Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code"

Transcription

1 Plasma Science and Technology, Vol.14, No.9, Sep Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code Y. PIANROJ, T. ONJUN School of Manufacturing Systems and Mechanical Engineering, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12121, Thailand Abstract A theory-based model for predicting the pedestal formation in both ion and electron temperatures, and hydrogenic and impurity density is developed and implemented in the 1.5D BALDUR codes for self-consistently simulating H-mode plasma in tokamak. In the simulation, the transports around pedestal, including the electron and ion thermal, hydrogenic and impurity particle transports are calculated using an anomalous semi-empirical mixed Bohm/gyro-Bohm (Mixed B/gB) model, which is modified to include the effects of ω E B flow shear and magnetic shear. Because of the reduction of transport, the pedestal can be formed. For a preliminary test, this core-edge model is used to simulate the temporal evolution of plasma current, temperature, and density profiles for DIII-D discharges. It is found that the simulations successfully reproduce the experimental results. A statistical analysis, including RMSE and offset, is used to quantify the agreement between the prediction and the corresponding experimental results. The simulation results show an agreement with average RMSE of 11.87%, 14.53%, 7.59% and 12.21% for electron temperature, ion temperature, electron density, and deuterium density profiles, respectively. In addition, it is found that the suppression function developed is effective only in the edge region. Keywords: ITER, pedestal, H-mode, BALDUR, fusion performance, transport PACS: y, Fa, Fi DOI: / /14/9/02 1 Introduction A major advance in magnetic confinement fusion occurred with the discovery of a new operational regime, called the High confinement mode (H-mode) [1]. The H-mode operation results in a significant increase in the plasma temperature and confinement time. The radial pressure profiles for typical Low confinement mode (L-mode) and H-mode discharges are depicted in Fig. 1. It can be seen that there is a significant increase in the core pressure, from the L-mode discharge to the H-mode discharge. The significant enhancement in the plasma performance is the result of a transport barrier that forms at the edge of the plasma. This edge transport barrier (ETB) is usually referred as the pedestal. Typically, the energy content in an H-mode discharge is approximately twice the energy contained in an L- mode discharge, for the plasma heated with the same input power [2]. To understand better the physical processes that take place in tokamak plasma, many advanced computer codes have been developed. The integrated predictive modelling codes, such as BALDUR [3], TASK/TR [4], JETTO [5], ASTRA [6] and CRONOS [7], have played an important role in the simulations to predict the temporal evolution of plasma current, temperature, and density profiles. They lead to significant improvement in understanding of plasmas behaviours in tokamaks. Normally, the simulations carried out with these integrated predictive modelling codes making use of boundary conditions taken from experimental data. In simulating H-mode discharges, the evolution of the core plasma was carried out using boundary conditions taken from experimental data at the top of the pedestal [8 13], because the distance from the top of the pedestal to the center of plasma is approximately 95% of the minor radius, as shown in Fig. 1. Several years after discovery of the H-mode, however, different physical phenomena were found at the plasma edge such as the formation of a pedestal that affects the plasma core. These phenomena suggest that the integrated predictive modelling code must be extended to include the entire plasma cross section, because a reliable methodology to predict the plasma properties is needed in order to advance the predictive capability. This capability is essential in designing future experiments in existing tokamaks. Fig.1 Pressure profiles for both L-mode and H-mode plasma supported by the Commission on Higher Education and the Thailand Research Fund (No. RSA ) and the Government Annual Research Budget through Thammasat University

2 Y. PIANROJ et al.: Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling The requirement for the formation of pedestal is the reduction of fluctuation-driven transport. This can be achieved by stabilization or decorrelation of microturbulence in the plasma. The stabilization mechanisms, which can suppress turbulent modes, have to account for the different dynamical behaviors of the various species in the plasma. The first candidate for edge turbulence stabilization is the ω E B flow shear. The ω E B flow shear can suppress turbulence through linear stabilization of turbulent modes, as well as in particular by non-linear decorrelation of turbulence vortices [14 16], thereby reducing transport by acting on both the amplitude of the fluctuations and the phase between them [17]. The second candidate is the magnetic shear s, which reduces transport only in the region where the shear s exceeds a threshold and is unaffected elsewhere. In Ref. [18], the ω E B flow shear was used as a mechanism for reduction of ion and electron thermal diffusivity in order to initiate the formation of a pedestal. This work was carried out using ASTRA by A. Y. PANKIN et al. However, the hydrogenic and impurity transports are not reduced due to some limitations. Moreover, G. W. Pacher et al. [18] implemented the suppression function which consists of two stabilization candidate terms, namely ω E B flow shear and magnetic shear, into ASTRA to carry out a prediction for ITER. Both temperature and density profile evolutions were considered with a simple anomalous core transport model. In this work, a core transport model, namely in mixed Bohm/gyro-Bohm (mixed B/gB) model, was used, by suppressing every channel of transport coefficient, i.e., electron thermal diffusivity, ion thermal diffusivity, hydrogenic diffusivity, and impurity diffusivity to describe the pedestal formation. As a result, full core-edge simulations of tokamak plasmas can be conducted. This paper is organized as follows. The edge model with suppression function will be described in section 2. A brief introduction of the mixed B/gB anomalous core transport is given in section 3. In section 4, the calibration and the sensitivity of coefficient C x and the simulation results for typical H-mode will be validated by the statistical comparisons with the experimental data from DIII-D. The final section is for the conclusion. 2 Model for edge plasma The modelling of pedestal structure inevitably requires the full integration of plasma in both core and scrape-off layer (SOL)/divertor regions. One of the difficulties in modelling the pedestal structure is that there exist different physical mechanisms with different time scales. The pedestal structure evolves on a transport time scale. However during the profile evolution, magnetohydrodynamic (MHD) phenomena, which occur on short time scales, can develop, such as edge localized modes (ELMs) [19]. The occurrence of an ELM event burst gives rise a significant pulsed flow of both particles and energy onto the divertor target, diminishing the edge pressure gradients in the process. A paint for the pedestal transport modelling is to extend the anomalous core transport to include the effect of ω E B flow shearing rate and magnetic shear. In this work, the anomalous transport in both the core and pedestal is taken in forms of: χ is = χ i f sion, (1) χ es = χ e f selectron, (2) D Hs = D H f shydrogenic, (3) D zs = D z f simpurity, (4) where χ is and χ es are the modified anomalous ion and electron thermal diffusivity, D Hs and D zs are the modified anomalous particle and impurity diffusivity, respectively; f sion and f selectron are the suppression function for ion and electron thermal diffusivity, f shydrogenic and f simpurity are the suppression function for particle and impurity diffusivity, respectively. An appropriate transport suppression function due to ω E B flow shearing rate together with the reduction of turbulence growth rate [20 22] is represented in the first term in which the E B flow shear alone leads to a formation of pedestals which are appreciably lower than those obtained experimentally. An additional magnetic shear stabilization is realized in the second term [18,23]. The transport is reduced only in the region where the magnetic shear exceeds a threshold (in this work the threshold is set to 0.5 [18] ) and the suppression function (f sx ) can be written in 1 f sx = 1 + C x ( ω E B ) 1 2 max(1, (s 0.5) 2 ), (5) γ ITG where, C x is the coefficient for each species calibrated later in section 4.2.1, γ ITG is the growth rate of ion temperature gradient mode (ITG), estimated as V ti /qr [24] with V ti the ion thermal velocity and s the magnetic shear. 3 Model for core plasma The mixed B/gB anomalous core transport model [25] is an empirical model. It consists of Bohm and gyro- Bohm contributions. The Bohm term is linear in the gyro-radius and is a non-local transport model, in which the transport depends on a finite difference approximation to the electron temperature gradient at the edge of plasma. The gyro-bohm term is a local transport model, which is added for simulation to be able to match data from both smaller and larger tokamaks. It is proportional to the square of the gyro-radius times thermal velocity over the square of the plasma dimension. Thus, the mixed B/gB transport model can be expressed as [26] : χ e = 1.0χ gb + 2.0χ B, (6) χ i = 0.5χ gb + 4.0χ B + χ neo, (7) χ e χ i D H = [ ρ], χ e + χ i (8) 779

