Fractional Replication of The 2 k Design

Size: px
Start display at page:

Download "Fractional Replication of The 2 k Design"

Transcription

1 Fractional Replication of The 2 k Design Experiments with many factors involve a large number of possible treatments, even when all factors are used at only two levels. Often the available resources are not sufficient for even a single replication of the complete factorial design. A carefully chosen fraction of the complete design will give much information, though always less than the complete design. 1 / 17 Factorial Experiments for Process Design Fractional Replication of The 2 k Design

2 A one-half fraction Consider the 2 3 design. The table of coefficients is: I A B C AB AC BC ABC The A, B, and C columns define the treatments; all columns contain the coefficients for computing effects. 2 / 17 Factorial Experiments for Process Design Fractional Replication of The 2 k Design

3 Rearrange the rows by the ABC column: I A B C AB AC BC ABC / 17 Factorial Experiments for Process Design Fractional Replication of The 2 k Design

4 Suppose that only the runs defined by the top four rows were carried out. We could still use these columns of coefficients to calculate estimates of the effects. But, within this half, the column for the ABC interaction is the same as the column (I ) for the intercept. Clearly the ABC interaction cannot be estimated. But also the BC column is identical to the A column, so we cannot separate the BC interaction from the A main effect. We say that A and BC are aliased. 4 / 17 Factorial Experiments for Process Design Fractional Replication of The 2 k Design

5 Similarly B is aliased with AC, and C is aliased with AB. We describe this design by the generator ABC, and the equation ABC = I is the defining relation for the design. Multiplying the defining relation by A, B, and C, in turn, and using the fact that A 2 = B 2 = C 2 = 1, we find the alias chains BC = A, AC = B, AB = C. and 5 / 17 Factorial Experiments for Process Design Fractional Replication of The 2 k Design

6 Another way to write the aliasing relationships is to use [A] to denote the result of applying the A column coefficients, and then [A] = A + BC indicates that what we calculate as the main effect of A is actually the sum of the A main effect and the BC interaction. Similarly [B] = B + AC, [C] = C + AB. 6 / 17 Factorial Experiments for Process Design Fractional Replication of The 2 k Design

7 Example: Plasma etching Suppose only the eight runs with ABCD = I were run: plasmafraction <- plasma[with(plasma, A * B * C * D == 1), ] summary(a <- aov(rate ~ A * B * C * D, plasmafraction)) library(gplots) qqnorm(a, label = TRUE) The output lists only one member of each alias chain, and the plot shows D, BC, and A to be prominent. But note that in this design, ABCD = I implies that BC = AD, so we could equally describe the prominent points as D, A, and AD. 7 / 17 Factorial Experiments for Process Design Fractional Replication of The 2 k Design

8 Smaller fractions With any number of factors, a one-half fraction is always generated by aliasing the highest level interaction with the intercept (I ). Often the available resources are not enough to carry out a one-half fraction, and a smaller fraction must be found. Smaller fractions are chosen by deciding which interactions will alias with I. 8 / 17 Factorial Experiments for Process Design Fractional Replication of The 2 k Design

9 For example, with 6 factors, we could decide to alias ABCE and BCDF with I. Then also ABCE BCDF = ADEF = I. The complete defining relation is I = ABCE = BCDF = ADEF. In this design, main effects are aliased with three-factor interactions, but not with two-factor interactions. It is a resolution IV design, written IV. 9 / 17 Factorial Experiments for Process Design Fractional Replication of The 2 k Design

10 Example: a design Shrinkage of injection-molded parts. Factors: A, mold temperature; B, screw speed; C, holding time; D, cycle time; E, moisture content; F, gate size; G, holding pressure. The factors define 2 7 = 128 treatments, but only 16 runs could be made. We need a one-eighth fraction, with three generators. 10 / 17 Factorial Experiments for Process Design Fractional Replication of The 2 k Design

11 Choosing generators We could begin with the highest order interaction: ABCDEFG = I. But then if we add any other generator, say ABCD = I, we find another relation, in this case EFG = I, which means that a main effect, say E, is aliased with a two-factor interaction, here E = FG. So the design would have resolution at most III. A resolution IV design can be found, with I = ABCE, I = BCDF, and I = ACDG. The complete defining relation is I = ABCE = BCDF = ACDG = ADEF = BDEG = ABFG = CEFG. 11 / 17 Factorial Experiments for Process Design Fractional Replication of The 2 k Design

12 Finding the treatments Start with the 2 4 design in A, B, C, and D: A B C D / 17 Factorial Experiments for Process Design Fractional Replication of The 2 k Design

13 Add columns for E(= ABC), F (= BCD), and G(= ACD): A B C D E F G / 17 Factorial Experiments for Process Design Fractional Replication of The 2 k Design

14 In R: molding <- expand.grid(a = c(-1, 1), B = c(-1, 1), C = c(-1, 1), D = c(-1, 1)) molding <- within(molding, {G <- A * C * D; F <- B * C * D; E <- A * B * C}) molding$shrinkage <- c(6, 10, 32, 60, 4, 15, 26, 60, 8, 12, 34, 60, 16, 5, 37, 52) # half-normal plot: library(gplots) qqnorm(aov(shrinkage ~ A * B * C * D * E * F * G, molding), label = TRUE) 14 / 17 Factorial Experiments for Process Design Fractional Replication of The 2 k Design

