MATH 304 Linear Algebra Lecture 23: Diagonalization. Review for Test 2.

Size: px
Start display at page:

Download "MATH 304 Linear Algebra Lecture 23: Diagonalization. Review for Test 2."

Transcription

1 MATH 304 Linear Algebra Lecture 23: Diagonalization. Review for Test 2.

2 Diagonalization Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent: the matrix of L with respect to some basis is diagonal; there exists a basis for V formed by eigenvectors of L. The operator L is diagonalizable if it satisfies these conditions. Let A be an n n matrix. Then the following conditions are equivalent: A is the matrix of a diagonalizable operator; A is similar to a diagonal matrix, i.e., it is represented as A = UBU 1, where the matrix B is diagonal; there exists a basis for R n formed by eigenvectors of A. The matrix A is diagonalizable if it satisfies these conditions. Otherwise A is called defective.

3 Theorem 1 If v 1,v 2,...,v k are eigenvectors of a linear operator L associated with distinct eigenvalues λ 1,λ 2,...,λ k, then v 1,v 2,...,v k are linearly independent. Theorem 2 Let λ 1,λ 2,...,λ k be distinct eigenvalues of a linear operator L. For any 1 i k let S i be a basis for the eigenspace associated with the eigenvalue λ i. Then the union S 1 S 2 S k is a linearly independent set. Corollary Let A be an n n matrix such that the characteristic equation det(a λi) = 0 has n distinct real roots. Then (i) there exists a basis for R n consisting of eigenvectors of A; (ii) all eigenspaces of A are one-dimensional.

4 Example. A = ( ) The matrix A has two eigenvalues: 1 and 3. The eigenspace of A associated with the eigenvalue 1 is the line spanned by v 1 = ( 1, 1). The eigenspace of A associated with the eigenvalue 3 is the line spanned by v 2 = (1, 1). Eigenvectors v 1 and v 2 form a basis for R 2. Thus the matrix A is diagonalizable. Namely, A = UBU 1, where ( ) ( ) B =, U =

5 Example. A = The matrix A has two eigenvalues: 0 and 2. The eigenspace corresponding to 0 is spanned by v 1 = ( 1, 1, 0). The eigenspace corresponding to 2 is spanned by v 2 = (1, 1, 0) and v 3 = ( 1, 0, 1). Eigenvectors v 1,v 2,v 3 form a basis for R 3. Thus the matrix A is diagonalizable. Namely, A = UBU 1, where B = , U =

6 Problem. Diagonalize the matrix A = ( ) We need to find a diagonal matrix B and an invertible matrix U such ( ) that A = ( UBU ) 1. x1 x2 Suppose that v 1 =, v 2 = is a basis for y 1 R 2 formed by eigenvectors of A, i.e., Av i = λ i v i for some λ i R. Then we can take ( ) ( ) λ1 0 x1 x B =, U = 2. 0 λ 2 y 1 y 2 Note that U is the transition matrix from the basis v 1,v 2 to the standard basis. y 2

7 ( ) 4 3 Problem. Diagonalize the matrix A =. 0 1 Characteristic equation of A: 4 λ λ = 0. (4 λ)(1 λ) = 0 = λ 1 = 4, λ 2 = 1. ( ) ( ) 1 1 Associated eigenvectors: v 1 =, v 0 2 =. 1 Thus A = UBU 1, where ( ) 4 0 B =, U = 0 1 ( )

8 Problem. Let A = ( ) 4 3. Find A We know that A = UBU 1, where ( ) ( ) B =, U = Then A 5 = UBU 1 UBU 1 UBU 1 UBU 1 UBU ( ) ( ) ( ) = UB 5 U 1 = ( ) ( ) ( ) = =

9 Problem. Let A = such that C 2 = A. ( ) 4 3. Find a matrix C 0 1 We know that A = UBU 1, where ( ) ( ) B =, U = Suppose that D 2 = B for some matrix D. Let C = UDU 1. Then C 2 = UDU 1 UDU 1 = UD 2 U 1 = UBU 1 = A. ( ) ( ) 4 0 We can take D = 2 0 = ( ) ( ) ( ) ( ) Then C = =

10 Initial value problem for a system of linear ODEs: { dx dt = 4x + 3y, dy dt = y, x(0) = 1, y(0) = 1. The system can be rewritten in vector form: ( dv 4 3 = Av, where A = dt 0 1 ), v = ( x y ). Matrix A is diagonalizable: A = UBU 1, where ( ) ( ) B =, U = ( ) w1 Let w = be coordinates of the vector v relative to the w 2 basis v 1 = (1, 0) T, v 2 = ( 1, 1) T of eigenvectors of A. Then v = Uw = w = U 1 v.

11 It follows that dw dt = d dt (U 1 v) = U 1dv dt = U 1 Av = U 1 AUw. Hence dw dt = Bw { dw1 dt = 4w 1, dw 2 dt = w 2. General solution: w 1 (t) = c 1 e 4t, w 2 (t) = c 2 e t, where c 1, c 2 R. Initial condition: w(0) = U 1 v(0) = ( 1 ( ) ) 1 Thus w 1 (t) = 2e 4t, w 2 (t) = e t. Then ( ) ( )( ) x(t) 1 1 2e 4t = Uw(t) = y(t) 0 1 e t = = ( ) )( 1 = ( 2e 4t e t e t ). ( 2 1).

12 There are two obstructions to diagonalization. They are illustrated by the following examples. ( ) 1 1 Example 1. A =. 0 1 det(a λi) = (λ 1) 2. Hence λ = 1 is the only eigenvalue. The associated eigenspace is the line t(1, 0). ( ) 0 1 Example 2. A =. 1 0 det(a λi) = λ = no real eigenvalues or eigenvectors (However there are complex eigenvalues/eigenvectors.)

