Precise Measurement of Tension on Curvature Elastic Shells

Size: px
Start display at page:

Download "Precise Measurement of Tension on Curvature Elastic Shells"

Transcription

1 Precise Measurement of Tension on Curvature Elastic Shells Marzie Aghajani, Mohammad Amani Tehran, PhD, Ali Asghar Asgharian Jeddi, PhD Amir Kabir University, Tehran IRAN Correspondence to: Mohammad Amani Tehran ABSTRACT Many kinds of pressure garments are currently used for various applications, such as treating of hypertrophic scars, reversing the effect of shock on the body s blood distribution, improving energy saving for athletes and enhancing the aesthetic appearance of the wearer. In order to design the desired pressure garments, predicting the amount of pressure is mandatory. Although many researchers have used the Laplace law as the prediction equation, there has been some discrepancy between predicted and experimental measured pressures. In this study, we focused on one of the parameters which influence this discrepancy. To predict the pressure by this law, the induced tension in the material is measured by a tensile strength device, and then is inserted into the equation while the real tension is induced by extending on curvature shape. We measured the tension induced in the rubber band, which was extended on a cylindrical surface by using a new tensile test assembly. Subsequently, this tension was compared with the tension induced in the flat geometry which is commonly used. The results show that there is a significant difference between the tension in the curvature and flat geometry. Keywords: Pressure Garments, Laplace law, Curvature Tension INTRODUCTION It is known that every elastic material, like elastic shells, when wrapped under tension around a curvature surface, exert a radial pressure on that surface. Pressure induced in elastic cylindrical shells is usually predicted by the Laplace law [1-3]. Air inflated structures, balloons, physiological applications (blood vessel, heart, esophageal varicose) and pressure garments are the examples of pressurized cylindrical shells. Among them, pressure garments have been most widely applied. There are many studies investigating the accuracy of the Laplace law which is used for pressure prediction in pressure garments [1, 4, 5] but only a few of them took the deviation between the experimental and Laplace prediction values into account [1, 5]. In these works, there were no clear descriptions about this phenomenon. The mathematical expression of the Laplace law is presented by Eq. (1). T = R p (1) where T is the tension of shell (N/m), R is the radius of curvature (m) and P is pressure (Pa). Practically in order to predict the interfacial pressure between garment and limb, the tensile force is obtained from linear fabric tensile behavior. The tensile behavior of fabric is usually measured by a tensile strength device. In the tensile strength device, a rectangular sample is extended in flat geometry as shown in Figure 1. In this study, in order to find the origin of the Laplace law deviation, we attended to the method of tension measuring. In a tubular pressure garment, the fabric is extended in cylindrical geometry (Figure 2). Therefore, we decided to investigate the difference between tension induced in flat and cylindrical geometries. It is interesting to investigate whether it is possible to have different tensile behaviors in the case of geometry change of the extending material (curved path or straight). This paper presents a newly designed tensile test method to measure the tension on a curved surface. The ultimate target of this work was to improve the Laplace law to predict the interfacial pressure more precisely. FIGURE 1. A band sample under flat force. Journal of Engineered Fibers and Fabrics 82

2 FIGURE 2. Tension induced on the curvature surface. MATERIAL AND METHOD Pressure garments are made from elastic fabrics containing different rubber filaments. Different degrees of pressure are provided by different degrees of elasticity and strength of the elastic material. In this study, in order to eliminate the complexity of the structure of the fabric, two kinds of rubber having different tensile behavior were used. The tensionstrain curves based on ASTM D412 using an Instron tensile device 5566 are presented in Figure 3. We developed a new test method using the same tensile device to simulate rubber extending on a curved surface to study the tensile behavior during this type of deformation (Figure 4). The base was fixed in the lower jaw. The rubber sample with 5 cm width was fastened around a cylinder while the strip ends were fixed by the upper jaw. In this way, the tensioning of the sample during cylindrical wearing was simulated. While moving up the upper jaw, the strip was extended and the load was recorded by the device. A schematic presentation of the provided setup is illustrated in Figure 5. There are two individual strained regions; flat and curvature regions as shown in Figure 5. The measurements were performed on some cylinders with different diameters. FIGURE 4. Photography of suggested setup: The base was fixed in the lower jaw (1); the rubber sample with 5 cm width (2) was fastened around the cylinder (3) while the strip ends were fixed by the upper jaw. FIGURE 5. Schematic view of the provided setup: location of upper jaw before and after displacement is indicated as () and (1) respectively. FIGURE 3. Tensile behavior of tested rubbers. Journal of Engineered Fibers and Fabrics 83

