Determinants. Beifang Chen


 Gavin Morrison
 1 years ago
 Views:
Transcription
1 Determinants Beifang Chen 1 Motivation Determinant is a function that each square real matrix A is assigned a real number, denoted det A, satisfying certain properties If A is a 3 3 matrix, writing A [u, v, w], we require the absolute value of the determinant det A to be the volume of the parallelepiped spanned by the vectors u, v, w Since volume is linear in each side of the parallelepiped, it is required that the determinant function det A satisfies the following properties: (a) Linearity in Each Column: det[u 1 + u 2, v, w] det[u 1, v, w] + det[u 2, v, w], det[cu, v, w] c det[u, v, w]; det[u, v 1 + v 2, w] det[u, v 1, w] + det[u, v 2, w], det[u, cv, w] c det[u, v, w]; det[u, v, w 1 + w 2 ] det[u, v, w 1 ] + det[u, v, w 2 ], det[u, v, cw] c det[u, v, w] (b) Vanishing Property: If two columns are the same, then the determinant is zero, ie, det[u, u, w] det[u, v, u] det[u, v, v] 0 (Actually, applying (a), it is easy to see that (b) is equivalent to requiring that det[u, v, w] 0 whenever u, v, w are linearly dependent) (c) Regularity: Determinant of identity matrix is 1 (The volume of unit cube is 1) u u v v+w O v 2v 3v O w Figure 1: Linearity of area in each column Definition 11 For an n n matrix A [a ij ], the determinant of A is a real number det A, satisfying the properties: 1 Linearity: det[v 1,, au i + bv i,, v n ] a det[v 1,, u i,, v n ] + b det[v 1,, v i,, v n ]; 1
2 2 Vanishing Property: or equivalently, det[v 1,, v i,, v i,, v n ] 0; 3 Regularity: det I n 1 det[v 1,, v i,, v j,, v n ] det[v 1,, v j,, v i,, v n ] 2 Determinant of 1 1 and 2 2 matrices For 1 1 matrices [a 11 ] we must have det[a 11 ] a 11 det[1] a 11 1 a 11 The determinant for a 2 2 matrix A [a ij ] must be defined as a 11 a 12 a 21 a 22 a 11a 22 a 12 a 21 In fact, write A [a 1, a 2 ] Then Thus a 1 a 11 e 1 + a 21 e 2, a 2 a 12 e 1 + a 22 e 2 det A det[a 11 e 1 + a 21 e 2, a 2 ] a 11 det[e 1, a 2 ] + a 21 det[e 2, a 2 ] a 11 a 12 det[e 1, e 1 ] + a 11 a 22 det[e 1, e 2 ] + a 21 a 12 det[e 2, e 1 ] + a 21 b 22 det[e 2, e 2 ] Since det[e 1, e 2 ] 1, det[e 1, e 1 ] det[e 2, e 2 ] 0, and det[e 2, e 1 ] 1, we then have 3 Determinant of 3 3 matrices det A a 11 a 22 a 12 a 21 The determinant for 3 3 matrices must be defined as det A a 11 a 12 a 13 a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 11 a 23 a 32 a 12 a 21 a 33 a 31 a 22 a 31 4 Properties of determinant Determinant can be equivalently defined by the same properties on rows instead of columns following, we state such properties in detail 1 Addition: a i1 + b i1 a in + b in + b i1 b in In the 2
3 2 Scalar multiplication: ca i1 ca in c 3 If two rows are the same, then determinant is 0, ie, 0 4 Switching two rows changes sign of determinant, ie, a j1 a jn a j1 a jn 5 Adding a multiple of one row to another row does not change determinant, ie, a j1 + ca i1 a jn + ca in a j1 a jn Property 4 and Property 5 follow from Properties 13 Proposition 41 For triangular matrix, a 11 a 12 a 13 a 1n 0 a 22 a 23 a 2n 0 0 a 33 a 3n a nn a 11 a 22 a nn Proof If all a 11, a 22,, a nn are nonzero, then the matrix A can be reduced to a diagonal matrix whose diagonal entries are a 11, a 22,, a nn Thus det A det ( Diag[a 11, a 22,, a nn ] ) a 11 a 22 a nn 3
4 If some of a 11, a 22,, a nn are zero, we need to show det A 0 Let i be the smallest index such that a ii 0 If i 1, then the first column of A is zero Hence det A 0 So we may assume i 2 Since a 11, a 22,, a i 1,i 1 are nonzero, applying column operations the determinant of A equals the following: a a 1n 0 a a 2n 0 0 a i 1,i 1 0 a i 1,n a in a nn 0 Example R 1 R R 5 5R 1 R 2 2R 1 R 2 R R 2 6R 3 14 Example 42 The Vandermonde determinant is a 1 a 2 a 3 R 2 a 1 R 1 a 2 1 a 2 2 a 2 R 3 a 1 R 2 0 a 2 a 1 a 3 a a 2 2 a 1a 2 a 2 3 a 1a 3 0 a 2 a 1 a 3 a 1 R 3 a 2 R 2 0 a 2 (a 2 a 1 ) a 3 (a 3 a 1 ) 0 a 2 a 1 a 3 a a 3 (a 3 a 1 ) a 2 (a 3 a 1 ) 0 a 2 a 1 a 3 a (a 3 a 1 )(a 3 a 2 ) 5 Laplace expansion formula For a 3 3 matrix A [a ij ], by the addition property, a 11 a 12 a 13 a (a 2 a 1 )(a 3 a 1 )(a 3 a 2 ) + 0 a a 13 4
