On the Use of Division Algebras for Wireless Communication

Size: px
Start display at page:

Download "On the Use of Division Algebras for Wireless Communication"

Transcription

1 On the Use of Division Algebras for Wireless Communication California Institute of Technology AMS meeting, Davidson, March 3rd 2007

2 Outline A few wireless coding problems Space-Time Coding Differential Space-Time Coding Distributed Space-Time Coding Introducing Division Algebras Codewords from Division Algebras

3 Space-Time Coding Multiple antenna coding: the model

4 Space-Time Coding Multiple antenna coding: the model x 1 h 11 h 11 x 1 + h 12 x 3 + n 1 h 21 x 3 h 12 h 21 x 1 + h 22 x 3 + n 2 h 22

5 Space-Time Coding Multiple antenna coding: the model x 2 h 21 h 11 x 2 + h 12 x 4 + n 3 h 11 h 11 x 1 + h 12 x 3 + n 1 x 4 h 12 h 21 x 2 + h 22 x 4 + n 4 h 22 h 21 x 1 + h 22 x 3 + n 2

6 Space-Time Coding Multiple antenna coding: the coding problem We summarize the channel as ( ) ( ) h11 h Y = 12 x1 x 2 +W, W, H complex Gaussian h 21 h 22 x 3 x 4 }{{} space-time codeword The goal is the design of the codebook C: { ( ) } x1 x C = X = 2 x x 3 x 1, x 2, x 3, x 4 C 4 the x i are functions of the information symbols.

7 Space-Time Coding Multiple antenna coding: the coding problem We summarize the channel as ( ) ( ) h11 h Y = 12 x1 x 2 +W, W, H complex Gaussian h 21 h 22 x 3 x 4 }{{} space-time codeword The goal is the design of the codebook C: { ( ) } x1 x C = X = 2 x x 3 x 1, x 2, x 3, x 4 C 4 the x i are functions of the information symbols.

8 Space-Time Coding The code design The pairwise probability of error of sending X and decoding ˆX X is upper bounded by P(X ˆX) const det(x ˆX) 2M, where the receiver knows the channel (coherent case). Find a family C of M M matrices such that called fully-diverse. det(x i X j ) 0, X i X j C,

9 Space-Time Coding The code design The pairwise probability of error of sending X and decoding ˆX X is upper bounded by P(X ˆX) const det(x ˆX) 2M, where the receiver knows the channel (coherent case). Find a family C of M M matrices such that called fully-diverse. det(x i X j ) 0, X i X j C,

10 Differential Space-Time Coding The differential noncoherent MIMO channel We assume no channel knowledge. We use differential unitary space-time modulation. that is (assuming S 0 = I) S t = X zt S t 1, t = 1, 2,..., where z t {0,..., L 1} is the data to be transmitted, and C = {X 0,..., X L 1 } the constellation to be designed. The matrices X have to be unitary.

11 Differential Space-Time Coding The differential noncoherent MIMO channel We assume no channel knowledge. We use differential unitary space-time modulation. that is (assuming S 0 = I) S t = X zt S t 1, t = 1, 2,..., where z t {0,..., L 1} is the data to be transmitted, and C = {X 0,..., X L 1 } the constellation to be designed. The matrices X have to be unitary.

12 Differential Space-Time Coding The differential noncoherent MIMO channel We assume no channel knowledge. We use differential unitary space-time modulation. that is (assuming S 0 = I) S t = X zt S t 1, t = 1, 2,..., where z t {0,..., L 1} is the data to be transmitted, and C = {X 0,..., X L 1 } the constellation to be designed. The matrices X have to be unitary.

13 Differential Space-Time Coding Decoding and probability of error If we assume the channel is roughly constant, we have Y t = S t H + W t = X zt S t 1 H + W t = X zt (Y t 1 W t 1 ) + W t = X zt Y t 1 + W t, H does not appear! The pairwise probability of error P e has the upper bound P e ( ) ( ) 1 8 MN 1 2 ρ det(x i X j ) 2N We need to design unitary fully-diverse matrices.

14 Differential Space-Time Coding Decoding and probability of error If we assume the channel is roughly constant, we have Y t = S t H + W t = X zt S t 1 H + W t = X zt (Y t 1 W t 1 ) + W t = X zt Y t 1 + W t, H does not appear! The pairwise probability of error P e has the upper bound P e ( ) ( ) 1 8 MN 1 2 ρ det(x i X j ) 2N We need to design unitary fully-diverse matrices.

15 Differential Space-Time Coding Decoding and probability of error If we assume the channel is roughly constant, we have Y t = S t H + W t = X zt S t 1 H + W t = X zt (Y t 1 W t 1 ) + W t = X zt Y t 1 + W t, H does not appear! The pairwise probability of error P e has the upper bound P e ( ) ( ) 1 8 MN 1 2 ρ det(x i X j ) 2N We need to design unitary fully-diverse matrices.

16 Differential Space-Time Coding Decoding and probability of error If we assume the channel is roughly constant, we have Y t = S t H + W t = X zt S t 1 H + W t = X zt (Y t 1 W t 1 ) + W t = X zt Y t 1 + W t, H does not appear! The pairwise probability of error P e has the upper bound P e ( ) ( ) 1 8 MN 1 2 ρ det(x i X j ) 2N We need to design unitary fully-diverse matrices.

17 Distributed Space-Time Coding Wireless relay network: model A transmitter and a receiver node. Relay nodes are small devices with few resources. M antennas Tx Rx N antennas

18 Sf 1 + v 1 = r 1 Sf 2 + v 2 = r 2 Distributed Space-Time Coding Wireless relay network: phase 1 S Tx Sf 3 + v 3 = r 3 Rx Sf 4 + v 4 = r 4

19 Sf 1 + v 1 = r 1 Sf 2 + v 2 = r 2 Distributed Space-Time Coding Wireless relay network: phase 2 At each node: multiply by a unitary matrix. A 1 r 1 A 2 r 2 S Tx Sf 3 + v 3 = r 3 A 3 r 3 A 4 r 4 Rx Sf 4 + v 4

20 Distributed Space-Time Coding Channel model 1. At the receiver, y n = R g in t i + w = i=1 R g in A i (Sf i + v i ) + w i=1 2. So that finally Y = y 1. y n = [A 1 S A R S] }{{} X f 1 g 1. +W } f n g n {{ } H 3. Each relay encodes a set of columns, so that the encoding is distributed among the nodes.