3 Plasma Science and Technology, Vol.14, No.9, Sep where D z = D H, (9) χ gb = T e T e, (10) B 2 φ χ B = R (n et e ) ( q 2 T e,0.8 T ) e,1.0, (11) n e B φ T e,1.0 where, χ e is the electron diffusivity, χ i is the ion diffusivity, D H is the particle diffusivity, D z is the impurity diffusivity, χ gb is the gyro-bohm contribution, χ B is the Bohm contribution, ρ is the normalized minor radius, T e is the electron temperature, B φ is the toroidal magnetic field, R is the major radius, n e is the local electron density, q is the safety factor, s is the magnetic shear, ω E B is the flow shearing rate, and γ ITG is the growth rate of ion temperature gradient (ITG). 4 Simulation results and discussions 4.1 Simulated plasma profiles The experimental data from ten DIII-D H- mode shots are taken from the international profile database [27]. These experimental data are classified into four pairs of H-mode plasmas which comprise the DIII-D discharges examined in this paper. The major plasma parameters for all of ten shots are listed in Table 1. They are used as the initial and boundary conditions for both core and core-edge simulations while the discharges include scans for plasma power (shots and 77559), density (shots and 81329), elongation (κ) (shots and 81507), and normalized gyroradius (ρ ) (shots and 82788). However, the simulation results carried out by the core model are calculated at the top of pedestal which depends on the boundary conditions of each shot, but the simulation results carried out by the core-edge model are calculated at the plasma edge with the same temperature 10 ev, and compared with the DIII-D data. Note that the change of edge temperature does not affect the simulation results. First, consider the elongation scan (shots and 81507). The plasma elongation (at the 95% flux surface) varies from 1.68 to 1.95 while the minor radius of plasma varies from 0.63 m to 0.54 m correspondingly. The simulation results using the core-edge model match the experimental data quite well for both shots in this scan, as shown in Fig. 2. The shapes of all profiles remained nearly unchanged in the two shots of this scan, in both the experimental and the simulation results except for some structures in the core region where the magnitudes from simulation are lower than those in experiment. Unfortunately, there is no result for impurity in the database for these DIII-D shots. In Fig. 3, the simulated plasma profiles are compared to the corresponding experimental ones for the DIII-D ρ scan represented (shots and 82788). It is found that the simulated temperature profiles of shot (low ρ ) can match the experimental data. However, the simulated density profiles of this shot do not match the experimental data. On the other hand, the temperature profiles in core region of shot (high ρ ) tends to over-predict both electron s and ion s, while the density profiles of both electron and deuterium match very well. In the power scan (shots and 77559), the neutral beam injection power varies while the average plasma density is kept constant. In the density scan (shots and 81329), the heating power was adjusted to hold the temperatures fixed as the plasma density varies. It is found in the simulations that the temperature profiles of these four discharges do not match the experimental well in the core region. They tend to over-predict the experimental results, except in the case of low density for the density scan. On the other hand, the density profiles of these four shots match the experimental data quite well and most simulations tend to produce higher prediction than the experimental data. The last two shots (shots and 82183) are not a pair of experimental discharges. It is found that the temperature profiles and density profiles Table 1. Plasma parameters for ten shots in DIII-D Discharges Type Low power High power Low n e High n e Low κ High κ Low ρ High ρ R (m) a (m) κ δ B T(T) I p(ma) n e( m 3 ) Z eff P NB(MW) Diagnostic time (s)

4 Y. PIANROJ et al.: Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling Fig.2 Profiles of electron temperature, ion temperature, electron density and deuterium density. The simulated results by using BALDUR with core-edge transport model are compared to the DIII-D data of shots (low κ; left panel) and (high κ; right panel) Fig.3 Profiles of electron temperature, ion temperature, electron density and deuterium density. The simulated results by using BALDUR with core-edge transport model are compared to the DIII-D data of shots (low ρ ; left panel) and (high ρ ; right panel) of shot do not match the experimental ones quite well and they mostly under-predict the experimental data. The simulations results carried out for shot are different when compared to those for shot In shot 82183, the temperature and density profiles match very well to the experimental data except in deuterium profiles, which significantly under-predict the experimental data. A statistical analysis (presented in section 4.2) will be carried out to quantify the agreement between the core-edge model predictions and the corre- sponding experimental data. The effect that helps to reduce the anomalous transport and to form the transport barrier at the plasma edge is described by the suppression function that is shown in Eq. (1) and Fig. 4 (shots for low κ, and for high κ) and Fig. 5 (shots for low ρ and for high ρ ). This function is composed of two terms which reduce the turbulent transport. The first term is for shear in the E B flow. In this work, it is effective in the edge region only (at about a normalized 781

5 Plasma Science and Technology, Vol.14, No.9, Sep Fig.4 Profiles of radial electric field, ω E B flow shear, magnetic shear and suppression function obtained by using BALDUR with core-edge transport model are compared to the DIII-D data of shots (low κ; left panel) and (high κ; right panel) Fig.5 Profiles of radial electric field, ω E B flow shear, magnetic shear, and suppression function obtained by using BALDUR with core-edge transport model are compared to the DIII-D data of shots (low ρ ; left panel) and (high ρ ; right panel) minor radius (r/a) = ). To demonstrate the E B flow shear stabilization effect, the radial electric field (E r ) calculated by BALDUR is shown. It seems to be the same pattern and stronger near the edge area because the pressure gradient is high there. Thus, the radial electric field will affect the ω E B flow shear [28] that can be depicted by: where, R is the major radius, B θ is the poloidal magnetic field and B φ is the toroidal magnetic field. The ω E B flow shear calculated by the predictive modelling codes is shown in Figs. 4 and 5, which show the same trend as the radial electric field with a high magnitude at the plasma edge. It is worth to note that the radial electric field, E r, is calculated by 782 ω E B = (RB θ) 2 ( ) Er, (12) B φ Ψ RB θ E r = 1 Zen i p i r v θb φ + v tor B θ, (13)

6 Y. PIANROJ et al.: Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling p i where, r is the pressure gradient, υ θ and υ tor are the poloidal and toroidal velocities, respectively, n i is the ion density, Z is the ion charge number, and e is the elementary charge. The calculated toroidal velocity, v tor, is assumed to be a function of ion temperature [29] ; whereas the poloidal velocity, v θ is estimated using the NCLASS code. The last term, the magnetic shear, also plays a key role in facilitating entry into enhanced confinement or low magnetic shear acts to reduce the growth rate of turbulence [19,29]. Thus, the magnetic shear profile simulated by BALDUR is shown in these figures. The magnetic shear profile increases rapidly at r/a = 0.6 to 1.0. Therefore, the inverse of maximum function between 1 to (s 0.5) 2 of this term is effective in term of suppression at the plasma edge area as well. This behaviour of these parameters for suppression is similar in all simulations in this work. 4.2 Statistical analysis To quantify the comparison between simulations and experimental results, a percentage of the root-meansquare error (%RMSE) deviation and the %offset are calculated based on the difference between simulated and experimental results. In this paper, the %RMSE and the %offset are defined respectively as RMSE(%) = 1 N offset(%) = 1 N N i=1 N i=1 ( Xsimi X expi X exp0 ) 2 100, (14) ( Xsimi X ) expi 100, (15) X exp0 where, X expi is the i th data point of the experimental profile, X simi is the corresponding data point of the simulation profile, and X exp0 is the maximum data point of the experimental profile of X as a function of radius, with N points totally. The %RMSE and the %offset are evaluated for each of the four profiles, namely: electron temperature, ion temperature, electron density, and deuterium density for the shots considered. Note that the %offset is positive if the simulated data is larger than the experimental data and negative if the simulated is smaller than the experimental data. If the %offset is zero, then the %RSME is a measure of how much the shape of the profiles differ between simulated and experimental one, thus the statistical analysis will be used to analyze the coefficients C x and the simulated and experimental data from DIII-D H-mode discharges that will be described in the next section Calibration of coefficients C x In the pedestal transport model, described in Eq. (5), the coefficient, C x for each species is chosen to optimize the agreement in the data from the simulation and the DIII-D H-mode shot for both core and edge regions. It is found that the ion coefficient (C i ) and the electron coefficient (C e ) are equal to , which yield the best agreement. For the hydrogenic coefficient and the impurity coefficient, the best choices are and , respectively. The effect of different coefficients, by a comparison to the experimental data of DIII-D is shown in Fig. 6, with the values of coefficients listed in Table 2. It depicts the set of coefficients that are used in this work C x1, the set of coefficients that are less than ten times that of C x1 are C x2, and the set of coefficients that are more than ten times that of C x1 are C x3. These coefficients affect the electron temperature, ion temperature, electron density, and deuterium density profiles. Fig.6 Profiles of electron temperature, ion temperature electron density and deuterium density. The simulated results by using BALDUR in order to show the calibration and sensitivity of coefficients C x, are compared to the DIII-D data of shot