5 Note that a a 11 a a 22 a 23 0 a 32 a a 11 a a a 33 + a a a a a 11 a a 33 a a a a 23 a a 11 a 22 a 33 a 11 a 23 a 32 a 22 a a 32 a 33 ; 0 a 12 0 a a 22 a 21 a 23 a 32 a 31 a 33 a 12 a 21 a 23 a 31 a 33 ; Thus a 11 a 12 a a 13 a 11 a 22 a 23 a 32 a 33 a a 23 a 21 a 22 a 33 a 31 a 32 a 13 a 21 a 22 a 31 a 32 a 12 a 21 a 23 a 31 a 33 + a 13 a 21 a 22 a 31 a 32 Theorem 51 (Laplace Expansion) Let A [a ij ] be an n n matrix Then for any fixed i, det A n ( 1) i+j a ij det A ij, (51) j1 where A ij is the (n 1) (n 1) submatrix obtained from A by deleting the ith row and the jth column The identity (51) is known as the Laplace expansion along the ith row The determinant det A ij is called the minor of the entry a ij We define the cofactor of a ij as C ij ( 1) i+j det A ij The classical adjoint of A is the matrix C 11 C 21 C n1 C 12 C 22 C n2 [ ] T adj A : C ij C 1n C 2n C nn Example
6 Theorem 52 For any n n matrix A [a ij ], In other words, If det A 0, then A is invertible and a i1 C j1 + a i2 C j2 + + a in C jn A adj A (det A) I n A 1 1 adj A det A { det A if i j, 0 if i j Proof Applying the cofactor expansion formula for A along the ith row, we have a i1 C i1 + a i2 C i2 + + a in C in det A Let M be the matrix obtained from A by replacing the jth row of A with the ith row of A Then det M 0 Applying the cofactor expansion formula for M along the jth row, we have a i1 C j1 + a i2 C j2 + + a in C jn 0, i j Corollary 53 A square matrix A is invertible if and only if det A 0 Example 52 For the matrix its adjoint matrix is given by Then Thus A adj A A 1 6 Other properties of determinant Theorem 61 For any n n matrices A and B, , 1/2 1/ /2 1/2 1/2 0 1/2 det(ab) det A det B Proof The proof is divided into three steps Step 1: det(ab) det A det B if A is not invertible We claim that AB is not invertible Suppose AB is invertible Then there is a matrix C such that (AB)C I, ie, A(BC) I This means that A is invertible, a contradiction Since det(ab) det B 0, we thus have det(ab) det A det B Step 2: det(eb) det E det B for elementary matrix E This follows from the interpretation for left multiplication of elementary matrices, and the properties of determinant Step 3: det(ab) det A det B if A is invertible 6
7 Since A is invertible, it can be written as product of elementary matrices, ie, A E 1 E 2 E k Applying Sept 2, we see that det(ab) det(e 1 E 2 E k B) det E 1 det(e 2 E k B) det E 1 det E 2 det E k det B Applying the same property, Hence det(ab) det A det B det A det E 1 det E 2 det E k Theorem 62 For any square matrix A, det A det A T 7 Cramer s rule Theorem 71 Let A [a ij ] be an invertible n n matrix Then the solution of the linear system Ax b is given by x i det A i, i 1, 2,, n, det A where A i is matrix obtained from A by replacing the ith column with b Proof Let X i be the matrix obtained from the identity matrix I n by replacing the ith column with x Then AX i A [ e 1,, e i 1, x, e i+1,, e n ] [ Ae 1,, Ae i 1, Ax, Ae i+1,, Ae n ] Then det(ax i ) det A i Note that It follows that x i det A i / det A [ a 1,, a i 1, b, a i+1,, a n ] Ai det(ax i ) det A det X i (det A)x i 8 Algebraic formula of determinant A permutation of {1, 2,, n} is a bijection σ : {1, 2,, n} {1, 2,, n} The set of all such permutations are denoted by S n ; the number of such permutations is n! A permutation σ can be described as ( ) 1 2 n σ or σ j j 1 j 2 j 1 j 2 j n n An inversion of σ is an ordered pair (j i, j k ) of integers such that j i > j k We denote by inv(σ) the set of all inversions of σ A permutation σ is called even (odd) if the number of inversions of σ is an even (odd) number We define { sgn σ ( 1) #inv(σ) 1 if σ is even, 1 if σ is odd For instance, the permutation 3241 of {1, 2, 3, 4} has inversions (3, 2), (3, 1), (2, 1), (4, 1); so 3241 is an even permutation The permutation 2341 has inversions (2, 1), (3, 1), (4, 1); so 2341 is an odd permutation 7
