Shell Balances Spherical Geometry. Remember, we can substitute Fourier's Laws anytime to get: dt

Size: px
Start display at page:

Download "Shell Balances Spherical Geometry. Remember, we can substitute Fourier's Laws anytime to get: dt"

Transcription

1 Shell Balances Spherical Geometry ChE B S.S. Heat conduction with source term: Try spherical geometry using a shell balance: Input Output Source Qr r Qr rδr Sr 4 π r Δ r r Remember, we can substitute Fourier's Laws anytime to get: dt Qr k A dr A 4πr dt dt k r k r S ( r Δ r) dr dr dt dt r rδr r r dr dr Sr lim r Δ r Δr k 4 π r 4 π rδr r 4 π r or d T S r r r dr r k Integrating once we get dt S 3 r r r C dr 3k, rearranging we get: dt rsr C or dr 3k r We can use the obvious boundary condition that nothing real goes to : as r dt unless C dr dt rs r dr 3k Alternative: We can also say that the center o a sphere is a point o symmetry, so T ; we get the same result. r r -

2 ChE B Integrating again rs T( r) r C 6k I the surace temperature is T then RS ( ) r T T R C 6k RS r C T and rearranging 6k RS r r Tr () T 6k R The lux leaving the sphere Q r dt ka is dr R S 4 R k r π 3k 3 4π R Sr or simply the total heat generated by the sphere! 3 which makes a lot o sense. -

3 ChE B Conduction with Convection Example Heat Conduction in a Cooling Fin: How to simpliy a multi-dimensional problem with judicious approximations. T True Situation ) T is a unction o x,y,z ) For B «L,W T T(z) only Model ) A small amount o heat is lost rom edges 3) Heat transer coeicient is a unction o temperature, position ) o heat is lost rom edges LW» (BW 4 BL) 3) Heat lux rom in is given by ewton's Law o cooling q h(t-t ) h constant TT(z) only Starting rom these assumptions, we can model the in as a -D problem: A balance across an area o a segment Δz o the in gives Input by conduction (Output by conduction Output by convection) Q Q h WΔz T T ( ) z z z zδz - 3

4 ChE B dt dt Inserting Fourier's Law: Q z k Az k BW. Inserting this into the previous equation: dt dt k BW z k BW zδz h BWΔz ( T T ) dividing by WΔ z KB and taking limit as Δ z dt dt z zδz h ( T T ) Δz kb dt h ( T T ) kb and the boundary conditions: z T Tw wall temperature dt z L no heat lows out o in end Introduce dimensionless variables: ( ) T T t T T w ; z η z Lη ; L Tw T dt dt hl Make dimensionless to get: kb ) important groups o parameters ) bounds on variables 3) Remember this Writing the equation in terms o these variables dt h ( T T ) kb ( w ) d( Lη ) d T T t h ( T w T ) t kb ChE B dt Lh t t dη kb The solutions o the above equation are t C cosh η C sinh η Remember this ow, we need to evaluate C and C using the boundary conditions: - 4

5 dt t ( η ) η dη dt Csinh η Ccosh η dη evaluated at η C sinh C cosh sinh C C Ctanh cosh t ( η ) C [ cosh η tanh sinh η ] η t η at ( ) ( ) cosh( ) tanh( ) sinh( ) t C C ( η ) cosh ( η) tanh ( ) sinh ( η) t which can be rearranged to give (recall that cosh, sinh ) ChE B t ( η ) ( η ) cosh cosh The in eectiveness is deined by actual heat lost γ heat lost i in at Tw γ wl wl ( ( ) ) ht z T dy ( ) ht T dy w ( ) t z dη w integrals cancel dη cosh η sinh ηtanh [ sinh η tanh cosh η] tanh / So what makes or an eective in? - 5

6 ChE B Look at Lh kb / To maximize γ : γ tanh tanh take tanh tanh so tanh tanh or tanh tanh The only choices are, or solutions. is most eicient in So, straight ins o constant cross section on a straight wall aren t so good. We could see this more easily by looking at tanh as, Both numerator and denominator go to zero, to see i there is a limit. Using L'hopitals rule d lim ( tanh ) tanh tanh lim d d lim ( ) d and we see that the eiciency is at and cannot be higher. means η. This means many small ins are better than one or two big ins! Under the constraint o constant in weight, what is the optimal length / thickness ratios o a rectangular in? mk ( Tw T ) Q tanh rom analysis o the eiciency o in ρl Mass o in is: m ρ BLW hl And we can write as or k B / m h 3/ B Wρ k So that we can eliminate L as a unction o B - 6

7 and Q becomes Q C /3 tanh Q 4/3 /3 tanh /3 cosh From trial and error.49 or opt / ChE B L h.49 B opt kb Fins: Dierent geometries There are a multitude o shapes or ins. Your text has the eectiveness actors, η, or a variety o conigurations. For inned suraces, the total rate o heat loss is Q h T A η A A original area Δ A in area η eectiveness rom tables A A A base Water and air are separated by a steel sheet (radiator?) o.5 in thickness. We need to increase heat transer by adding straight triangular ins o.95 inch base thickness (t), in long (L) along the sheet with.5 in center to center spacing. The sheet is very side. air H O h water 45 Btu/hr t F h air Btu/hr t F.5 in.5 in What side do we put the ins on to maximize heat transer? How much do we increase Q? To determine which side to put the ins on we examine a plain sheet H O air and realize that we have 3 resistances in Sevier - h 45 s h e e t h HO sheet by convection sheet by conduction sheet air by convection - 7