3 MEASUREMENT AND CALCULATION RESULTS Geometry of Designed Set Up The geometrical parameters of θ, φ and χ as indicated in Figure 5 are related to each other as follows: R = arcsin( ) R + α + δ φ (2) R χ = (3) tan(φ) π = π - ( - φ) 2 θ (4) Where δ is the movement of the upper jaw and α is the distance of cylinder surface from the upper jaw before movement. Table I demonstrates the values of α for the cylinders. TABLE I. The values of α for the cylinders. Sample Diameter= 9 cm Diameter= 2 cm Rubber1 4.5 cm 8. cm Rubber2 4.5cm 8.5 cm Local Tension Eq. (5) can be utilized to calculate the tension (T) induced by rubber extension, as follows: F T = (N/m) (5) 2.5 cos(φ) where F is the recorded force by Instron device (Figure 5). The width of band rubber is.5 m. Flat Region Strain ε f By using flat tension-strain curve of each rubber, the accordant strain of each tension obtained by Eq. (5) in flat arm was determined. Curvature Region Strain c During the jaw movement, the rubber in both flat and curvature regions is extended; the extended tail of curvature region enters in the flat region. Thus the initial length of flat arm is changed during the extension. The initial length of flat region χ at each extension is obtained via Eq. (6): χ = χ (1+ εf 1) (6) where χ is the extended length of rubber in the flat region, εf is the strain of flat region. The initial length of curvature region c during the extension process is calculated via Eq. (7): = + R χ (7) c θ - where and R θ are the initial length of flat region and curvature region before extension process, respectively. So the strain of curvature region (ε c ) is obtained by Eq. (8) as follows: ε c Rθ - = ( c c ) 1 (8) Where R θ is the extended length of rubber in the curvature region. Analysis of Friction Effect Friction is the force facing to the extension of rubber in curvature region which is necessary to be calculated. An experimental system was developed for measuring the friction coefficient, which allows direct measurement of friction coefficient between rubber and cylinder surface. The friction coefficient of Rubber1 and Rubber2 was obtained.17 and.217 respectively. The relationship between the friction coefficient, tension and angle of contact is famous [6] and expressed as follows: T T1e μβ 2 = (9) Where T 2 and T 1 are tension (T 2 >T 1 ) and β is angle of contact. From the rubber point of flat and curvature regions towards to point S (as shown in Figure 5), the angle of rubber contact (β ) is increased so the friction force facing to the extension rubber will be increased. Thus each point of rubber in curvature region is in various tensions. Tension induced in the curvature region (T c ) is calculated via Eq. (1): Τ c = Τ / e μβ β θ (1) Where T is the tension calculated by Eq. (5). Whereas T c varies by changingβ, each point of rubber in curvature region is under different strain rates. The calculated curvature strain ( εc ) by Eq. (8) is the average of strain in curvature region. Journal of Engineered Fibers and Fabrics 84

4 Obviously, there is one point in the curvature region where its strain is equal to this calculated average strain ( εc ). In order to analyze the tensile behavior of rubber in curvature region, we need to know T c at this point (average point). Accordingly, it is necessary to find the location of this point. Also the frictional force at this point is the average of frictional force induced in the whole curvature region. The location of this point can be calculated as follows: (e θ μβ μβ μθ ) = ( dβ dβ) = ( e -1) μθ (11) ave e θ According to Eq. (1) and Eq. (11) the curvature tension in average point (T - c) is obtained as follows: μβ _ Tc = Τ (e ) (12) ave The results of calculations are shown in the Tables II - V. The coefficient of variation of Instron device measurements was 4 %. TABLE II. Results of calculations of Rubber1 for the cylinder with the diameter of 9 cm. δ (mm) θ (rad) T(N/M) εf % χ c (cm ) ε c % T f (N/m) ( e μβ ) ave T - c(n/m) T - c/tf TABLE III. Results of calculations of Rubber1 for the cylinder with the diameter of 2 cm. δ(mm) θ (rad) T(N/M) εf % χ c (cm ) ε c % T f (N/m) ( e μβ ) ave T - c(n/m) T - c/t f TABLE IV. Results of calculations of Rubber2 for the cylinder with the diameter of 9 cm. δ(mm) θ (rad) T(N/M) εf % χ c (cm ) ε c % T f (N/m) ( e μβ ) ave T - c(n/m) T - c/t f Journal of Engineered Fibers and Fabrics 85

5 TABLE V. Results of calculations of Rubber2 for the cylinder with the diameter of 2 cm. δ (mm) θ (rad) T(N/M) εf % χ c (cm ) ε c % T f (N/m) ( e μβ ) ave T - c(n/m) T - c/t f DISCUSSION The tensile behavior of flat and curvature regions is shown for two rubbers in Figure 6-7. These figures demonstrate the trend of T - c versus strain for curvature regions in comparison with the experimental values which come from the flat test based on ASTM D412. It can be observed that there is a significant difference in the tensile behavior between flat and curvature regions. This is valid for both cylinder diameters in each rubber. But surprisingly the tensile behavior in the curvature region is similar in both cases. In order to clarify the influence of curvature on tension, we introduce one more tension parameter: T f. By using ε c and tensionstrain curve of rubber obtained based on ASTM D412, the accordant tension of each strain was determined and designated as T f (Table II - V). The difference between T - c and T f was expressed as a ratio of T - c and T f, (Tables II - V). It can be observed that the tension in the curvature region is nearly 1.5 and 1.4 times greater than the one in the flat region for Rubber1 and Rubber2 respectively. This difference could give an explanation for the reported deviation in the Laplace law. The difference between the ratios of T - c to T f in two rubbers may be dependent on the mechanical properties of rubbers. In order to establish the relation between physical properties and deviation of tensile behavior in the curved path, more study should be done. Furthermore, it seems that the curvature size is not a very effective parameter on the quantity of this deviation. However, it is imperative to investigate the effect of curvature size on tensile behavior in a curved path more precisely. FIGURE 6. Comparison of the tensile behavior measured by our designed method for the cylinders with the diameter of 9 and 2 cm and the flat test based on ASTM D412 for Rubber1. FIGURE 7. Comparison of the tensile behavior measured by our designed method for the cylinders with the diameter of 9 and 2 cm and the flat test based on ASTM D412 for Rubber2. Journal of Engineered Fibers and Fabrics 86

