Friction may well be nature s most useful phenomenon.

 Eustace Hicks
 7 months ago
 Views:
Transcription
1 Modeling and Measuring Friction Effects AVRAHAM HARNOY, BERNARD FRIEDLAND, and SIMON COHN PHYSICS, APPARATUS, AND EXPERIMENTS Friction may well be nature s most useful phenomenon. Without friction we would hae no belt dries, no clutches, no wheels, and no brakes. Walking, and een standing upright on a moderately inclined surface, would be impossible. In machinery in which it is not the driing force, howeer, friction is an undesirable parasitic phenomenon, generating heat and wasting energy. Large sums are spent each year on lubricants to eliminate as much friction as possible in mechanical deices. On the other hand, when friction is the source of traction and braking, it is important to keep friction at a high leel. To achiee this end, much effort and funding are expended on projects such as improing tires and antilock brakes. In traction applications, the process starts with the ehicle at rest, whereas in braking applications, the process ends with the ehicle at rest. In both applications, the behaior of friction when the elocity of the ehicle crosses zero is of little interest. In motioncontrol applications, howeer, the elocity of the controlled object typically crosses zero, often seeral times, during operation. Hence, in such applications, it is necessary to understand the behaior of friction in the icinity of zero elocity. Experiments [1] show that friction in the icinity of zero elocity is a dynamic phenomenon that static models fail to adequately describe. The goals of this article are first to reiew some of the physical characteristics of friction, especially the need for statespace dynamic models; then to describe apparatus for measuring friction effects and Digital Object Identifier 1.119/MCS to present the results achieed using this apparatus; and, finally, to discuss some of the issues relating to measurement of friction effects. PHYSICAL MODELS OF FRICTION PHOTODISC Static Friction Models Friction effects can be imagined as resulting from two mountainous surfaces, one inerted aboe the other, as 82 IEEE CONTROL SYSTEMS MAGAZINE» DECEMBER X/8/$25. 28IEEE
2 illustrated in Figure 1. The motion of one surface relatie to the other causes the friction force. The height and sharpness of the mountains (asperities) represent the roughness of the surfaces. The lower mountains support the normal force (load) pressing down on the upper surface. The larger the load, the more deeply the upper surface penetrates into the lower, making it more difficult for the surfaces to moe apart. This effect helps explain why the friction force depends on the load F. The simplest friction model is the Coulomb model, in which the force of friction is gien by f = μfsgn(), (1) where F is the normal force, μ <1 is the coefficient of friction, and is the elocity of one surface relatie to the other. Note that the Coulomb model (1) has a discontinuity at zero relatie elocity. This discontinuity implies that a friction force f, with f μf, can be present een when there is no relatie motion. This phenomenon, which is sometimes called starting friction, helps explain why an object can remain motionless on an inclined plane. Static friction also explains the idealization of rolling without slipping in which the translational elocity of the center of the wheel equals the angular elocity of the wheel multiplied by the wheel radius. The discontinuity at zero elocity presents mathematical and computational difficulties [2]. These difficulties may possibly be alleiated by smoothing the discontinuity, thus replacing the model of (1) by In many situations the leel of starting friction is greater than the leel of friction at nonzero elocity, and there is a rapid transition from starting friction to sliding friction, as shown in Figure 2. When linear iscous damping, that is, a force proportional to elocity, is included in the friction model, the cure may increase with increasing positie elocity as shown by the broken line. The phenomenon of friction decreasing and then increasing with elocity is known as the Stribeck effect. The Coulomb friction model, including the Stribeck effect shown in Figure 2, is often adequate for representing the effects of friction in practical systems. In some applications, howeer, the Coulomb model fails to proide a satisfactory description of system behaior. In one such application, a precision lineofsight stabilization system [1], a limit cycle predicted by the Coulomb model is absent in the test results. Dynamic Friction Models The upper object in Figure 1 can t moe unless the asperities either break off (the phenomenon of polishing) or bend. Bending of the asperities implies energy storage, which introduces dynamics into the model of friction. Friction Force f Normal Force F FIGURE 1 Rubbing surfaces without lubrication. The mountains, which are called asperities, impede motion and result in friction force. The normal force F is supported by the asperities. The drawing is similar to a figure in [1] Velocity f = φ() = μnsgn()s(, a), (2) where the smoothing function s(, a) is a continuous, een function of, but, depending on a, rapidly rises to one as departs from zero. Candidates for the smoothing function include f μf and s(, a) = 1 e 2 /a 2 s(, a) = e a2 / 2. f μf FIGURE 2 Conentional friction representations. The idealized Coulomb friction cure shows larger starting friction than moing friction. The friction force is represented as a smooth function for >. The broken line shows the Stribeck effect when linear damping is included in the friction model. DECEMBER 28 «IEEE CONTROL SYSTEMS MAGAZINE 83
