration Dynamics In this chapter, we review the dynamics of vibrations and the methods of deriving the equations of motion of vibrating systems. The Newton Euler and Lagrange methods are the

More information

Electronic Materials: Science & Technology

Electronic Materials: Science & Technology Electronic Materials: Science & Technology Series Editor: Harry L. Tuller Professor of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, Massachusetts tuller@mit.edu For

More information

Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory Yuri A. Kuznetsov Elements of Applied Bifurcation Theory Third Edition With 251 Illustrations Springer Yuri A. Kuznetsov Department of Mathematics Utrecht University Budapestlaan 6 3584 CD Utrecht The

More information

Signals and Systems with MATLAB Applications

Signals and Systems with MATLAB Applications Signals and Systems with MATLAB Applications Second Edition Steven T. Karris www.orchardpublications.com Signals and Systems with MATLAB Applications, Second Edition Copyright 2003. All rights reserved.

More information

Fundamentals of Mass Determination

Fundamentals of Mass Determination Fundamentals of Mass Determination Michael Borys Roman Schwartz Arthur Reichmuth Roland Nater Fundamentals of Mass Determination 123 Michael Borys Fachlabor 1.41 Physikalisch-Technische Bundesanstalt Bundesallee

More information

Trajectory-tracking control of a planar 3-RRR parallel manipulator

Trajectory-tracking control of a planar 3-RRR parallel manipulator Trajectory-tracking control of a planar 3-RRR parallel manipulator Chaman Nasa and Sandipan Bandyopadhyay Department of Engineering Design Indian Institute of Technology Madras Chennai, India Abstract

More information

Follow links Class Use and other Permissions. For more information, send to:

Follow links Class Use and other Permissions. For more information, send  to: COPYRIGHT NOTICE: Stephen L. Campbell & Richard Haberman: Introduction to Differential Equations with Dynamical Systems is published by Princeton University Press and copyrighted, 2008, by Princeton University

More information

Robotics I. February 6, 2014

Robotics I. February 6, 2014 Robotics I February 6, 214 Exercise 1 A pan-tilt 1 camera sensor, such as the commercial webcams in Fig. 1, is mounted on the fixed base of a robot manipulator and is used for pointing at a (point-wise)

More information

Nonlinear Dynamical Systems in Engineering

Nonlinear Dynamical Systems in Engineering Nonlinear Dynamical Systems in Engineering . Vasile Marinca Nicolae Herisanu Nonlinear Dynamical Systems in Engineering Some Approximate Approaches Vasile Marinca Politehnica University of Timisoara Department

More information

Progress in Mathematical Physics

Progress in Mathematical Physics Progress in Mathematical Physics Volume 24 Editors-in-Chiej Anne Boutet de Monvel, Universite Paris VII Denis Diderot Gerald Kaiser, The Virginia Center for Signals and Waves Editorial Board D. Bao, University

More information

Lecture Note 4: General Rigid Body Motion

Lecture Note 4: General Rigid Body Motion ECE5463: Introduction to Robotics Lecture Note 4: General Rigid Body Motion Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture

More information

Interactive Quantum Mechanics

Interactive Quantum Mechanics Interactive Quantum Mechanics S. Brandt H.D. Dahmen T. Stroh Interactive Quantum Mechanics Quantum Experiments on the Computer Second Edition With CD-ROM, 128 Figures, and 344 Exercises Siegmund Brandt

More information

1000 Solved Problems in Classical Physics

1000 Solved Problems in Classical Physics 1000 Solved Problems in Classical Physics Ahmad A. Kamal 1000 Solved Problems in Classical Physics An Exercise Book 123 Dr. Ahmad A. Kamal Silversprings Lane 425 75094 Murphy Texas USA anwarakamal@yahoo.com

More information

THE BOUNDARY ELEMENT METHOD

THE BOUNDARY ELEMENT METHOD THE BOUNDARY ELEMENT METHOD SOLID MECHANICS AND ITS APPLICATIONS Volume 27 Series Editor: G.M.L. GLADWELL Solid Mechanics Division, Faculty of Engineering University of Waterloo Waterloo, Ontario, Canada

More information

Advanced Engineering. Dynamics. H. R. Harrison. T. Nettleton. Formerly Department of Mechanical Engineering & Aeronautics City University London

Advanced Engineering. Dynamics. H. R. Harrison. T. Nettleton. Formerly Department of Mechanical Engineering & Aeronautics City University London Advanced Engineering Dynamics H. R. Harrison Formerly Department of Mechanical Engineering & Aeronautics City University London T. Nettleton Formerly Department of Mechanical Engineering & Aeronautics