6 CONCLUSION In this study, a new method was designed to measure tension in a curvature surface. The results demonstrate that tension in the curvature region was more than the flat region at the same strain. As a main conclusion, it should be pointed out that it is possible to have different tensile behaviors if the geometry (straight or curved path) of extending material changes. This is an encouraging result that helps us to find out one of the major sources of the Laplace law deviation in pressure garment applications. Further work has been investigated on establish the relationship between tensile behavior of elastic fabrics on curvature geometry and structural parameters of fabrics and will be published later. REFERENCES [1] Gaied I., Drapier S., Lun B., Experimental assessment and analytical 2D predictions of the stocking pressures induced on a model leg by medical compressive stockings, Journal of Biomechanics, 39, 26, [2] Hui, C.L, Ng, S.F., Theoretical analysis of tension and pressure decay of a tubular elastic fabric, Textile Research Journal, 23, 73(3), [3] Strazdiene, E., Gutaukas, M., Behavior of stretchable textiles with spatial loading, Textile Research Journal, 23 73(6), [4] Macintyre. L., Baird. M, Weedall, P., The study of pressure delivery for hypertrophic scar treatment International, Journal of Clothing Science and Technology, 24 16(1/2), [5] Kawabata, H., Tanaka, Y., Sakai, T., Shikawa K., Measurement of garment pressure (part 1)-pressure estimation from local strain of fabric, Sen-I Gakkaishi, 1987, 44(3), [6] Meriam, J.L., Statics, 28-29, John Wiley &Sons, Inc AUTHORS ADDRESSES Marzie Aghajani Mohammad Amani Tehran, PhD Ali Asghar Asgharian Jeddi, PhD Amir Kabir University Hafez St. Tehran 98 IRAN Journal of Engineered Fibers and Fabrics 87

The Analytical Study of Garment Pressure on the Human Body Using Finite Elements

The Analytical Study of Garment Pressure on the Human Body Using Finite Elements Seyed Abbas Mirjalili, Mansour Rafeeyan, Zeynab Soltanzadeh Yazd University, Yazd, Iran E-mail: amirjalili@yazduni.ac.ir The Analytical Study of Garment Pressure on the Human Body Using Finite Elements

More information

Analysis of parameters influencing the jamming effect in circular braids

Analysis of parameters influencing the jamming effect in circular braids This paper is part of the Proceedings of the 2 International Conference on nd High Performance and Optimum Design of Structures and Materials (HPSM 2016) www.witconferences.com Analysis of parameters influencing

More information

Chapter 3. Load and Stress Analysis

Chapter 3. Load and Stress Analysis Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

More information

Stress-Strain Analysis of Abdominal Aortic Wall: A Case of 3D Geometry Simulation

Stress-Strain Analysis of Abdominal Aortic Wall: A Case of 3D Geometry Simulation Energy Research Journal 1 (2): 165-170, 2010 ISSN 1949-0151 2010 Science Publications Stress-Strain Analysis of Abdominal Aortic Wall: A Case of 3D Geometry Simulation P. Khamdaengyodtai, P. Sakulchangsatjatai

More information

Analysis of Composite Pressure Vessels

Analysis of Composite Pressure Vessels Analysis of Composite Pressure Vessels Reza Mohammadzadeh Gheshlaghi 1 Mohammad Hassan Hojjati Hamid Reza Mohammadi Daniali 3 1 Engineering Research Centre, Tabriz, Iran,3 Department of Mechanical Engineering,

More information

Lecture 15 Strain and stress in beams

Lecture 15 Strain and stress in beams Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME

More information

INFLUENCE KINDS OF MATERIALS ON THE POISSON S RATIO OF WOVEN FABRICS

INFLUENCE KINDS OF MATERIALS ON THE POISSON S RATIO OF WOVEN FABRICS ISSN 1846-6168 (Print), ISSN 1848-5588 (Online) ID: TG-217816142553 Original scientific paper INFLUENCE KINDS OF MATERIALS ON THE POISSON S RATIO OF WOVEN FABRICS Željko PENAVA, Diana ŠIMIĆ PENAVA, Željko

More information

Expansion of circular tubes by rigid tubes as impact energy absorbers: experimental and theoretical investigation

Expansion of circular tubes by rigid tubes as impact energy absorbers: experimental and theoretical investigation Expansion of circular tubes by rigid tubes as impact energy absorbers: experimental and theoretical investigation M Shakeri, S Salehghaffari and R. Mirzaeifar Department of Mechanical Engineering, Amirkabir

More information

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina Module III - Macro-mechanics of Lamina Lecture 23 Macro-Mechanics of Lamina For better understanding of the macromechanics of lamina, the knowledge of the material properties in essential. Therefore, the

More information

, follows from these assumptions.

, follows from these assumptions. Untangling the mechanics and topology in the frictional response of long overhand elastic knots Supplemental Information M.K. Jawed, P. Dieleman, B. Audoly, P. M. Reis S1 Experimental details In this section,

More information

Chapter 7. Highlights:

Chapter 7. Highlights: Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

More information

Analysis of Frictional Behavior of Woven Fabrics by a Multi-directional Tactile Sensing Mechanism

Analysis of Frictional Behavior of Woven Fabrics by a Multi-directional Tactile Sensing Mechanism Analysis of Frictional Behavior of Woven Fabrics by a Multi-directional Tactile Sensing Mechanism Nazanin Ezazshahabi, PhD, Masoud Latifi, PhD, Mohammad Amani Tehran, PhD Department of Textile Engineering,

More information

EXPERIMENTAL EVALUATION OF SHEAR STRENGTH OF WOVEN WEBBINGS

EXPERIMENTAL EVALUATION OF SHEAR STRENGTH OF WOVEN WEBBINGS EXPERIMENTAL EVALUATION OF SHEAR STRENGTH OF WOVEN WEBBINGS Kevin L. Peil +, Ever J. Barbero +, Eduardo M. Sosa* + Department of Mechanical and Aerospace Engineering, West Virginia University (WVU), Morgantown,

More information

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE Prof. J. N. Mandal Department of Civil Engineering, IIT Bombay, Powai, Mumbai 400076, India. Tel.022-25767328 email: cejnm@civil.iitb.ac.in Module-13 LECTURE-

More information

Mathematical Model for Pressure-Deformation Relationship of Miniaturized McKibben Actuators. {ashwinkp,

Mathematical Model for Pressure-Deformation Relationship of Miniaturized McKibben Actuators.   {ashwinkp, Mathematical Model for Pressure-Deformation Relationship of Miniaturized McKibben Actuators Ashwin K.P 1 and Ashitava Ghosal 1 1 Indian Institute of Science, Bangalore Email: {ashwinkp, asitava}@iisc.ac.in

More information

Table of Contents. Preface...xvii. Part 1. Level

Table of Contents. Preface...xvii. Part 1. Level Preface...xvii Part 1. Level 1... 1 Chapter 1. The Basics of Linear Elastic Behavior... 3 1.1. Cohesion forces... 4 1.2. The notion of stress... 6 1.2.1. Definition... 6 1.2.2. Graphical representation...