3 One conception of energy storage is the electrical analogy shown in Figure 3, with oltage analogous to elocity and current analogous to friction force. In this circuit, the pair of backtoback Zener diodes represents static Coulomb friction. The storage of energy in this analogy is represented by a capacitor in parallel with the diodes accounts for energy storage. Owing to the presence of this capacitor, the circuit is now a firstorder dynamic system, goerned by d/dt = (1/C)(i ψ()), (3) where ψ is the inerse of the nonlinear function φ defined in (2). Another conception of the effect of flexible asperities is the bristle model, in which the lower surface of the moing object is regarded as a brush moing oer an inerted brush that represents the fixed surface. The relatie motion of the two surfaces causes the bristles of the brushes to bend and thereby store energy [1]. A more detailed ersion of the bristle model is gien in [3]. The bristle model accounts for the physics of dynamic friction, but the number of bristles required for erisimilitude may preclude efficient simulation. The LuGre model [5], [6], widely used in the control system literature, captures the effect of the bristles as the output of a system goerned by a firstorder system in which the friction force is gien by with where f = σ z + σ 1 ż + α 2, (4) ż = σ z, (5) g() g() = α + α 1 e (/ ) 2. As shown in [7], the LuGre model, with the appropriate selection of the parameters α i,σ i, subsumes seeral of the earlier dynamic friction models. A more general firstorder model represents the friction force f as the output of a dynamic system in which the input is the relatie elocity. This model takes the form f = f (z, ), (6) ż = g(z, ). (7) The nature of the functions f and g determines the behaior of the friction force [4] Hydrodynamic Model In dry (unlubricated) friction, the asperities of the rubbing surfaces are in direct contact. As shown in Figure 4, the effect of introducing a lubricant between the surfaces is to create a band of separation between the upper surface and the lower one. This band reduces the depth of penetration of the upper surface into the lower one, thereby reducing the coefficient of friction. The LuGre model can cope with the effects of lubrication but is not based on the hydrodynamics of lubrication. Under the assumption that the mass of the lubricant is negligible, hydrodynamic theory [8] leads to a secondorder model for the friction force in a lubricated journal bearing. In the resulting model, the friction force is gien by c 2 f = c 1 κ(ε)(ε ε T ) sgn() +, (8) (1 ε 2 ) 1 2 with J 11 (ε)ε ϕ + J 12 ε = c 3 Fsin ϕ + c 4 J 11 (ε), (9) J 12 (ε)ε ϕ + J 22 ε = c 3 Fcos ϕ + c 4 J 12 (ε), (1) in which ε and ϕ are dimensionless ariables proportional to the eccentricity of the shaft and the angular position of i i + 1/c 1/s Normal Force F ϕ () C Friction Force f Velocity FIGURE 3 An electric circuit that proides an analogue of friction. The backtoback Zener diodes in parallel with a small capacitor comprise a possible electrical analogue of friction. The capacitor stores energy, which leads to a dynamic model. This block diagram represents the circuit of. FIGURE 4 Rubbing surfaces with lubrication. The lubrication has the effect of separating the surfaces. Hence the asperities are farther apart and impede motion less, resulting in a lower friction force than in Figure IEEE CONTROL SYSTEMS MAGAZINE» DECEMBER 28
4 the point on the shaft nearest to the bearing wall, respectiely; J ij are integrals relating to the ariable film thickness around the bearing; and c i are constants related to the geometry of the shaft and journal bearing. The quantity ε T is the eccentricity at which the friction achiees its minimum alue, and { 1, for ε>ε = T,, for ε ε T, by a calibrated, full straingauge bridge bonded to the elastic ring. The total friction torque of all four bearings is measured by a calibrated rigid piezoelectric load cell, which preents rotation of the outer bearing housing K. This torque is and κ(ε) is an asperity stiffness function gien, for example, by κ(ε) = κ (ε ε ) n. The first term in (8) represents the friction component due to the asperities; the second term represents the contribution due to the hydrodynamics [8]. APPARATUS FOR MEASURING FRICTION COEFFICIENTS Friction in a Journal Bearing When the purpose of measuring the force of friction is simply to estimate the energy loss due to friction