15 Interpreting the plot The most prominent effects are A, B, and the AB interaction. Aliasing The complete defining relation shows that A and B are each aliased with several three-factor interactions, and AB is aliased with CE and FG. The simplest explanation of the plot is that A and B are the only important factors, and that they are not additive. Another explanation would be that AB actually represents either CE or FG, but with none of C, E, F, or G being prominent, that is less likely; those models are not hierarchical. 15 / 17 Factorial Experiments for Process Design Fractional Replication of The 2 k Design

16 Projection If only A and B are considered, the design projects onto a 2 2 design with n = 4 replicates: summary(aov(shrinkage ~ A * B, molding)) with(molding, interaction.plot(a, B, Shrinkage)) But note that the 12 degrees of freedom for residuals are pooled from effects that we saw to be small in the half-normal plot. 16 / 17 Factorial Experiments for Process Design Fractional Replication of The 2 k Design

17 Dispersion effects The half-normal plot shows which factors affect the mean response. Some factors may affect the dispersion of the responses; we can use the residuals in the projected model to explore this: molding$resids <- residuals(aov(shrinkage ~ A * B, molding)); qqnorm(aov(abs(resids) ~ A * B * C * D * E * F * G, molding), label = TRUE) # plot residuals against each factor: plot(abs(resids) ~ A * B * C * D * E * F * G, molding) But note that G has a small main effect, and the residuals from Shrinkage ~ A * B + G show no dispersion effect of C. 17 / 17 Factorial Experiments for Process Design Fractional Replication of The 2 k Design

The One-Quarter Fraction

The One-Quarter Fraction The One-Quarter Fraction ST 516 Need two generating relations. E.g. a 2 6 2 design, with generating relations I = ABCE and I = BCDF. Product of these is ADEF. Complete defining relation is I = ABCE = BCDF

More information

Fractional Factorial Designs

Fractional Factorial Designs Fractional Factorial Designs ST 516 Each replicate of a 2 k design requires 2 k runs. E.g. 64 runs for k = 6, or 1024 runs for k = 10. When this is infeasible, we use a fraction of the runs. As a result,

More information

Design of Engineering Experiments Chapter 8 The 2 k-p Fractional Factorial Design

Design of Engineering Experiments Chapter 8 The 2 k-p Fractional Factorial Design Design of Engineering Experiments Chapter 8 The 2 k-p Fractional Factorial Design Text reference, Chapter 8 Motivation for fractional factorials is obvious; as the number of factors becomes large enough

More information

Design of experiment ERT k-p fractional factorial. Miss Hanna Ilyani Zulhaimi

Design of experiment ERT k-p fractional factorial. Miss Hanna Ilyani Zulhaimi + Design of experiment ERT 427 2 k-p fractional factorial Miss Hanna Ilyani Zulhaimi + OUTLINE n Limitation of full factorial design n The concept of fractional factorial, 2 k-p n One-half fraction factorial

More information

Lec 10: Fractions of 2 k Factorial Design

Lec 10: Fractions of 2 k Factorial Design December 5, 2011 Fraction of 2 k experiments Screening: Some of the factors may influence the results. We want to figure out which. The number of combinations, 2 k, is too large for a complete investigation.

More information

Reference: Chapter 8 of Montgomery (8e)

Reference: Chapter 8 of Montgomery (8e) Reference: Chapter 8 of Montgomery (8e) 69 Maghsoodloo Fractional Factorials (or Replicates) For Base 2 Designs As the number of factors in a 2 k factorial experiment increases, the number of runs (or

More information

Fractional Replications

Fractional Replications Chapter 11 Fractional Replications Consider the set up of complete factorial experiment, say k. If there are four factors, then the total number of plots needed to conduct the experiment is 4 = 1. When

More information

FRACTIONAL REPLICATION

FRACTIONAL REPLICATION FRACTIONAL REPLICATION M.L.Agarwal Department of Statistics, University of Delhi, Delhi -. In a factorial experiment, when the number of treatment combinations is very large, it will be beyond the resources

More information

MATH602: APPLIED STATISTICS

MATH602: APPLIED STATISTICS MATH602: APPLIED STATISTICS Dr. Srinivas R. Chakravarthy Department of Science and Mathematics KETTERING UNIVERSITY Flint, MI 48504-4898 Lecture 10 1 FRACTIONAL FACTORIAL DESIGNS Complete factorial designs

More information

Session 3 Fractional Factorial Designs 4

Session 3 Fractional Factorial Designs 4 Session 3 Fractional Factorial Designs 3 a Modification of a Bearing Example 3. Fractional Factorial Designs Two-level fractional factorial designs Confounding Blocking Two-Level Eight Run Orthogonal Array

More information

STAT451/551 Homework#11 Due: April 22, 2014

STAT451/551 Homework#11 Due: April 22, 2014 STAT451/551 Homework#11 Due: April 22, 2014 1. Read Chapter 8.3 8.9. 2. 8.4. SAS code is provided. 3. 8.18. 4. 8.24. 5. 8.45. 376 Chapter 8 Two-Level Fractional Factorial Designs more detail. Sequential