More information

Mechanical Behavior of Circular Composite Springs with Extended Flat Contact Surfaces

Mechanical Behavior of Circular Composite Springs with Extended Flat Contact Surfaces Mechanical Behavior of Circular Composite Springs with Extended Flat Contact Surfaces Ping-Cheung Tse epartment of Mechanical Engineering, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong

More information

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2 Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force

More information

Initial Stress Calculations

Initial Stress Calculations Initial Stress Calculations The following are the initial hand stress calculations conducted during the early stages of the design process. Therefore, some of the material properties as well as dimensions

More information

N = Shear stress / Shear strain

N = Shear stress / Shear strain UNIT - I 1. What is meant by factor of safety? [A/M-15] It is the ratio between ultimate stress to the working stress. Factor of safety = Ultimate stress Permissible stress 2. Define Resilience. [A/M-15]

More information

CE 102: Engineering Mechanics. Minimum Potential Energy

CE 102: Engineering Mechanics. Minimum Potential Energy CE 10: Engineering Mechanics Minimum Potential Energy Work of a Force During a Finite Displacement Work of a force corresponding to an infinitesimal displacement, Work of a force corresponding to a finite

More information

Stresses in Curved Beam

Stresses in Curved Beam Stresses in Curved Beam Consider a curved beam subjected to bending moment M b as shown in the figure. The distribution of stress in curved flexural member is determined by using the following assumptions:

More information

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE 1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

More information

Unit I Stress and Strain

Unit I Stress and Strain Unit I Stress and Strain Stress and strain at a point Tension, Compression, Shear Stress Hooke s Law Relationship among elastic constants Stress Strain Diagram for Mild Steel, TOR steel, Concrete Ultimate

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics

More information

INTRODUCTION TO STRAIN

INTRODUCTION TO STRAIN SIMPLE STRAIN INTRODUCTION TO STRAIN In general terms, Strain is a geometric quantity that measures the deformation of a body. There are two types of strain: normal strain: characterizes dimensional changes,

More information

FEM model of pneumatic spring assembly

FEM model of pneumatic spring assembly FEM model of pneumatic spring assembly Tien Tran Xuan 1, David Cirkl 2 Department of Applied Mechanics, Faculty of Mechanical Engineering, Technical University of Liberec, Liberec, Czech Republic 1 Corresponding

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

MODELLING AND SIMULATION OF THE MECHANICAL BEHAVIOUR OF WEFT-KNITTED FABRICS FOR TECHNICAL APPLICATIONS

MODELLING AND SIMULATION OF THE MECHANICAL BEHAVIOUR OF WEFT-KNITTED FABRICS FOR TECHNICAL APPLICATIONS AUTEX Research Journal, Vol. 3, No4, December 003 AUTEX MODELLING AND SIMULATION OF THE MECHANICAL BEHAVIOUR OF WEFT-KNITTED FABRICS FOR TECHNICAL APPLICATIONS Part II: 3D model based on the elastica theory

More information

Lateral Crushing of Square and Rectangular Metallic Tubes under Different Quasi-Static Conditions

Lateral Crushing of Square and Rectangular Metallic Tubes under Different Quasi-Static Conditions Vol:, No:1, 2 Lateral Crushing of Square and Rectangular Metallic Tubes under Different Quasi-Static Conditions Sajjad Dehghanpour, Ali Yousefi International Science Index, Mechanical and Mechatronics

More information

Finite Element Analysis of Silicone Rubber Spacers Used in Automotive Engine Control Modules

Finite Element Analysis of Silicone Rubber Spacers Used in Automotive Engine Control Modules Finite Element Analysis of Silicone Rubber Spacers Used in Automotive Engine Control Modules Fereydoon Dadkhah Arlene Zahiri Delphi Electronics and Safety Kokomo, IN Abstract Silicone Rubber Spacers in

More information

ME311 Machine Design

ME311 Machine Design ME311 Machine Design Lecture : Materials; Stress & Strain; Power Transmission W Dornfeld 13Sep018 airfield University School of Engineering Stress-Strain Curve for Ductile Material Ultimate Tensile racture

More information

Kinetics of Particles

Kinetics of Particles Kinetics of Particles A- Force, Mass, and Acceleration Newton s Second Law of Motion: Kinetics is a branch of dynamics that deals with the relationship between the change in motion of a body and the forces

More information

2766. Differential quadrature method (DQM) for studying initial imperfection effects and pre- and post-buckling vibration of plates

2766. Differential quadrature method (DQM) for studying initial imperfection effects and pre- and post-buckling vibration of plates 2766. Differential quadrature method (DQM) for studying initial imperfection effects and pre- and post-buckling vibration of plates Hesam Makvandi 1, Shapour Moradi 2, Davood Poorveis 3, Kourosh Heidari