at a constant elocity, only a rudimentary apparatus is required for measuring the static friction characteristic. Measuring the friction force when the relatie elocity is time arying and crosses through zero, howeer, is more complicated. First, it is necessary to generate and apply periodic or nonperiodic elocities of the magnitudes necessary to elicit the friction effect that is being inestigated. Second, it is necessary to isolate the friction force from all other forces in the system. (Since forces other than the friction force may be present in the system, these forces must not be allowed to corrupt the measurement.) Finally, it is necessary to measure the elocity of one of the rubbing surfaces relatie to the other. To achiee these requirements, the apparatus shown in Figure 5 is designed to measure the friction force in a journal bearing. This apparatus comprises an actuated shaft that can oscillate within a journal bearing housed in a structure designed to measure the friction force between the shaft and the bearing. The components of the apparatus are identified in Table 1. The apparatus measures the aerage dynamic friction force of four identical sleee bearings in isolation from all other sources of friction in the system, for example, friction in the ball bearings supporting the shaft. The apparatus is rigid enough to minimize errors [9]. The design concept is based on applying an internal load (action and reaction) between the inner housing N and the outer housing K by tightening the nut P on the bolt R, and preloading the elastic steel ring E. The apparatus contains the four sleee bearings H, with two bearings inside each of the inner and outer housings. All four test bearings thus hae equal radial load, but in opposite direction for each pair of bearings, due to the preload in the elastic ring. The load on the bearings is measured D A B C K FIGURE 5 Apparatus for measuring friction effect in a journal bearing. This apparatus is designed to minimize all forces on the shaft except the force due to friction. The photograph shows the apparatus in use. The crosssectional iew shows the basic components as described in Table 1 and the text. TABLE 1 Components of the frictionmeasuring apparatus. The deice is illustrated in Figure 5. Component Description/function A Ballbearing support for rotating shaft B Apparatus frame C Rotating shaft D Belt drie pulley E Elastic steel ring F, K Outer housing G Oil retainer disk H Sleee bearings (four) N Inner housing P Tightening nut R Tightening bolt P R N E F G H DECEMBER 28 «IEEE CONTROL SYSTEMS MAGAZINE 85
5 transferred to the load cell by a radial arm attached to the external housing as shown in Figure 5. Thus the measured friction torque of the four bearings is isolated from all other sources of friction. Oil is fed into the four bearings through four segments of flexible tubing and is drained from the bearings through a hole in the external housing into a collecting essel. The shaft is actuated by a position sero designed to track a ariety of reference signals. The apparatus is designed so that it can operate dry or with arious lubricants. I P Friction in a Line Contact The apparatus shown in Figure 6 is designed to measure the friction force in a sliding line contact at ery low elocity. This apparatus comprises a linear motion sliding table, drien by a seromotor and a ball screw drie. The apparatus is designed on the concept of a ballscrewdrien linear positioning table in which backlash is eliminated by preloading the screw drie. Low elocity is achieed by speed reduction of a screw drie. In addition, the speed of the motor is reduced by a set of pulleys and a timing belt. Closedloop controlled motion is generated by a computercontrolled dc seromotor. The line contact is created between a short, finely ground, cylindrical shaft K and the flat friction surface N. The shaft K is clamped in the housing assembly I, J, and H, which is designed to hold arious shaft diameters. The normal load, which is centered aboe the line contact, is supplied by a rod P, which has weights attached to it that are not shown in the figure. When the friction test surface moes, the friction force is transmitted through the housing assembly to a piezoelectric load cell. The load cell generates a oltage signal, proportional to the friction force magnitude, which is fed to a dataacquisition system. Another concept of measurement of effects of friction at low elocities is presented in Another Concept. N L M O FIGURE 6 Apparatus for measuring friction force in a line contact. This diagram shows the completed apparatus. The crosssectional iew shows the basic components described in the text. TABLE 2 Conditions for friction measurement experiments. The apparatus shown in Figure 5 is used in the experiment. Bearing diameter Bearing length Bearing material Clearance between bearing and shaft Journal mass Lubricant 2.54 cm 1.9 cm Brass.5 mm 2.27 kg SAE 1W4 oil RESULTS OF FRICTION COEFFICIENT MEASUREMENT in a Lubricated Journal Bearing The apparatus of Figure 5 is deployed in a series of measurements to examine the alidity of the hydrodynamic model (8) (1). The experimental conditions gien in Table 2 are established. All the experiments are performed with the shaft subjected to a controlled sinusoidal elocity with frequency ω rad/s, calibrated to impart a tangential elocity (t) of the shaft surface gien by (t) = r θ =.127 sin ωt m/s (11) where r is the shaft radius, and θ is the shaft angular elocity. 86 IEEE CONTROL SYSTEMS MAGAZINE» DECEMBER 28