7 Plasma Science and Technology, Vol.14, No.9, Sep Simulation results compared with 10 DIII-D H-mode discharges In this section, the simulation results carried out by BALDUR are validated with the data from ten shots in DIII-D by using statistical analysis. The results are presented in Figs and listed in Table 3. It should be noted that the statistical analysis in this work consists of two groups. The first group is named core model which is used to quantify all the simulated and experimental data when the anomalous transport mixed B/gB model is used from the center of plasma to the top of pedestal in which the boundary is taken from experiments at the top of pedestal at the diagnostic time. Another group is named core-edge model which is used to quantify all the simulated and experimental data when the anomalous transport mixed B/gB model is used with the suppression function from the center to the edge of plasma (separatrix). Table 2. The %RMSEs and %offsets for the electron temperature profiles using either the core model or using the core-edge model for ten DIII-D shots are shown in Fig. 7. The %RMSEs of the electron temperature using the core model range from 4.50% to 8.38%. However, with the core-edge model, the %RMSEs range from 6.88% to 18.71%. The %offsets using the core model are mostly positive, indicating that simulations tend to over-predict the experimental results. However, the %offsets using the core-edge model are mostly negative, indicating that simulations tend to under-predict the experimental results. In Fig. 8, the %RMSEs of the ion temperature using the core model range from 3.83% to 12.21% while those using the core-edge model range from 6.88% to 18.71%. The %offsets of simulations using both core and core-edge model are mostly positive, indicating that simulations tend to over-predict the experimental results. %RMSE and %offset for the calibration and sensitivity of coefficients Cx Profiles Cx1 Cx2 Cx3 %RMSE %offset %RMSE %offset %RMSE %offset Te Ti ne nd Fig.7 Percentage of root mean square error (%RMSE) for the electron temperature profiles obtained by simulations using both core model (mixed B/gB) and core-edge model in BALDUR, compared to the experimental data from ten H-mode shots (pedestal occurred) in DIII-D 784

8 Y. PIANROJ et al.: Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling Fig.8 Percentage of root mean square error (%RMSE) for the ion temperature profiles obtained by the simulation using both core model (mixed B/gB) and core-edge model in BALDUR, compared to the experimental data from ten H-mode shots (pedestal occurred) in DIII-D Fig.9 Percentage of root mean square error (%RMSE) for the electron density profiles obtained by the simulation using both core model (mixed B/gB) and core-edge model in BALDUR, compared to the experimental data from ten H-mode shots (pedestal occurred) in DIII-D In Fig. 9, the %RMSE for the simulations for electron density using the core model ranges from 5.37% to 25.51% while that of simulations using the coreedge model ranges from 4.03% to 13.21%. The %offsets in the case of the simulations using the core model are mostly negative, indicating that simulations under- predict the experimental results. However, the %offsets in the case of the simulations using the core-edge model are mostly positive. Finally in Fig. 10, the %RMSE of the simulations for deuterium density using the core model ranges from 5.66% to 21.51% and the %RMSE of the simulations using the core-edge model ranges from 785

9 Plasma Science and Technology, Vol.14, No.9, Sep % to 17.66%. The %offsets are mostly negative for the simulations using both models, indicating that simulations tend to under-predict the experimental data. The average of %RMSE and average of %offset, averaged over ten shots for electron temperature, ion temperature, electron density, and deuterium density, are shown in Fig. 11. The averaged %RMSE differs in less than 6% between the two models for four profiles, and the averaged %offsets differs in less than 8%. A com- parison between the results using the core model to the core-edge mode for the simulation of temperature profiles indicates that the average of %RMSE increase and the simulations over-predict the experimental results because of the positive averages of %offset. For density profiles, the average of %RMSE for electron density decreases in some shots (77559, 81499, and 82788) and the simulations over-predict the experimental results. Fig.10 Percentage of root mean square error (%RMSE) for the deuterium density profiles obtained by the simulation using core model (mixed B/gB) and core-edge model in BALDUR, compared to the experimental data from ten H-mode shots (pedestal occurred) in DIII-D Table 3. Discharges %RMSE and %offset for both core and core-edge models Core model Core-Edge model %RMSE Te Ti %offset %RMSE Ti ne %offset ne nd Te Ti ne nd Te nd Te Ti ne nd

10 Y. PIANROJ et al.: Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling Fig.11 Averaged percentage of root mean square error (%RMSE) and the averaged percentage of offset for four profiles of electron temperature (Te ), ion temperature (Ti ), electron density (ne ) and deuterium density (nd ) obtained by simulations using both the core and core-edge models, compared to the experimental data from ten H-mode shots in DIII-D 5 Conclusion A theory-based model for describing the pedestal transport is developed. An anomalous transport model for the core region is extended to the pedestal region by the inclusion of the effect of both ωe B flow shear and magnetic shear. This model is developed and tested in BALDUR for self-consistently simulating H-mode plasmas. It is found that the simulations successfully reproduce the experimental results. The core simulations carried out using BALDUR with the mixed B/gB core model and prescribed boundary conditions yield the simulations with average RMSEs between 6.38% and 12.62% for both temperature and density profiles. For the core-edge simulations, the agreement changes slightly with a range between 7.59% and 14.53%. As a result, the simulations using the core-edge model with the pedestal model developed yield an agreement comparable to those obtained from the simulations using the core model with the boundary conditions taken from experiment. It is found that the suppression function developed is effective only in the edge region. References Acknowledgments Mr. YUTTHAPONG thanks for the program Strategic Scholarships for Frontier Research Network for Thai Ph.D. Program Wagner F, Becker G, Behringer K, et al. 1982, Physical Review Letters, 49: 1408 Connor J W, Wilson H R. 2000, Plasma Physics and Controlled Fusion, 42: R1 Singer C E, Post D E, Mikkelsen D R. 1988, Comput. Phys. Commun., 49: 275 Honda M, Fukuyama A. 2006, Nuclear Fusion, 46: 580 Cenacchi G, Taroni A. 1988, JET-IR, 88, Technical Report, Joint European Torus Underlaking, UK Pereverzev G, Yushmanov P N. 2002, IPP 5/98, Technical Report, Max-Planck Institut fur Plasmaphysik, Garching, Germany Basiuk V, Artaud J F, Imbeaux F, et al. 2003, Nuclear Fusion, 43: 822 Kinsey J E, Staebler G M, Waltz R E. 2002, Physics of Plasmas, 9: 1676 Bateman G, Kritz A H, Kinsey J E. 1998, Physics of Plasmas, 5: 1793 Bateman G, Onjun T, Kritz A H. 2003, Plasma Physics and Controlled Fusion, 45: 1939 Kinsey J E, Bateman G, Onjun T, et al. 2003, Nuclear Fusion, 43: 1845 Onjun T, Bateman G, Kritz A H. 2001, Physics of Plasmas, 8: 975 Hannum D, Bateman G, Kinsey J. 2001, Physics of Plasmas, 8: 964 Biglari H, Diamond P H, Terry P W. 1990, Physics of Fluids B: Plasma Physics, 2: 1 Gohil P. 2006, Comptes Rendus Physique, 7: 606 Boedo J, Gray D, Jachmich S, et al. 2000, Nuclear 787

11 Plasma Science and Technology, Vol.14, No.9, Sep Fusion, 40: Oost G V, Adamek J, Antoni V, et al. 2003, Plasma Physics and Controlled Fusion, 45: 1 18 Pacher G W, et al. 2004, Plasma Physics and Controlled Fusion, 46: A Doyle E J, Houlberg W A, Kamada Y, et al. 2007, Nuclear Fusion, 47: S18 20 Zolotukhin O V, Igitkhanov Y, Janeschitz G, et al. 2001, Transport simulations of type I ELMs. Presented at the 28th EPS Conf. on Contr. Fusion and Plasma Phys., (Funchal, Portugal, June 2001), European Physical Society, Geneva 21 Sugihara M, Igitkhanov Y, Janeschitz G, et al. 2001, Simulation studies on H-mode pedestal behavioru during type-i ELMs under various plasma conditions. Presented at the 28th EPS Conf. on Contr. Fusion and Plasma Phys., (Funchal, Portugal, June 2001), European Physical Society, Geneva 22 Pankin A Y, Voitsekhovitch I, Bateman G, et al. 2005, Plasma Physics and Controlled Fusion, 47: Janeschitz G, Pacher G W, Zolotukhin O, et al. 2002, Plasma Physics and Controlled Fusion, 44: A Tala T. 2002, Transport Barrier and Current Profile Studies on the JET Tokamak. [Ph.D] Helsinki University of Technology, Espoo, Finland 25 Tala T J J, Heikkinen J A, Parail V V. 2001, Plasma Physics and Controlled Fusion, 43: Onjun T, Pianroj Y. 2009, Nuclear Fusion, 49: Boucher D, Connor J W, Houlberg W A, et al. 2000, Nuclear Fusion, 40: Burrell K H. 1997, Physics of Plasmas, 4: Waltz R E, Staebler G M, Dorland W, et al. 1997, Physics of Plasmas, 4: 2482 (Manuscript received 21 February 2011) (Manuscript accepted 3 June 2011) address of corresponding author T. ONJUN: 788