More information

PRESSURE VESSELS & PRESSURE CABINS FOR BLENDED WING BODIES

PRESSURE VESSELS & PRESSURE CABINS FOR BLENDED WING BODIES PRESSURE VESSELS & PRESSURE CABINS FOR BLENDED WING BODIES F.J.J.M.M. Geuskens, O.K. Bergsma 2, S. Koussios 2 & A. Beukers 3 PhD Researcher, 2 Associate professor, 3 Professor / DPCS, TU Delft Kluyverweg,

More information

Prediction of internal pressure profile of compression bandages using stress relaxation parameters

Prediction of internal pressure profile of compression bandages using stress relaxation parameters Biorheology 49 (2012) 1 13 1 DOI 10.3233/BIR-2012-0601 IOS Press Prediction of internal pressure profile of compression bandages using stress relaxation parameters Bipin Kumar, Apurba Das and R. Alagirusamy

More information

3-dimensional joint torque calculation of compression sportswear using 3D-CG human model

3-dimensional joint torque calculation of compression sportswear using 3D-CG human model 3-dimensional joint torque calculation of compression sportswear using 3D-CG human model Akihiro Matsuda, University of Tsukuba Hirokazu Tanaka, University of Tsukuba Hitoshi Aoki, University of Tsukuba

More information

Static and Time Dependent Failure of Fibre Reinforced Elastomeric Components. Salim Mirza Element Materials Technology Hitchin, UK

Static and Time Dependent Failure of Fibre Reinforced Elastomeric Components. Salim Mirza Element Materials Technology Hitchin, UK Static and Time Dependent Failure of Fibre Reinforced Elastomeric Components Salim Mirza Element Materials Technology Hitchin, UK Introduction Fibre reinforced elastomers are used in many applications,

More information

Numerical simulation of the coil spring and investigation the impact of tension and compression to the spring natural frequencies

Numerical simulation of the coil spring and investigation the impact of tension and compression to the spring natural frequencies Numerical simulation of the coil spring and investigation the impact of tension and compression to the spring natural frequencies F. D. Sorokin 1, Zhou Su 2 Bauman Moscow State Technical University, Moscow,

More information

Failure analysis of serial pinned joints in composite materials

Failure analysis of serial pinned joints in composite materials Indian Journal of Engineering & Materials Sciences Vol. 18, April 2011, pp. 102-110 Failure analysis of serial pinned joints in composite materials Alaattin Aktaş* Department of Mechanical Engineering,

More information

AERO 214. Lab II. Measurement of elastic moduli using bending of beams and torsion of bars

AERO 214. Lab II. Measurement of elastic moduli using bending of beams and torsion of bars AERO 214 Lab II. Measurement of elastic moduli using bending of beams and torsion of bars BENDING EXPERIMENT Introduction Flexural properties of materials are of interest to engineers in many different

More information

The Rotating Inhomogeneous Elastic Cylinders of. Variable-Thickness and Density

The Rotating Inhomogeneous Elastic Cylinders of. Variable-Thickness and Density Applied Mathematics & Information Sciences 23 2008, 237 257 An International Journal c 2008 Dixie W Publishing Corporation, U. S. A. The Rotating Inhomogeneous Elastic Cylinders of Variable-Thickness and

More information

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002 student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity

More information

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile

More information

BME 207 Introduction to Biomechanics Spring 2017

BME 207 Introduction to Biomechanics Spring 2017 April 7, 2017 UNIVERSITY OF RHODE ISAND Department of Electrical, Computer and Biomedical Engineering BE 207 Introduction to Biomechanics Spring 2017 Homework 7 Problem 14.3 in the textbook. In addition

More information

ME 2570 MECHANICS OF MATERIALS

ME 2570 MECHANICS OF MATERIALS ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation

More information

Chapter 8 Structural Design and Analysis. Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion

Chapter 8 Structural Design and Analysis. Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion Chapter 8 Structural Design and Analysis 1 Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion Normal Stress Stress is a state when a material is loaded. For normal forces

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 N-s/m. To make the system

More information

Lecture 8 Viscoelasticity and Deformation

Lecture 8 Viscoelasticity and Deformation Read: pg 130 168 (rest of Chpt. 4) 1 Poisson s Ratio, µ (pg. 115) Ratio of the strain in the direction perpendicular to the applied force to the strain in the direction of the applied force. For uniaxial

More information

Module 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains

Module 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains Introduction In this lecture we are going to introduce a new micromechanics model to determine the fibrous composite effective properties in terms of properties of its individual phases. In this model

More information

PREDICTION OF FAILURE BEHAVIOUR OF COMPOSITE LATTICE STRUCTURE UNDER COMPRESSIVE LOAD

PREDICTION OF FAILURE BEHAVIOUR OF COMPOSITE LATTICE STRUCTURE UNDER COMPRESSIVE LOAD PREDICTION OF FAILURE BEHAVIOUR OF COMPOSITE LATTICE STRUCTURE UNDER COMPRESSIVE LOAD Min-Hyeok Jeon. 1, Min-Song Kang 1, Mun-Guk Kim 1, Eun-Su Go 1, In-Gul Kim. 1, and Sang-Woo Lee 2 1 Aerospace Engineering,

More information

BioMechanics and BioMaterials Lab (BME 541) Experiment #5 Mechanical Prosperities of Biomaterials Tensile Test

BioMechanics and BioMaterials Lab (BME 541) Experiment #5 Mechanical Prosperities of Biomaterials Tensile Test BioMechanics and BioMaterials Lab (BME 541) Experiment #5 Mechanical Prosperities of Biomaterials Tensile Test Objectives 1. To be familiar with the material testing machine(810le4) and provide a practical

More information

Lecture #2: Split Hopkinson Bar Systems

Lecture #2: Split Hopkinson Bar Systems Lecture #2: Split Hopkinson Bar Systems by Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling of Materials in Manufacturing 2015 1 1 1 Uniaxial Compression