13 Topics for Test 2 Coordinates and linear transformations (Leon 3.5, ) Coordinates relative to a basis Change of basis, transition matrix Matrix transformations Matrix of a linear mapping Orthogonality (Leon ) Inner products and norms Orthogonal complement, orthogonal projection Least squares problems The Gram-Schmidt orthogonalization process Eigenvalues and eigenvectors (Leon 6.1, 6.3) Eigenvalues, eigenvectors, eigenspaces Characteristic polynomial Diagonalization

14 Sample problems for Test 2 Problem 1 (15 pts.) Let M 2,2 (R) denote the vector space of 2 2 matrices with real entries. Consider a linear operator L : M 2,2 (R) M 2,2 (R) given by L ( x y z w ) = ( x y z w ) ( ) Find the matrix of the operator L with respect to the basis ( ) ( ) ( ) ( ) E 1 =, E =, E =, E =. 0 1

15 Problem 2 (20 pts.) Find a linear polynomial which is the best least squares fit to the following data: x f (x) Problem 3 (25 pts.) Let V be a subspace of R 4 spanned by the vectors x 1 = (1, 1, 1, 1) and x 2 = (1, 0, 3, 0). (i) Find an orthonormal basis for V. (ii) Find an orthonormal basis for the orthogonal complement V.

16 Problem 4 (30 pts.) Let A = (i) Find all eigenvalues of the matrix A. (ii) For each eigenvalue of A, find an associated eigenvector. (iii) Is the matrix A diagonalizable? Explain. (iv) Find all eigenvalues of the matrix A 2. Bonus Problem 5 (15 pts.) Let L : V W be a linear mapping of a finite-dimensional vector space V to a vector space W. Show that dim Range(L) + dim ker(l) = dim V.

17 Problem 1. Let M 2,2 (R) denote the vector space of 2 2 matrices with real entries. Consider a linear operator L : M 2,2 (R) M 2,2 (R) given by L ( x y z w ) = ( x y z w ) ( ) Find the matrix of the operator L with respect to the basis ( ) ( ) ( ) ( ) E 1 =, E =, E =, E =. 0 1 Let M L denote the desired matrix. By definition, M L is a 4 4 matrix whose columns are coordinates of the matrices L(E 1 ), L(E 2 ), L(E 3 ), L(E 4 ) with respect to the basis E 1, E 2, E 3, E 4.

18 ( ) ( ) L(E 1 ) = = ( ) ( ) L(E 2 ) = = ( ) ( ) L(E 3 ) = = ( ) ( ) L(E 4 ) = = ( ) 1 2 = 1E E 2 +0E 3 +0E 4, ( ) 3 4 = 3E E 2 +0E 3 +0E 4, ( ) 0 0 = 0E E 2 +1E 3 +2E 4, ( ) 0 0 = 0E E 2 +3E 3 +4E 4. It follows that M L =

19 Thus the relation (x1 ) ( y 1 x y = z 1 w 1 z w ) ( ) is equivalent to the relation x x y 1 z 1 = y z w w 1

20 Problem 2. Find a linear polynomial which is the best least squares fit to the following data: x f (x) We are looking for a function f (x) = c 1 + c 2 x, where c 1, c 2 are unknown coefficients. The data of the problem give rise to an overdetermined system of linear equations in variables c 1 and c 2 : c 1 2c 2 = 3, c 1 c 2 = 2, c 1 = 1, c 1 + c 2 = 2, c 1 + 2c 2 = 5. This system is inconsistent.

21 We can represent the system as a matrix equation Ac = y, where ( ) A = , c = c1 2, y = c The least squares solution c of the above system is a solution of the normal system A T Ac = A T y: ( ) ( ) ( ) c = 1 1 c ( )( ) ( ) { 5 0 c1 3 c1 = 3/5 = c 2 = 2 c 2 Thus the function f (x) = 3 + 2x is the best least squares fit 5 to the above data among linear polynomials.

22

23 Problem 3. Let V be a subspace of R 4 spanned by the vectors x 1 = (1, 1, 1, 1) and x 2 = (1, 0, 3, 0). (i) Find an orthonormal basis for V. First we apply the Gram-Schmidt orthogonalization process to vectors x 1,x 2 and obtain an orthogonal basis v 1,v 2 for the subspace V: v 1 = x 1 = (1, 1, 1, 1), v 2 = x 2 x 2 v 1 v 1 = (1, 0, 3, 0) 4 (1, 1, 1, 1) = (0, 1, 2, 1). v 1 v 1 4 Then we normalize vectors v 1,v 2 to obtain an orthonormal basis w 1,w 2 for V: v 1 = 2 = w 1 = v 1 = 1 v 1 (1, 1, 1, 1) 2 v 2 = 6 = w 2 = v 2 v 2 = 1 6 (0, 1, 2, 1)

24 Problem 3. Let V be a subspace of R 4 spanned by the vectors x 1 = (1, 1, 1, 1) and x 2 = (1, 0, 3, 0). (ii) Find an orthonormal basis for the orthogonal complement V. Since the subspace V is spanned by vectors (1, 1, 1, 1) and (1, 0, 3, 0), it is the row space of the matrix ( ) A = Then the orthogonal complement V is the nullspace of A. To find the nullspace, we convert the matrix A to reduced row echelon form: ( ) ( ) ( )

25 Hence a vector (x 1, x 2, x 3, x 4 ) R 4 belongs to V if and only if ( ) x 1 ( ) x = 0 x 3 x 4 { x1 + 3x 3 = 0 x 2 2x 3 + x 4 = 0 { x1 = 3x 3 x 2 = 2x 3 x 4 The general solution of the system is (x 1, x 2, x 3, x 4 ) = = ( 3t, 2t s, t, s) = t( 3, 2, 1, 0) + s(0, 1, 0, 1), where t, s R. It follows that V is spanned by vectors x 3 = (0, 1, 0, 1) and x 4 = ( 3, 2, 1, 0).