More information

Statics and Mechanics of Structures

Statics and Mechanics of Structures Statics and Mechanics of Structures Steen Krenk Jan Høgsberg Statics and Mechanics of Structures Prof. Steen Krenk Department of Mechanical Engineering Technical University of Denmark Kongens Lyngby,

More information

Introduction to Robotics

Introduction to Robotics J. Zhang, L. Einig 277 / 307 MIN Faculty Department of Informatics Lecture 8 Jianwei Zhang, Lasse Einig [zhang, einig]@informatik.uni-hamburg.de University of Hamburg Faculty of Mathematics, Informatics

More information

Chapter 6: Vector Analysis

Chapter 6: Vector Analysis Chapter 6: Vector Analysis We use derivatives and various products of vectors in all areas of physics. For example, Newton s 2nd law is F = m d2 r. In electricity dt 2 and magnetism, we need surface and

More information

Coordination of Large-Scale Multiagent Systems

Coordination of Large-Scale Multiagent Systems Coordination of Large-Scale Multiagent Systems Coordination of Large-Scale Multiagent Systems Edited by Paul Scerri Carnegie Mellon University Regis Vincent SRI International Roger Mailler Cornell University

More information

Rigid Body Dynamics Algorithms

Rigid Body Dynamics Algorithms Rigid Body Dynamics Algorithms Roy Featherstone Rigid Body Dynamics Algorithms Roy Featherstone The Austrailian National University Canberra, ACT Austrailia Library of Congress Control Number: 2007936980

More information

Springer Series on. atomic, optical, and plasma physics 65

Springer Series on. atomic, optical, and plasma physics 65 Springer Series on atomic, optical, and plasma physics 65 Springer Series on atomic, optical, and plasma physics The Springer Series on Atomic, Optical, and Plasma Physics covers in a comprehensive manner

More information

Differential Equations: Theory and Applications with Maple

Differential Equations: Theory and Applications with Maple Differential Equations: Theory and Applications with Maple David Betounes Differential Equations: Theory and Applications with Maple David Betounes Mathematics Department University of Southern Mississippi

More information

Translational and Rotational Dynamics!

Translational and Rotational Dynamics! Translational and Rotational Dynamics Robert Stengel Robotics and Intelligent Systems MAE 345, Princeton University, 217 Copyright 217 by Robert Stengel. All rights reserved. For educational use only.

More information

Universitext. Series Editors:

Universitext. Series Editors: Universitext Universitext Series Editors: Sheldon Axler San Francisco State University, San Francisco, CA, USA Vincenzo Capasso Università degli Studi di Milano, Milan, Italy Carles Casacuberta Universitat

More information

Foundations and Applications of Engineering Mechanics

Foundations and Applications of Engineering Mechanics Foundations and Applications of Engineering Mechanics 4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi - 110002, India Cambridge University Press is part of the University of Cambridge. It furthers the

More information

ECE569 Exam 1 October 28, Name: Score: /100. Please leave fractions as fractions, but simplify them, etc.

ECE569 Exam 1 October 28, Name: Score: /100. Please leave fractions as fractions, but simplify them, etc. ECE569 Exam 1 October 28, 2015 1 Name: Score: /100 This exam is closed-book. You must show ALL of your work for full credit. Please read the questions carefully. Please check your answers carefully. Calculators

More information

The written qualifying (preliminary) examination covers the entire major field body of knowledge

The written qualifying (preliminary) examination covers the entire major field body of knowledge Dynamics The field of Dynamics embraces the study of forces and induced motions of rigid and deformable material systems within the limitations of classical (Newtonian) mechanics. The field is intended

More information

UNDERSTANDING PHYSICS

UNDERSTANDING PHYSICS UNDERSTANDING PHYSICS UNDERSTANDING PHYSICS Student Guide David Cassidy Gerald Holton James Rutherford 123 David Cassidy Gerald Holton Professor of Natural Science Mallinckrodt Professor of Physics and

More information

(3.1) a 2nd-order vector differential equation, as the two 1st-order vector differential equations (3.3)

(3.1) a 2nd-order vector differential equation, as the two 1st-order vector differential equations (3.3) Chapter 3 Kinematics As noted in the Introduction, the study of dynamics can be decomposed into the study of kinematics and kinetics. For the translational motion of a particle of mass m, this decomposition