More information

DEVELOPMENT OF THE MEASURING SYSTEM FOR ANALYSING THE THERMAL PROPERTIES OF CLOTHING

DEVELOPMENT OF THE MEASURING SYSTEM FOR ANALYSING THE THERMAL PROPERTIES OF CLOTHING DEVELOPMENT OF THE MEASURING SYSTEM FOR ANALYSING THE THERMAL PROPERTIES OF CLOTHING Dubravko ROGALE; Snježana FIRŠT ROGALE & Ivana ŠPELIĆ Abstract:The measuring system for assessing static and dynamic

More information

Design and Analysis of Adjustable Inside Diameter Mandrel for Induction Pipe Bender

Design and Analysis of Adjustable Inside Diameter Mandrel for Induction Pipe Bender International Journal of Engineering Trends and Technology (IJETT) Volume0Number - Apr 0 Design and Analysis of Adjustable Inside Diameter Mandrel for Induction Pipe Bender S.Nantha Gopan, M.Gowtham J.Kirubakaran

More information

A PAPER ON DESIGN AND ANALYSIS OF PRESSURE VESSEL

A PAPER ON DESIGN AND ANALYSIS OF PRESSURE VESSEL A PAPER ON DESIGN AND ANALYSIS OF PRESSURE VESSEL P.Palanivelu 1, R.Siva Prasad 2, 1 PG Scholar, Department of Mechanical Engineering, Gojan School of Business and Technology, Redhills, Chennai, India.

More information

Nonlinear Modeling for Health Care Applications Ashutosh Srivastava Marc Horner, Ph.D. ANSYS, Inc.

Nonlinear Modeling for Health Care Applications Ashutosh Srivastava Marc Horner, Ph.D. ANSYS, Inc. Nonlinear Modeling for Health Care Applications Ashutosh Srivastava Marc Horner, Ph.D. ANSYS, Inc. 2 Motivation 12 Motivation Linear analysis works well for only small number of applications. The majority

More information

SELECTED PROBLEMS OF SHORT CIRCUIT WITHSTANDABILITY Section II - POWER TRANSFORMER October 2004, Vigo - Spain

SELECTED PROBLEMS OF SHORT CIRCUIT WITHSTANDABILITY Section II - POWER TRANSFORMER October 2004, Vigo - Spain Dr. Władysław Pewca Institute of Power Engineering, Transformer Division (IenOT( IenOT), Poland SELECTED PROBLEMS OF SHORT CIRCUIT WITHSTANDABILITY Section II - POWER TRANSFORMER 28-30 October 2004, Vigo

More information

3. BEAMS: STRAIN, STRESS, DEFLECTIONS

3. BEAMS: STRAIN, STRESS, DEFLECTIONS 3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets

More information

Practice Final Examination. Please initial the statement below to show that you have read it

Practice Final Examination. Please initial the statement below to show that you have read it EN175: Advanced Mechanics of Solids Practice Final Examination School of Engineering Brown University NAME: General Instructions No collaboration of any kind is permitted on this examination. You may use

More information

BME 419/519 Hernandez 2002

BME 419/519 Hernandez 2002 Vascular Biology 2 - Hemodynamics A. Flow relationships : some basic definitions Q v = A v = velocity, Q = flow rate A = cross sectional area Ohm s Law for fluids: Flow is driven by a pressure gradient

More information

Objectives: After completion of this module, you should be able to:

Objectives: After completion of this module, you should be able to: Chapter 12 Objectives: After completion of this module, you should be able to: Demonstrate your understanding of elasticity, elastic limit, stress, strain, and ultimate strength. Write and apply formulas

More information

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by SEMM Mechanics PhD Preliminary Exam Spring 2014 1. Consider a two-dimensional rigid motion, whose displacement field is given by u(x) = [cos(β)x 1 + sin(β)x 2 X 1 ]e 1 + [ sin(β)x 1 + cos(β)x 2 X 2 ]e

More information

2012 MECHANICS OF SOLIDS

2012 MECHANICS OF SOLIDS R10 SET - 1 II B.Tech II Semester, Regular Examinations, April 2012 MECHANICS OF SOLIDS (Com. to ME, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~

More information

Members Subjected to Torsional Loads

Members Subjected to Torsional Loads Members Subjected to Torsional Loads Torsion of circular shafts Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = F.d applied in a plane perpendicular

More information

STRESS, STRAIN AND DEFORMATION OF SOLIDS

STRESS, STRAIN AND DEFORMATION OF SOLIDS VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI 625009 DEPARTMENT OF CIVIL ENGINEERING CE8301 STRENGTH OF MATERIALS I -------------------------------------------------------------------------------------------------------------------------------

More information

2013 Problem 2 : Elastic Space Study on gravity in 2-dimensional space through elastic membrane experiment

2013 Problem 2 : Elastic Space Study on gravity in 2-dimensional space through elastic membrane experiment 63 2013 Problem 2 : Elastic Space Study on gravity in 2-dimensional space through elastic membrane experiment Abstract We used a system of a rolling ball on a stretched horizontal membrane as a model system

More information

AN LS-DYNA USER DEFINED MATERIAL MODEL FOR LOOSELY WOVEN FABRIC WITH NON-ORTHOGONAL VARYING WEFT AND WARP ANGLE

AN LS-DYNA USER DEFINED MATERIAL MODEL FOR LOOSELY WOVEN FABRIC WITH NON-ORTHOGONAL VARYING WEFT AND WARP ANGLE 7 th International LS-DYNA Users Conference Material Technology (1) AN LS-DYNA USER DEFINED MATERIAL MODEL FOR LOOSELY WOVEN FABRIC WITH NON-ORTHOGONAL VARYING WEFT AND WARP ANGLE Marlin Brueggert Romil

More information

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3.