8 ΔT tconduction Q R conduction R K R convection h (below) like electrical resistors t k h h sheet R sheet air water i sheet t.5in in 6 Btu/hr t F Btu/hr t F 45 Btu/hr t F hr t F (.4.5.) Btu R.5 ChE B ow we can examine where the major resistance is: R R sheet HO Rair.5.4. R.5 R.5 R So almost all resistance none in sheet little in H O is on air side In cases like this, we want to see where the ins will do the most good. Since the air provides the most resistance, it makes sense to try to decrease this by increasing the area by adding ins to this side. Fins added to the water side will not do too much! To show this, look at square oot o sheet. At ½ in spacing, this means 4 ins. A t, but what is A? A.5 in x t is the base Area.5 in t A t 4 ins 9 t in/t in A (4 ins) ( t width) ( x / t) 4 t. top & bottom Length - 8

9 ChE B eglect cosine o angle since ins are long and narrow. Calculate η or ins rom value o - tables or η t Lc L.5 inches.85 eet tlc 4 A m (.5)(.5).56 in.78 x t Fins are steel with k 6 Btu/hr t F Air side h Water side h 45 Tables in handbooks / 3/ k.44 Lc.55 kam From homework problem., the solution η we get η air.89 η water.39 ow to compare the heat lows o in baseline A ΔT R Q.9 AΔT h air hwater 45 # no ins # with ins, we have T w T T Q ha( T Tw) no ins side ( ) η ( ) Q h A T T h A T T w w A A A b We don t know T w in this case so: q q ( w) ( w )( η ) ha T T h T T A A T w Solving or T w gives hta ht Aη A ha h Aη A ( ) ( ) And Q is Q ha T T ( ) w - 9

10 ChE B ( T T ) A Q A h A Aη h Enhancement due to change in area or decrease in R or Q to get to A ΔT A h A Aη h Air side with ins Water side Q Q 7.4 ΔT A Δ.96 A T Relative change Q Q ( 7.4.9) A Δ T Q Q (.96.9) A Δ T Q / Q 3.87 Q / Q.3 air Water So putting ins on the side o the greatest resistance is best. On the least resistance side, it doesn t help at all. We want A h A γ A hnon-in To get near linear improvement 5 45 Check! 45 ote that Q / Q is not A A A ~5, but less because o γ and resistance on air side. -

EXTENDED SURFACES / FINS

EXTENDED SURFACES / FINS EXTENDED SURFACES / FINS Convection: Heat transer etween a solid surace and a moving luid is governed y the Newton s cooling law: q = ha(t s -T ). Thereore, to increase the convective heat transer, one

More information

q x = k T 1 T 2 Q = k T 1 T / 12

q x = k T 1 T 2 Q = k T 1 T / 12 Conductive oss through a Window Pane q T T 1 Examine the simple one-dimensional conduction problem as heat flow through a windowpane. The window glass thickness,, is 1/8 in. If this is the only window

More information

Chapter 2: Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering, Hashemite University

Chapter 2: Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering, Hashemite University Chapter : Heat Conduction Equation Dr Ali Jawarneh Department of Mechanical Engineering, Hashemite University Objectives When you finish studying this chapter, you should be able to: Understand multidimensionality

More information

Chapter 2: Steady Heat Conduction

Chapter 2: Steady Heat Conduction 2-1 General Relation for Fourier s Law of Heat Conduction 2-2 Heat Conduction Equation 2-3 Boundary Conditions and Initial Conditions 2-4 Variable Thermal Conductivity 2-5 Steady Heat Conduction in Plane

More information

Heat Transfer: A Practical Approach - Yunus A Cengel Assignment 11 Fall 2003 Tuesday, November 18, 2003 Chapter 11, Problem 49

Heat Transfer: A Practical Approach - Yunus A Cengel Assignment 11 Fall 2003 Tuesday, November 18, 2003 Chapter 11, Problem 49 Heat Transer: A Practical Approach - Yunus A Cengel Assignment Fall 00 Tuesday, November 8, 00 Chapter, Problem 9 The variation o the spectral transmissivity o a 0.6- cm-thick glass window is as given

More information

Chapter 3: Steady Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 3: Steady Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 3: Steady Heat Conduction Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Understand the concept

More information

STEADY HEAT CONDUCTION IN PLANE WALLS

STEADY HEAT CONDUCTION IN PLANE WALLS FIGUE 3 STEADY HEAT CONDUCTION IN PLANE WALLS The energy balance for the wall can be expressed as ate of ate of heat trans fer heat trans fer into the wall out of the wall ate of change of the energy of

More information

Chapter 3: Steady Heat Conduction

Chapter 3: Steady Heat Conduction 3-1 Steady Heat Conduction in Plane Walls 3-2 Thermal Resistance 3-3 Steady Heat Conduction in Cylinders 3-4 Steady Heat Conduction in Spherical Shell 3-5 Steady Heat Conduction with Energy Generation

More information

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function.