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Figure 12: Figure 13:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Figure 12: Figure 13: 1.0 ial Experiment Design by Block... 3 1.1 ial Experiment in Incomplete Block... 3 1. ial Experiment with Two Blocks... 3 1.3 ial Experiment with Four Blocks... 5 Example 1... 6.0 Fractional ial Experiment....1

More information

FRACTIONAL FACTORIAL

FRACTIONAL FACTORIAL FRACTIONAL FACTORIAL NURNABI MEHERUL ALAM M.Sc. (Agricultural Statistics), Roll No. 443 I.A.S.R.I, Library Avenue, New Delhi- Chairperson: Dr. P.K. Batra Abstract: Fractional replication can be defined

More information

Lecture 12: 2 k p Fractional Factorial Design

Lecture 12: 2 k p Fractional Factorial Design Lecture 12: 2 k p Fractional Factorial Design Montgomery: Chapter 8 Page 1 Fundamental Principles Regarding Factorial Effects Suppose there are k factors (A,B,...,J,K) in an experiment. All possible factorial

More information

23. Fractional factorials - introduction

23. Fractional factorials - introduction 173 3. Fractional factorials - introduction Consider a 5 factorial. Even without replicates, there are 5 = 3 obs ns required to estimate the effects - 5 main effects, 10 two factor interactions, 10 three

More information

ST3232: Design and Analysis of Experiments

ST3232: Design and Analysis of Experiments Department of Statistics & Applied Probability 2:00-4:00 pm, Monday, April 8, 2013 Lecture 21: Fractional 2 p factorial designs The general principles A full 2 p factorial experiment might not be efficient

More information

TWO-LEVEL FACTORIAL EXPERIMENTS: IRREGULAR FRACTIONS

TWO-LEVEL FACTORIAL EXPERIMENTS: IRREGULAR FRACTIONS STAT 512 2-Level Factorial Experiments: Irregular Fractions 1 TWO-LEVEL FACTORIAL EXPERIMENTS: IRREGULAR FRACTIONS A major practical weakness of regular fractional factorial designs is that N must be a

More information

19. Blocking & confounding

19. Blocking & confounding 146 19. Blocking & confounding Importance of blocking to control nuisance factors - day of week, batch of raw material, etc. Complete Blocks. This is the easy case. Suppose we run a 2 2 factorial experiment,

More information

Experimental design (DOE) - Design

Experimental design (DOE) - Design Experimental design (DOE) - Design Menu: QCExpert Experimental Design Design Full Factorial Fract Factorial This module designs a two-level multifactorial orthogonal plan 2 n k and perform its analysis.

More information

Design and Analysis of Experiments

Design and Analysis of Experiments Design and Analysis of Experiments Part VII: Fractional Factorial Designs Prof. Dr. Anselmo E de Oliveira anselmo.quimica.ufg.br anselmo.disciplinas@gmail.com 2 k : increasing k the number of runs required

More information

Strategy of Experimentation III

Strategy of Experimentation III LECTURE 3 Strategy of Experimentation III Comments: Homework 1. Design Resolution A design is of resolution R if no p factor effect is confounded with any other effect containing less than R p factors.

More information

TWO-LEVEL FACTORIAL EXPERIMENTS: REGULAR FRACTIONAL FACTORIALS

TWO-LEVEL FACTORIAL EXPERIMENTS: REGULAR FRACTIONAL FACTORIALS STAT 512 2-Level Factorial Experiments: Regular Fractions 1 TWO-LEVEL FACTORIAL EXPERIMENTS: REGULAR FRACTIONAL FACTORIALS Bottom Line: A regular fractional factorial design consists of the treatments

More information

6. Fractional Factorial Designs (Ch.8. Two-Level Fractional Factorial Designs)

6. Fractional Factorial Designs (Ch.8. Two-Level Fractional Factorial Designs) 6. Fractional Factorial Designs (Ch.8. Two-Level Fractional Factorial Designs) Hae-Jin Choi School of Mechanical Engineering, Chung-Ang University 1 Introduction to The 2 k-p Fractional Factorial Design

More information

Suppose we needed four batches of formaldehyde, and coulddoonly4runsperbatch. Thisisthena2 4 factorial in 2 2 blocks.

Suppose we needed four batches of formaldehyde, and coulddoonly4runsperbatch. Thisisthena2 4 factorial in 2 2 blocks. 58 2. 2 factorials in 2 blocks Suppose we needed four batches of formaldehyde, and coulddoonly4runsperbatch. Thisisthena2 4 factorial in 2 2 blocks. Some more algebra: If two effects are confounded with

More information

Design and Analysis of Multi-Factored Experiments

Design and Analysis of Multi-Factored Experiments Design and Analysis of Multi-Factored Experiments Fractional Factorial Designs L. M. Lye DOE Course 1 Design of Engineering Experiments The 2 k-p Fractional Factorial Design Motivation for fractional factorials

More information

Computer Aided Construction of Fractional Replicates from Large Factorials. Walter T. Federer Charles E. McCulloch. and. Steve C.