6 Static In principle, the static frictioncoefficient cure of Figure 2 can be obtained by establishing a series of constant elocity settings of the shaft relatie to the bearing and, at each setting, measuring the friction force. To expedite the experiment, howeer, the apparatus is run at an extremely low oscillation frequency ω in (11), namely,.55 rad/s (around 2 cycles/min). The results of this measurement are gien in Figure 7, which reeals a pronounced Stribeck effect. Also notice that the measured friction cure for increasing elocity is not identical to that for decreasing elocity, in the range of.2.5 m/s. This result may be due to not using a sufficiently low input frequency or to a hysteresis effect, as discussed in [1]. Dynamic To inestigate the dynamic effects of friction in the lubricated journal bearing, the apparatus is operated at f FIGURE 7 Measured static friction in a lubricated journal bearing. The input elocity is sinusoidal at the ery low frequency of.55 rad/s (about 2 cycles/min). The load is 14 N; the shaft is steel, 2.5 cm in diameter; the sleee is brass; the lubricant is SAE 1W4 automotie oil. The Stribeck effect is eident..3 Another Concept An apparatus for measuring friction effects often comprises a massie fixed base and a relatiely light object, such as a machine shaft, that is actuated to moe at a prescribed elocity relatie to the base. This configuration is necessary for friction measurements at substantial elocities, since it may be impractical to moe the base adequately. But keeping the base fixed leads to a problem associated with measuring dynamic friction, namely ensuring that the friction is the only force on the object subjected to friction. In control applications, low elocities and elocity reersals can occur. For measuring friction effects in such applications, an alternatie configuration, shown schematically in Figure S1, might be more appropriate. In this configuration, the object that is actuated is the base. A relatiely light test object of mass m rests on the base. The only force that makes the test object stick to the base is friction, since, if friction were absent, the test mass would remain stationary in inertial space while the base would moe under it. It can be shown that the friction acceleration f/m on the test mass is equal to μg, where μ is the coefficient of friction. For the Coulomb friction model, the test mass remains stationary in inertial space if the base acceleration is greater than μg but remains fixed to the base if the acceleration is less than μg. (Remember the familiar tablecloth trick: if the acceleration of the tablecloth is large enough, the objects on it remain stationary as the tablecloth is pulled from under them.) We are interested in determining what happens when the relatie elocity is close to zero, which occurs when the frictional acceleration, which is the only acceleration on the test mass, is around μg, and μ is the quantity to be determined. Since friction is the only horizontal force on the test mass, it can be measured by means of an accelerometer mounted as shown in Figure S1. To measure the elocity of the test mass relatie to the moing base, a noncontacting sensor is used. The sensor can be optical, acoustic, inductie, capacitie, or based on the Hall effect. Motion can be imparted to the base by means of a sero actuator designed to track the reference elocity. The same principle can be used to measure rotational friction. The base is a hollow bearing housing actuated to proide the desired motion. The shaft within the bearing, being completely free, moes only because of friction between it and the housing. The elocity of the shaft relatie the housing can be measured without contact by means of a shaft encoder. Instruments for direct measurement of angular acceleration are uncommon, but the inertial elocity of the shaft is readily measured by means of a gyro. If the noise in the gyro is low enough, it might be feasible to differentiate the inertial angular elocity signal to estimate the inertial angular acceleration. Noncontacting Velocity Sensor Test Mass m Reciprocating Base (t ) Accelerometer FIGURE S1 Conceptual representation of an apparatus for measuring translational friction at low elocity. Friction is the only force acting on the upper object. This force is measured by the accelerometer. f (Friction Force) Actuation DECEMBER 28 «IEEE CONTROL SYSTEMS MAGAZINE 87