More information

Data Analysis Using the Method of Least Squares

Data Analysis Using the Method of Least Squares Data Analysis Using the Method of Least Squares J. Wolberg Data Analysis Using the Method of Least Squares Extracting the Most Information from Experiments With Figures and Tables 123 John Wolberg Technion-Israel

More information

Northwestern Connecticut Community College Course Syllabus

Northwestern Connecticut Community College Course Syllabus Northwestern Connecticut Community College Course Syllabus Course Title: Introductory Physics Course #: PHY 110 Course Description: 4 credits (3 class hours and 3 laboratory hours per week) Physics 110

More information

RADIATION PROTECTION AND DOSIMETRY

RADIATION PROTECTION AND DOSIMETRY RADIATION PROTECTION AND DOSIMETRY Michael G. Stabin Radiation Protection and Dosimetry An Introduction to Health Physics 123 Michael G. Stabin Department of Radiology and Radiological Sciences Vanderbilt

More information

Abdul-Majid Wazwaz. Linear and Nonlinear Integral Equations. Methods and Applications

Abdul-Majid Wazwaz. Linear and Nonlinear Integral Equations. Methods and Applications Abdul-Majid Wazwaz Linear and Nonlinear Integral Equations Methods and Applications Abdul-Majid Wazwaz Linear and Nonlinear Integral Equations Methods and Applications With 4 figures ~ -:tr It i >j: Pt.~l

More information

To my father, who taught me to write

To my father, who taught me to write To my father, who taught me to write Stephanie Frank Singer Symmetry in Mechanics A Gentle, Modern Introduction Springer Science+Business Media, LLC Stephanie Frank: Singer Philadelphia, PA www.symmetrysinger.com

More information

Shijun Liao. Homotopy Analysis Method in Nonlinear Differential Equations

Shijun Liao. Homotopy Analysis Method in Nonlinear Differential Equations Shijun Liao Homotopy Analysis Method in Nonlinear Differential Equations Shijun Liao Homotopy Analysis Method in Nonlinear Differential Equations With 127 figures Author Shijun Liao Shanghai Jiao Tong

More information

Single Exponential Motion and Its Kinematic Generators

Single Exponential Motion and Its Kinematic Generators PDFaid.Com #1 Pdf Solutions Single Exponential Motion and Its Kinematic Generators Guanfeng Liu, Yuanqin Wu, and Xin Chen Abstract Both constant velocity (CV) joints and zero-torsion parallel kinematic

More information

Preface. Figures Figures appearing in the text were prepared using MATLAB R. For product information, please contact:

Preface. Figures Figures appearing in the text were prepared using MATLAB R. For product information, please contact: Linear algebra forms the basis for much of modern mathematics theoretical, applied, and computational. The purpose of this book is to provide a broad and solid foundation for the study of advanced mathematics.

More information

A FIRST COURSE IN INTEGRAL EQUATIONS

A FIRST COURSE IN INTEGRAL EQUATIONS A FIRST COURSE IN INTEGRAL EQUATIONS This page is intentionally left blank A FIRST COURSE IN INTEGRAL EQUATIONS Abdul-M ajid Wazwaz Saint Xavier University, USA lib World Scientific 1M^ Singapore New Jersey

More information

9.1. Basic Concepts of Vectors. Introduction. Prerequisites. Learning Outcomes. Learning Style

9.1. Basic Concepts of Vectors. Introduction. Prerequisites. Learning Outcomes. Learning Style Basic Concepts of Vectors 9.1 Introduction In engineering, frequent reference is made to physical quantities, such as force, speed and time. For example, we talk of the speed of a car, and the force in

More information

Friction-Induced Vibration in Lead Screw Drives

Friction-Induced Vibration in Lead Screw Drives Friction-Induced Vibration in Lead Screw Drives . Orang Vahid-Araghi l Farid Golnaraghi Friction-Induced Vibration in Lead Screw Drives Orang Vahid-Araghi Ph.D Queen Street N. 175 N2H 2H9 Kitchener Ontario

More information

A Beginner s Guide to Finite Mathematics

A Beginner s Guide to Finite Mathematics W.D. Wallis A Beginner s Guide to Finite Mathematics For Business, Management, and the Social Sciences Second Edition W.D. Wallis Department of Mathematics Southern Illinois University Carbondale, IL 62901

More information

Doubt-Free Uncertainty In Measurement

Doubt-Free Uncertainty In Measurement Doubt-Free Uncertainty In Measurement Colin Ratcliffe Bridget Ratcliffe Doubt-Free Uncertainty In Measurement An Introduction for Engineers and Students Colin Ratcliffe United States Naval Academy Annapolis

More information