26 The vectors x 3 = (0, 1, 0, 1) and x 4 = ( 3, 2, 1, 0) form a basis for the subspace V. It remains to orthogonalize and normalize this basis: v 3 = x 3 = (0, 1, 0, 1), v 4 = x 4 x 4 v 3 v 3 = ( 3, 2, 1, 0) 2 (0, 1, 0, 1) v 3 v 3 2 = ( 3, 1, 1, 1), v 3 = 2 = w 3 = v 3 v 3 = 1 2 (0, 1, 0, 1), v 4 = 12 = 2 3 = w 4 = v 4 = 1 v 4 2 ( 3, 1, 1, 1). 3 Thus the vectors w 3 = 1 2 (0, 1, 0, 1) and w 4 = ( 3, 1, 1, 1) form an orthonormal basis for V.

27 Problem 3. Let V be a subspace of R 4 spanned by the vectors x 1 = (1, 1, 1, 1) and x 2 = (1, 0, 3, 0). (i) Find an orthonormal basis for V. (ii) Find an orthonormal basis for the orthogonal complement V. Alternative solution: First we extend the set x 1,x 2 to a basis x 1,x 2,x 3,x 4 for R 4. Then we orthogonalize and normalize the latter. This yields an orthonormal basis w 1,w 2,w 3,w 4 for R 4. By construction, w 1,w 2 is an orthonormal basis for V. It follows that w 3,w 4 is an orthonormal basis for V.

28 The set x 1 = (1, 1, 1, 1), x 2 = (1, 0, 3, 0) can be extended to a basis for R 4 by adding two vectors from the standard basis. For example, we can add vectors e 3 = (0, 0, 1, 0) and e 4 = (0, 0, 0, 1). To show that x 1,x 2,e 3,e 4 is indeed a basis for R 4, we check that the matrix whose rows are these vectors is nonsingular: = = 1 0.

29 To orthogonalize the basis x 1,x 2,e 3,e 4, we apply the Gram-Schmidt process: v 1 = x 1 = (1, 1, 1, 1), v 2 = x 2 x 2 v 1 v 1 = (1, 0, 3, 0) 4 (1, 1, 1, 1) = (0, 1, 2, 1), 4 v 1 v 1 v 3 = e 3 e 3 v 1 v 1 v 1 v 1 e 3 v (0, 1, 2, 1) = ( 1 4, 1 12, 1 12, 1 12 v 2 = (0, 0, 1, 0) 1 (1, 1, 1, 1) 4 v 2 v 2 ) = 1 ( 3, 1, 1, 1), 12 v 4 = e 4 e 4 v 1 v 1 v 1 v 1 e 4 v 2 v 2 v 2 v 2 e 4 v 3 v 3 v 3 v 3 = (0, 0, 0, 1) /12 (1, 1, 1, 1) (0, 1, 2, 1) 1 ( 3, 1, 1, 1) = 6 1/12 12 = ( 0, 1, 0, 1 2 2) = 1(0, 1, 0, 1). 2

30 It remains to normalize vectors v 1 = (1, 1, 1, 1), v 2 = (0, 1, 2, 1), v 3 = 1 ( 3, 1, 1, 1), v 12 4 = 1 (0, 1, 0, 1): 2 v 1 = 2 = w 1 = v 1 = 1 v 1 (1, 1, 1, 1) 2 v 2 = 6 = w 2 = v 2 v 2 = 1 6 (0, 1, 2, 1) v 3 = 1 12 = = w 3 = v 3 = 1 v 3 2 ( 3, 1, 1, 1) 3 v 4 = 1 2 = w 4 = v 4 v 4 = 1 2 (0, 1, 0, 1) Thus w 1,w 2 is an orthonormal basis for V while w 3,w 4 is an orthonormal basis for V.

31 Problem 4. Let A = (i) Find all eigenvalues of the matrix A. The eigenvalues of A are roots of the characteristic equation det(a λi) = 0. We obtain that 1 λ 2 0 det(a λi) = 1 1 λ λ = (1 λ) 3 2(1 λ) 2(1 λ) = (1 λ) ( (1 λ) 2 4 ) = (1 λ) ( (1 λ) 2 )( (1 λ) + 2 ) = (λ 1)(λ + 1)(λ 3). Hence the matrix A has three eigenvalues: 1, 1, and 3.

32 Problem 4. Let A = (ii) For each eigenvalue of A, find an associated eigenvector. An eigenvector v = (x, y, z) of the matrix A associated with an eigenvalue λ is a nonzero solution of the vector equation (A λi)v = 0 1 λ λ 1 x y = λ z 0 To solve the equation, we convert the matrix A λi to reduced row echelon form.

33 First consider the case λ = 1. The row reduction yields A + I = Hence (A + I)v = 0 { x z = 0, y + z = 0. The general solution is x = t, y = t, z = t, where t R. In particular, v 1 = (1, 1, 1) is an eigenvector of A associated with the eigenvalue 1.

34 Secondly, consider the case λ = 1. The row reduction yields A I = Hence (A I)v = 0 { x + z = 0, y = 0. The general solution is x = t, y = 0, z = t, where t R. In particular, v 2 = ( 1, 0, 1) is an eigenvector of A associated with the eigenvalue 1.

35 Finally, consider the case λ = 3. The row reduction yields A 3I = Hence (A 3I)v = 0 { x z = 0, y z = 0. The general solution is x = t, y = t, z = t, where t R. In particular, v 3 = (1, 1, 1) is an eigenvector of A associated with the eigenvalue 3.