7 seeral angular elocities and at two leels of normal force. Figure 8 shows the friction coefficient f/f ersus elocity for three frequencies with a normal force of (c) FIGURE 8 Measured dynamic friction in a lubricated journal bearing. The shaft is steel, and the sleee is brass. These results show that the friction coefficient depends on frequency. The normal force is 14 N; the input elocity is sinusoidal. Three frequencies are used for the input elocity: ω =.1 rad/s, ω =.25 rad/s, and (c) ω = 1 rad/s. The solid cures are experimental data; the dashed cures are fit to the hydrodynamic model. N. Figure 9 shows the behaior at three frequencies for a normal force of 84 N. The solid lines show the experimental results, and the dashed lines show the results predicted by the hydrodynamic model of (8) (1). In this model, the parameters c 1, c 2, and ε T are fitted to the static friction cure Figure 7, and the other coefficients are determined theoretically from the bearing dimensions and the iscosity of the lubricant (c) FIGURE 9 Measured dynamic friction in a lubricated journal bearing. The shaft is steel, and the sleee is brass. These results show that the friction coefficient depends on the frequency of oscillation of the input elocity. The normal force is 84 N; the input elocity is sinusoidal at three frequencies: ω =.45 rad/s, ω =.25 rad/s, and (c) ω =.5 rad/s. The solid cures are experimental data; the dashed cures are fit to the hydrodynamic model. 88 IEEE CONTROL SYSTEMS MAGAZINE» DECEMBER 28
8 In machinery in which it is not the driing force, friction is an undesirable parasitic phenomenon, generating heat and wasting energy. Both sets of cures form a loop, enclosing a nonzero area, typical of dynamic friction. The loops enclose more area as the frequency increases, as would be expected with a dynamic model such as discussed in (6) and (7). The upper portion of the cure shows the behaior for increasing elocity, while the lower portion shows the behaior for decreasing elocity. This phenomenon is often erroneously referred to as hysteresis, since the phenomenon may be a consequence of the dynamics of the process rather than of the nonlinearity. Een in a linear dynamic system, the cure is a loop; in fact, for sinusoidal inputs, it is an ellipse, which is a special case of a Lissajous figure. Note also that the coefficient of friction, namely, the ratio of the friction force to the normal force, depends somewhat on the magnitude of the normal force. The Coulomb model does not predict this dependence. Another property of these characteristics is that they appear to lie entirely in the first and third quadrants, implying that energy is dissipated by friction, not only on the aerage but at eery instant of time. Careful examination of the experimental cures, howeer, reeals a slight penetration into the second and fourth quadrants, as is the case with a stable linear electric circuit. (In an electric circuit, the ellipse of oltage ersus current, for sinusoidal input current, has its major axis in the first and third quadrant, but with the instantaneous alue sometimes in the second and fourth quadrants, representing time instants in which the circuit is returning stored energy to the external system.) Operation of the experiment at lower maximum elocity would likely reeal this characteristic in more detail. The experimental cures exhibit the characteristic loops and approximately the same maximum and minimum alues as the theoretical cures; they also show similar frequency dependence. But the experimental cures are not as smooth and not always symmetric. These discrepancies could be due to effects not included in the model or to imperfections in the apparatus. The need for more inestigation is eident. Dry Measurements The coefficient of friction for an unlubricated (dry) bearing is studied using the same apparatus. Figures 1 and 11 show the results for two different sleee treatments. The cure of the friction coefficient for an uncoated steel shaft 2.5 cm in diameter is shown in Figure 1. The cure of the same sleee, coated with ultrahigh molecular FIGURE 1 Measured static friction in a dry journal bearing with a steel, uncoated shaft, 2.5 cm in diameter. The input elocity is sinusoidal at a frequency of.5 rad/s. The load is 14 N. The sleee is uncoated brass FIGURE 11 Measured friction in a dry journal bearing with a steel sleee coated with ultrahigh molecular weight polyethylene, 2.5 cm in diameter. The input elocity is sinusoidal with a frequency of.25 rad/s. The load is 14 N; the shaft is steel. Note that the lower and upper cures are separated and that the coefficient of friction increases with elocity..5 DECEMBER 28 «IEEE CONTROL SYSTEMS MAGAZINE 89