Projection of bootstrap current in the ITER with standard type I ELMy H-mode and steady state scenarios

Projection of bootstrap current in the ITER with standard type I ELMy H-mode and steady state scenarios Songklanakarin J. Sci. Technol. 34 (1), 77-91, Jan. - Feb. 01 http://www.sjst.psu.ac.th Original Article Projection of bootstrap current in the ITER with standard type I ELMy H-mode and steady state scenarios

More information

Self-consistent modeling of ITER with BALDUR integrated predictive modeling code

Self-consistent modeling of ITER with BALDUR integrated predictive modeling code Self-consistent modeling of ITER with BALDUR integrated predictive modeling code Thawatchai Onjun Sirindhorn International Institute of Technology, Thammasat University, Klong Luang, Pathumthani, 12121,

More information

TH/P8-4 Second Ballooning Stability Effect on H-mode Pedestal Scalings

TH/P8-4 Second Ballooning Stability Effect on H-mode Pedestal Scalings TH/P8-4 Second Ballooning Stability Effect on H-mode Pedestal Scalings T. Onjun 1), A.H. Kritz ), G. Bateman ), A. Pankin ) 1) Sirindhorn International Institute of Technology, Klong Luang, Pathumthani,

More information

Impact of Toroidal Flow on ITB H-Mode Plasma Performance in Fusion Tokamak

Impact of Toroidal Flow on ITB H-Mode Plasma Performance in Fusion Tokamak Impact of oroidal Flow on I H-Mode Plasma Performance in Fusion okamak oonyarit Chatthong 1,*, hawatchai Onjun 1, Roppon Picha and Nopporn Poolyarat 3 1 School of Manufacturing Systems and Mechanical Engineering,

More information

Triggering Mechanisms for Transport Barriers

Triggering Mechanisms for Transport Barriers Triggering Mechanisms for Transport Barriers O. Dumbrajs, J. Heikkinen 1, S. Karttunen 1, T. Kiviniemi, T. Kurki-Suonio, M. Mantsinen, K. Rantamäki 1, S. Saarelma, R. Salomaa, S. Sipilä, T. Tala 1 Euratom-TEKES

More information

A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS

A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS Presented by D.P. SCHISSEL Presented to APS Centennial Meeting March 20 26, 1999 Atlanta, Georgia

More information

Role of Magnetic Configuration and Heating Power in ITB Formation in JET.

Role of Magnetic Configuration and Heating Power in ITB Formation in JET. Role of Magnetic Configuration and Heating Power in ITB Formation in JET. The JET Team (presented by V. Parail 1 ) JET Joint Undertaking, Abingdon, Oxfordshire, United Kingdom 1 present address: EURATOM/UKAEA

More information

Relating the L-H Power Threshold Scaling to Edge Turbulence Dynamics

Relating the L-H Power Threshold Scaling to Edge Turbulence Dynamics Relating the L-H Power Threshold Scaling to Edge Turbulence Dynamics Z. Yan 1, G.R. McKee 1, J.A. Boedo 2, D.L. Rudakov 2, P.H. Diamond 2, G. Tynan 2, R.J. Fonck 1, R.J. Groebner 3, T.H. Osborne 3, and

More information

Turbulent Transport Analysis of JET H-mode and Hybrid Plasmas using QuaLiKiz, TGLF and GLF23

Turbulent Transport Analysis of JET H-mode and Hybrid Plasmas using QuaLiKiz, TGLF and GLF23 EFDA JET CP(1)/ B. Baiocchi, J. Garcia, M. Beurkens, C. Bourdelle, F. Crisanti, C. Giroud, J. Hobirk, F. Imbeaux, I. Nunes, EU-ITM ITER Scenario Modelling group and JET EFDA contributors Turbulent Transport

More information

GA A23736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT

GA A23736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT GA A3736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT by T.C. LUCE, C.C. PETTY, and J.E. KINSEY AUGUST DISCLAIMER This report was prepared as an account of work sponsored by an

More information

Characteristics of the H-mode H and Extrapolation to ITER

Characteristics of the H-mode H and Extrapolation to ITER Characteristics of the H-mode H Pedestal and Extrapolation to ITER The H-mode Pedestal Study Group of the International Tokamak Physics Activity presented by T.Osborne 19th IAEA Fusion Energy Conference

More information

Plasma instability during ITBs formation with pellet injection in tokamak

Plasma instability during ITBs formation with pellet injection in tokamak Plasma instability during ITBs formation with pellet injection in tokamak P. Klaywittaphat 1, B. Chatthong 2, T. Onjun. R. Picha 3, J. Promping 3 1 Faculty of Engineering, Thaksin University, Phatthalung,

More information

Integrated Transport Modeling of High-Field Tokamak Burning Plasma Devices

Integrated Transport Modeling of High-Field Tokamak Burning Plasma Devices Integrated Transport Modeling of High-Field Tokamak Burning Plasma Devices Arnold H. Kritz, T.Onjun,C.Nguyen,P.Zhu,G.Bateman Lehigh University Physics Department 16 Memorial Drive East, Bethlehem, PA 1815

More information

QTYUIOP LOCAL ANALYSIS OF CONFINEMENT AND TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL.

QTYUIOP LOCAL ANALYSIS OF CONFINEMENT AND TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL. LOCAL ANALYSIS OF CONFINEMENT AND TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR Presented by D.P. SCHISSEL for the DIII D Team* Presented to 16th IAEA Fusion Conference

More information

TURBULENT TRANSPORT THEORY

TURBULENT TRANSPORT THEORY ASDEX Upgrade Max-Planck-Institut für Plasmaphysik TURBULENT TRANSPORT THEORY C. Angioni GYRO, J. Candy and R.E. Waltz, GA The problem of Transport Transport is the physics subject which studies the physical

More information

GA A22443 STUDY OF H MODE THRESHOLD CONDITIONS IN DIII D

GA A22443 STUDY OF H MODE THRESHOLD CONDITIONS IN DIII D GA A443 STUDY OF H MODE THRESHOLD CONDITIONS IN DIII D by R.J. GROEBNER, T.N. CARLSTROM, K.H. BURRELL, S. CODA, E.J. DOYLE, P. GOHIL, K.W. KIM, Q. PENG, R. MAINGI, R.A. MOYER, C.L. RETTIG, T.L. RHODES,

More information

EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE

EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE T.H. Osborne 1, P.B. Snyder 1, R.J. Groebner 1, A.W. Leonard 1, M.E. Fenstermacher 2, and the DIII-D Group 47 th Annual Meeting

More information

GA A23114 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES

GA A23114 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES GA A311 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES by C.C. PETTY, M.R. WADE, J.E. KINSEY, R.J. GROEBNER, T.C. LUCE, and G.M. STAEBLER AUGUST 1999 This report

More information

Observation of Reduced Core Electron Temperature Fluctuations and Intermediate Wavenumber Density Fluctuations in H- and QH-mode Plasmas

Observation of Reduced Core Electron Temperature Fluctuations and Intermediate Wavenumber Density Fluctuations in H- and QH-mode Plasmas Observation of Reduced Core Electron Temperature Fluctuations and Intermediate Wavenumber Density Fluctuations in H- and QH-mode Plasmas EX/P5-35 L. Schmitz 1), A.E. White 1), G. Wang 1), J.C. DeBoo 2),

More information

Comparison of ITER Performance Predicted by Semi-Empirical and Theory-Based Transport Models

Comparison of ITER Performance Predicted by Semi-Empirical and Theory-Based Transport Models 1 CT/P-3 Comparison of ITER Performance Predicted by Semi-Empirical and Theory-Based Transport Models V. Mukhovatov 1), Y. Shimomura 1), A. Polevoi 1), M. Shimada 1), M. Sugihara 1), G. Bateman 2), J.G.