36 Problem 4. Let A = (iii) Is the matrix A diagonalizable? Explain. The matrix A is diagonalizable, i.e., there exists a basis for R 3 formed by its eigenvectors. Namely, the vectors v 1 = (1, 1, 1), v 2 = ( 1, 0, 1), and v 3 = (1, 1, 1) are eigenvectors of the matrix A belonging to distinct eigenvalues. Therefore these vectors are linearly independent. It follows that v 1,v 2,v 3 is a basis for R 3. Alternatively, the existence of a basis for R 3 consisting of eigenvectors of A already follows from the fact that the matrix A has three distinct eigenvalues.

37 Problem 4. Let A = (iv) Find all eigenvalues of the matrix A 2. Suppose that v is an eigenvector of the matrix A associated with an eigenvalue λ, that is, v 0 and Av = λv. Then A 2 v = A(Av) = A(λv) = λ(av) = λ(λv) = λ 2 v. Therefore v is also an eigenvector of the matrix A 2 and the associated eigenvalue is λ 2. We already know that the matrix A has eigenvalues 1, 1, and 3. It follows that A 2 has eigenvalues 1 and 9. Since a 3 3 matrix can have up to 3 eigenvalues, we need an additional argument to show that 1 and 9 are the only eigenvalues of A 2. One reason is that the eigenvalue 1 has multiplicity 2.

38 Bonus Problem 5. Let L : V W be a linear mapping of a finite-dimensional vector space V to a vector space W. Show that dim Range(L) + dim ker(l) = dim V. The kernel ker(l) is a subspace of V. It is finite-dimensional since the vector space V is. Take a basis v 1,v 2,...,v k for the subspace ker(l), then extend it to a basis v 1,v 2,...,v k,u 1,u 2,...,u m for the entire space V. Claim Vectors L(u 1 ), L(u 2 ),...,L(u m ) form a basis for the range of L. Assuming the claim is proved, we obtain dim Range(L) = m, dim ker(l) = k, dim V = k + m.

39 Claim Vectors L(u 1 ), L(u 2 ),...,L(u m ) form a basis for the range of L. Proof (spanning): Any vector w Range(L) is represented as w = L(v), where v V. Then v = α 1 v 1 + α 2 v α k v k + β 1 u 1 + β 2 u β m u m for some α i,β j R. It follows that w = L(v) = α 1 L(v 1 )+ +α k L(v k )+β 1 L(u 1 )+ +β m L(u m ) = β 1 L(u 1 ) + + β m L(u m ). Note that L(v i ) = 0 since v i ker(l). Thus Range(L) is spanned by the vectors L(u 1 ),...,L(u m ).

40 Claim Vectors L(u 1 ), L(u 2 ),...,L(u m ) form a basis for the range of L. Proof (linear independence): Suppose that t 1 L(u 1 ) + t 2 L(u 2 ) + + t m L(u m ) = 0 for some t i R. Let u = t 1 u 1 + t 2 u t m u m. Since L(u) = t 1 L(u 1 ) + t 2 L(u 2 ) + + t m L(u m ) = 0, the vector u belongs to the kernel of L. Therefore u = s 1 v 1 + s 2 v s k v k for some s j R. It follows that t 1 u 1 +t 2 u 2 + +t m u m s 1 v 1 s 2 v 2 s k v k = u u = 0. Linear independence of vectors v 1,...,v k,u 1,...,u m implies that t 1 = = t m = 0 (as well as s 1 = = s k = 0). Thus the vectors L(u 1 ), L(u 2 ),...,L(u m ) are linearly independent.

MATH 304 Linear Algebra Lecture 34: Review for Test 2.

MATH 304 Linear Algebra Lecture 34: Review for Test 2. MATH 304 Linear Algebra Lecture 34: Review for Test 2. Topics for Test 2 Linear transformations (Leon 4.1 4.3) Matrix transformations Matrix of a linear mapping Similar matrices Orthogonality (Leon 5.1

More information

MATH Spring 2011 Sample problems for Test 2: Solutions

MATH Spring 2011 Sample problems for Test 2: Solutions MATH 304 505 Spring 011 Sample problems for Test : Solutions Any problem may be altered or replaced by a different one! Problem 1 (15 pts) Let M, (R) denote the vector space of matrices with real entries

More information

MATH 304 Linear Algebra Lecture 33: Bases of eigenvectors. Diagonalization.

MATH 304 Linear Algebra Lecture 33: Bases of eigenvectors. Diagonalization. MATH 304 Linear Algebra Lecture 33: Bases of eigenvectors. Diagonalization. Eigenvalues and eigenvectors of an operator Definition. Let V be a vector space and L : V V be a linear operator. A number λ

More information

Math 310 Final Exam Solutions

Math 310 Final Exam Solutions Math 3 Final Exam Solutions. ( pts) Consider the system of equations Ax = b where: A, b (a) Compute deta. Is A singular or nonsingular? (b) Compute A, if possible. (c) Write the row reduced echelon form

More information

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS LINEAR ALGEBRA, -I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Problem (a) For each of the two matrices below, (i) determine whether it is diagonalizable, (ii) determine whether it is orthogonally diagonalizable,

More information

MATH 221, Spring Homework 10 Solutions

MATH 221, Spring Homework 10 Solutions MATH 22, Spring 28 - Homework Solutions Due Tuesday, May Section 52 Page 279, Problem 2: 4 λ A λi = and the characteristic polynomial is det(a λi) = ( 4 λ)( λ) ( )(6) = λ 6 λ 2 +λ+2 The solutions to the

More information

235 Final exam review questions

235 Final exam review questions 5 Final exam review questions Paul Hacking December 4, 0 () Let A be an n n matrix and T : R n R n, T (x) = Ax the linear transformation with matrix A. What does it mean to say that a vector v R n is an

More information

Eigenvalues and Eigenvectors A =

Eigenvalues and Eigenvectors A = Eigenvalues and Eigenvectors Definition 0 Let A R n n be an n n real matrix A number λ R is a real eigenvalue of A if there exists a nonzero vector v R n such that A v = λ v The vector v is called an eigenvector

More information

MA 265 FINAL EXAM Fall 2012

MA 265 FINAL EXAM Fall 2012 MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators

More information

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether

More information

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors.