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3. ES230 STRENGTH OF MTERILS Exam 3 Study Guide Exam 3: Wednesday, March 8 th in-class Updated 3/3/17 Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on

More information

Radial Growth of a Micro-Void in a Class of. Compressible Hyperelastic Cylinder. Under an Axial Pre-Strain *

Radial Growth of a Micro-Void in a Class of. Compressible Hyperelastic Cylinder. Under an Axial Pre-Strain * dv. Theor. ppl. Mech., Vol. 5, 2012, no. 6, 257-262 Radial Growth of a Micro-Void in a Class of Compressible Hyperelastic Cylinder Under an xial Pre-Strain * Yuxia Song, Datian Niu and Xuegang Yuan College

More information

Chapter 12. Static Equilibrium and Elasticity

Chapter 12. Static Equilibrium and Elasticity Chapter 12 Static Equilibrium and Elasticity Static Equilibrium Equilibrium implies that the object moves with both constant velocity and constant angular velocity relative to an observer in an inertial

More information

INVESTIGATION OF THE PROCESSING PARAMETERS OF A 3D WOVEN REINFORCEMENT

INVESTIGATION OF THE PROCESSING PARAMETERS OF A 3D WOVEN REINFORCEMENT INVESTIGATION OF THE PROCESSING PARAMETERS OF A 3D WOVEN REINFORCEMENT Andreas Endruweit, Dhiren K. Modi and Andrew C. Long School of Mechanical, Materials and Manufacturing Engineering, University of

More information

Chapter 26 Elastic Properties of Materials

Chapter 26 Elastic Properties of Materials Chapter 26 Elastic Properties of Materials 26.1 Introduction... 1 26.2 Stress and Strain in Tension and Compression... 2 26.3 Shear Stress and Strain... 4 Example 26.1: Stretched wire... 5 26.4 Elastic

More information

Class XI Chapter 9 Mechanical Properties of Solids Physics

Class XI Chapter 9 Mechanical Properties of Solids Physics Book Name: NCERT Solutions Question : A steel wire of length 4.7 m and cross-sectional area 5 3.0 0 m stretches by the same 5 amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 0 m

More information

Mechanics of Materials MENG 270 Fall 2003 Exam 3 Time allowed: 90min. Q.1(a) Q.1 (b) Q.2 Q.3 Q.4 Total

Mechanics of Materials MENG 270 Fall 2003 Exam 3 Time allowed: 90min. Q.1(a) Q.1 (b) Q.2 Q.3 Q.4 Total Mechanics of Materials MENG 70 Fall 00 Eam Time allowed: 90min Name. Computer No. Q.(a) Q. (b) Q. Q. Q.4 Total Problem No. (a) [5Points] An air vessel is 500 mm average diameter and 0 mm thickness, the

More information

Hemodynamics II. Aslı AYKAÇ, PhD. NEU Faculty of Medicine Department of Biophysics

Hemodynamics II. Aslı AYKAÇ, PhD. NEU Faculty of Medicine Department of Biophysics Hemodynamics II Aslı AYKAÇ, PhD. NEU Faculty of Medicine Department of Biophysics Laplace s Law Relates the pressure difference across a closed elastic membrane on liquid film to the tension in the membrane

More information

RELATIONSHIP BETWEEN RADIAL COMPRESSIVE MODULUS OF ELASTICITY AND SHEAR MODULUS OF WOOD Jen Y. Liu Research Engineer

RELATIONSHIP BETWEEN RADIAL COMPRESSIVE MODULUS OF ELASTICITY AND SHEAR MODULUS OF WOOD Jen Y. Liu Research Engineer RELATIONSHIP BETWEEN RADIAL COMPRESSIVE MODULUS OF ELASTICITY AND SHEAR MODULUS OF WOOD Jen Y. Liu Research Engineer and Robert J. Ross Supervisory Research Engineer USDA Forest Service Forest Products

More information

Lectures on. Constitutive Modelling of Arteries. Ray Ogden

Lectures on. Constitutive Modelling of Arteries. Ray Ogden Lectures on Constitutive Modelling of Arteries Ray Ogden University of Aberdeen Xi an Jiaotong University April 2011 Overview of the Ingredients of Continuum Mechanics needed in Soft Tissue Biomechanics

More information

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress

More information

Question 9.1: A steel wire of length 4.7 m and cross-sectional area 3.0 10 5 m 2 stretches by the same amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 10 5 m 2 under a given load.

More information

Chapter 4 Deflection and Stiffness

Chapter 4 Deflection and Stiffness Chapter 4 Deflection and Stiffness Asst. Prof. Dr. Supakit Rooppakhun Chapter Outline Deflection and Stiffness 4-1 Spring Rates 4-2 Tension, Compression, and Torsion 4-3 Deflection Due to Bending 4-4 Beam

More information

Mechanical Design in Optical Engineering

Mechanical Design in Optical Engineering Torsion Torsion: Torsion refers to the twisting of a structural member that is loaded by couples (torque) that produce rotation about the member s longitudinal axis. In other words, the member is loaded

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January ISSN International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-214 29 An Experimental Analysis of Stress Relaxation in Nonwoven Fabrics Sajid Ahmed Qureshi ABSTRACT - The current

More information

Interface properties between a steel pre-stressing strand and an epoxy matrix.