21 Distributed Space-Time Coding Channel model 1. At the receiver, y n = R g in t i + w = i=1 R g in A i (Sf i + v i ) + w i=1 2. So that finally Y = y 1. y n = [A 1 S A R S] }{{} X f 1 g 1. +W } f n g n {{ } H 3. Each relay encodes a set of columns, so that the encoding is distributed among the nodes.

22 Introducing Division Algebras A few wireless coding problems Space-Time Coding Differential Space-Time Coding Distributed Space-Time Coding Introducing Division Algebras Codewords from Division Algebras

23 Introducing Division Algebras The idea behind division algebras The difficulty in building C such that det(x i X j ) 0, X i X j C, comes from the non-linearity of the determinant. If C is taken inside an algebra of matrices, the problem simplifies to det(x) 0, 0 X C. A division algebra is a non-commutative field.

24 Introducing Division Algebras The idea behind division algebras The difficulty in building C such that det(x i X j ) 0, X i X j C, comes from the non-linearity of the determinant. If C is taken inside an algebra of matrices, the problem simplifies to det(x) 0, 0 X C. A division algebra is a non-commutative field.

25 Introducing Division Algebras The idea behind division algebras The difficulty in building C such that det(x i X j ) 0, X i X j C, comes from the non-linearity of the determinant. If C is taken inside an algebra of matrices, the problem simplifies to det(x) 0, 0 X C. A division algebra is a non-commutative field.

26 Introducing Division Algebras An example: cyclic division algebras Let Q(i) = {a + ib, a, b Q}. Let L be cyclic extension of degree n over Q(i). A cyclic algebra A is defined as follows A = {(x 0, x 1,..., x n 1 ) x i L} with basis {1, e,..., e n 1 } and e n = γ Q(i). Think of i 2 = 1. A non-commutativity rule: λe = eσ(λ), σ : L L the generator of the Galois group of L/Q(i).

27 Introducing Division Algebras An example: cyclic division algebras Let Q(i) = {a + ib, a, b Q}. Let L be cyclic extension of degree n over Q(i). A cyclic algebra A is defined as follows A = {(x 0, x 1,..., x n 1 ) x i L} with basis {1, e,..., e n 1 } and e n = γ Q(i). Think of i 2 = 1. A non-commutativity rule: λe = eσ(λ), σ : L L the generator of the Galois group of L/Q(i).

28 Introducing Division Algebras An example: cyclic division algebras Let Q(i) = {a + ib, a, b Q}. Let L be cyclic extension of degree n over Q(i). A cyclic algebra A is defined as follows A = {(x 0, x 1,..., x n 1 ) x i L} with basis {1, e,..., e n 1 } and e n = γ Q(i). Think of i 2 = 1. A non-commutativity rule: λe = eσ(λ), σ : L L the generator of the Galois group of L/Q(i).

29 Introducing Division Algebras An example: cyclic division algebras Let Q(i) = {a + ib, a, b Q}. Let L be cyclic extension of degree n over Q(i). A cyclic algebra A is defined as follows A = {(x 0, x 1,..., x n 1 ) x i L} with basis {1, e,..., e n 1 } and e n = γ Q(i). Think of i 2 = 1. A non-commutativity rule: λe = eσ(λ), σ : L L the generator of the Galois group of L/Q(i).

30 Introducing Division Algebras An example: cyclic division algebras Let Q(i) = {a + ib, a, b Q}. Let L be cyclic extension of degree n over Q(i). A cyclic algebra A is defined as follows A = {(x 0, x 1,..., x n 1 ) x i L} with basis {1, e,..., e n 1 } and e n = γ Q(i). Think of i 2 = 1. A non-commutativity rule: λe = eσ(λ), σ : L L the generator of the Galois group of L/Q(i).

31 Codewords from Division Algebras Cyclic algebras: matrix formulation 1. For n = 2, compute the multiplication by x of any y A: xy = (x 0 + ex 1 )(y 0 + ey 1 ) = x 0 y 0 + eσ(x 0 )y 1 + ex 1 y 0 + γσ(x 1 )y 1 λe = eσ(λ) = [x 0 y 0 + γσ(x 1 )y 1 ] + e[σ(x 0 )y 1 + x 1 y 0 ] e 2 = γ 2. In the basis {1, e}, this yields ( ) ( x0 γσ(x xy = 1 ) y0 x 1 σ(x 0 ) y 1 ). 3. There is thus a correspondence between x and its multiplication matrix. ( ) x0 γσ(x x = x 0 + ex 1 A 1 ). x 1 σ(x 0 )

32 Codewords from Division Algebras Cyclic algebras: matrix formulation 1. For n = 2, compute the multiplication by x of any y A: xy = (x 0 + ex 1 )(y 0 + ey 1 ) = x 0 y 0 + eσ(x 0 )y 1 + ex 1 y 0 + γσ(x 1 )y 1 λe = eσ(λ) = [x 0 y 0 + γσ(x 1 )y 1 ] + e[σ(x 0 )y 1 + x 1 y 0 ] e 2 = γ 2. In the basis {1, e}, this yields ( ) ( x0 γσ(x xy = 1 ) y0 x 1 σ(x 0 ) y 1 ). 3. There is thus a correspondence between x and its multiplication matrix. ( ) x0 γσ(x x = x 0 + ex 1 A 1 ). x 1 σ(x 0 )

33 Codewords from Division Algebras Cyclic algebras: matrix formulation 1. For n = 2, compute the multiplication by x of any y A: xy = (x 0 + ex 1 )(y 0 + ey 1 ) = x 0 y 0 + eσ(x 0 )y 1 + ex 1 y 0 + γσ(x 1 )y 1 λe = eσ(λ) = [x 0 y 0 + γσ(x 1 )y 1 ] + e[σ(x 0 )y 1 + x 1 y 0 ] e 2 = γ 2. In the basis {1, e}, this yields ( ) ( x0 γσ(x xy = 1 ) y0 x 1 σ(x 0 ) y 1 ). 3. There is thus a correspondence between x and its multiplication matrix. ( ) x0 γσ(x x = x 0 + ex 1 A 1 ). x 1 σ(x 0 )

34 Codewords from Division Algebras Cyclic division algebras and encoding Proposition. If γ and its powers γ 2,..., γ n 1 are not a norm, then the cyclic algebra A is a division algebra. In general x x 0 γσ(x n 1 ) γσ 2 (x n 2 )... γσ n 1 (x 1 ) x 1 σ(x 0 ) γσ 2 (x n 1 )... γσ n 1 (x 2 )... x n 1 σ(x n 2 ) σ 2 (x n 3 )... σ n 1 (x 0 ) Each x i L encodes n information symbols..