9 Friction effects can be imagined as resulting from two mountainous surfaces, one inerted aboe the other. Friction (kgm Torque) Friction (kgm Torque) Velocity (rad/s) FIGURE 12 Estimated and measured friction force in a frictioncompensation experiment. The estimated friction force is determined by the frictioncompensation algorithm. The measured friction force is determined using the experimental apparatus shown in Figure 5. Note that the measurements show a calibration bias. Neertheless, the estimate of friction force tracks the measurement. The largest discrepancy is near zero elocity. weight polyethylene, is shown in Figure 11. In the former case, the cure exhibits the typical Stribeck effect, namely the reduction of friction coefficient magnitude with increasing elocity. For the coated sleee, howeer, the cure exhibits a negatie Stribeck effect, in which the friction coefficient magnitude increases with elocity. Both results show a separation between the cure for increasing elocity and the cure for decreasing elocity, which suggests either that the frequency is not sufficiently low or that pure hysteresis is present. The angular elocity of the coated sleee is fie times higher than it is for the uncoated sleee; neertheless, the separation between the cures in this case is not significantly greater than it is for the uncoated sleee. The effect of the coating is eident. For the uncoated shaft, the starting friction coefficient is about.4, which decreases to about.2 as the elocity increases, owing to the Stribeck effect. For the coated sleee, the starting friction coefficient is about.2 and does not rise as high as.4 as the elocity is increased. All the cures in the figures 7 11 are obtained using a sinusoidal input elocity. It can be demonstrated by simulation that the cures corresponding to the forceersuselocity cures for other input waeforms are generally not the same as those for sinusoidal inputs [1]. Online Friction Force Estimation If the source of friction in a system can be isolated for measurement, it may be possible to determine the parameters of a friction model with accuracy sufficient for control system design and performance simulation. If the source of friction cannot be isolated, howeer, an online friction estimation algorithm might be effectie for this purpose. The adaptie friction compensation algorithm described in [11] is an example of such an algorithm. Based on the static Coulomb friction model, this algorithm is designed to determine the maximum friction force leel μf and thereby deelop a control force to cancel it. Although the algorithm is based on the static Coulomb friction model (1), the friction force estimate that it produces is time arying and tracks the experimentally measured friction force, as shown in Figure 12. The experimental results [12], obtained using the apparatus of Figure 5, show that the onlineestimated friction force and the directly measured friction force both exhibit the characteristic loops and are approximately the same magnitude. The discrepancy between the online estimate and the direct measurement is greatest in the lowelocity range, where the Coulomb friction model is least accurate, because the cures for increasing elocity and for decreasing elocity differ most at low elocities. Another experimental inestigation of this technique is reported in [13]. CONCLUSIONS Much progress has been made during the past two decades in understanding and modeling the physical characteristics of friction and its effects in motioncontrol systems. The recognition that friction is a dynamic phenomenon that can be represented by statespace models is a significant deelopment that is still ongoing. The nature of the elocity input is part of a larger question of the goal or goals of measuring dynamic friction effects. From the scientific iewpoint, the goal is to determine which of seeral friction models best represents the obsered measurements and to determine the parameters of the model that best fit the data. The choice of input elocity is part of the goal. In the case of a linear system, the only issue is the order of the model and the alues of the parameters therein. 9 IEEE CONTROL SYSTEMS MAGAZINE» DECEMBER 28
10 The bristle model accounts for the physics of dynamic friction, but the number of bristles required for erisimilitude may preclude efficient simulation. Identification techniques are aailable to determine the appropriate order of the model and the parameter alues. For nonlinear systems, howeer, similar identification techniques are not readily aailable. The proper inputs to use and the means to discriminate between contending models remain as open questions. The deelopment of effectie means for compensating friction effects in control systems is another research area that continues to receie attention. Experimental inestigations lag behind the deelopment of theory. In particular, control algorithms for systems in which friction is important are typically demonstrated by simulations in which the friction model, not experimentally alidated, is the same as the model used in the deelopment of the algorithm. Notwithstanding the alue of such simulations, it must be recognized that these are only first steps toward practical designs. To merit serious consideration in practice, the algorithms must ultimately be demonstrated experimentally. REFERENCES [1] D.A. Haessig, Jr., and B. Friedland, On the modeling and simulation of friction, Trans. ASME, J. Dyn. Syst. Meas. Contr., ol. 113, pp , Sept [2] J. Cortes, Discontinuous dynamic systems, IEEE