8 Theorem 81 For permutations σ, τ S n, we have Moreover, sgn σ 1 sgn σ sgn (τ σ) sgn (τ) sgn (σ) Proof Consider the polynomial ( xi x j ) g g(x 1,, x n ) i<j and the 1dimensional vector space {cg c R} For any cg, we define the polynomial σ(cg) : c i<j ( xσ(i) x σ(j) ) Since σ is a permutation of {1, 2,, n}, we have σ ( {1, 2,, n} ) {1, 2,, n} Thus σ(cg) ±c i<j ( xi x j ) (sgn σ)cg Thus, on the one hand, On the other hand, It follows that sgn (τ σ) sgn (τ)sgn (σ) (τ σ)(g) ( sgn (τ σ) ) g (τ σ)(g) τ ( σ(g) ) τ ( (sgn σ)g ) (sgn τ)sgn (σ)g Theorem 82 For any n n matrix A [a ij ], det A sgn (σ)a i1,1a i2,2 a in,n σi 1 i 2 i n S n (sgn σ)a σ(1),1 a σ(2),2 a σ(n),n σ S n Proof Let A [a 1, a 2,, a n ] Then for each j, a j a 1j e 1 + a 2j e a nj e n n a ij e i i1 By linearity, we have det A [ det ai1,1e i1, a i2,1e i2,, ] a in,ne in a i1,1a i2,2 a in,n det[e i1, e i2,, e in ] i 1,i 2,,i n If i 1 i 2 i n is not a permutation of {1, 2,, n}, then two of the vectors e i1, e i2,, e in are the same, then det[e i1, e i2,, e in ] 0 If σ i 1 i 2 i n is a permutation of {1, 2,, n}, then det[e i1, e i2,, e in ] ( 1) #inv(σ) sgn σ Therefore, det A σi 1 i 2 i n S n sgn (σ)a i1,1a i2,2 a in,n 8
9 The above algebraic formula is sometimes used to define determinant Theorem 83 For any n n matrix A [a ij ], det A T det A Proof Let B A T [b ij ] Then det B σ (sgn σ)b σ(1),1 b σ(2),2 b σ(n),n σ (sgn σ)a 1σ(1) a 2σ(2) a nσ(n) σ (sgn σ)a σ 1 (1),1a σ 1 (2),2 a σ 1 (n),n τ (sgn τ 1 )a τ(1),1 a τ(2),2 a τ(n),n det A (as sgn τ 1 sgn τ) Corollary 84 For any n n matrix A [a ij ], det A sgn (σ)a 1j1 a 2j2 a njn σj 1 j 2 j n S n (sgn σ)a 1σ(1) a 2σ(2) a nσ(n) σ S n For a 3 3 matrix A [a ij ], since we then have sgn (123) sgn (231) sgn (312) 1, sgn (132) sgn (213) sgn (321) 1, det A a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 11 a 23 a 32 a 12 a 21 a 33 a 13 a 22 a 31 Theorem 85 Let T : R n R n be a linear transformation with the standard matrix A Let P be a parallelotope spanned by the vector v 1,, v n Then vol ( T (P ) ) det(a) vol (P ) Proof Let v i [v 1i, v 2i,, v ni ] T, ie, v i v 1i e 1 + v 2i e v ni e n (1 i n) Then Thus T (v i ) v 1i T (e 1 ) + v 2i T (e 2 ) + + v ni T (e n ) [ T (v1 ), T (v 2 ),, T (v n ) ] [ T (e 1 ), T (e 2 ),, T (e n ) ] Therefore v 11 v 12 v 1n v 21 v 22 v 2n v n1 v n2 v nn vol ( T (P ) ) det [ T (v1 ), T (v 2 ),, T (v n ) ] det(a) det [ v1, v 2,, v n ] det(a) vol (P ) A[ ] v 1, v 2,, v n 9
Determinants Chapter 3 of Lay
Determinants Chapter of Lay Dr. Doreen De Leon Math 152, Fall 201 1 Introduction to Determinants Section.1 of Lay Given a square matrix A = [a ij, the determinant of A is denoted by det A or a 11 a 1j
More informationChapter 2:Determinants. Section 2.1: Determinants by cofactor expansion
Chapter 2:Determinants Section 2.1: Determinants by cofactor expansion [ ] a b Recall: The 2 2 matrix is invertible if ad bc 0. The c d ([ ]) a b function f = ad bc is called the determinant and it associates
More informationFormula for the inverse matrix. Cramer s rule. Review: 3 3 determinants can be computed expanding by any row or column
Math 20F Linear Algebra Lecture 18 1 Determinants, n n Review: The 3 3 case Slide 1 Determinants n n (Expansions by rows and columns Relation with Gauss elimination matrices: Properties) Formula for the
More informationDeterminants by Cofactor Expansion (III)
Determinants by Cofactor Expansion (III) Comment: (Reminder) If A is an n n matrix, then the determinant of A can be computed as a cofactor expansion along the jth column det(a) = a1j C1j + a2j C2j +...