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function. Precalculus Notes: Unit Polynomial Functions Syllabus Objective:.9 The student will sketch the graph o a polynomial, radical, or rational unction. Polynomial Function: a unction that can be written in

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 03 Finned Surfaces Fausto Arpino f.arpino@unicas.it Outline Introduction Straight fin with constant circular cross section Long

More information

Fin efficiency of the newly developed Compartmented Coil of a Single Coil Twin Fan System

Fin efficiency of the newly developed Compartmented Coil of a Single Coil Twin Fan System Fin eiciency o the newly developed Compartmented Coil o a Single Coil Twin Fan System ABSTRACT In predicting the perormance o any cooling coil, HVAC designers ace multiold challenges in designing the system

More information

Polynomials, Linear Factors, and Zeros. Factor theorem, multiple zero, multiplicity, relative maximum, relative minimum

Polynomials, Linear Factors, and Zeros. Factor theorem, multiple zero, multiplicity, relative maximum, relative minimum Polynomials, Linear Factors, and Zeros To analyze the actored orm o a polynomial. To write a polynomial unction rom its zeros. Describe the relationship among solutions, zeros, - intercept, and actors.

More information

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is.

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is. The Energy Balance Consider a volume Ω enclosing a mass M and bounded by a surface δω. δω At a point x, the density is ρ, the local velocity is v, and the local Energy density is U. U v The rate of change

More information

Total energy in volume

Total energy in volume General Heat Transfer Equations (Set #3) ChE 1B Fundamental Energy Postulate time rate of change of internal +kinetic energy = rate of heat transfer + surface work transfer (viscous & other deformations)

More information

A REPORT ON PERFORMANCE OF ANNULAR FINS HAVING VARYING THICKNESS

A REPORT ON PERFORMANCE OF ANNULAR FINS HAVING VARYING THICKNESS VOL., NO. 8, APRIL 6 ISSN 89-668 ARPN Journal o Engineering and Applied Sciences 6-6 Asian Research Publishing Networ (ARPN). All rights reserved. A REPORT ON PERFORMANCE OF ANNULAR FINS HAVING VARYING

More information

COMPARISON OF THERMAL CHARACTERISTICS BETWEEN THE PLATE-FIN AND PIN-FIN HEAT SINKS IN NATURAL CONVECTION

COMPARISON OF THERMAL CHARACTERISTICS BETWEEN THE PLATE-FIN AND PIN-FIN HEAT SINKS IN NATURAL CONVECTION HEFAT014 10 th International Conerence on Heat Transer, Fluid Mechanics and Thermodynamics 14 6 July 014 Orlando, Florida COMPARISON OF THERMA CHARACTERISTICS BETWEEN THE PATE-FIN AND PIN-FIN HEAT SINKS

More information

( ) PROBLEM C 10 C 1 L m 1 50 C m K W. , the inner surface temperature is. 30 W m K

( ) PROBLEM C 10 C 1 L m 1 50 C m K W. , the inner surface temperature is. 30 W m K PROBLEM 3. KNOWN: Temperatures and convection coefficients associated with air at the inner and outer surfaces of a rear window. FIND: (a) Inner and outer window surface temperatures, T s,i and T s,o,

More information

4. Analysis of heat conduction

4. Analysis of heat conduction 4. Analysis of heat conduction John Richard Thome 11 mars 2008 John Richard Thome (LTCM - SGM - EPFL) Heat transfer - Conduction 11 mars 2008 1 / 47 4.1 The well-posed problem Before we go further with

More information

Unsteady State Heat Conduction in a Bounded Solid

Unsteady State Heat Conduction in a Bounded Solid Unsteady State Heat Conduction in a Bounded Solid Consider a sphere of radius R. Initially the sphere is at a uniform temperature T. It is cooled by convection to an air stream at temperature T a. What

More information

Chapter 30 Examples : Inductance (sections 1 through 6) Key concepts: (See chapter 29 also.)

Chapter 30 Examples : Inductance (sections 1 through 6) Key concepts: (See chapter 29 also.) Chapter 30 Examples : Inductance (sections 1 through 6) Key concepts: (See chapter 29 also.) ξ 2 = MdI 1 /dt : A changing current in a coil of wire (1) will induce an EMF in a second coil (2) placed nearby.

More information

Published in: Proceedings of the th EUROSIM Congress on Modelling and Simulation

Published in: Proceedings of the th EUROSIM Congress on Modelling and Simulation Aalborg Universitet Parametric CFD Analysis to Study the Inluence o Fin Geometry on the Perormance o a Fin and Tube Heat Exchanger Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph Published in: Proceedings

More information

Kuldeep Rawat*, Ayushman Srivastav* *Assistant Professor, Shivalik College of Engineering, Dehradun.

Kuldeep Rawat*, Ayushman Srivastav* *Assistant Professor, Shivalik College of Engineering, Dehradun. International Journal o Scientiic & Engineering search, Volume 7, Issue 12, December-16 348 ISSN 2229-18 NUMERICAL INVESTIGATION OF HEAT TRANSFER ENHANCEMENT OVER RECTANGULAR PERFORATED FIN Abstract Kuldeep

More information

Chem 406 Biophysical Chemistry Lecture 1 Transport Processes, Sedimentation & Diffusion

Chem 406 Biophysical Chemistry Lecture 1 Transport Processes, Sedimentation & Diffusion Chem 406 Biophysical Chemistry Lecture 1 Transport Processes, Sedimentation & Diusion I. Introduction A. There are a group o biophysical techniques that are based on transport processes. 1. Transport processes

More information

MAGNETOHYDRODYNAMIC GO-WATER NANOFLUID FLOW AND HEAT TRANSFER BETWEEN TWO PARALLEL MOVING DISKS

MAGNETOHYDRODYNAMIC GO-WATER NANOFLUID FLOW AND HEAT TRANSFER BETWEEN TWO PARALLEL MOVING DISKS THERMAL SCIENCE: Year 8, Vol., No. B, pp. 383-39 383 MAGNETOHYDRODYNAMIC GO-WATER NANOFLUID FLOW AND HEAT TRANSFER BETWEEN TWO PARALLEL MOVING DISKS Introduction by Mohammadreza AZIMI and Rouzbeh RIAZI