Computer Aided Construction of Fractional Replicates from Large Factorials. Walter T. Federer Charles E. McCulloch. and. Steve C. Computer Aided Construction of Fractional Replicates from Large Factorials by Walter T. Federer Charles E. McCulloch and Steve C. Wang Biometrics Unit and Statistics Center Cornell University Ithaca, NY

More information

2.830 Homework #6. April 2, 2009

2.830 Homework #6. April 2, 2009 2.830 Homework #6 Dayán Páez April 2, 2009 1 ANOVA The data for four different lithography processes, along with mean and standard deviations are shown in Table 1. Assume a null hypothesis of equality.

More information

Chapter 11: Factorial Designs

Chapter 11: Factorial Designs Chapter : Factorial Designs. Two factor factorial designs ( levels factors ) This situation is similar to the randomized block design from the previous chapter. However, in addition to the effects within

More information

Fractional Factorials

Fractional Factorials Fractional Factorials Bruce A Craig Department of Statistics Purdue University STAT 514 Topic 26 1 Fractional Factorials Number of runs required for full factorial grows quickly A 2 7 design requires 128

More information

Use of DOE methodology for Investigating Conditions that Influence the Tension in Marine Risers for FPSO Ships

Use of DOE methodology for Investigating Conditions that Influence the Tension in Marine Risers for FPSO Ships 1 st International Structural Specialty Conference 1ère Conférence internationale sur le spécialisée sur le génie des structures Calgary, Alberta, Canada May 23-26, 2006 / 23-26 Mai 2006 Use of DOE methodology

More information

Assignment 9 Answer Keys

Assignment 9 Answer Keys Assignment 9 Answer Keys Problem 1 (a) First, the respective means for the 8 level combinations are listed in the following table A B C Mean 26.00 + 34.67 + 39.67 + + 49.33 + 42.33 + + 37.67 + + 54.67

More information

Construction of Mixed-Level Orthogonal Arrays for Testing in Digital Marketing

Construction of Mixed-Level Orthogonal Arrays for Testing in Digital Marketing Construction of Mixed-Level Orthogonal Arrays for Testing in Digital Marketing Vladimir Brayman Webtrends October 19, 2012 Advantages of Conducting Designed Experiments in Digital Marketing Availability

More information

Answer Keys to Homework#10

Answer Keys to Homework#10 Answer Keys to Homework#10 Problem 1 Use either restricted or unrestricted mixed models. Problem 2 (a) First, the respective means for the 8 level combinations are listed in the following table A B C Mean

More information

Confounding and fractional replication in 2 n factorial systems

Confounding and fractional replication in 2 n factorial systems Chapter 20 Confounding and fractional replication in 2 n factorial systems Confounding is a method of designing a factorial experiment that allows incomplete blocks, i.e., blocks of smaller size than the

More information

Minimum Aberration and Related Criteria for Fractional Factorial Designs

Minimum Aberration and Related Criteria for Fractional Factorial Designs Minimum Aberration and Related Criteria for Fractional Factorial Designs Hegang Chen Division of Biostatistics and Bioinformatics 660 West Redwood Street University of Maryland School of Medicine Baltimore,

More information

20g g g Analyze the residuals from this experiment and comment on the model adequacy.

20g g g Analyze the residuals from this experiment and comment on the model adequacy. 3.4. A computer ANOVA output is shown below. Fill in the blanks. You may give bounds on the P-value. One-way ANOVA Source DF SS MS F P Factor 3 36.15??? Error??? Total 19 196.04 3.11. A pharmaceutical

More information

2 k, 2 k r and 2 k-p Factorial Designs

2 k, 2 k r and 2 k-p Factorial Designs 2 k, 2 k r and 2 k-p Factorial Designs 1 Types of Experimental Designs! Full Factorial Design: " Uses all possible combinations of all levels of all factors. n=3*2*2=12 Too costly! 2 Types of Experimental

More information

On the Compounds of Hat Matrix for Six-Factor Central Composite Design with Fractional Replicates of the Factorial Portion

On the Compounds of Hat Matrix for Six-Factor Central Composite Design with Fractional Replicates of the Factorial Portion American Journal of Computational and Applied Mathematics 017, 7(4): 95-114 DOI: 10.593/j.ajcam.0170704.0 On the Compounds of Hat Matrix for Six-Factor Central Composite Design with Fractional Replicates

More information

Strategy of Experimentation II

Strategy of Experimentation II LECTURE 2 Strategy of Experimentation II Comments Computer Code. Last week s homework Interaction plots Helicopter project +1 1 1 +1 [4I 2A 2B 2AB] = [µ 1) µ A µ B µ AB ] +1 +1 1 1 +1 1 +1 1 +1 +1 +1 +1

More information

3.4. A computer ANOVA output is shown below. Fill in the blanks. You may give bounds on the P-value.

3.4. A computer ANOVA output is shown below. Fill in the blanks. You may give bounds on the P-value. 3.4. A computer ANOVA output is shown below. Fill in the blanks. You may give bounds on the P-value. One-way ANOVA Source DF SS MS F P Factor 3 36.15??? Error??? Total 19 196.04 Completed table is: One-way