More informationDETERMINANTS. , x 2 = a 11b 2 a 21 b 1
DETERMINANTS 1 Solving linear equations The simplest type of equations are linear The equation (1) ax = b is a linear equation, in the sense that the function f(x) = ax is linear 1 and it is equated to
More informationNotes on Determinants and Matrix Inverse
Notes on Determinants and Matrix Inverse University of British Columbia, Vancouver YueXian Li March 17, 2015 1 1 Definition of determinant Determinant is a scalar that measures the magnitude or size of
More informationDeterminants. Samy Tindel. Purdue University. Differential equations and linear algebra  MA 262
Determinants Samy Tindel Purdue University Differential equations and linear algebra  MA 262 Taken from Differential equations and linear algebra by Goode and Annin Samy T. Determinants Differential equations
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
More informationc c c c c c c c c c a 3x3 matrix C= has a determinant determined by
Linear Algebra Determinants and Eigenvalues Introduction: Many important geometric and algebraic properties of square matrices are associated with a single real number revealed by what s known as the determinant.
More informationMath 240 Calculus III
The Calculus III Summer 2015, Session II Wednesday, July 8, 2015 Agenda 1. of the determinant 2. determinants 3. of determinants What is the determinant? Yesterday: Ax = b has a unique solution when A
More informationMath Linear Algebra Final Exam Review Sheet
Math 151 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a componentwise operation. Two vectors v and w may be added together as long as they contain the same number n of
More information1 Determinants. 1.1 Determinant
1 Determinants [SB], Chapter 9, p.188196. [SB], Chapter 26, p.719739. Bellow w ll study the central question: which additional conditions must satisfy a quadratic matrix A to be invertible, that is to
More information4. Determinants.
4. Determinants 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 2 2 determinant 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 3 3 determinant 4.1.
More informationLECTURE 4: DETERMINANT (CHAPTER 2 IN THE BOOK)
LECTURE 4: DETERMINANT (CHAPTER 2 IN THE BOOK) Everything with is not required by the course syllabus. Idea Idea: for each n n matrix A we will assign a real number called det(a). Properties: det(a) 0
More informationDeterminants. Recall that the 2 2 matrix a b c d. is invertible if
Determinants Recall that the 2 2 matrix a b c d is invertible if and only if the quantity ad bc is nonzero. Since this quantity helps to determine the invertibility of the matrix, we call it the determinant.
More informationEvaluating Determinants by Row Reduction
Evaluating Determinants by Row Reduction MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Objectives Reduce a matrix to row echelon form and evaluate its determinant.
More informationMatrix Operations: Determinant
Matrix Operations: Determinant Determinants Determinants are only applicable for square matrices. Determinant of the square matrix A is denoted as: det(a) or A Recall that the absolute value of the determinant
More informationA matrix A is invertible i det(a) 6= 0.
Chapter 4 Determinants 4.1 Definition Using Expansion by Minors Every square matrix A has a number associated to it and called its determinant, denotedbydet(a). One of the most important properties of
More informationLinear Algebra and Vector Analysis MATH 1120
Faculty of Engineering Mechanical Engineering Department Linear Algebra and Vector Analysis MATH 1120 : Instructor Dr. O. Philips Agboola Determinants and Cramer s Rule Determinants If a matrix is square
More informationThe Determinant: a Means to Calculate Volume
The Determinant: a Means to Calculate Volume Bo Peng August 16, 2007 Abstract This paper gives a definition of the determinant and lists many of its wellknown properties Volumes of parallelepipeds are
More informationLecture 2: Eigenvalues and their Uses
Spectral Graph Theory Instructor: Padraic Bartlett Lecture 2: Eigenvalues and their Uses Week 3 Mathcamp 2011 As you probably noticed on yesterday s HW, we, um, don t really have any good tools for finding
More informationENGR1100 Introduction to Engineering Analysis. Lecture 21
ENGR1100 Introduction to Engineering Analysis Lecture 21 Lecture outline Procedure (algorithm) for finding the inverse of invertible matrix. Investigate the system of linear equation and invertibility
More informationELEMENTARY LINEAR ALGEBRA WITH APPLICATIONS. 1. Linear Equations and Matrices
ELEMENTARY LINEAR ALGEBRA WITH APPLICATIONS KOLMAN & HILL NOTES BY OTTO MUTZBAUER 11 Systems of Linear Equations 1 Linear Equations and Matrices Numbers in our context are either real numbers or complex
More informationLecture 23: Trace and determinants! (1) (Final lecture)
Lecture 23: Trace and determinants! (1) (Final lecture) Travis Schedler Thurs, Dec 9, 2010 (version: Monday, Dec 13, 3:52 PM) Goals (2) Recall χ T (x) = (x λ 1 ) (x λ n ) = x n tr(t )x n 1 + +( 1) n det(t
More informationIMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET
IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each
More informationIMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET
IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each
More informationMATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian.
MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian. Spanning set Let S be a subset of a vector space V. Definition. The span of the set S is the smallest subspace W V that contains S. If
More informationLinear Algebra II. Ulrike Tillmann. January 4, 2018
Linear Algebra II Ulrike Tillmann January 4, 208 This course is a continuation of Linear Algebra I and will foreshadow much of what will be discussed in more detail in the Linear Algebra course in Part
More information1. General Vector Spaces
1.1. Vector space axioms. 1. General Vector Spaces Definition 1.1. Let V be a nonempty set of objects on which the operations of addition and scalar multiplication are defined. By addition we mean a rule
More informationMath 416, Spring 2010 The algebra of determinants March 16, 2010 THE ALGEBRA OF DETERMINANTS. 1. Determinants
THE ALGEBRA OF DETERMINANTS 1. Determinants We have already defined the determinant of a 2 2 matrix: det = ad bc. We ve also seen that it s handy for determining when a matrix is invertible, and when it
More informationMATH 1210 Assignment 4 Solutions 16RT1
MATH 1210 Assignment 4 Solutions 16RT1 Attempt all questions and show all your work. Due November 13, 2015. 1. Prove using mathematical induction that for any n 2, and collection of n m m matrices A 1,
More informationChapter 4. Determinants
4.2 The Determinant of a Square Matrix 1 Chapter 4. Determinants 4.2 The Determinant of a Square Matrix Note. In this section we define the determinant of an n n matrix. We will do so recursively by defining
More informationMath 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam
Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system
More informationMath Camp Notes: Linear Algebra I
Math Camp Notes: Linear Algebra I Basic Matrix Operations and Properties Consider two n m matrices: a a m A = a n a nm Then the basic matrix operations are as follows: a + b a m + b m A + B = a n + b n
More information14. Properties of the Determinant
14. Properties of the Determinant Last time we showed that the erminant of a matrix is nonzero if and only if that matrix is invertible. We also showed that the erminant is a multiplicative function,
More informationMTH 102A  Linear Algebra II Semester
MTH 0A  Linear Algebra  056II Semester Arbind Kumar Lal P Field A field F is a set from which we choose our coefficients and scalars Expected properties are ) a+b and a b should be defined in it )
More informationLecture 10: Determinants and Cramer s Rule
Lecture 0: Determinants and Cramer s Rule The determinant and its applications. Definition The determinant of a square matrix A, denoted by det(a) or A, is a real number, which is defined as follows. by
More informationSPRING OF 2008 D. DETERMINANTS
18024 SPRING OF 2008 D DETERMINANTS In many applications of linear algebra to calculus and geometry, the concept of a determinant plays an important role This chapter studies the basic properties of determinants
More informationDeterminants of 2 2 Matrices
Determinants In section 4, we discussed inverses of matrices, and in particular asked an important question: How can we tell whether or not a particular square matrix A has an inverse? We will be able
More information1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i )
Direct Methods for Linear Systems Chapter Direct Methods for Solving Linear Systems PerOlof Persson persson@berkeleyedu Department of Mathematics University of California, Berkeley Math 18A Numerical
More information18.S34 linear algebra problems (2007)
18.S34 linear algebra problems (2007) Useful ideas for evaluating determinants 1. Row reduction, expanding by minors, or combinations thereof; sometimes these are useful in combination with an induction
More informationWe denote the derivative at x by DF (x) = L. With respect to the standard bases of R n and R m, DF (x) is simply the matrix of partial derivatives,
The derivative Let O be an open subset of R n, and F : O R m a continuous function We say F is differentiable at a point x O, with derivative L, if L : R n R m is a linear transformation such that, for
More informationTOPIC III LINEAR ALGEBRA
[1] Linear Equations TOPIC III LINEAR ALGEBRA (1) Case of Two Endogenous Variables 1) Linear vs. Nonlinear Equations Linear equation: ax + by = c, where a, b and c are constants. 2 Nonlinear equation:
More informationMath 313 (Linear Algebra) Exam 2  Practice Exam
Name: Student ID: Section: Instructor: Math 313 (Linear Algebra) Exam 2  Practice Exam Instructions: For questions which require a written answer, show all your work. Full credit will be given only if
More informationMATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants.
MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants. Elementary matrices Theorem 1 Any elementary row operation σ on matrices with n rows can be simulated as left multiplication
More informationAPPENDIX: MATHEMATICAL INDUCTION AND OTHER FORMS OF PROOF
ELEMENTARY LINEAR ALGEBRA WORKBOOK/FOR USE WITH RON LARSON S TEXTBOOK ELEMENTARY LINEAR ALGEBRA CREATED BY SHANNON MARTIN MYERS APPENDIX: MATHEMATICAL INDUCTION AND OTHER FORMS OF PROOF When you are done
More information1 Matrices and Systems of Linear Equations
March 3, 203 66. Systems of Linear Equations Matrices and Systems of Linear Equations An m n matrix is an array A = a ij of the form a a n a 2 a 2n... a m a mn where each a ij is a real or complex number.
More informationSolutions to Final Exam 2011 (Total: 100 pts)
Page of 5 Introduction to Linear Algebra November 7, Solutions to Final Exam (Total: pts). Let T : R 3 R 3 be a linear transformation defined by: (5 pts) T (x, x, x 3 ) = (x + 3x + x 3, x x x 3, x + 3x
More informationDeterminants and Scalar Multiplication
Properties of Determinants In the last section, we saw how determinants interact with the elementary row operations. There are other operations on matrices, though, such as scalar multiplication, matrix
More informationChapter 2: Matrices and Linear Systems
Chapter 2: Matrices and Linear Systems Paul Pearson Outline Matrices Linear systems Row operations Inverses Determinants Matrices Definition An m n matrix A = (a ij ) is a rectangular array of real numbers
More informationDeterminants. 2.1 Determinants by Cofactor Expansion. Recall from Theorem that the 2 2 matrix
CHAPTER 2 Determinants CHAPTER CONTENTS 21 Determinants by Cofactor Expansion 105 22 Evaluating Determinants by Row Reduction 113 23 Properties of Determinants; Cramer s Rule 118 INTRODUCTION In this chapter
More informationCHAPTER 6. Direct Methods for Solving Linear Systems
CHAPTER 6 Direct Methods for Solving Linear Systems. Introduction A direct method for approximating the solution of a system of n linear equations in n unknowns is one that gives the exact solution to
More informationDeterminants: summary of main results
Determinants: summary of main results A determinant of an n n matrix is a real number associated with this matrix. Its definition is complex for the general case We start with n = 2 and list important
More informationChapter 7. Linear Algebra: Matrices, Vectors,
Chapter 7. Linear Algebra: Matrices, Vectors, Determinants. Linear Systems Linear algebra includes the theory and application of linear systems of equations, linear transformations, and eigenvalue problems.
More informationA matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and
Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.
More informationdet(ka) = k n det A.
Properties of determinants Theorem. If A is n n, then for any k, det(ka) = k n det A. Multiplying one row of A by k multiplies the determinant by k. But ka has every row multiplied by k, so the determinant
More informationMATRICES. knowledge on matrices Knowledge on matrix operations. Matrix as a tool of solving linear equations with two or three unknowns.
MATRICES After studying this chapter you will acquire the skills in knowledge on matrices Knowledge on matrix operations. Matrix as a tool of solving linear equations with two or three unknowns. List of
More informationRANK AND PERIMETER PRESERVER OF RANK1 MATRICES OVER MAX ALGEBRA
Discussiones Mathematicae General Algebra and Applications 23 (2003 ) 125 137 RANK AND PERIMETER PRESERVER OF RANK1 MATRICES OVER MAX ALGEBRA SeokZun Song and KyungTae Kang Department of Mathematics,
More informationI = i 0,
Special Types of Matrices Certain matrices, such as the identity matrix 0 0 0 0 0 0 I = 0 0 0, 0 0 0 have a special shape, which endows the matrix with helpful properties The identity matrix is an example
More informationk=1 ( 1)k+j M kj detm kj. detm = ad bc. = 1 ( ) 2 ( )+3 ( ) = = 0
4 Determinants The determinant of a square matrix is a scalar (i.e. an element of the field from which the matrix entries are drawn which can be associated to it, and which contains a surprisingly large
More informationThe Determinant. Chapter Definition of the Determinant
Chapter 5 The Determinant 5.1 Definition of the Determinant Given a n n matrix A, we would like to define its determinant. We already have a definition for the 2 2 matrix. We define the determinant of
More informationUMA Putnam Talk LINEAR ALGEBRA TRICKS FOR THE PUTNAM
UMA Putnam Talk LINEAR ALGEBRA TRICKS FOR THE PUTNAM YUFEI ZHAO In this talk, I want give some examples to show you some linear algebra tricks for the Putnam. Many of you probably did math contests in
More informationLinear Algebra Primer
Linear Algebra Primer David Doria daviddoria@gmail.com Wednesday 3 rd December, 2008 Contents Why is it called Linear Algebra? 4 2 What is a Matrix? 4 2. Input and Output.....................................