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. Orthogonal sets Let V be a vector space with an inner product. Definition. Nonzero vectors v 1,v

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

Answer Keys For Math 225 Final Review Problem

Answer Keys For Math 225 Final Review Problem Answer Keys For Math Final Review Problem () For each of the following maps T, Determine whether T is a linear transformation. If T is a linear transformation, determine whether T is -, onto and/or bijective.

More information

MATH 240 Spring, Chapter 1: Linear Equations and Matrices

MATH 240 Spring, Chapter 1: Linear Equations and Matrices MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear

More information

Glossary of Linear Algebra Terms. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Glossary of Linear Algebra Terms. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Glossary of Linear Algebra Terms Basis (for a subspace) A linearly independent set of vectors that spans the space Basic Variable A variable in a linear system that corresponds to a pivot column in the

More information

MATH 115A: SAMPLE FINAL SOLUTIONS

MATH 115A: SAMPLE FINAL SOLUTIONS MATH A: SAMPLE FINAL SOLUTIONS JOE HUGHES. Let V be the set of all functions f : R R such that f( x) = f(x) for all x R. Show that V is a vector space over R under the usual addition and scalar multiplication

More information

1 Last time: least-squares problems

1 Last time: least-squares problems MATH Linear algebra (Fall 07) Lecture Last time: least-squares problems Definition. If A is an m n matrix and b R m, then a least-squares solution to the linear system Ax = b is a vector x R n such that

More information

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors Definition 0 Let A R n n be an n n real matrix A number λ R is a real eigenvalue of A if there exists a nonzero vector v R n such that A v = λ v The vector v is called an eigenvector

More information

MAT Linear Algebra Collection of sample exams

MAT Linear Algebra Collection of sample exams MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

PRACTICE FINAL EXAM. why. If they are dependent, exhibit a linear dependence relation among them.

PRACTICE FINAL EXAM. why. If they are dependent, exhibit a linear dependence relation among them. Prof A Suciu MTH U37 LINEAR ALGEBRA Spring 2005 PRACTICE FINAL EXAM Are the following vectors independent or dependent? If they are independent, say why If they are dependent, exhibit a linear dependence

More information

Review Notes for Linear Algebra True or False Last Updated: January 25, 2010

Review Notes for Linear Algebra True or False Last Updated: January 25, 2010 Review Notes for Linear Algebra True or False Last Updated: January 25, 2010 Chapter 3 [ Eigenvalues and Eigenvectors ] 31 If A is an n n matrix, then A can have at most n eigenvalues The characteristic

More information

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 6 Eigenvalues and Eigenvectors Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called an eigenvalue of A if there is a nontrivial

More information

MATH. 20F SAMPLE FINAL (WINTER 2010)

MATH. 20F SAMPLE FINAL (WINTER 2010) MATH. 20F SAMPLE FINAL (WINTER 2010) You have 3 hours for this exam. Please write legibly and show all working. No calculators are allowed. Write your name, ID number and your TA s name below. The total

More information

MATH 31 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL

MATH 31 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL MATH 3 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL MAIN TOPICS FOR THE FINAL EXAM:. Vectors. Dot product. Cross product. Geometric applications. 2. Row reduction. Null space, column space, row space, left

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

LINEAR ALGEBRA SUMMARY SHEET.

LINEAR ALGEBRA SUMMARY SHEET. LINEAR ALGEBRA SUMMARY SHEET RADON ROSBOROUGH https://intuitiveexplanationscom/linear-algebra-summary-sheet/ This document is a concise collection of many of the important theorems of linear algebra, organized

More information

Math Final December 2006 C. Robinson

Math Final December 2006 C. Robinson Math 285-1 Final December 2006 C. Robinson 2 5 8 5 1 2 0-1 0 1. (21 Points) The matrix A = 1 2 2 3 1 8 3 2 6 has the reduced echelon form U = 0 0 1 2 0 0 0 0 0 1. 2 6 1 0 0 0 0 0 a. Find a basis for the

More information

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix DIAGONALIZATION Definition We say that a matrix A of size n n is diagonalizable if there is a basis of R n consisting of eigenvectors of A ie if there are n linearly independent vectors v v n such that

More information

ft-uiowa-math2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST

ft-uiowa-math2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST me me ft-uiowa-math2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST 1. (1 pt) local/library/ui/eigentf.pg A is n n an matrices.. There are an infinite number

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture 9: Diagonalization Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./9 Section. Diagonalization The goal here is to develop a useful

More information

1. Diagonalize the matrix A if possible, that is, find an invertible matrix P and a diagonal

1. Diagonalize the matrix A if possible, that is, find an invertible matrix P and a diagonal . Diagonalize the matrix A if possible, that is, find an invertible matrix P and a diagonal 3 9 matrix D such that A = P DP, for A =. 3 4 3 (a) P = 4, D =. 3 (b) P = 4, D =. (c) P = 4 8 4, D =. 3 (d) P

More information

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 5 Eigenvectors and Eigenvalues In this chapter, vector means column vector Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called

More information

Math 314/ Exam 2 Blue Exam Solutions December 4, 2008 Instructor: Dr. S. Cooper. Name:

Math 314/ Exam 2 Blue Exam Solutions December 4, 2008 Instructor: Dr. S. Cooper. Name: Math 34/84 - Exam Blue Exam Solutions December 4, 8 Instructor: Dr. S. Cooper Name: Read each question carefully. Be sure to show all of your work and not just your final conclusion. You may not use your

More information

PRACTICE PROBLEMS FOR THE FINAL

PRACTICE PROBLEMS FOR THE FINAL PRACTICE PROBLEMS FOR THE FINAL Here are a slew of practice problems for the final culled from old exams:. Let P be the vector space of polynomials of degree at most. Let B = {, (t ), t + t }. (a) Show

More information

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true?