Control Syst. Mag., ol. 28, no. 3, pp , June 28. [3] Y. Guo, Y. Braiman, Z. Zhang, and J. Barben, Nanotribology and nanoscale friction control, IEEE Control Syst. Mag., ol. 28, no. 6, pp. 92 1, 28. [4] B.S.R. Amstrong and Q. Chen, The ZProperties chart, IEEE Control Syst. Mag., ol. 28, no. 5, pp , 28. [5] C. Canudas de Wit, H. Olsson, K.J. Åstrom, and P. Lischinsky, A new model for control systems with friction, IEEE Trans. Automa. Contr., ol 4, no. 3, pp , Mar [6] H. Olsson, K.J. Åstrom, C. Canudas de Wit, M. Gäfert, and P. Lischinsky, Friction models and friction compensation, Euro. J. Contr., ol. 4, pp , [7] H. Olsson, Control systems with friction, Ph.D. dissertation, Dept. Automatic Control, Uniersity of Lund, Sweden, [8] A. Harnoy and B. Friedland, Dynamic friction model of lubricatioed surfaces for precise motion control, Tribology Trans., ol. 37, no. 3, pp , [9] A. Harnoy, B. Friedland, R. Semenock, H. Rachoor, and A. Aly, Apparatus for empirical determination of dynamic friction, in Proc. American Control Conf., Baltimore, MD, 1994, pp [1] A.K. Padthe, J. Oh, D.S. Bernstein, D.D. Rizos, and S.D. Fassois, Duhem modeling of frictioninduced hysteresis, IEEE Control Syst. Mag., ol. 28, no. 5, pp. 9 17, 28. [11] B. Friedland and Y.J. Park, On adaptie friction compensation, IEEE Trans. Automat. Contr., ol. 37, no. 1, pp , Oct [12] J. Amin, B. Friedland, and A. Harnoy, Implementation of a friction estimation and compensation technique, IEEE Control Syst. Mag., ol. 17, no. 4, pp , Aug [13] S. Tafazoli, C.W. de Sila, and P.D. Lawrence, Tracking control of an electrohydraulic manipulator in the presence of friction, IEEE Trans. Contr. Syst. Technol., ol. 6, no. 3, pp , May AUTHOR INFORMATION Araham Harnoy is a professor in the Department of Mechanical Engineering at New Jersey Institute of Technology where he has taught since He has been engaged in teaching and directing the mechanical laboratories and has been inoled in research in tribology, bearings and lubrication, fluid mechanics, heat transfer, and rheology. He has many years of diersified industrial and academic experience in seeral countries. He holds the B.S. and M.S. degrees in mechanical engineering and a doctor of science in mechanics, all from the Technion Israel Institute of Technology. He is the author of the textbook, Bearing Design in Machinery, Engineering Tribology and Lubrication (Marcel Dekker, 23). Bernard Friedland is a distinguished professor in the Department of Electrical and Computer Engineering at the New Jersey Institute of Technology (NJIT), which he joined in 199. He was a Lady Dais isiting professor at the Technion Israel Institute of Technology and has held appointments as an adjunct professor of electrical engineering at the Polytechnic Uniersity, New York Uniersity, and Columbia Uniersity. He was educated in New York City and receied the B.S., M.S., and Ph.D. degrees from Columbia Uniersity. He is the author of two textbooks on automatic control and coauthor of two other textbooks, one on circuit theory and the other on linear systems theory. He is the author or coauthor of oer 1 technical papers on control theory and its applications. For 27 years prior to joining NJIT, he was manager of systems research in the Kearfott Guidance and Naigation Corporation. While at Kearfott, he was awarded 12 patents in the field of naigation, instrumentation, and control systems. He is a fellow of the ASME, which awarded him the 1982 Oldenberger Medal. He is a Fellow of the IEEE and has receied the the IEEE Third Millennium Medal and the Control Systems Society s Distinguished Member Award. He can be contacted at the Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 712. Simon Cohn receied the B.S. degree in mechanical engineering from Boston Uniersity and the M.S. degree from the New Jersey Institute of Technology with a thesis on the measurement of dynamic friction. He is a principal engineer with Ethicon, Inc., a diision of Johnson and Johnson, deeloping surgical instruments. He holds ten patents in surgical instrumentation. DECEMBER 28 «IEEE CONTROL SYSTEMS MAGAZINE 91
Friction. Modeling, Identification, & Analysis
Friction Modeling, Identification, & Analysis Objectives Understand the friction phenomenon as it relates to motion systems. Develop a controloriented model with appropriate simplifying assumptions for
More informationSpace Probe and Relative Motion of Orbiting Bodies
Space robe and Relatie Motion of Orbiting Bodies Eugene I. Butiko Saint etersburg State Uniersity, Saint etersburg, Russia Email: e.butiko@phys.spbu.ru bstract. Seeral possibilities to launch a space
More informationModification of the Leuven Integrated Friction Model Structure
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 4, APRIL 2002 683 Modification of the Leuven Integrated Friction Model Structure Vincent Lampaert, Jan Swevers, and Farid AlBender Abstract This note
More informationLecture #86 Waves and Sound 1. Mechanical Waves We have already considered simple harmonic motion, which is an example of periodic motion in time.