More informationMath Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88
Math Camp 2010 Lecture 4: Linear Algebra Xiao Yu Wang MIT Aug 2010 Xiao Yu Wang (MIT) Math Camp 2010 08/10 1 / 88 Linear Algebra Game Plan Vector Spaces Linear Transformations and Matrices Determinant
More informationCalculating determinants for larger matrices
Day 26 Calculating determinants for larger matrices We now proceed to define det A for n n matrices A As before, we are looking for a function of A that satisfies the product formula det(ab) = det A det
More informationIntroduction to Matrix Algebra
Introduction to Matrix Algebra August 18, 2010 1 Vectors 1.1 Notations A pdimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the line. When p
More informationIntroduction to Determinants
Introduction to Determinants For any square matrix of order 2, we have found a necessary and sufficient condition for invertibility. Indeed, consider the matrix The matrix A is invertible if and only if.
More informationEigenvalues and Eigenvectors
Eigenvalues and Eigenvectors week 2 Fall 26 Eigenvalues and eigenvectors The most simple linear transformation from R n to R n may be the transformation of the form: T (x,,, x n ) (λ x, λ 2,, λ n x n
More informationDeterminants An Introduction
Determinants An Introduction Professor Je rey Stuart Department of Mathematics Paci c Lutheran University Tacoma, WA 9844 USA je rey.stuart@plu.edu The determinant is a useful function that takes a square
More informationa11 a A = : a 21 a 22
Matrices The study of linear systems is facilitated by introducing matrices. Matrix theory provides a convenient language and notation to express many of the ideas concisely, and complicated formulas are
More informationand let s calculate the image of some vectors under the transformation T.
Chapter 5 Eigenvalues and Eigenvectors 5. Eigenvalues and Eigenvectors Let T : R n R n be a linear transformation. Then T can be represented by a matrix (the standard matrix), and we can write T ( v) =
More informationTHE ADJOINT OF A MATRIX The transpose of this matrix is called the adjoint of A That is, C C n1 C 22.. adj A. C n C nn.
8 Chapter Determinants.4 Applications of Determinants Find the adjoint of a matrix use it to find the inverse of the matrix. Use Cramer s Rule to solve a sstem of n linear equations in n variables. Use
More information= 1 and 2 1. T =, and so det A b d
Chapter 8 Determinants The founder of the theory of determinants is usually taken to be Gottfried Wilhelm Leibniz (1646 1716, who also shares the credit for inventing calculus with Sir Isaac Newton (1643
More informationIntroduction to Matrices
214 Analysis and Design of Feedback Control Systems Introduction to Matrices Derek Rowell October 2002 Modern system dynamics is based upon a matrix representation of the dynamic equations governing the
More informationMATH 110: LINEAR ALGEBRA HOMEWORK #2
MATH 11: LINEAR ALGEBRA HOMEWORK #2 1.5: Linear Dependence and Linear Independence Problem 1. (a) False. The set {(1, ), (, 1), (, 1)} is linearly dependent but (1, ) is not a linear combination of the
More informationReview of Vectors and Matrices
A P P E N D I X D Review of Vectors and Matrices D. VECTORS D.. Definition of a Vector Let p, p, Á, p n be any n real numbers and P an ordered set of these real numbers that is, P = p, p, Á, p n Then P
More informationFall Inverse of a matrix. Institute: UC San Diego. Authors: Alexander Knop
Fall 2017 Inverse of a matrix Authors: Alexander Knop Institute: UC San Diego RowColumn Rule If the product AB is defined, then the entry in row i and column j of AB is the sum of the products of corresponding
More informationChapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015
Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 205. If A is a 3 3 triangular matrix, explain why det(a) is equal to the product of entries on the diagonal. If A is a lower triangular or diagonal
More informationMATH10212 Linear Algebra B Homework 7
MATH22 Linear Algebra B Homework 7 Students are strongly advised to acquire a copy of the Textbook: D C Lay, Linear Algebra and its Applications Pearson, 26 (or other editions) Normally, homework assignments
More informationAnnouncements Wednesday, October 25
Announcements Wednesday, October 25 The midterm will be returned in recitation on Friday. The grade breakdown is posted on Piazza. You can pick it up from me in office hours before then. Keep tabs on your
More informationLinear Algebra: Linear Systems and Matrices  Quadratic Forms and Deniteness  Eigenvalues and Markov Chains
Linear Algebra: Linear Systems and Matrices  Quadratic Forms and Deniteness  Eigenvalues and Markov Chains Joshua Wilde, revised by Isabel Tecu, Takeshi Suzuki and María José Boccardi August 3, 3 Systems
More informationOn the adjacency matrix of a block graph