35 Codewords from Division Algebras Cyclic division algebras and encoding Proposition. If γ and its powers γ 2,..., γ n 1 are not a norm, then the cyclic algebra A is a division algebra. In general x x 0 γσ(x n 1 ) γσ 2 (x n 2 )... γσ n 1 (x 1 ) x 1 σ(x 0 ) γσ 2 (x n 1 )... γσ n 1 (x 2 )... x n 1 σ(x n 2 ) σ 2 (x n 3 )... σ n 1 (x 0 ) Each x i L encodes n information symbols..

36 Codewords from Division Algebras Solutions for the coding problems Start with a cyclic division algebra, and: 1. For space-time coding: use the underlying algebraic properties to optimize the code (for example the discriminant of L/Q(i)). 2. For differential space-time coding: endowe the algebra with a suitable involution, or use the Cayley transform. 3. For distributed space-time coding: work in a suitable subfield of L.

37 Codewords from Division Algebras Solutions for the coding problems Start with a cyclic division algebra, and: 1. For space-time coding: use the underlying algebraic properties to optimize the code (for example the discriminant of L/Q(i)). 2. For differential space-time coding: endowe the algebra with a suitable involution, or use the Cayley transform. 3. For distributed space-time coding: work in a suitable subfield of L.

38 Codewords from Division Algebras Solutions for the coding problems Start with a cyclic division algebra, and: 1. For space-time coding: use the underlying algebraic properties to optimize the code (for example the discriminant of L/Q(i)). 2. For differential space-time coding: endowe the algebra with a suitable involution, or use the Cayley transform. 3. For distributed space-time coding: work in a suitable subfield of L.

39 Codewords from Division Algebras Thank you for your attention!

Algebraic Methods for Wireless Coding

Algebraic Methods for Wireless Coding Algebraic Methods for Wireless Coding Frédérique Oggier frederique@systems.caltech.edu California Institute of Technology UC Davis, Mathematics Department, January 31st 2007 Outline The Rayleigh fading

More information

Perfect Space Time Block Codes

Perfect Space Time Block Codes Perfect Space Time Block Codes Frédérique Oggier, Ghaya Rekaya, Student Member IEEE, Jean-Claude Belfiore, Member IEEE and Emanuele Viterbo, Member IEEE Abstract arxiv:cs/0604093v1 [cs.it] 24 Apr 2006

More information

Probability Bounds for Two-Dimensional Algebraic Lattice Codes

Probability Bounds for Two-Dimensional Algebraic Lattice Codes Probability Bounds for Two-Dimensional Algebraic Lattice Codes David Karpuk Aalto University April 16, 2013 (Joint work with C. Hollanti and E. Viterbo) David Karpuk (Aalto University) Probability Bounds

More information

Fuchsian codes with arbitrary rates. Iván Blanco Chacón, Aalto University

Fuchsian codes with arbitrary rates. Iván Blanco Chacón, Aalto University 20-09-2013 Summary Basic concepts in wireless channels Arithmetic Fuchsian groups: the rational case Arithmetic Fuchsian groups: the general case Fundamental domains and point reduction Fuchsian codes

More information

A Coding Strategy for Wireless Networks with no Channel Information

A Coding Strategy for Wireless Networks with no Channel Information A Coding Strategy for Wireless Networks with no Channel Information Frédérique Oggier and Babak Hassibi Abstract In this paper, we present a coding strategy for wireless relay networks, where we assume

More information

Algebraic Cayley Differential Space Time Codes

Algebraic Cayley Differential Space Time Codes IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 5, MAY 2007 1911 Algebraic Cayley Differential Space Time Codes Frédérique Oggier and Babak Hassibi Abstract Cayley space time codes have been proposed

More information

Perfect Space-Time Block Codes and Ultra-Wideband

Perfect Space-Time Block Codes and Ultra-Wideband Perfect Space-Time Block Codes and Ultra-Wideband Kei Hao 1 Introduction In this report, we present the techniques for constructing Space-Time Block Codes based on division algebra Even though commutative

More information

Using Noncoherent Modulation for Training

Using Noncoherent Modulation for Training EE8510 Project Using Noncoherent Modulation for Training Yingqun Yu May 5, 2005 0-0 Noncoherent Channel Model X = ρt M ΦH + W Rayleigh flat block-fading, T: channel coherence interval Marzetta & Hochwald

More information

Applications of Lattices in Telecommunications

Applications of Lattices in Telecommunications Applications of Lattices in Telecommunications Dept of Electrical and Computer Systems Engineering Monash University amin.sakzad@monash.edu Oct. 2013 1 Sphere Decoder Algorithm Rotated Signal Constellations

More information

Lecture 7 MIMO Communica2ons

Lecture 7 MIMO Communica2ons Wireless Communications Lecture 7 MIMO Communica2ons Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Fall 2014 1 Outline MIMO Communications (Chapter 10

More information

Space-Time Coding for Multi-Antenna Systems

Space-Time Coding for Multi-Antenna Systems Space-Time Coding for Multi-Antenna Systems ECE 559VV Class Project Sreekanth Annapureddy vannapu2@uiuc.edu Dec 3rd 2007 MIMO: Diversity vs Multiplexing Multiplexing Diversity Pictures taken from lectures

More information

Title. Author(s)Tsai, Shang-Ho. Issue Date Doc URL. Type. Note. File Information. Equal Gain Beamforming in Rayleigh Fading Channels

Title. Author(s)Tsai, Shang-Ho. Issue Date Doc URL. Type. Note. File Information. Equal Gain Beamforming in Rayleigh Fading Channels Title Equal Gain Beamforming in Rayleigh Fading Channels Author(s)Tsai, Shang-Ho Proceedings : APSIPA ASC 29 : Asia-Pacific Signal Citationand Conference: 688-691 Issue Date 29-1-4 Doc URL http://hdl.handle.net/2115/39789