More information

One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s

One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s v x t Position x Meters Speed v m/s v t Length l Meters

More information

Controlling the Heat Flux Distribution by Changing the Thickness of Heated Wall

Controlling the Heat Flux Distribution by Changing the Thickness of Heated Wall J. Basic. Appl. Sci. Res., 2(7)7270-7275, 2012 2012, TextRoad Publication ISSN 2090-4304 Journal o Basic and Applied Scientiic Research www.textroad.com Controlling the Heat Flux Distribution by Changing

More information

Introduction to Heat and Mass Transfer. Week 5

Introduction to Heat and Mass Transfer. Week 5 Introduction to Heat and Mass Transfer Week 5 Critical Resistance Thermal resistances due to conduction and convection in radial systems behave differently Depending on application, we want to either maximize

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree in Mechanical Engineering Numerical Heat and Mass Transfer 02-Transient Conduction Fausto Arpino f.arpino@unicas.it Outline Introduction Conduction ü Heat conduction equation ü Boundary conditions

More information

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is The Energy Balance Consider a volume enclosing a mass M and bounded by a surface δ. δ At a point x, the density is ρ, the local velocity is v, and the local Energy density is U. U v The rate of change

More information

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar Experiment 1 Measurement of Thermal Conductivity of a Metal (Brass) Bar Introduction: Thermal conductivity is a measure of the ability of a substance to conduct heat, determined by the rate of heat flow

More information

( x) f = where P and Q are polynomials.

( x) f = where P and Q are polynomials. 9.8 Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm ( ) ( ) ( ) P where P and Q are polynomials. Q An eample o a simple rational

More information

Conduction Heat Transfer. Fourier Law of Heat Conduction. x=l Q x+ Dx. insulated x+ Dx. x x. x=0 Q x A

Conduction Heat Transfer. Fourier Law of Heat Conduction. x=l Q x+ Dx. insulated x+ Dx. x x. x=0 Q x A Conduction Heat Transfer Reading Problems 10-1 10-6 10-20, 10-48, 10-59, 10-70, 10-75, 10-92 10-117, 10-123, 10-151, 10-156, 10-162 11-1 11-2 11-14, 11-20, 11-36, 11-41, 11-46, 11-53, 11-104 Fourier Law

More information

Analysis of Non-Thermal Equilibrium in Porous Media

Analysis of Non-Thermal Equilibrium in Porous Media Analysis o Non-Thermal Equilibrium in Porous Media A. Nouri-Borujerdi, M. Nazari 1 School o Mechanical Engineering, Shari University o Technology P.O Box 11365-9567, Tehran, Iran E-mail: anouri@shari.edu

More information

Chapter 3 Steady-State, ne- mens onal C on uction

Chapter 3 Steady-State, ne- mens onal C on uction Chapter 3 Steady-State, One-Dimensional i Conduction 3.1 The Plane Wall 3.1.1 Temperature Distribution For one-dimensional, steady-state conduction in a plane wall with no heat generation, the differential

More information

Chapter 4: Transient Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 4: Transient Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 4: Transient Heat Conduction Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Assess when the spatial

More information

Conduction: Theory of Extended Surfaces

Conduction: Theory of Extended Surfaces Conduction: Theory of Etended Surfaces Why etended surface? h, T ha( T T ) s Increasing h Increasing A 2 Fins as etended surfaces A fin is a thin component or appendage attached to a larger body or structure

More information

Conduction Heat Transfer HANNA ILYANI ZULHAIMI

Conduction Heat Transfer HANNA ILYANI ZULHAIMI + Conduction Heat Transfer HNN ILYNI ZULHIMI + OUTLINE u CONDUCTION: PLNE WLL u CONDUCTION: MULTI LYER PLNE WLL (SERIES) u CONDUCTION: MULTI LYER PLNE WLL (SERIES ND PRLLEL) u MULTIPLE LYERS WITH CONDUCTION

More information

One-Dimensional, Steady-State. State Conduction without Thermal Energy Generation

One-Dimensional, Steady-State. State Conduction without Thermal Energy Generation One-Dimensional, Steady-State State Conduction without Thermal Energy Generation Methodology of a Conduction Analysis Specify appropriate form of the heat equation. Solve for the temperature distribution.

More information

Time-Dependent Conduction :

Time-Dependent Conduction : Time-Dependent Conduction : The Lumped Capacitance Method Chapter Five Sections 5.1 thru 5.3 Transient Conduction A heat transfer process for which the temperature varies with time, as well as location

More information

Analog Computing Technique

Analog Computing Technique Analog Computing Technique by obert Paz Chapter Programming Principles and Techniques. Analog Computers and Simulation An analog computer can be used to solve various types o problems. It solves them in

More information

Conduction Heat Transfer. Fourier Law of Heat Conduction. Thermal Resistance Networks. Resistances in Series. x=l Q x+ Dx. insulated x+ Dx.