More information

Unit 9: Confounding and Fractional Factorial Designs

Unit 9: Confounding and Fractional Factorial Designs Unit 9: Confounding and Fractional Factorial Designs STA 643: Advanced Experimental Design Derek S. Young 1 Learning Objectives Understand what it means for a treatment to be confounded with blocks Know

More information

Lecture 14: 2 k p Fractional Factorial Design

Lecture 14: 2 k p Fractional Factorial Design Lecture 14: 2 k p Fractional Factorial Design Montgomery: Chapter 8 1 Lecture 14 Page 1 Fundamental Principles Regarding Factorial Effects Suppose there arek factors (A,B,...,J,K) in an experiment. All

More information

4. The 2 k Factorial Designs (Ch.6. Two-Level Factorial Designs)

4. The 2 k Factorial Designs (Ch.6. Two-Level Factorial Designs) 4. The 2 k Factorial Designs (Ch.6. Two-Level Factorial Designs) Hae-Jin Choi School of Mechanical Engineering, Chung-Ang University Introduction to 2 k Factorial Designs Special case of the general factorial

More information

Homework 04. , not a , not a 27 3 III III

Homework 04. , not a , not a 27 3 III III Response Surface Methodology, Stat 579 Fall 2014 Homework 04 Name: Answer Key Prof. Erik B. Erhardt Part I. (130 points) I recommend reading through all the parts of the HW (with my adjustments) before

More information

5. Blocking and Confounding

5. Blocking and Confounding 5. Blocking and Confounding Hae-Jin Choi School of Mechanical Engineering, Chung-Ang University 1 Why Blocking? Blocking is a technique for dealing with controllable nuisance variables Sometimes, it is

More information

Unit 6: Fractional Factorial Experiments at Three Levels

Unit 6: Fractional Factorial Experiments at Three Levels Unit 6: Fractional Factorial Experiments at Three Levels Larger-the-better and smaller-the-better problems. Basic concepts for 3 k full factorial designs. Analysis of 3 k designs using orthogonal components

More information

Unreplicated 2 k Factorial Designs

Unreplicated 2 k Factorial Designs Unreplicated 2 k Factorial Designs These are 2 k factorial designs with one observation at each corner of the cube An unreplicated 2 k factorial design is also sometimes called a single replicate of the

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

CSCI 688 Homework 6. Megan Rose Bryant Department of Mathematics William and Mary

CSCI 688 Homework 6. Megan Rose Bryant Department of Mathematics William and Mary CSCI 688 Homework 6 Megan Rose Bryant Department of Mathematics William and Mary November 12, 2014 7.1 Consider the experiment described in Problem 6.1. Analyze this experiment assuming that each replicate

More information

Contents. TAMS38 - Lecture 8 2 k p fractional factorial design. Lecturer: Zhenxia Liu. Example 0 - continued 4. Example 0 - Glazing ceramic 3

Contents. TAMS38 - Lecture 8 2 k p fractional factorial design. Lecturer: Zhenxia Liu. Example 0 - continued 4. Example 0 - Glazing ceramic 3 Contents TAMS38 - Lecture 8 2 k p fractional factorial design Lecturer: Zhenxia Liu Department of Mathematics - Mathematical Statistics Example 0 2 k factorial design with blocking Example 1 2 k p fractional

More information

An Introduction to Design of Experiments

An Introduction to Design of Experiments An Introduction to Design of Experiments Douglas C. Montgomery Regents Professor of Industrial Engineering and Statistics ASU Foundation Professor of Engineering Arizona State University Bradley Jones

More information

CS 5014: Research Methods in Computer Science

CS 5014: Research Methods in Computer Science Computer Science Clifford A. Shaffer Department of Computer Science Virginia Tech Blacksburg, Virginia Fall 2010 Copyright c 2010 by Clifford A. Shaffer Computer Science Fall 2010 1 / 254 Experimental

More information

CS 147: Computer Systems Performance Analysis

CS 147: Computer Systems Performance Analysis CS 147: Computer Systems Performance Analysis Fractional Factorial Designs CS 147: Computer Systems Performance Analysis Fractional Factorial Designs 1 / 26 Overview Overview Overview Example Preparing

More information

4. Design of Experiments (DOE) (The 2 k Factorial Designs)

4. Design of Experiments (DOE) (The 2 k Factorial Designs) 4. Design of Experiments (DOE) (The 2 k Factorial Designs) Hae-Jin Choi School of Mechanical Engineering, Chung-Ang University 1 Example: Golfing How to improve my score in Golfing? Practice!!! Other than

More information

THE ROYAL STATISTICAL SOCIETY 2015 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 4

THE ROYAL STATISTICAL SOCIETY 2015 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 4 THE ROYAL STATISTICAL SOCIETY 2015 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 4 The Society is providing these solutions to assist candidates preparing for the examinations in 2017. The solutions are

More information

IE 361 EXAM #3 FALL 2013 Show your work: Partial credit can only be given for incorrect answers if there is enough information to clearly see what you were trying to do. There are two additional blank

More information

The hypergeometric distribution - theoretical basic for the deviation between replicates in one germination test?