More information

DRIFTWAVE-BASED MODELING OF POLOIDAL SPIN-UP PRECURSOR AND STEP-WISE EXPANSION OF TRANSPORT BARRIERS

DRIFTWAVE-BASED MODELING OF POLOIDAL SPIN-UP PRECURSOR AND STEP-WISE EXPANSION OF TRANSPORT BARRIERS GA A23497 DRIFTWAVE-BASED MODELING OF POLOIDAL SPIN-UP PRECURSOR AND STEP-WISE EXPANSION OF TRANSPORT BARRIERS by G.M. STAEBLER, J.E. KINSEY, P. ZHU, G. BATEMAN, W. HORTON, A.H. KRITZ, T. ONJUN, A. PANKIN,

More information

Comparative Transport Analysis of JET and JT-60U Discharges

Comparative Transport Analysis of JET and JT-60U Discharges EFDA JET CP(1)/13 J. Garcia, N. Hayashi, G. Giruzzi, M. Schneider, E. Joffrin, S. Ide, Y. Sakamoto, T. Suzuki, H. Urano, the JT-U Team and JET EFDA contributors Comparative Transport Analysis of JET and

More information

Particle transport results from collisionality scans and perturbative experiments on DIII-D

Particle transport results from collisionality scans and perturbative experiments on DIII-D 1 EX/P3-26 Particle transport results from collisionality scans and perturbative experiments on DIII-D E.J. Doyle 1), L. Zeng 1), G.M. Staebler 2), T.E. Evans 2), T.C. Luce 2), G.R. McKee 3), S. Mordijck

More information

On Lithium Wall and Performance of Magnetic Fusion Device

On Lithium Wall and Performance of Magnetic Fusion Device On Lithium Wall and Performance of Magnetic Fusion Device S. I. Krasheninnikov 1, L. E. Zakharov 2, and G. V. Pereverzev 3 1 University California San Diego, La Jolla, USA 2 Princeton Plasma Physics Laboratory,

More information

Reduced Electron Thermal Transport in Low Collisionality H-mode Plasmas in DIII-D and the Importance of Small-scale Turbulence

Reduced Electron Thermal Transport in Low Collisionality H-mode Plasmas in DIII-D and the Importance of Small-scale Turbulence 1 Reduced Electron Thermal Transport in Low Collisionality H-mode Plasmas in DIII-D and the Importance of Small-scale Turbulence L. Schmitz, 1 C. Holland, 2 T.L. Rhodes, 1 G. Wang, 1 L. Zeng, 1 A.E. White,

More information

Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus)

Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus) Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus) PD/P-01 C. Castaldo 1), R. Cesario 1), Y, Andrew 2), A. Cardinali 1), V. Kiptly 2), M. Mantsinen

More information

Nonlinear Gyrokinetic Simulations of Ion Turbulence in Impurity Seeded and High Density Toroidal Plasmas

Nonlinear Gyrokinetic Simulations of Ion Turbulence in Impurity Seeded and High Density Toroidal Plasmas Nonlinear Gyrokinetic Simulations of Ion Turbulence in Impurity Seeded and High Density Toroidal Plasmas R.D. Sydora, J.-N. Leboeuf, J. M. Dawson, V.K. Decyk, M.W. Kissick, C. L. Rettig, T. L. Rhodes,

More information

Study of B +1, B +4 and B +5 impurity poloidal rotation in Alcator C-Mod plasmas for 0.75 ρ 1.0.

Study of B +1, B +4 and B +5 impurity poloidal rotation in Alcator C-Mod plasmas for 0.75 ρ 1.0. Study of B +1, B +4 and B +5 impurity poloidal rotation in Alcator C-Mod plasmas for 0.75 ρ 1.0. Igor Bespamyatnov, William Rowan, Ronald Bravenec, and Kenneth Gentle The University of Texas at Austin,

More information

Progress in characterization of the H-mode pedestal

Progress in characterization of the H-mode pedestal Journal of Physics: Conference Series Progress in characterization of the H-mode pedestal To cite this article: A W Leonard 2008 J. Phys.: Conf. Ser. 123 012001 View the article online for updates and

More information

Influence of Beta, Shape and Rotation on the H-mode Pedestal Height

Influence of Beta, Shape and Rotation on the H-mode Pedestal Height Influence of Beta, Shape and Rotation on the H-mode Pedestal Height by A.W. Leonard with R.J. Groebner, T.H. Osborne, and P.B. Snyder Presented at Forty-Ninth APS Meeting of the Division of Plasma Physics

More information

Experimental test of the neoclassical theory of poloidal rotation

Experimental test of the neoclassical theory of poloidal rotation Experimental test of the neoclassical theory of poloidal rotation Presented by Wayne Solomon with contributions from K.H. Burrell, R. Andre, L.R. Baylor, R. Budny, P. Gohil, R.J. Groebner, C.T. Holcomb,

More information

Predicting the Rotation Profile in ITER

Predicting the Rotation Profile in ITER Predicting the Rotation Profile in ITER by C. Chrystal1 in collaboration with B. A. Grierson2, S. R. Haskey2, A. C. Sontag3, M. W. Shafer3, F. M. Poli2, and J. S. degrassie1 1General Atomics 2Princeton

More information

Studies of H Mode Plasmas Produced Directly by Pellet Injection in DIII D

Studies of H Mode Plasmas Produced Directly by Pellet Injection in DIII D Studies of H Mode Plasmas Produced Directly by Pellet Injection in by P. Gohil in collaboration with L.R. Baylor,* K.H. Burrell, T.C. Jernigan,* G.R. McKee, *Oak Ridge National Laboratory University of

More information

Validation of Theoretical Models of Intrinsic Torque in DIII-D and Projection to ITER by Dimensionless Scaling

Validation of Theoretical Models of Intrinsic Torque in DIII-D and Projection to ITER by Dimensionless Scaling Validation of Theoretical Models of Intrinsic Torque in DIII-D and Projection to ITER by Dimensionless Scaling by B.A. Grierson1, C. Chrystal2, W.X. Wang1, J.A. Boedo3, J.S. degrassie2, W.M. Solomon2,

More information

Core Transport Properties in JT-60U and JET Identity Plasmas

Core Transport Properties in JT-60U and JET Identity Plasmas 1 EXC/P4-12 Core Transport Properties in JT-60U and JET Identity Plasmas X. Litaudon 1, Y. Sakamoto 2, P.C. de Vries 3, A. Salmi 4, T. Tala 5, C. Angioni 6, S. Benkadda 7, M.N.A. Beurskens 8, C. Bourdelle

More information

Progress in Transport Modelling of Internal Transport Barrier Plasmas in JET

Progress in Transport Modelling of Internal Transport Barrier Plasmas in JET Progress in Transport Modelling of Internal Transport Barrier Plasmas in JET T. Tala 1, C. Bourdelle, F. Imbeaux, D. Moreau, V. Parail, G. Corrigan, F. Crisanti, X. Garbet, D. Heading, E. Joffrin, L. Laborde,

More information

Development and Validation of a Predictive Model for the Pedestal Height (EPED1)

Development and Validation of a Predictive Model for the Pedestal Height (EPED1) Development and Validation of a Predictive Model for the Pedestal Height (EPED1) P.B. Snyder 1 with R.J. Groebner 1, A.W. Leonard 1, T.H. Osborne 1, M. Beurskens 3, L.D. Horton 4, A.E. Hubbard 5, J.W.

More information

Comparison of Ion Internal Transport Barrier Formation between Hydrogen and Helium Dominated Plasmas )

Comparison of Ion Internal Transport Barrier Formation between Hydrogen and Helium Dominated Plasmas ) Comparison of Ion Internal Transport Barrier Formation between Hydrogen and Helium Dominated Plasmas ) Kenichi NAGAOKA 1,2), Hiromi TAKAHASHI 1,2), Kenji TANAKA 1), Masaki OSAKABE 1,2), Sadayoshi MURAKAMI

More information

Modeling of ELM Dynamics for ITER

Modeling of ELM Dynamics for ITER Modeling of ELM Dynamics for ITER A.Y. PANKIN 1, G. BATEMAN 1, D.P. BRENNAN 2, A.H. KRITZ 1, S. KRUGER 3, P.B. SNYDER 4 and the NIMROD team 1 Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015

More information

Investigation of Intrinsic Rotation Dependencies in Alcator C-Mod

Investigation of Intrinsic Rotation Dependencies in Alcator C-Mod Investigation of Intrinsic Rotation Dependencies in Alcator C-Mod D. Kwak, A. E. White, J. E. Rice, N. T. Howard, C. Gao, M. L. Reinke, M. Greenwald, C. Angioni, R. M. McDermott, and the C-Mod and ASDEX