More information

Anatoly Khina. Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT

Anatoly Khina. Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT Network Modulation: Transmission Technique for MIMO Networks Anatoly Khina Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT ACC Workshop, Feder Family Award

More information

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User

More information

Performance of Full-Rate Full-Diversity Space-Time Codes Under Quantization and Channel Estimation Error. Zhengwei Jiang

Performance of Full-Rate Full-Diversity Space-Time Codes Under Quantization and Channel Estimation Error. Zhengwei Jiang Performance of Full-Rate Full-Diversity Space-Time Codes Under Quantization and Channel Estimation Error by Zhengwei Jiang A thesis submitted in conformity with the requirements for the degree of Master

More information

Low Complexity Distributed STBCs with Unitary Relay Matrices for Any Number of Relays

Low Complexity Distributed STBCs with Unitary Relay Matrices for Any Number of Relays Low Complexity Distributed STBCs with Unitary elay Matrices for Any Number of elays G. Susinder ajan Atheros India LLC Chennai 600004 India susinder@atheros.com B. Sundar ajan ECE Department Indian Institute

More information

Signal Set Design for Full-Diversity Low-Decoding-Complexity Differential Scaled-Unitary STBCs

Signal Set Design for Full-Diversity Low-Decoding-Complexity Differential Scaled-Unitary STBCs Signal Set Design for Full-Diversity Low-Decoding-Complexity Differential Scaled-Unitary STCs arxiv:74.59v [cs.it] 9 pr 7 G. Susinder Rajan ECE Department Indian Institute of Science angalore 56, India

More information

FULL rate and full diversity codes for the coherent

FULL rate and full diversity codes for the coherent 1432 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005 The Golden Code: A 2 2 Full-Rate Space Time Code With Nonvanishing Determinants Jean-Claude Belfiore, Member, IEEE, Ghaya Rekaya,

More information

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User

More information

Space-Time Codes that are Approximately Universal for the Parallel, Multi-Block and Cooperative DDF Channels

Space-Time Codes that are Approximately Universal for the Parallel, Multi-Block and Cooperative DDF Channels Space-Time Codes that are Approximately Universal for the Parallel, Multi-lock and Cooperative DDF Channels Petros Elia Mobile Communications Department, EURECOM F-06904 Sophia Antipolis cedex, France

More information

ELEC E7210: Communication Theory. Lecture 10: MIMO systems

ELEC E7210: Communication Theory. Lecture 10: MIMO systems ELEC E7210: Communication Theory Lecture 10: MIMO systems Matrix Definitions, Operations, and Properties (1) NxM matrix a rectangular array of elements a A. an 11 1....... a a 1M. NM B D C E ermitian transpose

More information

Achieving the Full MIMO Diversity-Multiplexing Frontier with Rotation-Based Space-Time Codes

Achieving the Full MIMO Diversity-Multiplexing Frontier with Rotation-Based Space-Time Codes Achieving the Full MIMO Diversity-Multiplexing Frontier with Rotation-Based Space-Time Codes Huan Yao Lincoln Laboratory Massachusetts Institute of Technology Lexington, MA 02420 yaohuan@ll.mit.edu Gregory

More information

ELEC546 Review of Information Theory

ELEC546 Review of Information Theory ELEC546 Review of Information Theory Vincent Lau 1/1/004 1 Review of Information Theory Entropy: Measure of uncertainty of a random variable X. The entropy of X, H(X), is given by: If X is a discrete random

More information

Incremental Coding over MIMO Channels

Incremental Coding over MIMO Channels Model Rateless SISO MIMO Applications Summary Incremental Coding over MIMO Channels Anatoly Khina, Tel Aviv University Joint work with: Yuval Kochman, MIT Uri Erez, Tel Aviv University Gregory W. Wornell,

More information

Golden Space-Time Block Coded Modulation

Golden Space-Time Block Coded Modulation Golden Space-Time Block Coded Modulation Laura Luzzi Ghaya Rekaya-Ben Othman Jean-Claude Belfiore and Emanuele Viterbo Télécom ParisTech- École Nationale Supérieure des Télécommunications 46 Rue Barrault

More information

Exploiting Partial Channel Knowledge at the Transmitter in MISO and MIMO Wireless

Exploiting Partial Channel Knowledge at the Transmitter in MISO and MIMO Wireless Exploiting Partial Channel Knowledge at the Transmitter in MISO and MIMO Wireless SPAWC 2003 Rome, Italy June 18, 2003 E. Yoon, M. Vu and Arogyaswami Paulraj Stanford University Page 1 Outline Introduction

More information

MMSE Optimal Space-Time Block Codes from Crossed Product Algebras

MMSE Optimal Space-Time Block Codes from Crossed Product Algebras MMSE Optimal Space-Time Block Codes from Crossed roduct Algebras G Susinder Rajan and B Sundar Rajan Department of Electrical Communication Engineering Indian Institute of Science, Bangalore, India {susinder,

More information

9 THEORY OF CODES. 9.0 Introduction. 9.1 Noise

9 THEORY OF CODES. 9.0 Introduction. 9.1 Noise 9 THEORY OF CODES Chapter 9 Theory of Codes After studying this chapter you should understand what is meant by noise, error detection and correction; be able to find and use the Hamming distance for a

More information

Designing Information Devices and Systems II Spring 2017 Murat Arcak and Michel Maharbiz Homework 10

Designing Information Devices and Systems II Spring 2017 Murat Arcak and Michel Maharbiz Homework 10 EECS 16B Designing Information Devices and Systems II Spring 2017 Murat Arcak and Michel Maharbiz Homework 10 This homework is due April 12, 2017, at 17:00. 1. MIMO wireless signals Ever wonder why newer

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title A family of fast-decodable MIDO codes from crossedproduct algebras over Authors Luzzi, Laura; Oggier,

More information

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH : Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 Rayleigh Wednesday, June 1, 2016 09:15-12:00, SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

More information

Information Theory. Lecture 10. Network Information Theory (CT15); a focus on channel capacity results

Information Theory. Lecture 10. Network Information Theory (CT15); a focus on channel capacity results Information Theory Lecture 10 Network Information Theory (CT15); a focus on channel capacity results The (two-user) multiple access channel (15.3) The (two-user) broadcast channel (15.6) The relay channel