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true? . Let m and n be two natural numbers such that m > n. Which of the following is/are true? (i) A linear system of m equations in n variables is always consistent. (ii) A linear system of n equations in

More information

Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007

Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007 Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007 You have 1 hour and 20 minutes. No notes, books, or other references. You are permitted to use Maple during this exam, but you must start with a blank

More information

Chapter 6: Orthogonality

Chapter 6: Orthogonality Chapter 6: Orthogonality (Last Updated: November 7, 7) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). A few theorems have been moved around.. Inner products

More information

Then x 1,..., x n is a basis as desired. Indeed, it suffices to verify that it spans V, since n = dim(v ). We may write any v V as r

Then x 1,..., x n is a basis as desired. Indeed, it suffices to verify that it spans V, since n = dim(v ). We may write any v V as r Practice final solutions. I did not include definitions which you can find in Axler or in the course notes. These solutions are on the terse side, but would be acceptable in the final. However, if you

More information

Chapter 7. Canonical Forms. 7.1 Eigenvalues and Eigenvectors

Chapter 7. Canonical Forms. 7.1 Eigenvalues and Eigenvectors Chapter 7 Canonical Forms 7.1 Eigenvalues and Eigenvectors Definition 7.1.1. Let V be a vector space over the field F and let T be a linear operator on V. An eigenvalue of T is a scalar λ F such that there

More information

MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial.

MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial. MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial. Geometric properties of determinants 2 2 determinants and plane geometry

More information

Quizzes for Math 304

Quizzes for Math 304 Quizzes for Math 304 QUIZ. A system of linear equations has augmented matrix 2 4 4 A = 2 0 2 4 3 5 2 a) Write down this system of equations; b) Find the reduced row-echelon form of A; c) What are the pivot

More information

Solutions to Final Exam

Solutions to Final Exam Solutions to Final Exam. Let A be a 3 5 matrix. Let b be a nonzero 5-vector. Assume that the nullity of A is. (a) What is the rank of A? 3 (b) Are the rows of A linearly independent? (c) Are the columns

More information

x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7

x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7 Linear Algebra and its Applications-Lab 1 1) Use Gaussian elimination to solve the following systems x 1 + x 2 2x 3 + 4x 4 = 5 1.1) 2x 1 + 2x 2 3x 3 + x 4 = 3 3x 1 + 3x 2 4x 3 2x 4 = 1 x + y + 2z = 4 1.4)

More information

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. Adjoint operator and adjoint matrix Given a linear operator L on an inner product space V, the adjoint of L is a transformation

More information

1. In this problem, if the statement is always true, circle T; otherwise, circle F.

1. In this problem, if the statement is always true, circle T; otherwise, circle F. Math 1553, Extra Practice for Midterm 3 (sections 45-65) Solutions 1 In this problem, if the statement is always true, circle T; otherwise, circle F a) T F If A is a square matrix and the homogeneous equation

More information

Math 4153 Exam 3 Review. The syllabus for Exam 3 is Chapter 6 (pages ), Chapter 7 through page 137, and Chapter 8 through page 182 in Axler.

Math 4153 Exam 3 Review. The syllabus for Exam 3 is Chapter 6 (pages ), Chapter 7 through page 137, and Chapter 8 through page 182 in Axler. Math 453 Exam 3 Review The syllabus for Exam 3 is Chapter 6 (pages -2), Chapter 7 through page 37, and Chapter 8 through page 82 in Axler.. You should be sure to know precise definition of the terms we

More information

Eigenvalues, Eigenvectors, and Diagonalization

Eigenvalues, Eigenvectors, and Diagonalization Math 240 TA: Shuyi Weng Winter 207 February 23, 207 Eigenvalues, Eigenvectors, and Diagonalization The concepts of eigenvalues, eigenvectors, and diagonalization are best studied with examples. We will

More information

Review problems for MA 54, Fall 2004.

Review problems for MA 54, Fall 2004. Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on

More information

Linear Algebra. and

Linear Algebra. and Instructions Please answer the six problems on your own paper. These are essay questions: you should write in complete sentences. 1. Are the two matrices 1 2 2 1 3 5 2 7 and 1 1 1 4 4 2 5 5 2 row equivalent?

More information

Reduction to the associated homogeneous system via a particular solution

Reduction to the associated homogeneous system via a particular solution June PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 5) Linear Algebra This study guide describes briefly the course materials to be covered in MA 5. In order to be qualified for the credit, one

More information

Solutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015

Solutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015 Solutions to Final Practice Problems Written by Victoria Kala vtkala@math.ucsb.edu Last updated /5/05 Answers This page contains answers only. See the following pages for detailed solutions. (. (a x. See

More information

Lecture 7: Positive Semidefinite Matrices

Lecture 7: Positive Semidefinite Matrices Lecture 7: Positive Semidefinite Matrices Rajat Mittal IIT Kanpur The main aim of this lecture note is to prepare your background for semidefinite programming. We have already seen some linear algebra.

More information

REVIEW FOR EXAM III SIMILARITY AND DIAGONALIZATION

REVIEW FOR EXAM III SIMILARITY AND DIAGONALIZATION REVIEW FOR EXAM III The exam covers sections 4.4, the portions of 4. on systems of differential equations and on Markov chains, and..4. SIMILARITY AND DIAGONALIZATION. Two matrices A and B are similar

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information

ANSWERS. E k E 2 E 1 A = B

ANSWERS. E k E 2 E 1 A = B MATH 7- Final Exam Spring ANSWERS Essay Questions points Define an Elementary Matrix Display the fundamental matrix multiply equation which summarizes a sequence of swap, combination and multiply operations,

More information

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

More information

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true.