Conduction Heat Transfer. Fourier Law of Heat Conduction. Thermal Resistance Networks. Resistances in Series. x=l Q x+ Dx. insulated x+ Dx. Conduction Heat Transfer Reading Problems 17-1 17-6 17-35, 17-57, 17-68, 17-81, 17-88, 17-110 18-1 18-2 18-14, 18-20, 18-34, 18-52, 18-80, 18-104 Fourier Law of Heat Conduction insulated x+ Dx x=l Q x+

More information

UNIVERSITY OF WATERLOO. ECE 309 Thermodynamics and Heat Transfer. Final Examination Spring 1997

UNIVERSITY OF WATERLOO. ECE 309 Thermodynamics and Heat Transfer. Final Examination Spring 1997 UNIVERSITY OF WATERLOO DEPARTMENT OF ELECTRICAL ENGINEERING ECE 309 Thermodynamics and Heat Transfer Final Examination Spring 1997 M.M. Yovanovich August 5, 1997 9:00 A.M.-12:00 Noon NOTE: 1. Open book

More information

Numerical Calculation of Coupling Efficiency for an Elegant Hermite-Cosh-Gaussian Beams

Numerical Calculation of Coupling Efficiency for an Elegant Hermite-Cosh-Gaussian Beams International Journal o Optics and Photonics (IJOP) Vol. 6, No., Summer-Fall Numerical Calculation o Coupling Eiciency or an Elegant Hermite-Cosh-Gaussian Beams A. Keshavarz* and M. Kazempour Department

More information

[ ] ( ) L = L = r p. We can deal with this more conveniently by writing: so that L becomes: α α α. α α N N N N

[ ] ( ) L = L = r p. We can deal with this more conveniently by writing: so that L becomes: α α α. α α N N N N Lecture 5: Angular Momentum and Energy of a System The total angular momentum is given by the sum of the angular momenta of all particles in the system: We can deal with this more conveniently by writing:

More information

Asymptote. 2 Problems 2 Methods

Asymptote. 2 Problems 2 Methods Asymptote Problems Methods Problems Assume we have the ollowing transer unction which has a zero at =, a pole at = and a pole at =. We are going to look at two problems: problem is where >> and problem

More information

Lecture 8 Optimization

Lecture 8 Optimization 4/9/015 Lecture 8 Optimization EE 4386/5301 Computational Methods in EE Spring 015 Optimization 1 Outline Introduction 1D Optimization Parabolic interpolation Golden section search Newton s method Multidimensional

More information

First-Order Differential Equations

First-Order Differential Equations CHAPTER 1 First-Order Differential Equations 1. Diff Eqns and Math Models Know what it means for a function to be a solution to a differential equation. In order to figure out if y = y(x) is a solution

More information

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS. Convective heat transfer analysis of nanofluid flowing inside a

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS. Convective heat transfer analysis of nanofluid flowing inside a Chapter 4 CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS Convective heat transer analysis o nanoluid lowing inside a straight tube o circular cross-section under laminar and turbulent conditions

More information

Appendix A: Uncertainty Analysis

Appendix A: Uncertainty Analysis Appendix A: Uncertainty Analysis o compute the uncertainty in the experimental data o this work, error analyses have been conducted according to the principles proposed by aylor [1]. he error analysis

More information

7.1 Another way to find scalings: breakdown of ordering

7.1 Another way to find scalings: breakdown of ordering 7 More matching! Last lecture we looked at matched asymptotic expansions in the situation where we found all the possible underlying scalings first, located where to put the boundary later from the direction

More information

CHAPTER 4 Reactor Statics. Table of Contents

CHAPTER 4 Reactor Statics. Table of Contents CHAPTER 4 Reactor Statics Prepared by Dr. Benjamin Rouben, & Consulting, Adjunct Proessor, McMaster University & University o Ontario Institute o Technology (UOIT) and Dr. Eleodor Nichita, Associate Proessor,

More information

Heat Transfer in a Slab

Heat Transfer in a Slab Heat Transfer in a Slab Consider a large planar solid whose thickness (y-direction) is L. What is the temperature history of the slab if it is suddenly brought into contact with a fluid at temperature

More information

2t t dt.. So the distance is (t2 +6) 3/2

2t t dt.. So the distance is (t2 +6) 3/2 Math 8, Solutions to Review for the Final Exam Question : The distance is 5 t t + dt To work that out, integrate by parts with u t +, so that t dt du The integral is t t + dt u du u 3/ (t +) 3/ So the

More information

Assignment 16 Assigned Weds Oct 11

Assignment 16 Assigned Weds Oct 11 Assignment 6 Assigned Weds Oct Section 8, Problem 3 a, a 3, a 3 5, a 4 7 Section 8, Problem 4 a, a 3, a 3, a 4 3 Section 8, Problem 9 a, a, a 3, a 4 4, a 5 8, a 6 6, a 7 3, a 8 64, a 9 8, a 0 56 Section

More information

Chapter 10: Steady Heat Conduction

Chapter 10: Steady Heat Conduction Chapter 0: Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another hermodynamics gives no indication of

More information

PHYS 212 Final Exam (Old Material) Solutions - Practice Test

PHYS 212 Final Exam (Old Material) Solutions - Practice Test PHYS 212 Final Exam (Old Material) Solutions - Practice Test 1E If the ball is attracted to the rod, it must be made of a conductive material, otherwise it would not have been influenced by the nearby

More information

ENERGY ANALYSIS: CLOSED SYSTEM

ENERGY ANALYSIS: CLOSED SYSTEM ENERGY ANALYSIS: CLOSED SYSTEM A closed system can exchange energy with its surroundings through heat and work transer. In other words, work and heat are the orms that energy can be transerred across the

More information

Work by Friction. A box slides 10 m across a surface. A frictional force of 20 N is acting on the box.