The hypergeometric distribution - theoretical basic for the deviation between replicates in one germination test? Doubt is the beginning, not the end, of wisdom. ANONYMOUS The hypergeometric distribution - theoretical basic for the deviation between replicates in one germination test? Winfried Jackisch 7 th ISTA Seminar

More information

Design theory for relational databases

Design theory for relational databases Design theory for relational databases 1. Consider a relation with schema R(A,B,C,D) and FD s AB C, C D and D A. a. What are all the nontrivial FD s that follow from the given FD s? You should restrict

More information

Reference: Chapter 6 of Montgomery(8e) Maghsoodloo

Reference: Chapter 6 of Montgomery(8e) Maghsoodloo Reference: Chapter 6 of Montgomery(8e) Maghsoodloo 51 DOE (or DOX) FOR BASE BALANCED FACTORIALS The notation k is used to denote a factorial experiment involving k factors (A, B, C, D,..., K) each at levels.

More information

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. Markov chain Monte Carlo tests for designed experiments

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. Markov chain Monte Carlo tests for designed experiments MATHEMATICAL ENGINEERING TECHNICAL REPORTS Markov chain Monte Carlo tests for designed experiments Satoshi AOKI and Akimichi TAKEMURA METR 2006 56 November 2006 DEPARTMENT OF MATHEMATICAL INFORMATICS GRADUATE

More information

Institutionen för matematik och matematisk statistik Umeå universitet November 7, Inlämningsuppgift 3. Mariam Shirdel

Institutionen för matematik och matematisk statistik Umeå universitet November 7, Inlämningsuppgift 3. Mariam Shirdel Institutionen för matematik och matematisk statistik Umeå universitet November 7, 2011 Inlämningsuppgift 3 Mariam Shirdel (mash0007@student.umu.se) Kvalitetsteknik och försöksplanering, 7.5 hp 1 Uppgift

More information

ESTIMATION METHODS FOR MISSING DATA IN UN-REPLICATED 2 FACTORIAL AND 2 FRACTIONAL FACTORIAL DESIGNS

ESTIMATION METHODS FOR MISSING DATA IN UN-REPLICATED 2 FACTORIAL AND 2 FRACTIONAL FACTORIAL DESIGNS Journal of Statistics: Advances in Theory and Applications Volume 5, Number 2, 2011, Pages 131-147 ESTIMATION METHODS FOR MISSING DATA IN k k p UN-REPLICATED 2 FACTORIAL AND 2 FRACTIONAL FACTORIAL DESIGNS

More information

CS 5014: Research Methods in Computer Science. Experimental Design. Potential Pitfalls. One-Factor (Again) Clifford A. Shaffer.

CS 5014: Research Methods in Computer Science. Experimental Design. Potential Pitfalls. One-Factor (Again) Clifford A. Shaffer. Department of Computer Science Virginia Tech Blacksburg, Virginia Copyright c 2015 by Clifford A. Shaffer Computer Science Title page Computer Science Clifford A. Shaffer Fall 2015 Clifford A. Shaffer

More information

Design of Experiments SUTD - 21/4/2015 1

Design of Experiments SUTD - 21/4/2015 1 Design of Experiments SUTD - 21/4/2015 1 Outline 1. Introduction 2. 2 k Factorial Design Exercise 3. Choice of Sample Size Exercise 4. 2 k p Fractional Factorial Design Exercise 5. Follow-up experimentation

More information

TWO-LEVEL FACTORIAL EXPERIMENTS: BLOCKING. Upper-case letters are associated with factors, or regressors of factorial effects, e.g.

TWO-LEVEL FACTORIAL EXPERIMENTS: BLOCKING. Upper-case letters are associated with factors, or regressors of factorial effects, e.g. STAT 512 2-Level Factorial Experiments: Blocking 1 TWO-LEVEL FACTORIAL EXPERIMENTS: BLOCKING Some Traditional Notation: Upper-case letters are associated with factors, or regressors of factorial effects,

More information

Design and Analysis of Experiments Prof. Jhareshwar Maiti Department of Industrial and Systems Engineering Indian Institute of Technology, Kharagpur

Design and Analysis of Experiments Prof. Jhareshwar Maiti Department of Industrial and Systems Engineering Indian Institute of Technology, Kharagpur Design and Analysis of Experiments Prof. Jhareshwar Maiti Department of Industrial and Systems Engineering Indian Institute of Technology, Kharagpur Lecture 51 Plackett Burman Designs Hello, welcome. We

More information

by Christopher Bingham

by Christopher Bingham a D D E!"! #%$&')( $* '$&$,+.-&$0/!12"!"!2 4657 85&$9 ;:=

More information

The 2 k Factorial Design. Dr. Mohammad Abuhaiba 1

The 2 k Factorial Design. Dr. Mohammad Abuhaiba 1 The 2 k Factorial Design Dr. Mohammad Abuhaiba 1 HoweWork Assignment Due Tuesday 1/6/2010 6.1, 6.2, 6.17, 6.18, 6.19 Dr. Mohammad Abuhaiba 2 Design of Engineering Experiments The 2 k Factorial Design Special