On the adjacency matrix of a block graph R. B. Bapat StatMath Unit Indian Statistical Institute, Delhi 7SJSS Marg, New Delhi 110 016, India. email: rbb@isid.ac.in Souvik Roy Economics and Planning Unit
More informationMATH 511 ADVANCED LINEAR ALGEBRA SPRING 2006
MATH 511 ADVANCED LINEAR ALGEBRA SPRING 2006 Sherod Eubanks HOMEWORK 2 2.1 : 2, 5, 9, 12 2.3 : 3, 6 2.4 : 2, 4, 5, 9, 11 Section 2.1: Unitary Matrices Problem 2 If λ σ(u) and U M n is unitary, show that
More informationPresentation by: H. Sarper. Chapter 2  Learning Objectives
Chapter Basic Linear lgebra to accompany Introduction to Mathematical Programming Operations Research, Volume, th edition, by Wayne L. Winston and Munirpallam Venkataramanan Presentation by: H. Sarper
More informationMath 4377/6308 Advanced Linear Algebra
2.3 Composition Math 4377/6308 Advanced Linear Algebra 2.3 Composition of Linear Transformations Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math4377
More informationAppendix C Vector and matrix algebra
Appendix C Vector and matrix algebra Concepts Scalars Vectors, rows and columns, matrices Adding and subtracting vectors and matrices Multiplying them by scalars Products of vectors and matrices, scalar
More informationCalculation in the special cases n = 2 and n = 3:
9. The determinant The determinant is a function (with real numbers as values) which is defined for quadratic matrices. It allows to make conclusions about the rank and appears in diverse theorems and
More informationChapter 2 Spectra of Finite Graphs
Chapter 2 Spectra of Finite Graphs 2.1 Characteristic Polynomials Let G = (V, E) be a finite graph on n = V vertices. Numbering the vertices, we write down its adjacency matrix in an explicit form of n
More informationCHAPTER 1. Matrices Matrix Algebra
CHAPTER Matrices Matrix Algebra Fields A filed is a set F equipped with two operations + and such that (F, + and (F, are abelian groups, where F = F \ {0}, and a(b + c = ab + ac for all a, b, c F Examples
More information2 Constructions of manifolds. (Solutions)
2 Constructions of manifolds. (Solutions) Last updated: February 16, 2012. Problem 1. The state of a double pendulum is entirely defined by the positions of the moving ends of the two simple pendula of
More informationEXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1)
EXERCISE SET 5. 6. The pair (, 2) is in the set but the pair ( )(, 2) = (, 2) is not because the first component is negative; hence Axiom 6 fails. Axiom 5 also fails. 8. Axioms, 2, 3, 6, 9, and are easily
More information9. The determinant. Notation: Also: A matrix, det(a) = A IR determinant of A. Calculation in the special cases n = 2 and n = 3:
9. The determinant The determinant is a function (with real numbers as values) which is defined for square matrices. It allows to make conclusions about the rank and appears in diverse theorems and formulas.
More informationGENERATING SETS KEITH CONRAD
GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors
More informationExample. We can represent the information on July sales more simply as
CHAPTER 1 MATRICES, VECTORS, AND SYSTEMS OF LINEAR EQUATIONS 11 Matrices and Vectors In many occasions, we can arrange a number of values of interest into an rectangular array For example: Example We can
More informationECON0702: Mathematical Methods in Economics
ECON0702: Mathematical Methods in Economics Yulei Luo SEF of HKU January 12, 2009 Luo, Y. (SEF of HKU) MME January 12, 2009 1 / 35 Course Outline Economics: The study of the choices people (consumers,
More informationSection 3.2. Multiplication of Matrices and Multiplication of Vectors and Matrices
3.2. Multiplication of Matrices and Multiplication of Vectors and Matrices 1 Section 3.2. Multiplication of Matrices and Multiplication of Vectors and Matrices Note. In this section, we define the product
More informationIntroduction. Vectors and Matrices. Vectors [1] Vectors [2]
Introduction Vectors and Matrices Dr. TGI Fernando 1 2 Data is frequently arranged in arrays, that is, sets whose elements are indexed by one or more subscripts. Vector  one dimensional array Matrix 
More informationThe Laplace Expansion Theorem: Computing the Determinants and Inverses of Matrices
The Laplace Expansion Theorem: Computing the Determinants and Inverses of Matrices David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative
More informationSAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 1 Introduction to Linear Algebra
1.1. Introduction SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 1 Introduction to Linear algebra is a specific branch of mathematics dealing with the study of vectors, vector spaces with functions that
More informationMATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix.
MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. Basis Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.
More information