Work by Friction. A box slides 10 m across a surface. A frictional force of 20 N is acting on the box. Work by Friction A box slides 10 m across a surface. A frictional force of 20 N is acting on the box. What is the work done by friction? What happened to this energy? Work by Friction A box slides 10 m

More information

OPTIMIZATION AND DESIGN GUIDELINES FOR HIGH FLUX MICRO-CHANNEL HEAT SINKS FOR LIQUID AND GASEOUS SINGLE-PHASE FLOW

OPTIMIZATION AND DESIGN GUIDELINES FOR HIGH FLUX MICRO-CHANNEL HEAT SINKS FOR LIQUID AND GASEOUS SINGLE-PHASE FLOW OPTIMIZATION AND DESIGN GIDELINES FOR HIGH FLX MICRO-CHANNEL HEAT SINKS FOR LIID AND GASEOS SINGLE-PHASE FLOW Norbert Müller, Luc G. Fréchette Mechanical Engineering Columbia niversity in the City o New

More information

STEP Support Programme. Pure STEP 3 Solutions

STEP Support Programme. Pure STEP 3 Solutions STEP Support Programme Pure STEP 3 Solutions S3 Q6 Preparation Completing the square on gives + + y, so the centre is at, and the radius is. First draw a sketch of y 4 3. This has roots at and, and you

More information

Thermodynamics 1. Lecture 7: Heat transfer Open systems. Bendiks Jan Boersma Thijs Vlugt Theo Woudstra. March 1, 2010.

Thermodynamics 1. Lecture 7: Heat transfer Open systems. Bendiks Jan Boersma Thijs Vlugt Theo Woudstra. March 1, 2010. hermodynamics Lecture 7: Heat transfer Open systems Bendiks Jan Boersma hijs Vlugt heo Woudstra March, 00 Energy echnology Summary lecture 6 Poisson relation efficiency of a two-stroke IC engine (Otto

More information

Math 2E Selected Problems for the Final Aaron Chen Spring 2016

Math 2E Selected Problems for the Final Aaron Chen Spring 2016 Math 2E elected Problems for the Final Aaron Chen pring 216 These are the problems out of the textbook that I listed as more theoretical. Here s also some study tips: 1) Make sure you know the definitions

More information

Channel Structure Influence on the Thermal-Hydraulic Performance of. Zigzag PCHE

Channel Structure Influence on the Thermal-Hydraulic Performance of. Zigzag PCHE The 6th International Supercritical CO2 Power Cycles Symposium March 27-29, 218, Pittsburgh, Pennsylvania Channel Structure Inluence on the Thermal-Hydraulic Perormance o Zigzag PCHE Yichao Gao Wenkai

More information

This assignment is due the second Thursday of school (September 10)

This assignment is due the second Thursday of school (September 10) AP Physics C Summer Assignment Name: Tuscarora High School 015-016 The attached pages contain a brief review, hints, and example problems. It is hoped that based on your previous math knowledge and some

More information

Laplace Transforms Chapter 3

Laplace Transforms Chapter 3 Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important

More information

) t 0(q+ t ) dt n t( t) dt ( rre i dq t 0 u = = t l C t) t) a i( ( q tric c le E

) t 0(q+ t ) dt n t( t) dt ( rre i dq t 0 u = = t l C t) t) a i( ( q tric c le E EE70 eview Electrical Current i ( t ) dq ( t ) dt t q ( t ) i ( t ) dt + t 0 q ( t 0 ) Circuit Elements An electrical circuit consists o circuit elements such as voltage sources, resistances, inductances

More information

Reaction and Diffusion in a Porous Catalyst Pellet. by Richard K. Herz

Reaction and Diffusion in a Porous Catalyst Pellet. by Richard K. Herz Reaction and Diffusion in a Porous Catalyst Pellet by Richard K. Herz Solid catalysts are often called "heterogeneous catalysts" meaning that they are in a different phase from fluid reactants

More information

1 Conduction Heat Transfer

1 Conduction Heat Transfer Eng6901 - Formula Sheet 3 (December 1, 2015) 1 1 Conduction Heat Transfer 1.1 Cartesian Co-ordinates q x = q xa x = ka x dt dx R th = L ka 2 T x 2 + 2 T y 2 + 2 T z 2 + q k = 1 T α t T (x) plane wall of

More information

Conduction Heat Transfer Notes for MECH Daniel W. Mackowski Mechanical Engineering Department Auburn University

Conduction Heat Transfer Notes for MECH Daniel W. Mackowski Mechanical Engineering Department Auburn University Conduction Heat Transfer Notes for MECH 721 Daniel W. Mackowski Mechanical Engineering Department Auburn University 2 Preface The Notes on Conduction Heat Transfer are, as the name suggests, a compilation

More information

Chapter 3: Transient Heat Conduction

Chapter 3: Transient Heat Conduction 3-1 Lumped System Analysis 3- Nondimensional Heat Conduction Equation 3-3 Transient Heat Conduction in Semi-Infinite Solids 3-4 Periodic Heating Y.C. Shih Spring 009 3-1 Lumped System Analysis (1) In heat

More information

Local Heat Transfer Coefficient Measurements, Using a Transient Imaging Method With an Inverse Scheme

Local Heat Transfer Coefficient Measurements, Using a Transient Imaging Method With an Inverse Scheme Local Heat Transer Coeicient Measurements, Using a Transient Imaging Method With an Inverse Scheme A. EL ABBADI, D. BOUGEARD, B.BAUDOIN Ecole des Mines de Douai, Département Energétique Industrielle, 941,