More information

Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport

Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport 1 Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama Japan Atomic Energy Agency, Naka, Ibaraki-ken, 311-0193 Japan

More information

Bounce-averaged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas

Bounce-averaged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas Bounce-averaged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas Lei Qi a, Jaemin Kwon a, T. S. Hahm a,b and Sumin Yi a a National Fusion Research Institute (NFRI), Daejeon,

More information

Transport Improvement Near Low Order Rational q Surfaces in DIII D

Transport Improvement Near Low Order Rational q Surfaces in DIII D Transport Improvement Near Low Order Rational q Surfaces in DIII D M.E. Austin 1 With K.H. Burrell 2, R.E. Waltz 2, K.W. Gentle 1, E.J. Doyle 8, P. Gohil 2, C.M. Greenfield 2, R.J. Groebner 2, W.W. Heidbrink

More information

Issues of Perpendicular Conductivity and Electric Fields in Fusion Devices

Issues of Perpendicular Conductivity and Electric Fields in Fusion Devices Issues of Perpendicular Conductivity and Electric Fields in Fusion Devices Michael Tendler, Alfven Laboratory, Royal Institute of Technology, Stockholm, Sweden Plasma Turbulence Turbulence can be regarded

More information

Multi-scale turbulence, electron transport, and Zonal Flows in DIII-D

Multi-scale turbulence, electron transport, and Zonal Flows in DIII-D Multi-scale turbulence, electron transport, and Zonal Flows in DIII-D L. Schmitz1 with C. Holland2, T.L. Rhodes1, G. Wang1, J.C. Hillesheim1, A.E. White3, W. A. Peebles1, J. DeBoo4, G.R. McKee5, J. DeGrassie4,

More information

Electron Transport and Improved Confinement on Tore Supra

Electron Transport and Improved Confinement on Tore Supra Electron Transport and Improved Confinement on Tore Supra G. T. Hoang, C. Bourdelle, X. Garbet, T. Aniel, G. Giruzzi, M. Ottaviani. Association EURATOM-CEA. CEA-Cadarache, 38, St Paul-lez-Durance, France

More information

MHD Pedestal Paradigm (Conventional Wisdom)

MHD Pedestal Paradigm (Conventional Wisdom) Pedestal Transport D. R. Hatch M. Kotschenreuther, X. Liu, S. M. Mahajan, (Institute for Fusion Studies, University of Texas at Austin) S. Saarelma, C. Maggi, C. Giroud, J. Hillesheim (CCFE) J. Hughes

More information

A Dimensionless Criterion for Characterising Internal Transport Barriers in JET

A Dimensionless Criterion for Characterising Internal Transport Barriers in JET EFDA JET PR(00)09 G Tresset et al A Dimensionless Criterion for Characterising Internal Transport Barriers in JET This document is intended for publication in the open literature. It is made available

More information

Reduction of Turbulence and Transport in the Alcator C-Mod Tokamak by Dilution of Deuterium Ions with Nitrogen and Neon Injection

Reduction of Turbulence and Transport in the Alcator C-Mod Tokamak by Dilution of Deuterium Ions with Nitrogen and Neon Injection Reduction of Turbulence and Transport in the Alcator C-Mod Tokamak by Dilution of Deuterium Ions with Nitrogen and Neon Injection M. Porkolab, P. C. Ennever, S. G. Baek, E. M. Edlund, J. Hughes, J. E.

More information

EX8/3 22nd IAEA Fusion Energy Conference Geneva

EX8/3 22nd IAEA Fusion Energy Conference Geneva P.C. de Vries JET-EFDA Culham Science Centre Abingdon OX14 3DB UK EX8/3 22nd IAEA Fusion Energy Conference Geneva P.C. de Vries1, E. Joffrin2,3, M. Brix1, C.D. Challis1, K. Crombé4, B. Esposito5, N.C.

More information

On the physics of shear flows in 3D geometry

On the physics of shear flows in 3D geometry On the physics of shear flows in 3D geometry C. Hidalgo and M.A. Pedrosa Laboratorio Nacional de Fusión, EURATOM-CIEMAT, Madrid, Spain Recent experiments have shown the importance of multi-scale (long-range)

More information

Scaling of the Density Peak with Pellet Injection in ITER

Scaling of the Density Peak with Pellet Injection in ITER Plasma Science and Technology, Vol.14, No.12, Dec. 2012 Scaling of the Density Peak with Pellet Injection in ITER P. KLAYWITTAPHAT and T. ONJUN School of Manufacturing Systems and Mechanical Engineering,

More information

Electron Bernstein Wave Heating in the TCV Tokamak

Electron Bernstein Wave Heating in the TCV Tokamak Electron Bernstein Wave Heating in the TCV Tokamak A. Mueck 1, Y. Camenen 1, S. Coda 1, L. Curchod 1, T.P. Goodman 1, H.P. Laqua 2, A. Pochelon 1, TCV Team 1 1 Ecole Polytechnique Fédérale de Lausanne

More information

ELMs and Constraints on the H-Mode Pedestal:

ELMs and Constraints on the H-Mode Pedestal: ELMs and Constraints on the H-Mode Pedestal: A Model Based on Peeling-Ballooning Modes P.B. Snyder, 1 H.R. Wilson, 2 J.R. Ferron, 1 L.L. Lao, 1 A.W. Leonard, 1 D. Mossessian, 3 M. Murakami, 4 T.H. Osborne,

More information

Integrated Core-SOL-Divertor Modelling for ITER Including Impurity: Effect of Tungsten on Fusion Performance in H-mode and Hybrid Scenario

Integrated Core-SOL-Divertor Modelling for ITER Including Impurity: Effect of Tungsten on Fusion Performance in H-mode and Hybrid Scenario 1 TH/P3-45 Integrated Core-SOL-Divertor Modelling for ITER Including Impurity: Effect of Tungsten on Fusion Performance in H-mode and Hybrid Scenario R. Zagórski 1, I.Voitsekhovitch 2, I. Ivanova-Stanik

More information

QTYUIOP ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL. Presented by. for the DIII D Team*

QTYUIOP ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL. Presented by. for the DIII D Team* ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR Presented by D.P. SCHISSEL for the DIII D Team* Presented to 38th APS/DPP Meeting NOVEMBER 11 15, 1996 Denver, Colorado

More information

ASSESSMENT AND MODELING OF INDUCTIVE AND NON-INDUCTIVE SCENARIOS FOR ITER

ASSESSMENT AND MODELING OF INDUCTIVE AND NON-INDUCTIVE SCENARIOS FOR ITER ASSESSMENT AND MODELING OF INDUCTIVE AND NON-INDUCTIVE SCENARIOS FOR ITER D. BOUCHER 1, D. MOREAU 2, G. VAYAKIS 1, I. VOITSEKHOVITCH 3, J.M. ANÉ 2, X. GARBET 2, V. GRANDGIRARD 2, X. LITAUDON 2, B. LLOYD

More information

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén Current density modelling in JET and JT-60U identity plasma experiments Paula Sirén 1/12 1/16 Euratom-TEKES Euratom-Tekes Annual Seminar 2013 28 24 May 2013 Paula Sirén Current density modelling in JET

More information

Progress of Confinement Physics Study in Compact Helical System

Progress of Confinement Physics Study in Compact Helical System 1st IAEA Fusion Energy Conference Chengdu, China, 16-1 October, 6 IAEA-CN-149/ EX/5-5Rb Progress of Confinement Physics Study in Compact Helical System S. Okamura et al. NIFS-839 Oct. 6 1 EX/5-5Rb Progress

More information

Simulation of electron thermal transport in H-mode discharges

Simulation of electron thermal transport in H-mode discharges Simulation of electron thermal transport in H-mode discharges T. Rafiq, A. Y. Pankin, G. Bateman, A. H. Kritz, and F. D. Halpern Citation: Phys. Plasmas 6, 55 (9); doi:.6/.887 View online: http://dx.doi.org/.6/.887

More information

Confinement and edge studies towards low ρ* and ν* at JET

Confinement and edge studies towards low ρ* and ν* at JET 1 Confinement and edge studies towards low ρ* and ν* at JET I Nunes 1,2, P J Lomas 3, D C McDonald 3, G Saibene 4, R Sartori 4, I Voitsekhovitch 3, M Beurskens 3, G Arnoux 3, A Boboc 3, T Eich 5, C Giroud

More information

Characteristics of the H-Mode Pedestal and Extrapolation to ITER

Characteristics of the H-Mode Pedestal and Extrapolation to ITER 1 IAEA-CN-94/CT-3 Characteristics of the H-Mode Pedestal and Extrapolation to ITER T.H. Osborne, 1 J.G. Cordey, 2 R.J. Groebner, 1 T. Hatae, 3 A. Hubbard, 4 L.D. Horton, 5 Y. Kamada, 3 A. Kritz, 6 L.L.