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true. 1 Which of the following statements is always true? I The null space of an m n matrix is a subspace of R m II If the set B = {v 1,, v n } spans a vector space V and dimv = n, then B is a basis for V III

More information

Generalized Eigenvectors and Jordan Form

Generalized Eigenvectors and Jordan Form Generalized Eigenvectors and Jordan Form We have seen that an n n matrix A is diagonalizable precisely when the dimensions of its eigenspaces sum to n. So if A is not diagonalizable, there is at least

More information

Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

More information

Math 21b Final Exam Thursday, May 15, 2003 Solutions

Math 21b Final Exam Thursday, May 15, 2003 Solutions Math 2b Final Exam Thursday, May 5, 2003 Solutions. (20 points) True or False. No justification is necessary, simply circle T or F for each statement. T F (a) If W is a subspace of R n and x is not in

More information

Math 308 Practice Test for Final Exam Winter 2015

Math 308 Practice Test for Final Exam Winter 2015 Math 38 Practice Test for Final Exam Winter 25 No books are allowed during the exam. But you are allowed one sheet ( x 8) of handwritten notes (back and front). You may use a calculator. For TRUE/FALSE

More information

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces.

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces. Math 350 Fall 2011 Notes about inner product spaces In this notes we state and prove some important properties of inner product spaces. First, recall the dot product on R n : if x, y R n, say x = (x 1,...,

More information

LINEAR ALGEBRA QUESTION BANK

LINEAR ALGEBRA QUESTION BANK LINEAR ALGEBRA QUESTION BANK () ( points total) Circle True or False: TRUE / FALSE: If A is any n n matrix, and I n is the n n identity matrix, then I n A = AI n = A. TRUE / FALSE: If A, B are n n matrices,

More information

I. Multiple Choice Questions (Answer any eight)

I. Multiple Choice Questions (Answer any eight) Name of the student : Roll No : CS65: Linear Algebra and Random Processes Exam - Course Instructor : Prashanth L.A. Date : Sep-24, 27 Duration : 5 minutes INSTRUCTIONS: The test will be evaluated ONLY

More information

Definition (T -invariant subspace) Example. Example

Definition (T -invariant subspace) Example. Example Eigenvalues, Eigenvectors, Similarity, and Diagonalization We now turn our attention to linear transformations of the form T : V V. To better understand the effect of T on the vector space V, we begin

More information

MATH 1553 PRACTICE MIDTERM 3 (VERSION B)

MATH 1553 PRACTICE MIDTERM 3 (VERSION B) MATH 1553 PRACTICE MIDTERM 3 (VERSION B) Name Section 1 2 3 4 5 Total Please read all instructions carefully before beginning. Each problem is worth 10 points. The maximum score on this exam is 50 points.

More information

Conceptual Questions for Review

Conceptual Questions for Review Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.

More information

Linear Algebra- Final Exam Review

Linear Algebra- Final Exam Review Linear Algebra- Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.

More information

Definition: An n x n matrix, "A", is said to be diagonalizable if there exists a nonsingular matrix "X" and a diagonal matrix "D" such that X 1 A X

Definition: An n x n matrix, A, is said to be diagonalizable if there exists a nonsingular matrix X and a diagonal matrix D such that X 1 A X DIGONLIZTION Definition: n n x n matrix, "", is said to be diagonalizable if there exists a nonsingular matrix "X" and a diagonal matrix "D" such that X X D. Theorem: n n x n matrix, "", is diagonalizable

More information

MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (in-class portion) January 22, 2003

MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (in-class portion) January 22, 2003 MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (in-class portion) January 22, 2003 1. True or False (28 points, 2 each) T or F If V is a vector space

More information

Math 205, Summer I, Week 4b:

Math 205, Summer I, Week 4b: Math 205, Summer I, 2016 Week 4b: Chapter 5, Sections 6, 7 and 8 (5.5 is NOT on the syllabus) 5.6 Eigenvalues and Eigenvectors 5.7 Eigenspaces, nondefective matrices 5.8 Diagonalization [*** See next slide

More information

Dimension. Eigenvalue and eigenvector

Dimension. Eigenvalue and eigenvector Dimension. Eigenvalue and eigenvector Math 112, week 9 Goals: Bases, dimension, rank-nullity theorem. Eigenvalue and eigenvector. Suggested Textbook Readings: Sections 4.5, 4.6, 5.1, 5.2 Week 9: Dimension,

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

MATH 1553, Intro to Linear Algebra FINAL EXAM STUDY GUIDE

MATH 1553, Intro to Linear Algebra FINAL EXAM STUDY GUIDE MATH 553, Intro to Linear Algebra FINAL EXAM STUDY GUIDE In studying for the final exam, you should FIRST study all tests andquizzeswehave had this semester (solutions can be found on Canvas). Then go

More information

and let s calculate the image of some vectors under the transformation T.

and let s calculate the image of some vectors under the transformation T. Chapter 5 Eigenvalues and Eigenvectors 5. Eigenvalues and Eigenvectors Let T : R n R n be a linear transformation. Then T can be represented by a matrix (the standard matrix), and we can write T ( v) =

More information

Problem 1: Solving a linear equation

Problem 1: Solving a linear equation Math 38 Practice Final Exam ANSWERS Page Problem : Solving a linear equation Given matrix A = 2 2 3 7 4 and vector y = 5 8 9. (a) Solve Ax = y (if the equation is consistent) and write the general solution

More information

Linear Algebra (MATH ) Spring 2011 Final Exam Practice Problem Solutions

Linear Algebra (MATH ) Spring 2011 Final Exam Practice Problem Solutions Linear Algebra (MATH 4) Spring 2 Final Exam Practice Problem Solutions Instructions: Try the following on your own, then use the book and notes where you need help. Afterwards, check your solutions with

More information

Therefore, A and B have the same characteristic polynomial and hence, the same eigenvalues.