More information

Written Exam (2 hours)

Written Exam (2 hours) M. Müller Applied Analysis of Variance and Experimental Design Summer 2015 Written Exam (2 hours) General remarks: Open book exam. Switch off your mobile phone! Do not stay too long on a part where you

More information

MATH 556 Homework 13 Due: Nov 21, Wednesday

MATH 556 Homework 13 Due: Nov 21, Wednesday MATH 556 Homework 13 Due: Nov 21, Wednesday Ex. A. Based on the model concluded in 6.9, carry out a simulation study (In particular, use the LSE from the data in 6.9, generate new data for A.1, A.2, A.3,

More information

Confounding and Fractional Replication in Factorial Design

Confounding and Fractional Replication in Factorial Design ISSN -580 (Paper) ISSN 5-05 (Online) Vol.6, No.3, 016 onfounding and Fractional Replication in Factorial esign Layla. hmed epartment of Mathematics, ollege of Education, University of Garmian, Kurdistan

More information

Chapter 4 BOOLEAN ALGEBRA AND THEOREMS, MINI TERMS AND MAX TERMS

Chapter 4 BOOLEAN ALGEBRA AND THEOREMS, MINI TERMS AND MAX TERMS Chapter 4 BOOLEAN ALGEBRA AND THEOREMS, MINI TERMS AND MAX TERMS Lesson 4 BOOLEAN EXPRESSION, TRUTH TABLE and SUM OF THE PRODUCTS (SOPs) [MINITERMS] 2 Outline SOP two variables cases SOP for three variable

More information

Design of Engineering Experiments Part 5 The 2 k Factorial Design

Design of Engineering Experiments Part 5 The 2 k Factorial Design Design of Engineering Experiments Part 5 The 2 k Factorial Design Text reference, Special case of the general factorial design; k factors, all at two levels The two levels are usually called low and high

More information

Semifolding 2 k-p Designs

Semifolding 2 k-p Designs Semifolding 2 k-p Designs Robert W. Mee and Marta Peralta Department of Statistics University of Tennessee Knoxville, TN 37996-0532 rmee@utk.edu Abstract This article addresses the varied possibilities

More information

Design of Experiments SUTD 06/04/2016 1

Design of Experiments SUTD 06/04/2016 1 Design of Experiments SUTD 06/04/2016 1 Outline 1. Introduction 2. 2 k Factorial Design 3. Choice of Sample Size 4. 2 k p Fractional Factorial Design 5. Follow-up experimentation (folding over) with factorial

More information

IE 361 Exam 3 (Form A)

IE 361 Exam 3 (Form A) December 15, 005 IE 361 Exam 3 (Form A) Prof. Vardeman This exam consists of 0 multiple choice questions. Write (in pencil) the letter for the single best response for each question in the corresponding

More information

Process Robustness Studies

Process Robustness Studies Process Robustness Studies ST 435/535 Background When factors interact, the level of one can sometimes be chosen so that another has no effect on the response. If the second factor is controllable in a

More information

Normal Forms Lossless Join.

Normal Forms Lossless Join. Normal Forms Lossless Join http://users.encs.concordia.ca/~m_oran/ 1 Types of Normal Forms A relation schema R is in the first normal form (1NF) if the domain of its each attribute has only atomic values

More information

Unit 5: Fractional Factorial Experiments at Two Levels

Unit 5: Fractional Factorial Experiments at Two Levels Unit 5: Fractional Factorial Experiments at Two Levels Source : Chapter 4 (sections 4.1-4.3, 4.4.1, 4.4.3, 4.5, part of 4.6). Effect aliasing, resolution, minimum aberration criteria. Analysis. Techniques

More information

Lecture 10: 2 k Factorial Design Montgomery: Chapter 6

Lecture 10: 2 k Factorial Design Montgomery: Chapter 6 Lecture 10: 2 k Factorial Design Montgomery: Chapter 6 Page 1 2 k Factorial Design Involving k factors Each factor has two levels (often labeled + and ) Factor screening experiment (preliminary study)

More information

Fractional Factorial Designs

Fractional Factorial Designs k-p Fractional Factorial Designs Fractional Factorial Designs If we have 7 factors, a 7 factorial design will require 8 experiments How much information can we obtain from fewer experiments, e.g. 7-4 =

More information

Solution to Final Exam

Solution to Final Exam Stat 660 Solution to Final Exam. (5 points) A large pharmaceutical company is interested in testing the uniformity (a continuous measurement that can be taken by a measurement instrument) of their film-coated

More information

Power Functions for. Process Behavior Charts

Power Functions for. Process Behavior Charts Power Functions for Process Behavior Charts Donald J. Wheeler and Rip Stauffer Every data set contains noise (random, meaningless variation). Some data sets contain signals (nonrandom, meaningful variation).

More information

Fractional designs and blocking.