More information

Electrode and Limiter Biasing Experiments on the Tokamak ISTTOK

Electrode and Limiter Biasing Experiments on the Tokamak ISTTOK Electrode and Limiter Biasing Experiments on the Tokamak ISTTOK C. Silva, H. Figueiredo, J.A.C. Cabral,, I. Nedzelsky, C.A.F. Varandas Associação Euratom/IST, Centro de Fusão Nuclear, Instituto Superior

More information

Increased understanding of the dynamics and transport in ITB plasmas from multi-machine comparisons

Increased understanding of the dynamics and transport in ITB plasmas from multi-machine comparisons INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 3 (003) 708 715 PII: S009-5515(03)6570- Increased understanding of the dynamics and transport in ITB plasmas

More information

Heating and Confinement Study of Globus-M Low Aspect Ratio Plasma

Heating and Confinement Study of Globus-M Low Aspect Ratio Plasma EX/P5- Heating and Confinement Study of Globus-M Low Aspect Ratio Plasma N.V. Sakharov ), V.V. Dyachenko ), B.B. Ayushin ), A.V. Bogomolov ), F.V. Chernyshev ), V.K. Gusev ), S.A. Khitrov ), N.A. Khromov

More information

Modelling of optimized shear scenarios with LHCD for high performance experiments on JET

Modelling of optimized shear scenarios with LHCD for high performance experiments on JET Modelling of optimized shear scenarios with LHCD for high performance experiments on JET T.J.J. Tala a,f.x.söldner b, V.V. Parail, Yu.F. Baranov, A. Taroni b JET Joint Undertaking, Abingdon, Oxfordshire,

More information

Development of a High-Speed VUV Camera System for 2-Dimensional Imaging of Edge Turbulent Structure in the LHD

Development of a High-Speed VUV Camera System for 2-Dimensional Imaging of Edge Turbulent Structure in the LHD Development of a High-Speed VUV Camera System for 2-Dimensional Imaging of Edge Turbulent Structure in the LHD Masaki TAKEUCHI, Satoshi OHDACHI and LHD experimental group National Institute for Fusion

More information

Local Plasma Parameters and H-Mode Threshold in Alcator C-Mod

Local Plasma Parameters and H-Mode Threshold in Alcator C-Mod PFC/JA-96-42 Local Plasma Parameters and H-Mode Threshold in Alcator C-Mod A.E. Hubbard, J.A. Goetz, I.H. Hutchinson, Y. In, J. Irby, B. LaBombard, P.J. O'Shea, J.A. Snipes, P.C. Stek, Y. Takase, S.M.

More information

Ion Heating Experiments Using Perpendicular Neutral Beam Injection in the Large Helical Device

Ion Heating Experiments Using Perpendicular Neutral Beam Injection in the Large Helical Device Ion Heating Experiments Using Perpendicular Neutral Beam Injection in the Large Helical Device Kenichi NAGAOKA, Masayuki YOKOYAMA, Yasuhiko TAKEIRI, Katsumi IDA, Mikiro YOSHINUMA, Seikichi MATSUOKA 1),

More information

Experimental Evidence of Inward Momentum Pinch on JET and Comparison with Theory

Experimental Evidence of Inward Momentum Pinch on JET and Comparison with Theory Experimental Evidence of Inward Momentum Pinch on JET and Comparison with Theory Tuomas Tala, Association Euratom-Tekes, VTT, Finland JET-EFDA Culham Science Centre Abingdon, UK 22nd IAEA Fusion Energy

More information

Towards Multiscale Gyrokinetic Simulations of ITER-like Plasmas

Towards Multiscale Gyrokinetic Simulations of ITER-like Plasmas Frank Jenko Max-Planck-Institut für Plasmaphysik, Garching Universität Ulm Towards Multiscale Gyrokinetic Simulations of ITER-like Plasmas 23 rd IAEA Fusion Energy Conference 11-16 October 2010, Daejeon,

More information

MHD Analysis of the Tokamak Edge Pedestal in the Low Collisionality Regime Thoughts on the Physics of ELM-free QH and RMP Discharges

MHD Analysis of the Tokamak Edge Pedestal in the Low Collisionality Regime Thoughts on the Physics of ELM-free QH and RMP Discharges MHD Analysis of the Tokamak Edge Pedestal in the Low Collisionality Regime Thoughts on the Physics of ELM-free QH and RMP Discharges P.B. Snyder 1 Contributions from: H.R. Wilson 2, D.P. Brennan 1, K.H.

More information

Electron temperature barriers in the RFX-mod experiment

Electron temperature barriers in the RFX-mod experiment Electron temperature barriers in the RFX-mod experiment A. Scaggion Consorzio RFX, Padova, Italy Tuesday 5 th October 2010 ADVANCED PHYSICS LESSONS 27/09/2010 07/10/2010 IPP GARCHING JOINT EUROPEAN RESEARCH

More information

in tokamak plasmas Istvan Pusztai 1 Jeff Candy 2 Punit Gohil 2

in tokamak plasmas Istvan Pusztai 1 Jeff Candy 2 Punit Gohil 2 Isotope mass and charge effects in tokamak plasmas Istvan Pusztai 1 Jeff Candy 2 Punit Gohil 2 (1) Chalmers University of Technology, Applied Physics, SE-412 96, Göteborg, Sweden (2) General Atomics, P.O.

More information

GA A26866 REDUCED ELECTRON THERMAL TRANSPORT IN LOW COLLISIONALITY H-MODE PLASMAS IN DIII-D AND THE IMPORTANCE OF SMALL-SCALE TURBULENCE

GA A26866 REDUCED ELECTRON THERMAL TRANSPORT IN LOW COLLISIONALITY H-MODE PLASMAS IN DIII-D AND THE IMPORTANCE OF SMALL-SCALE TURBULENCE GA A26866 REDUCED ELECTRON THERMAL TRANSPORT IN LOW COLLISIONALITY H-MODE PLASMAS IN DIII-D AND THE IMPORTANCE OF SMALL-SCALE TURBULENCE by L. SCHMITZ, C. HOLLAND, T.L. RHODES, G. WANG, L. ZENG, A.E. WHITE,

More information

EX/C3-5Rb Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

EX/C3-5Rb Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier EX/C-Rb Relationship between particle and heat transport in JT-U plasmas with internal transport barrier H. Takenaga ), S. Higashijima ), N. Oyama ), L. G. Bruskin ), Y. Koide ), S. Ide ), H. Shirai ),

More information

Comparison of Deuterium Toroidal and Poloidal Rotation to Neoclassical Theory in the DIII-D Tokamak

Comparison of Deuterium Toroidal and Poloidal Rotation to Neoclassical Theory in the DIII-D Tokamak 1 EX/P3-19 omparison of Deuterium Toroidal and Poloidal Rotation to Neoclassical Theory in the DIII-D Tokamak B.A. Grierson 1, K.H. Burrell and W.M. Solomon 1 1 Princeton Plasma Physics Laboratory, Princeton

More information

ABSTRACT, POSTER LP1 12 THURSDAY 11/7/2001, APS DPP CONFERENCE, LONG BEACH. Recent Results from the Quiescent Double Barrier Regime on DIII-D

ABSTRACT, POSTER LP1 12 THURSDAY 11/7/2001, APS DPP CONFERENCE, LONG BEACH. Recent Results from the Quiescent Double Barrier Regime on DIII-D ABSTRACT, POSTER LP1 1 THURSDAY 11/7/1, APS DPP CONFERENCE, LONG BEACH Recent Results from the Quiescent Double Barrier Regime on DIII-D E.J. Doyle, K.H. Burrell, T. Casper, J.C. DeBoo, A. Garofalo, P.