More information

Perfect Space-Time Codes for Any Number of Antennas

Perfect Space-Time Codes for Any Number of Antennas TO APPEAR IN THE IEEE TRANSACTIONS ON INFORMATION THEORY 1 Perfect Space-Time Codes for Any Number of Antennas Petros Elia, B A Sethuraman and P Vijay Kumar Abstract In a recent paper, perfect (n n) space-time

More information

ELEC546 MIMO Channel Capacity

ELEC546 MIMO Channel Capacity ELEC546 MIMO Channel Capacity Vincent Lau Simplified Version.0 //2004 MIMO System Model Transmitter with t antennas & receiver with r antennas. X Transmitted Symbol, received symbol Channel Matrix (Flat

More information

Limited Feedback in Wireless Communication Systems

Limited Feedback in Wireless Communication Systems Limited Feedback in Wireless Communication Systems - Summary of An Overview of Limited Feedback in Wireless Communication Systems Gwanmo Ku May 14, 17, and 21, 2013 Outline Transmitter Ant. 1 Channel N

More information

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH : Antenna Diversity and Theoretical Foundations of Wireless Communications Wednesday, May 4, 206 9:00-2:00, Conference Room SIP Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

More information

4184 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 12, DECEMBER Pranav Dayal, Member, IEEE, and Mahesh K. Varanasi, Senior Member, IEEE

4184 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 12, DECEMBER Pranav Dayal, Member, IEEE, and Mahesh K. Varanasi, Senior Member, IEEE 4184 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 12, DECEMBER 2005 An Algebraic Family of Complex Lattices for Fading Channels With Application to Space Time Codes Pranav Dayal, Member, IEEE,

More information

On the Performance of. Golden Space-Time Trellis Coded Modulation over MIMO Block Fading Channels

On the Performance of. Golden Space-Time Trellis Coded Modulation over MIMO Block Fading Channels On the Performance of 1 Golden Space-Time Trellis Coded Modulation over MIMO Block Fading Channels arxiv:0711.1295v1 [cs.it] 8 Nov 2007 Emanuele Viterbo and Yi Hong Abstract The Golden space-time trellis

More information

Lattices for Communication Engineers

Lattices for Communication Engineers Lattices for Communication Engineers Jean-Claude Belfiore Télécom ParisTech CNRS, LTCI UMR 5141 February, 22 2011 Nanyang Technological University - SPMS Part I Introduction Signal Space The transmission

More information

Applications of the Golden Code

Applications of the Golden Code Applications of the Golden Code Emanuele Viterbo DEIS - Università della Calabria via P. Bucci, Cubo 42C 87036 Rende (CS) - ITALY viterbo@deis.unical.it Yi Hong Institute for Telecom. Research University

More information

On the Robustness of Algebraic STBCs to Coefficient Quantization

On the Robustness of Algebraic STBCs to Coefficient Quantization 212 Australian Communications Theory Workshop (AusCTW) On the Robustness of Algebraic STBCs to Coefficient Quantization J. Harshan Dept. of Electrical and Computer Systems Engg., Monash University Clayton,

More information

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 : Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 Rayleigh Friday, May 25, 2018 09:00-11:30, Kansliet 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless

More information

Maximum Achievable Diversity for MIMO-OFDM Systems with Arbitrary. Spatial Correlation

Maximum Achievable Diversity for MIMO-OFDM Systems with Arbitrary. Spatial Correlation Maximum Achievable Diversity for MIMO-OFDM Systems with Arbitrary Spatial Correlation Ahmed K Sadek, Weifeng Su, and K J Ray Liu Department of Electrical and Computer Engineering, and Institute for Systems

More information

Physical Layer and Coding

Physical Layer and Coding Physical Layer and Coding Muriel Médard Professor EECS Overview A variety of physical media: copper, free space, optical fiber Unified way of addressing signals at the input and the output of these media:

More information

Multi-User Communication: Capacity, Duality, and Cooperation. Nihar Jindal Stanford University Dept. of Electrical Engineering

Multi-User Communication: Capacity, Duality, and Cooperation. Nihar Jindal Stanford University Dept. of Electrical Engineering Multi-User Communication: Capacity, Duality, and Cooperation Niar Jindal Stanford University Dept. of Electrical Engineering February 3, 004 Wireless Communication Vision Cellular Networks Wireless LAN

More information

Mathematical methods in communication June 16th, Lecture 12

Mathematical methods in communication June 16th, Lecture 12 2- Mathematical methods in communication June 6th, 20 Lecture 2 Lecturer: Haim Permuter Scribe: Eynan Maydan and Asaf Aharon I. MIMO - MULTIPLE INPUT MULTIPLE OUTPUT MIMO is the use of multiple antennas

More information

Physical-Layer MIMO Relaying

Physical-Layer MIMO Relaying Model Gaussian SISO MIMO Gauss.-BC General. Physical-Layer MIMO Relaying Anatoly Khina, Tel Aviv University Joint work with: Yuval Kochman, MIT Uri Erez, Tel Aviv University August 5, 2011 Model Gaussian

More information

Space-Time Block Codes from Cyclic Division Algebras: An Introduction

Space-Time Block Codes from Cyclic Division Algebras: An Introduction Space-Time Block Codes from Cyclic Division Algebras: An Introduction Anders OF Hendrickson December 15, 2004 Coding theory addresses the problem of transmitting information accurately across noisy channels

More information

Half-Duplex Gaussian Relay Networks with Interference Processing Relays

Half-Duplex Gaussian Relay Networks with Interference Processing Relays Half-Duplex Gaussian Relay Networks with Interference Processing Relays Bama Muthuramalingam Srikrishna Bhashyam Andrew Thangaraj Department of Electrical Engineering Indian Institute of Technology Madras

More information

Diversity-Multiplexing Tradeoff in MIMO Channels with Partial CSIT. ECE 559 Presentation Hoa Pham Dec 3, 2007

Diversity-Multiplexing Tradeoff in MIMO Channels with Partial CSIT. ECE 559 Presentation Hoa Pham Dec 3, 2007 Diversity-Multiplexing Tradeoff in MIMO Channels with Partial CSIT ECE 559 Presentation Hoa Pham Dec 3, 2007 Introduction MIMO systems provide two types of gains Diversity Gain: each path from a transmitter

More information

Cyclic Division Algebras: A Tool for Space Time Coding

Cyclic Division Algebras: A Tool for Space Time Coding Foundations and Trends R in Communications and Information Theory Vol. 4, No. 1 (2007) 1 95 c 2007 F. Oggier, J.-C. Belfiore and E. Viterbo DOI: 10.1561/0100000016 Cyclic Division Algebras: A Tool for

More information

Phase Precoded Compute-and-Forward with Partial Feedback

Phase Precoded Compute-and-Forward with Partial Feedback Phase Precoded Compute-and-Forward with Partial Feedback Amin Sakzad, Emanuele Viterbo Dept. Elec. & Comp. Sys. Monash University, Australia amin.sakzad,emanuele.viterbo@monash.edu Joseph Boutros, Dept.