More information

MATH 255 Applied Honors Calculus III Winter Homework 5 Solutions

MATH 255 Applied Honors Calculus III Winter Homework 5 Solutions MATH 255 Applied Honors Calculus III Winter 2011 Homework 5 Solutions Note: In what follows, numbers in parentheses indicate the problem numbers for users of the sixth edition. A * indicates that this

More information

Physics 121. Tuesday, February 19, Physics 121. Tuesday, February 19, Physics 121. Course announcements. Topics:

Physics 121. Tuesday, February 19, Physics 121. Tuesday, February 19, Physics 121. Course announcements. Topics: Physics 121. Tuesday, ebruary 19, 2008. avy Lt. Ron Candiloro's /A-18 Hornet creates a shock wave as he breaks the sound barrier July 7. The shock wave is visible as a large cloud o condensation ormed

More information

FEBIAD ion source development at ISOLDE: efficiency improvement for all the elements

FEBIAD ion source development at ISOLDE: efficiency improvement for all the elements FEBIAD ion source development at ISOLDE: eiciency improvement or all the elements L.Penescu, R.Catherall, J.Lettry, T.Stora CERN, AB-ATB-IF (ISOLDE) ISOLDE Workshop, 17-19 November 2008 Ionization eiciency

More information

Unsteady State Heat Conduction in a Bounded Solid How Does a Solid Sphere Cool?

Unsteady State Heat Conduction in a Bounded Solid How Does a Solid Sphere Cool? Unstead State Heat Conduction in a Bounded Solid How Does a Solid Sphere Cool? We examined the cooling a sphere of radius R. Initiall the sphere is at a uniform temperature T 0. It is cooled b convection

More information

Specific heat capacity. Convective heat transfer coefficient. Thermal diffusivity. Lc ft, m Characteristic length (r for cylinder or sphere; for slab)

Specific heat capacity. Convective heat transfer coefficient. Thermal diffusivity. Lc ft, m Characteristic length (r for cylinder or sphere; for slab) Important Heat Transfer Parameters CBE 150A Midterm #3 Review Sheet General Parameters: q or or Heat transfer rate Heat flux (per unit area) Cp Specific heat capacity k Thermal conductivity h Convective

More information

Adding and Subtracting Polynomials

Adding and Subtracting Polynomials Adding and Subtracting Polynomials Polynomial A monomial or sum of monomials. Binomials and Trinomial are also polynomials. Binomials are sum of two monomials Trinomials are sum of three monomials Degree

More information

General Case for Deriving Four Pole Coefficients for Gas Pulsation

General Case for Deriving Four Pole Coefficients for Gas Pulsation urdue University urdue e-ubs International Compressor Engineering Conerence School o Mechanical Engineering 21 General Case or Deriving Four ole Coeicients or Gas ulsation Nasir Bilal urdue University

More information

Thermodynamics Heat Transfer

Thermodynamics Heat Transfer Thermodynamics Heat Transfer Lana Sheridan De Anza College April 30, 2018 Last time heat transfer conduction Newton s law of cooling Overview continue heat transfer mechanisms conduction over a distance

More information

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61 Integrals D. DeTurck University of Pennsylvania January 1, 2018 D. DeTurck Math 104 002 2018A: Integrals 1 / 61 Integrals Start with dx this means a little bit of x or a little change in x If we add up

More information

BIOCONVECTION HEAT TRANSFER OF A NANOFLUID OVER A STRETCHING SHEET WITH VELOCITY SLIP AND TEMPERATURE JUMP

BIOCONVECTION HEAT TRANSFER OF A NANOFLUID OVER A STRETCHING SHEET WITH VELOCITY SLIP AND TEMPERATURE JUMP THERMAL SCIENCE: Year 017, Vol. 1, No. 6A, pp. 47-56 47 BIOCONVECTION HEAT TRANSFER OF A NANOFLUID OVER A STRETCHING SHEET WITH VELOCITY SLIP AND TEMPERATURE JUMP by Bingyu SHEN a, Liancun ZHENG a*, Chaoli

More information

Chapter 8: Radical Functions

Chapter 8: Radical Functions Chapter 8: Radical Functions Chapter 8 Overview: Types and Traits of Radical Functions Vocabulary:. Radical (Irrational) Function an epression whose general equation contains a root of a variable and possibly

More information

HEAT TRANSFER FROM FINNED SURFACES

HEAT TRANSFER FROM FINNED SURFACES Fundamentals of Thermal-Fluid Sciences, 3rd Edition Yunus A. Cengel, Robert H. Turner, John M. Cimbala McGraw-Hill, 2008 HEAT TRANSFER FROM FINNED SURFACES Mehmet Kanoglu Copyright The McGraw-Hill Companies,

More information

Write Down Your NAME. Circle Your DIVISION. Div. 1 Div. 2 Div. 3 Div.4 8:30 am 9:30 pm 12:30 pm 3:30 pm Han Xu Ruan Pan

Write Down Your NAME. Circle Your DIVISION. Div. 1 Div. 2 Div. 3 Div.4 8:30 am 9:30 pm 12:30 pm 3:30 pm Han Xu Ruan Pan Write Down Your NAME, Last First Circle Your DIVISION Div. 1 Div. 2 Div. 3 Div.4 8:30 am 9:30 pm 12:30 pm 3:30 pm Han Xu Ruan Pan ME315 Heat and Mass Transfer School of Mechanical Engineering Purdue University