Therefore, A and B have the same characteristic polynomial and hence, the same eigenvalues. Similar Matrices and Diagonalization Page 1 Theorem If A and B are n n matrices, which are similar, then they have the same characteristic equation and hence the same eigenvalues. Proof Let A and B be

More information

UNIT 6: The singular value decomposition.

UNIT 6: The singular value decomposition. UNIT 6: The singular value decomposition. María Barbero Liñán Universidad Carlos III de Madrid Bachelor in Statistics and Business Mathematical methods II 2011-2012 A square matrix is symmetric if A T

More information

City Suburbs. : population distribution after m years

City Suburbs. : population distribution after m years Section 5.3 Diagonalization of Matrices Definition Example: stochastic matrix To City Suburbs From City Suburbs.85.03 = A.15.97 City.15.85 Suburbs.97.03 probability matrix of a sample person s residence

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

Lecture 11: Finish Gaussian elimination and applications; intro to eigenvalues and eigenvectors (1)

Lecture 11: Finish Gaussian elimination and applications; intro to eigenvalues and eigenvectors (1) Lecture 11: Finish Gaussian elimination and applications; intro to eigenvalues and eigenvectors (1) Travis Schedler Tue, Oct 18, 2011 (version: Tue, Oct 18, 6:00 PM) Goals (2) Solving systems of equations

More information

Practice Exam. 2x 1 + 4x 2 + 2x 3 = 4 x 1 + 2x 2 + 3x 3 = 1 2x 1 + 3x 2 + 4x 3 = 5

Practice Exam. 2x 1 + 4x 2 + 2x 3 = 4 x 1 + 2x 2 + 3x 3 = 1 2x 1 + 3x 2 + 4x 3 = 5 Practice Exam. Solve the linear system using an augmented matrix. State whether the solution is unique, there are no solutions or whether there are infinitely many solutions. If the solution is unique,

More information

Math 314H Solutions to Homework # 3

Math 314H Solutions to Homework # 3 Math 34H Solutions to Homework # 3 Complete the exercises from the second maple assignment which can be downloaded from my linear algebra course web page Attach printouts of your work on this problem to

More information

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit V: Eigenvalue Problems Lecturer: Dr. David Knezevic Unit V: Eigenvalue Problems Chapter V.2: Fundamentals 2 / 31 Eigenvalues and Eigenvectors Eigenvalues and eigenvectors of

More information

HOSTOS COMMUNITY COLLEGE DEPARTMENT OF MATHEMATICS

HOSTOS COMMUNITY COLLEGE DEPARTMENT OF MATHEMATICS HOSTOS COMMUNITY COLLEGE DEPARTMENT OF MATHEMATICS MAT 217 Linear Algebra CREDIT HOURS: 4.0 EQUATED HOURS: 4.0 CLASS HOURS: 4.0 PREREQUISITE: PRE/COREQUISITE: MAT 210 Calculus I MAT 220 Calculus II RECOMMENDED

More information

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017 Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...

More information

Diagonalization. Hung-yi Lee

Diagonalization. Hung-yi Lee Diagonalization Hung-yi Lee Review If Av = λv (v is a vector, λ is a scalar) v is an eigenvector of A excluding zero vector λ is an eigenvalue of A that corresponds to v Eigenvectors corresponding to λ

More information

Math 315: Linear Algebra Solutions to Assignment 7

Math 315: Linear Algebra Solutions to Assignment 7 Math 5: Linear Algebra s to Assignment 7 # Find the eigenvalues of the following matrices. (a.) 4 0 0 0 (b.) 0 0 9 5 4. (a.) The characteristic polynomial det(λi A) = (λ )(λ )(λ ), so the eigenvalues are

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For

More information

6 Inner Product Spaces

6 Inner Product Spaces Lectures 16,17,18 6 Inner Product Spaces 6.1 Basic Definition Parallelogram law, the ability to measure angle between two vectors and in particular, the concept of perpendicularity make the euclidean space

More information

Announcements Monday, October 29

Announcements Monday, October 29 Announcements Monday, October 29 WeBWorK on determinents due on Wednesday at :59pm. The quiz on Friday covers 5., 5.2, 5.3. My office is Skiles 244 and Rabinoffice hours are: Mondays, 2 pm; Wednesdays,

More information

Jordan Canonical Form Homework Solutions

Jordan Canonical Form Homework Solutions Jordan Canonical Form Homework Solutions For each of the following, put the matrix in Jordan canonical form and find the matrix S such that S AS = J. [ ]. A = A λi = λ λ = ( λ) = λ λ = λ =, Since we have

More information

Math 240 Calculus III

Math 240 Calculus III Generalized Calculus III Summer 2015, Session II Thursday, July 23, 2015 Agenda 1. 2. 3. 4. Motivation Defective matrices cannot be diagonalized because they do not possess enough eigenvectors to make

More information

Problem Set (T) If A is an m n matrix, B is an n p matrix and D is a p s matrix, then show

Problem Set (T) If A is an m n matrix, B is an n p matrix and D is a p s matrix, then show MTH 0: Linear Algebra Department of Mathematics and Statistics Indian Institute of Technology - Kanpur Problem Set Problems marked (T) are for discussions in Tutorial sessions (T) If A is an m n matrix,

More information

Definitions for Quizzes

Definitions for Quizzes Definitions for Quizzes Italicized text (or something close to it) will be given to you. Plain text is (an example of) what you should write as a definition. [Bracketed text will not be given, nor does

More information

MATH 235. Final ANSWERS May 5, 2015

MATH 235. Final ANSWERS May 5, 2015 MATH 235 Final ANSWERS May 5, 25. ( points) Fix positive integers m, n and consider the vector space V of all m n matrices with entries in the real numbers R. (a) Find the dimension of V and prove your

More information