More information

Constellation Precoded Beamforming

Constellation Precoded Beamforming Constellation Precoded Beamforming Hong Ju Park and Ender Ayanoglu Center for Pervasive Communications and Computing Department of Electrical Engineering and Computer Science University of California,

More information

Algebraic Multiuser Space Time Block Codes for 2 2 MIMO

Algebraic Multiuser Space Time Block Codes for 2 2 MIMO Algebraic Multiuser Space Time Bloc Codes for 2 2 MIMO Yi Hong Institute of Advanced Telecom. University of Wales, Swansea, UK y.hong@swansea.ac.u Emanuele Viterbo DEIS - Università della Calabria via

More information

EE/Stat 376B Handout #5 Network Information Theory October, 14, Homework Set #2 Solutions

EE/Stat 376B Handout #5 Network Information Theory October, 14, Homework Set #2 Solutions EE/Stat 376B Handout #5 Network Information Theory October, 14, 014 1. Problem.4 parts (b) and (c). Homework Set # Solutions (b) Consider h(x + Y ) h(x + Y Y ) = h(x Y ) = h(x). (c) Let ay = Y 1 + Y, where

More information

Mapper & De-Mapper System Document

Mapper & De-Mapper System Document Mapper & De-Mapper System Document Mapper / De-Mapper Table of Contents. High Level System and Function Block. Mapper description 2. Demodulator Function block 2. Decoder block 2.. De-Mapper 2..2 Implementation

More information

Advanced Spatial Modulation Techniques for MIMO Systems

Advanced Spatial Modulation Techniques for MIMO Systems Advanced Spatial Modulation Techniques for MIMO Systems Ertugrul Basar Princeton University, Department of Electrical Engineering, Princeton, NJ, USA November 2011 Outline 1 Introduction 2 Spatial Modulation

More information

A Fast-Decodable, Quasi-Orthogonal Space Time Block Code for 4 2 MIMO

A Fast-Decodable, Quasi-Orthogonal Space Time Block Code for 4 2 MIMO Forty-Fifth Annual Allerton Conference Allerton House, UIUC, Illinois, USA September 26-28, 2007 ThC6.4 A Fast-Decodable, Quasi-Orthogonal Space Time Block Code for 4 2 MIMO Ezio Biglieri Universitat Pompeu

More information

A Systematic Approach for Interference Alignment in CSIT-less Relay-Aided X-Networks

A Systematic Approach for Interference Alignment in CSIT-less Relay-Aided X-Networks A Systematic Approach for Interference Alignment in CSIT-less Relay-Aided X-Networks Daniel Frank, Karlheinz Ochs, Aydin Sezgin Chair of Communication Systems RUB, Germany Email: {danielfrank, karlheinzochs,

More information

Augmented Lattice Reduction for MIMO decoding

Augmented Lattice Reduction for MIMO decoding Augmented Lattice Reduction for MIMO decoding LAURA LUZZI joint work with G. Rekaya-Ben Othman and J.-C. Belfiore at Télécom-ParisTech NANYANG TECHNOLOGICAL UNIVERSITY SEPTEMBER 15, 2010 Laura Luzzi Augmented

More information

An Introduction to (Network) Coding Theory

An Introduction to (Network) Coding Theory An to (Network) Anna-Lena Horlemann-Trautmann University of St. Gallen, Switzerland April 24th, 2018 Outline 1 Reed-Solomon Codes 2 Network Gabidulin Codes 3 Summary and Outlook A little bit of history

More information

Classical codes for quantum broadcast channels. arxiv: Ivan Savov and Mark M. Wilde School of Computer Science, McGill University

Classical codes for quantum broadcast channels. arxiv: Ivan Savov and Mark M. Wilde School of Computer Science, McGill University Classical codes for quantum broadcast channels arxiv:1111.3645 Ivan Savov and Mark M. Wilde School of Computer Science, McGill University International Symposium on Information Theory, Boston, USA July

More information

Bounds on fast decodability of space-time block codes, skew-hermitian matrices, and Azumaya algebras

Bounds on fast decodability of space-time block codes, skew-hermitian matrices, and Azumaya algebras Bounds on fast decodability of space-time block codes, skew-hermitian matrices, and Azumaya algebras Grégory Berhuy, Nadya Markin, and B. A. Sethuraman 1 Abstract We study fast lattice decodability of

More information

Lecture 12. Block Diagram

Lecture 12. Block Diagram Lecture 12 Goals Be able to encode using a linear block code Be able to decode a linear block code received over a binary symmetric channel or an additive white Gaussian channel XII-1 Block Diagram Data

More information

A Design of High-Rate Space-Frequency Codes for MIMO-OFDM Systems

A Design of High-Rate Space-Frequency Codes for MIMO-OFDM Systems A Design of High-Rate Space-Frequency Codes for MIMO-OFDM Systems Wei Zhang, Xiang-Gen Xia and P. C. Ching xxia@ee.udel.edu EE Dept., The Chinese University of Hong Kong ECE Dept., University of Delaware

More information

Lecture 4 Capacity of Wireless Channels

Lecture 4 Capacity of Wireless Channels Lecture 4 Capacity of Wireless Channels I-Hsiang Wang ihwang@ntu.edu.tw 3/0, 014 What we have learned So far: looked at specific schemes and techniques Lecture : point-to-point wireless channel - Diversity:

More information

Chapter 5. Cyclic Codes

Chapter 5. Cyclic Codes Wireless Information Transmission System Lab. Chapter 5 Cyclic Codes Institute of Communications Engineering National Sun Yat-sen University Outlines Description of Cyclic Codes Generator and Parity-Check

More information

A Proof of the Converse for the Capacity of Gaussian MIMO Broadcast Channels

A Proof of the Converse for the Capacity of Gaussian MIMO Broadcast Channels A Proof of the Converse for the Capacity of Gaussian MIMO Broadcast Channels Mehdi Mohseni Department of Electrical Engineering Stanford University Stanford, CA 94305, USA Email: mmohseni@stanford.edu

More information

Training-Symbol Embedded, High-Rate Complex Orthogonal Designs for Relay Networks

Training-Symbol Embedded, High-Rate Complex Orthogonal Designs for Relay Networks Training-Symbol Embedded, High-Rate Complex Orthogonal Designs for Relay Networks J Harshan Dept of ECE, Indian Institute of Science Bangalore 56001, India Email: harshan@eceiiscernetin B Sundar Rajan

More information

2318 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 6, JUNE Mai Vu, Student Member, IEEE, and Arogyaswami Paulraj, Fellow, IEEE

2318 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 6, JUNE Mai Vu, Student Member, IEEE, and Arogyaswami Paulraj, Fellow, IEEE 2318 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 6, JUNE 2006 Optimal Linear Precoders for MIMO Wireless Correlated Channels With Nonzero Mean in Space Time Coded Systems Mai Vu, Student Member,

More information

Error Correction Review

Error Correction Review Error Correction Review A single overall parity-check equation detects single errors. Hamming codes used m equations to correct one error in 2 m 1 bits. We can use nonbinary equations if we create symbols

More information

Probability Bounds for Two-Dimensional Algebraic Lattice Codes

Probability Bounds for Two-Dimensional Algebraic Lattice Codes Noname manuscript No. (will be inserted by the editor) Probability Bounds for Two-Dimensional Algebraic Lattice Codes David A. Karpuk, Member, IEEE Camilla Hollanti, Member, IEEE Emanuele Viterbo, Fellow,

More information

Cooperative HARQ with Poisson Interference and Opportunistic Routing

Cooperative HARQ with Poisson Interference and Opportunistic Routing Cooperative HARQ with Poisson Interference and Opportunistic Routing Amogh Rajanna & Mostafa Kaveh Department of Electrical and Computer Engineering University of Minnesota, Minneapolis, MN USA. Outline

More information

Precoded Integer-Forcing Universally Achieves the MIMO Capacity to Within a Constant Gap

Precoded Integer-Forcing Universally Achieves the MIMO Capacity to Within a Constant Gap Precoded Integer-Forcing Universally Achieves the MIMO Capacity to Within a Constant Gap Or Ordentlich Dept EE-Systems, TAU Tel Aviv, Israel Email: ordent@engtauacil Uri Erez Dept EE-Systems, TAU Tel Aviv,

More information

Soft-Decision-and-Forward Protocol for Cooperative Communication Networks with Multiple Antennas

Soft-Decision-and-Forward Protocol for Cooperative Communication Networks with Multiple Antennas Soft-Decision-and-Forward Protocol for Cooperative Communication Networks with Multiple Antenn Jae-Dong Yang, Kyoung-Young Song Department of EECS, INMC Seoul National University Email: {yjdong, sky6174}@ccl.snu.ac.kr

More information

Low-complexity optimization for large-scale MIMO

Low-complexity optimization for large-scale MIMO Low-complexity optimization for large-scale MIMO Maria Gkizeli Telecommunications Systems Institute Technical University of Crete Chania, Greece This work was supported by the Seventh Framework Program

More information

Information Theory for Wireless Communications, Part II:

Information Theory for Wireless Communications, Part II: Information Theory for Wireless Communications, Part II: Lecture 5: Multiuser Gaussian MIMO Multiple-Access Channel Instructor: Dr Saif K Mohammed Scribe: Johannes Lindblom In this lecture, we give the

More information

An Introduction to (Network) Coding Theory

An Introduction to (Network) Coding Theory An Introduction to (Network) Coding Theory Anna-Lena Horlemann-Trautmann University of St. Gallen, Switzerland July 12th, 2018 1 Coding Theory Introduction Reed-Solomon codes 2 Introduction Coherent network

More information

Interactive Interference Alignment

Interactive Interference Alignment Interactive Interference Alignment Quan Geng, Sreeram annan, and Pramod Viswanath Coordinated Science Laboratory and Dept. of ECE University of Illinois, Urbana-Champaign, IL 61801 Email: {geng5, kannan1,

More information

L interférence dans les réseaux non filaires

L interférence dans les réseaux non filaires L interférence dans les réseaux non filaires Du contrôle de puissance au codage et alignement Jean-Claude Belfiore Télécom ParisTech 7 mars 2013 Séminaire Comelec Parts Part 1 Part 2 Part 3 Part 4 Part

More information

National University of Singapore Department of Electrical & Computer Engineering. Examination for

National University of Singapore Department of Electrical & Computer Engineering. Examination for National University of Singapore Department of Electrical & Computer Engineering Examination for EE5139R Information Theory for Communication Systems (Semester I, 2014/15) November/December 2014 Time Allowed:

More information

12.4 Known Channel (Water-Filling Solution)

12.4 Known Channel (Water-Filling Solution) ECEn 665: Antennas and Propagation for Wireless Communications 54 2.4 Known Channel (Water-Filling Solution) The channel scenarios we have looed at above represent special cases for which the capacity

More information

Capacity Region of the Two-Way Multi-Antenna Relay Channel with Analog Tx-Rx Beamforming

Capacity Region of the Two-Way Multi-Antenna Relay Channel with Analog Tx-Rx Beamforming Capacity Region of the Two-Way Multi-Antenna Relay Channel with Analog Tx-Rx Beamforming Authors: Christian Lameiro, Alfredo Nazábal, Fouad Gholam, Javier Vía and Ignacio Santamaría University of Cantabria,

More information

Complete Analysis of Space Time Group Codes

Complete Analysis of Space Time Group Codes Complete Analysis of Space Time Group Codes Sirin Nitinawarat Dept. of Electrical and Computer Engineering University of Maryland College Park, MD 74 nitinawa@mail.umd.edu Nigel Boston Dept. of Electrical