More information

Physics 2B. Lecture 24B. Gauss 10 Deutsche Mark

Physics 2B. Lecture 24B. Gauss 10 Deutsche Mark Physics 2B Lecture 24B Gauss 10 Deutsche Mark Electric Flux Flux is the amount of something that flows through a given area. Electric flux, Φ E, measures the amount of electric field lines that passes

More information

Solving Partial Differential Equations Numerically. Miklós Bergou with: Gary Miller, David Cardoze, Todd Phillips, Mark Olah

Solving Partial Differential Equations Numerically. Miklós Bergou with: Gary Miller, David Cardoze, Todd Phillips, Mark Olah Solving Partial Dierential Equations Numerically Miklós Bergou with: Gary Miller, David Cardoze, Todd Phillips, Mark Olah Overview What are partial dierential equations? How do we solve them? (Example)

More information

OPTIMALLY STAGGERED FINNED CIRCULAR AND ELLIPTIC TUBES IN FORCED CONVECTION

OPTIMALLY STAGGERED FINNED CIRCULAR AND ELLIPTIC TUBES IN FORCED CONVECTION OPTIMALLY STAGGERED FINNED CIRCULAR AND ELLIPTIC TUBES IN FORCED CONVECTION R. S. Matos a, T. A. Laursen b, J. V. C. Vargas a, and A. Bejan c, a Universidade Federal do Paraná Departamento de Engenharia

More information

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.]

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.] Math 43 Review Notes [Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty Dot Product If v (v, v, v 3 and w (w, w, w 3, then the

More information

Chapter 6 Frequency Response, Bode Plots and Resonance

Chapter 6 Frequency Response, Bode Plots and Resonance Chapter 6 Frequency Response, Bode Plots and Resonance Signal Processg is concerned with manipulatg Signals to extract Inormation and to use that ormation to generate other useul Signals Goal. Fundamental

More information

A NUMERICAL STUDY OF SINGLE-PHASE FORCED CONVECTIVE HEAT TRANSFER WITH FLOW FRICTION IN ROUND TUBE HEAT EXCHANGERS

A NUMERICAL STUDY OF SINGLE-PHASE FORCED CONVECTIVE HEAT TRANSFER WITH FLOW FRICTION IN ROUND TUBE HEAT EXCHANGERS www.arpapress.com/volumes/vol6issue4/ijrras_6_4_05.pd A NUMERICAL STUDY OF SINGLE-PHASE FORCED CONVECTIVE HEAT TRANSFER WITH FLOW FRICTION IN ROUND TUBE HEAT EXCHANGERS Pedram Mohajeri Khameneh 1,*, Iraj

More information

Parallel Plate Heat Exchanger

Parallel Plate Heat Exchanger Parallel Plate Heat Exchanger Parallel Plate Heat Exchangers are use in a number of thermal processing applications. The characteristics are that the fluids flow in the narrow gap, between two parallel

More information

3.3 Unsteady State Heat Conduction

3.3 Unsteady State Heat Conduction 3.3 Unsteady State Heat Conduction For many applications, it is necessary to consider the variation of temperature with time. In this case, the energy equation for classical heat conduction, eq. (3.8),

More information

1 Introduction. Green s function notes 2018

1 Introduction. Green s function notes 2018 Green s function notes 8 Introduction Back in the "formal" notes, we derived the potential in terms of the Green s function. Dirichlet problem: Equation (7) in "formal" notes is Φ () Z ( ) ( ) 3 Z Φ (

More information

X. Assembling the Pieces

X. Assembling the Pieces X. Assembling the Pieces 179 Introduction Our goal all along has been to gain an understanding of nuclear reactors. As we ve noted many times, this requires knowledge of how neutrons are produced and lost.

More information

7.2 Conformal mappings

7.2 Conformal mappings 7.2 Conformal mappings Let f be an analytic function. At points where f (z) 0 such a map has the remarkable property that it is conformal. This means that angle is preserved (in the sense that any 2 smooth

More information

Chapter 3 STEADY HEAT CONDUCTION

Chapter 3 STEADY HEAT CONDUCTION Heat Transfer Chapter 3 STEADY HEAT CONDUCTION Universitry of Technology Materials Engineering Department MaE216: Heat Transfer and Fluid bjectives Understand the concept of thermal resistance and its

More information

THE EFFECT OF THERMAL RADIATION ON THE DYNAMICS OF FLASHOVER IN A COMPARTMENT FIRE

THE EFFECT OF THERMAL RADIATION ON THE DYNAMICS OF FLASHOVER IN A COMPARTMENT FIRE The 6th ASME-JSME Thermal Engineering Joint Conerence March 16-20, 2003 TED-AJ03-127 THE EFFECT OF THERMAL RADIATION ON THE DYNAMICS OF FLASHOVER IN A COMPARTMENT FIRE W. W. YUEN Department o Mechanical

More information

Damped Harmonic Oscillator

Damped Harmonic Oscillator Damped Harmonic Oscillator Note: We use Newton s 2 nd Law instead of Conservation of Energy since we will have energy transferred into heat. F spring = -kx; F resistance = -bv. Note also: We use F ar =

More information

Convergence of Fourier Series

Convergence of Fourier Series MATH 454: Analysis Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April, 8 MATH 454: Analysis Two Outline The Cos Family MATH 454: Analysis

More information

Solutions to PHY2049 Exam 2 (Nov. 3, 2017)

Solutions to PHY2049 Exam 2 (Nov. 3, 2017) Solutions to PHY2049 Exam 2 (Nov. 3, 207) Problem : In figure a, both batteries have emf E =.2 V and the external resistance R is a variable resistor. Figure b gives the electric potentials V between the

More information