Interface properties between a steel pre-stressing strand and an epoxy matrix. Interface properties between a steel pre-stressing strand and an epoxy matrix. J. Van Vooren 1, B. Van Vooren 2, D. Van Hemelrijck 1, 1 Free University of Brussel, Dept. of Mechanics of Materials and Constructions,

More information

Performance evaluation of different model mixers by numerical simulation

Performance evaluation of different model mixers by numerical simulation Journal of Food Engineering 71 (2005) 295 303 www.elsevier.com/locate/jfoodeng Performance evaluation of different model mixers by numerical simulation Chenxu Yu, Sundaram Gunasekaran * Food and Bioprocess

More information

Moment redistribution of continuous composite I-girders with high strength steel

Moment redistribution of continuous composite I-girders with high strength steel Moment redistribution of continuous composite I-girders with high strength steel * Hyun Sung Joo, 1) Jiho Moon, 2) Ik-Hyun sung, 3) Hak-Eun Lee 4) 1), 2), 4) School of Civil, Environmental and Architectural

More information

The University of Melbourne Engineering Mechanics

The University of Melbourne Engineering Mechanics The University of Melbourne 436-291 Engineering Mechanics Tutorial Four Poisson s Ratio and Axial Loading Part A (Introductory) 1. (Problem 9-22 from Hibbeler - Statics and Mechanics of Materials) A short

More information

Design and construction of an automatic coefficient of friction measuring device

Design and construction of an automatic coefficient of friction measuring device 120 March, 2012 Agric Eng Int: CIGR Journal Open access at http://www.cigrjournal.org Vol. 14, No.1 Design and construction of an automatic coefficient of friction measuring device Ali Nejat Lorestani

More information

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 TIME SCHEDULE MODULE TOPICS PERIODS 1 Simple stresses

More information

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes October 2014 Influence of residual stresses in the structural behavior of Abstract tubular columns and arches Nuno Rocha Cima Gomes Instituto Superior Técnico, Universidade de Lisboa, Portugal Contact:

More information

MAE 322 Machine Design. Dr. Hodge Jenkins Mercer University

MAE 322 Machine Design. Dr. Hodge Jenkins Mercer University MAE 322 Machine Design Dr. Hodge Jenkins Mercer University What is this Machine Design course really about? What you will learn: How to design machine elements 1) Design so they won t break under varying

More information

Class XI Physics. Ch. 9: Mechanical Properties of solids. NCERT Solutions

Class XI Physics. Ch. 9: Mechanical Properties of solids. NCERT Solutions Downloaded from Class XI Physics Ch. 9: Mechanical Properties of solids NCERT Solutions Page 242 Question 9.1: A steel wire of length 4.7 m and cross-sectional area 3.0 10 5 m 2 stretches by the same amount

More information

CHAPTER 6 FRICTION AND WEAR ANALYSIS FOR BUSHING

CHAPTER 6 FRICTION AND WEAR ANALYSIS FOR BUSHING CHAPTER 6 FRICTION AND WEAR ANALYSIS FOR BUSHING 6.1 TEST RIG SETUP FOR THE FRICTION AND WEAR ANALYSIS Knowing the frictional coefficient is important for the determination of wear loss and power loss

More information

DAMAGE MECHANICS MODEL FOR OFF-AXIS FATIGUE BEHAVIOR OF UNIDIRECTIONAL CARBON FIBER-REINFORCED COMPOSITES AT ROOM AND HIGH TEMPERATURES

DAMAGE MECHANICS MODEL FOR OFF-AXIS FATIGUE BEHAVIOR OF UNIDIRECTIONAL CARBON FIBER-REINFORCED COMPOSITES AT ROOM AND HIGH TEMPERATURES DAMAGE MECHANICS MODEL FOR OFF-AXIS FATIGUE BEHAVIOR OF UNIDIRECTIONAL CARBON FIBER-REINFORCED COMPOSITES AT ROOM AND HIGH TEMPERATURES M. Kawai Institute of Engineering Mechanics University of Tsukuba,

More information

Nonlinear Modeling of Fiber-Reinforced Elastomers and the Response of a Rubber Muscle Actuator

Nonlinear Modeling of Fiber-Reinforced Elastomers and the Response of a Rubber Muscle Actuator Nonlinear Modeling of Fiber-Reinforced Elastomers and the Response of a Rubber Muscle Actuator Larry D. Peel, Ph.D.* Department of Mechanical & Industrial Engineering Texas A&M Univ. - Kingsville David

More information

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium Example-3 Title Cylindrical Hole in an Infinite Mohr-Coulomb Medium Description The problem concerns the determination of stresses and displacements for the case of a cylindrical hole in an infinite elasto-plastic

More information

1.105 Solid Mechanics Laboratory Fall 2003 Experiment 3 The Tension Test

1.105 Solid Mechanics Laboratory Fall 2003 Experiment 3 The Tension Test 1.105 Solid Mechanics Laboratory Fall 2003 Experiment 3 The Tension Test Our objective is to measure the Elastic Modulus of steel. The experiment comes in two parts. In the first, you will subject a steel

More information

Cone-shaped socket connections for cylindrical members

Cone-shaped socket connections for cylindrical members NSCC2009 Cone-shaped socket connections for cylindrical members H. Kuwamura 1 & T. Ito 2 1 Department of Architecture, The University of Tokyo, Tokyo, Japan 2 Department of Architecture, Tokyo University

More information

Effect of off-axis cell orientation on mechanical properties in smooth muscle tissue

Effect of off-axis cell orientation on mechanical properties in smooth muscle tissue J. Biomedical Science and Engineering, 2011, 4, 10-17 doi:10.4236/jbise.2011.41002 Published Online January 2011 (http://www.scirp.org/journal/jbise/). Effect of off-axis cell orientation on mechanical

More information

MECHANICAL TESTS FOR UMBILICALS

MECHANICAL TESTS FOR UMBILICALS Escola Politécnica da Universidade de São Paulo Laboratório de Estruturas e Materiais Estruturais ( LEM ) MECHANICAL TESTS FOR UMBILICALS Semi-submersible Escola Politécnica da Universidade de São Paulo

More information