More information

GA A27398 COMPARISON OF DEUTERIUM TOROIDAL AND POLOIDAL ROTATION TO NEOCLASSICAL THEORY

GA A27398 COMPARISON OF DEUTERIUM TOROIDAL AND POLOIDAL ROTATION TO NEOCLASSICAL THEORY GA A27398 COMPARISON OF DEUTERIUM TOROIDAL AND POLOIDAL ROTATION TO NEOCLASSICAL THEORY by B.A. GRIERSON, K.H. BURRELL and W.M. SOLOMON OCTOBER 212 DISCLAIMER This report was prepared as an account of

More information

Driving Mechanism of SOL Plasma Flow and Effects on the Divertor Performance in JT-60U

Driving Mechanism of SOL Plasma Flow and Effects on the Divertor Performance in JT-60U EX/D-3 Driving Mechanism of SOL Plasma Flow and Effects on the Divertor Performance in JT-6U N. Asakura ), H. Takenaga ), S. Sakurai ), G.D. Porter ), T.D. Rognlien ), M.E. Rensink ), O. Naito ), K. Shimizu

More information

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Yasutomo ISHII and Andrei SMOLYAKOV 1) Japan Atomic Energy Agency, Ibaraki 311-0102, Japan 1) University

More information

Correlations of ELM frequency with pedestal plasma characteristics

Correlations of ELM frequency with pedestal plasma characteristics cpp header will be provided by the publisher Correlations of ELM frequency with pedestal plasma characteristics G. Kamberov 1 and L. Popova 2 1 Stevens Institute of Technology, Hoboken NJ, USA 2 Institute

More information

Scaling of divertor heat flux profile widths in DIII-D

Scaling of divertor heat flux profile widths in DIII-D 1 Scaling of divertor heat flux profile widths in DIII-D C.J. Lasnier 1, M.A. Makowski 1, J.A. Boedo 2, N.H. Brooks 3, D.N. Hill 1, A.W. Leonard 3, and J.G. Watkins 4 e-mail:lasnier@llnl.gov 1 Lawrence

More information

Comparison of theory-based and semi-empirical transport modelling in JET plasmas with ITBs

Comparison of theory-based and semi-empirical transport modelling in JET plasmas with ITBs INSTITUTE OF PHYSICS PUBLISHING Plasma Phys. Control. Fusion (). p. PLASMA PHYSICS AND CONTROLLED FUSION PII: S7-()9-X Comparison of theory-based and semi-empirical transport modelling in JET plasmas with

More information

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH by K.H. Burrell Presented at High Temperature Plasma Diagnostics 2 Conference Tucson, Arizona June 19 22, 2 134 /KHB/wj ROLE OF DIAGNOSTICS IN ADVANCED TOKAMAK

More information

ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model

ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model 1 THC/3-3 ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model J.E. Kinsey, G.M. Staebler, J. Candy, and R.E. Waltz General Atomics, P.O. Box 8608, San Diego, California

More information

Gyrokine.c Analysis of the Linear Ohmic Confinement Regime in Alcator C- Mod *

Gyrokine.c Analysis of the Linear Ohmic Confinement Regime in Alcator C- Mod * Gyrokine.c Analysis of the Linear Ohmic Confinement Regime in Alcator C- Mod * Miklos Porkolab in collabora.on with J. Dorris, P. Ennever, D. Ernst, C. Fiore, M. Greenwald, A. Hubbard, E. Marmar, Y. Ma,

More information

Particle Transport and Density Gradient Scale Lengths in the Edge Pedestal

Particle Transport and Density Gradient Scale Lengths in the Edge Pedestal Particle Transport and Density Gradient Scale Lengths in the Edge Pedestal W. M. Stacey Fusion Research Center, Georgia Institute of Technology, Atlanta, GA, USA Email: weston.stacey@nre.gatech.edu Abstract

More information

Light Impurity Transport Studies in Alcator C-Mod*

Light Impurity Transport Studies in Alcator C-Mod* Light Impurity Transport Studies in Alcator C-Mod* I. O. Bespamyatnov, 1 W. L. Rowan, 1 C. L. Fiore, 2 K. W. Gentle, 1 R. S. Granet, 2 and P. E. Phillips 1 1 Fusion Research Center, The University of Texas

More information

Understanding Edge Harmonic Oscillation Physics Using NIMROD

Understanding Edge Harmonic Oscillation Physics Using NIMROD Understanding Edge Harmonic Oscillation Physics Using NIMROD J. King With contributions from S. Kruger & A. Pankin (Tech-X); K. Burrell, A. Garofalo, R. Groebner & P. Snyder (General Atomics) Work supported

More information

Impact of Neon Injection on Electron Density Peaking in JET Hybrid Plasmas

Impact of Neon Injection on Electron Density Peaking in JET Hybrid Plasmas 1 P/233 Impact of Neon Injection on Electron Density Peaking in JET Hybrid Plasmas D. Frigione 1, M. Romanelli 2, C. Challis 2, J. Citrin 3, L. Frassinetti 4, J. Graves 5, J. Hobirk 6, F. Koechl 2, M.

More information

Partially Coherent Fluctuations in Novel High Confinement Regimes of a Tokamak

Partially Coherent Fluctuations in Novel High Confinement Regimes of a Tokamak Partially Coherent Fluctuations in Novel High Confinement Regimes of a Tokamak István Cziegler UCSD, Center for Energy Research Center for Momentum Transport and Flow Organization Columbia Seminar Feb

More information

Edge Rotational Shear Requirements for the Edge Harmonic Oscillation in DIII D Quiescent H mode Plasmas

Edge Rotational Shear Requirements for the Edge Harmonic Oscillation in DIII D Quiescent H mode Plasmas Edge Rotational Shear Requirements for the Edge Harmonic Oscillation in DIII D Quiescent H mode Plasmas by T.M. Wilks 1 with A. Garofalo 2, K.H. Burrell 2, Xi. Chen 2, P.H. Diamond 3, Z.B. Guo 3, X. Xu

More information

C-Mod Transport Program

C-Mod Transport Program C-Mod Transport Program PAC 2006 Presented by Martin Greenwald MIT Plasma Science & Fusion Center 1/26/2006 Introduction Programmatic Focus Transport is a broad topic so where do we focus? Where C-Mod

More information

Integrated Heat Transport Simulation of High Ion Temperature Plasma of LHD

Integrated Heat Transport Simulation of High Ion Temperature Plasma of LHD 1 TH/P6-38 Integrated Heat Transport Simulation of High Ion Temperature Plasma of LHD S. Murakami 1, H. Yamaguchi 1, A. Sakai 1, K. Nagaoka 2, H. Takahashi 2, H. Nakano 2, M. Osakabe 2, K. Ida 2, M. Yoshinuma

More information

ITR/P1-19 Tokamak Experiments to Study the Parametric Dependences of Momentum Transport

ITR/P1-19 Tokamak Experiments to Study the Parametric Dependences of Momentum Transport Tokamak Experiments to Study the Parametric Dependences of Momentum Transport T. Tala 1, R.M. McDermott 2, J.E. Rice 3, A. Salmi 1, W. Solomon 4, C. Angioni 2, C. Gao 3, C. Giroud 5, W. Guttenfelder 4,

More information

Modeling of Transport Barrier Based on Drift Alfvén Ballooning Mode Transport Model

Modeling of Transport Barrier Based on Drift Alfvén Ballooning Mode Transport Model 9th IAEA TM on H-mode Physics and Transport Barriers Catamaran Resort Hotel, San Diego 3-9-5 Modeling of Transport Barrier Based on Drift Alfvén Ballooning Mode Transport Model A. Fukuyama, M. Uchida and

More information

1 EX/P6-5 Analysis of Pedestal Characteristics in JT-60U H-mode Plasmas Based on Monte-Carlo Neutral Transport Simulation

1 EX/P6-5 Analysis of Pedestal Characteristics in JT-60U H-mode Plasmas Based on Monte-Carlo Neutral Transport Simulation 1 Analysis of Pedestal Characteristics in JT-60U H-mode Plasmas Based on Monte-Carlo Neutral Transport Simulation Y. Nakashima1), Y. Higashizono1), H. Kawano1), H. Takenaga2), N. Asakura2), N. Oyama2),

More information

Characteristics of Internal Transport Barrier in JT-60U Reversed Shear Plasmas

Characteristics of Internal Transport Barrier in JT-60U Reversed Shear Plasmas Characteristics of Internal Transport Barrier in JT-6U Reversed Shear Plasmas Y. Sakamoto, Y. Kamada, S. Ide, T. Fujita, H. Shirai, T. Takizuka, Y. Koide, T. Fukuda, T. Oikawa, T. Suzuki, K. Shinohara,

More information

Low-collisionality density-peaking in GYRO simulations of C-Mod plasmas

Low-collisionality density-peaking in GYRO simulations of C-Mod plasmas Low-collisionality density-peaking in GYRO simulations of C-Mod plasmas D. R. Mikkelsen, M. Bitter, K. Hill, PPPL M. Greenwald, J.W. Hughes, J. Rice, MIT J. Candy, R. Waltz, General Atomics APS Division

More information