More information

High-Rate and Information-Lossless Space-Time Block Codes from Crossed-Product Algebras

High-Rate and Information-Lossless Space-Time Block Codes from Crossed-Product Algebras High-Rate and Information-Lossless Space-Time Block Codes from Crossed-Product Algebras A Thesis Submitted for the Degree of Doctor of Philosophy in the Faculty of Engineering by Shashidhar V Department

More information

Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems

Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems Introduction Main Results Simulation Conclusions Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems Mojtaba Vaezi joint work with H. Inaltekin, W. Shin, H. V. Poor, and

More information

The Aladdin-Pythagoras Space-Time Code

The Aladdin-Pythagoras Space-Time Code The Aladdin-Pythagoras Space-Time Code Joseph J Boutros Texas A&M University Department of Electrical Engineering Education City Doha Qatar boutros@tamuedu Hugues Randriambololona TELECOM ParisTech / LTCI

More information

Nearest Neighbor Decoding in MIMO Block-Fading Channels With Imperfect CSIR

Nearest Neighbor Decoding in MIMO Block-Fading Channels With Imperfect CSIR IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 3, MARCH 2012 1483 Nearest Neighbor Decoding in MIMO Block-Fading Channels With Imperfect CSIR A. Taufiq Asyhari, Student Member, IEEE, Albert Guillén

More information

Simultaneous SDR Optimality via a Joint Matrix Decomp.

Simultaneous SDR Optimality via a Joint Matrix Decomp. Simultaneous SDR Optimality via a Joint Matrix Decomposition Joint work with: Yuval Kochman, MIT Uri Erez, Tel Aviv Uni. May 26, 2011 Model: Source Multicasting over MIMO Channels z 1 H 1 y 1 Rx1 ŝ 1 s

More information

Differential Full Diversity Spatial Modulation using Amplitude Phase Shift Keying

Differential Full Diversity Spatial Modulation using Amplitude Phase Shift Keying RADIOENGINEERING, VOL 7, NO 1, APRIL 018 151 Differential ull Diversity Spatial Modulation using Amplitude Phase Shift Keying Kavishaur DWARIKA 1, Hongjun XU 1, 1 School of Engineering, University of KwaZulu-Natal,

More information

Blind Channel Identification in (2 1) Alamouti Coded Systems Based on Maximizing the Eigenvalue Spread of Cumulant Matrices

Blind Channel Identification in (2 1) Alamouti Coded Systems Based on Maximizing the Eigenvalue Spread of Cumulant Matrices Blind Channel Identification in (2 1) Alamouti Coded Systems Based on Maximizing the Eigenvalue Spread of Cumulant Matrices Héctor J. Pérez-Iglesias 1, Daniel Iglesia 1, Adriana Dapena 1, and Vicente Zarzoso

More information

ECE Information theory Final

ECE Information theory Final ECE 776 - Information theory Final Q1 (1 point) We would like to compress a Gaussian source with zero mean and variance 1 We consider two strategies In the first, we quantize with a step size so that the

More information

using the Hamiltonian constellations from the packing theory, i.e., the optimal sphere packing points. However, in [11] it is shown that the upper bou

using the Hamiltonian constellations from the packing theory, i.e., the optimal sphere packing points. However, in [11] it is shown that the upper bou Some 2 2 Unitary Space-Time Codes from Sphere Packing Theory with Optimal Diversity Product of Code Size 6 Haiquan Wang Genyuan Wang Xiang-Gen Xia Abstract In this correspondence, we propose some new designs

More information

Optimal Data and Training Symbol Ratio for Communication over Uncertain Channels

Optimal Data and Training Symbol Ratio for Communication over Uncertain Channels Optimal Data and Training Symbol Ratio for Communication over Uncertain Channels Ather Gattami Ericsson Research Stockholm, Sweden Email: athergattami@ericssoncom arxiv:50502997v [csit] 2 May 205 Abstract

More information

Chapter 7: Channel coding:convolutional codes

Chapter 7: Channel coding:convolutional codes Chapter 7: : Convolutional codes University of Limoges meghdadi@ensil.unilim.fr Reference : Digital communications by John Proakis; Wireless communication by Andreas Goldsmith Encoder representation Communication

More information

Secrecy in the 2-User Symmetric Interference Channel with Transmitter Cooperation: Deterministic View

Secrecy in the 2-User Symmetric Interference Channel with Transmitter Cooperation: Deterministic View Secrecy in the 2-User Symmetric Interference Channel with Transmitter Cooperation: Deterministic View P. Mohapatra 9 th March 2013 Outline Motivation Problem statement Achievable scheme 1 Weak interference

More information

Construction and Encoding of QC-LDPC Codes Using Group Rings

Construction and Encoding of QC-LDPC Codes Using Group Rings 1 Construction and Encoding of QC-LDPC Codes Using Group Rings Hassan Khodaiemehr and Dariush Kiani arxiv:1701.00210v1 [cs.it] 1 Jan 2017 Abstract Quasi-cyclic (QC) low-density parity-check (LDPC) codes

More information

An Introduction to Low Density Parity Check (LDPC) Codes

An Introduction to Low Density Parity Check (LDPC) Codes An Introduction to Low Density Parity Check (LDPC) Codes Jian Sun jian@csee.wvu.edu Wireless Communication Research Laboratory Lane Dept. of Comp. Sci. and Elec. Engr. West Virginia University June 3,

More information

Introduction to Wireless & Mobile Systems. Chapter 4. Channel Coding and Error Control Cengage Learning Engineering. All Rights Reserved.

Introduction to Wireless & Mobile Systems. Chapter 4. Channel Coding and Error Control Cengage Learning Engineering. All Rights Reserved. Introduction to Wireless & Mobile Systems Chapter 4 Channel Coding and Error Control 1 Outline Introduction Block Codes Cyclic Codes CRC (Cyclic Redundancy Check) Convolutional Codes Interleaving Information

More information

II. THE TWO-WAY TWO-RELAY CHANNEL

II. THE TWO-WAY TWO-RELAY CHANNEL An Achievable Rate Region for the Two-Way Two-Relay Channel Jonathan Ponniah Liang-Liang Xie Department of Electrical Computer Engineering, University of Waterloo, Canada Abstract We propose an achievable

More information