Fractional designs and blocking. Fractional designs and blocking Petter Mostad mostad@chalmers.se Review of two-level factorial designs Goal of experiment: To find the effect on the response(s) of a set of factors each factor can be set

More information

Geometry Problem Solving Drill 08: Congruent Triangles

Geometry Problem Solving Drill 08: Congruent Triangles Geometry Problem Solving Drill 08: Congruent Triangles Question No. 1 of 10 Question 1. The following triangles are congruent. What is the value of x? Question #01 (A) 13.33 (B) 10 (C) 31 (D) 18 You set

More information

Design and Analysis of

Design and Analysis of Design and Analysis of Multi-Factored Experiments Module Engineering 7928-2 Two-level Factorial Designs L. M. Lye DOE Course 1 The 2 k Factorial Design Special case of the general factorial design; k factors,

More information

CHAPTER 7. Solutions for Exercises

CHAPTER 7. Solutions for Exercises CHAPTER 7 Solutions for Exercises E7.1 (a) For the whole part we have: Quotient Remainders 23/2 11 1 11/2 5 1 5/2 2 1 2/2 1 0 1/2 0 1 Reading the remainders in reverse order we obtain: 23 10 = 10111 2

More information

CHAPTER 3 BOOLEAN ALGEBRA

CHAPTER 3 BOOLEAN ALGEBRA CHAPTER 3 BOOLEAN ALGEBRA (continued) This chapter in the book includes: Objectives Study Guide 3.1 Multiplying Out and Factoring Expressions 3.2 Exclusive-OR and Equivalence Operations 3.3 The Consensus

More information

Lecture 9 February 8

Lecture 9 February 8 STAT 263/363: Experimental Design Winter 2016/17 Lecture 9 February 8 Lecturer: Art B. Owen Scribe: Poorna Kumar 9.1 Outline: 2 k p designs Aliasing Yates algorithm Q-Q plots Foldovers 9.2 Yates Algorithm

More information

Experimental design (KKR031, KBT120) Tuesday 11/ :30-13:30 V

Experimental design (KKR031, KBT120) Tuesday 11/ :30-13:30 V Experimental design (KKR031, KBT120) Tuesday 11/1 2011-8:30-13:30 V Jan Rodmar will be available at ext 3024 and will visit the examination room ca 10:30. The examination results will be available for

More information

a) Prepare a normal probability plot of the effects. Which effects seem active?

a) Prepare a normal probability plot of the effects. Which effects seem active? Problema 8.6: R.D. Snee ( Experimenting with a large number of variables, in experiments in Industry: Design, Analysis and Interpretation of Results, by R. D. Snee, L.B. Hare, and J. B. Trout, Editors,

More information

choosedef2(7,4,all:t) K

choosedef2(7,4,all:t) K i!"! a ` a c a ``` `aaa ``` aaa ``` `!ccc j'$k$ 1 C l ; B-?hm 4noqsr $h t=;2 4nXu ED4+* J D98 B v-,/. = $-r

More information

IE 361 Exam 1 October 2004 Prof. Vardeman

IE 361 Exam 1 October 2004 Prof. Vardeman October 5, 004 IE 6 Exam Prof. Vardeman. IE 6 students Demerath, Gottschalk, Rodgers and Watson worked with a manufacturer on improving the consistency of several critical dimensions of a part. One of

More information

Ð"Ñ + Ð"Ñ, Ð"Ñ +, +, + +, +,,

ÐÑ + ÐÑ, ÐÑ +, +, + +, +,, Handout #11 Confounding: Complete factorial experiments in incomplete blocks Blocking is one of the important principles in experimental design. In this handout we address the issue of designing complete

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analysis of Variance and Design of Experiment-I MODULE IX LECTURE - 38 EXERCISES Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Example (Completely randomized

More information

Reference: CHAPTER 7 of Montgomery(8e)

Reference: CHAPTER 7 of Montgomery(8e) Reference: CHAPTER 7 of Montgomery(8e) 60 Maghsoodloo BLOCK CONFOUNDING IN 2 k FACTORIALS (k factors each at 2 levels) It is often impossible to run all the 2 k observations in a 2 k factorial design (or

More information

Projection properties of certain three level orthogonal arrays

Projection properties of certain three level orthogonal arrays Metrika (2005) 62: 241 257 DOI 10.1007/s00184-005-0409-9 ORIGINAL ARTICLE H. Evangelaras C. Koukouvinos A. M. Dean C. A. Dingus Projection properties of certain three level orthogonal arrays Springer-Verlag

More information

TMA4267 Linear Statistical Models V2017 (L19)

TMA4267 Linear Statistical Models V2017 (L19) TMA4267 Linear Statistical Models V2017 (L19) Part 4: Design of Experiments Blocking Fractional factorial designs Mette Langaas Department of Mathematical Sciences, NTNU To be lectured: March 28, 2017

More information

Statistical Design and Analysis of Experiments Part Two

Statistical Design and Analysis of Experiments Part Two 0.1 Statistical Design and Analysis of Experiments Part Two Lecture notes Fall semester 2007 Henrik Spliid nformatics and Mathematical Modelling Technical University of Denmark List of contents, cont.

More information

Probability Distribution

Probability Distribution Probability Distribution 1. In scenario 2, the particle size distribution from the mill is: Counts 81

More information