Lecture #86 Waes and Sound 1. Mechanical Waes We hae already considered simple harmonic motion, which is an example of periodic motion in time. The position of the body is changing with time as a sinusoidal
More informationMagnetic braking: Finding the effective length over which the eddy currents form
Magnetic braking: Finding the effectie length oer which the eddy currents form Scott B. Hughes Physics Department, The College of Wooster, Wooster, Ohio 44691 May 5, 2000 This experiment uses a square
More informationCentripetal force. Objectives. Assessment. Assessment. Equations. Physics terms 5/13/14
Centripetal force Objecties Describe and analyze the motion of objects moing in circular motion. Apply Newton s second law to circular motion problems. Interpret freebody force diagrams. 1. A race car
More informationGeneralized dq Model of nphase Induction Motor Drive
Generalized dq Model of nphase Induction Motor Drie G. Renukadei, K. Rajambal Abstract This paper presents a generalized dq model of n phase induction motor drie. Multi phase (nphase) induction motor
More informationFLOWFORCE COMPENSATION IN A HYDRAULIC VALVE
FLOWFORCE COMPENSATION IN A HYDRAULIC VALVE Jan Lugowski Purdue Uniersity West Lafayette, IN, USA lugowskj@purdue.edu ABSTRACT Flowreaction forces acting in hydraulic ales hae been studied for many decades.
More informationSLIP MODEL PERFORMANCE FOR MICROSCALE GAS FLOWS
3th AIAA Thermophysics Conference 3 June 3, Orlando, Florida AIAA 35 SLIP MODEL PERFORMANCE FOR MICROSCALE GAS FLOWS Matthew J. McNenly* Department of Aerospace Engineering Uniersity of Michigan, Ann
More informationTutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning?
1. rpm is about rad/s. 7. ROTATIONAL MOTION 2. A wheel rotates with constant angular acceleration of π rad/s 2. During the time interval from t 1 to t 2, its angular displacement is π rad. At time t 2
More information= o + t = ot + ½ t 2 = o + 2
Chapters 89 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the
More informationThe Feedforward Friction Compensation of Linear Motor Using Genetic Learning Algorithm
Proceedings of the 7th World Congress The International Federation of Automatic Control Seoul, Korea, July 6, 8 The Feedforward Friction Compensation of Linear Motor Using Genetic Learning Algorithm ChinSheng
More informationAnalysis and ModelBased Control of Servomechanisms With Friction
Analysis and ModelBased Control of Servomechanisms With Friction Evangelos G. Papadopoulos email: egpapado@central.ntua.gr Georgios C. Chasparis email: gchas@seas.ucla.edu Department of Mechanical Engineering,
More informationSELECTION, SIZING, AND OPERATION OF CONTROL VALVES FOR GASES AND LIQUIDS Class # 6110
SELECTION, SIZIN, AND OERATION OF CONTROL VALVES FOR ASES AND LIUIDS Class # 6110 Ross Turbiille Sales Engineer Fisher Controls International Inc. 301 S. First Aenue Marshalltown, Iowa USA Introduction
More informationAdvanced Higher Physics. Rotational motion
Wallace Hall Academy Physics Department Advanced Higher Physics Rotational motion Problems AH Physics: Rotational Motion 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration
More informationA METHOD FOR EVALUATION OF THE CHAIN DRIVE EFFICIENCY
Original Scientific Paper doi:10.5937/jaes139170 Paper number: 13(2015)4, 341, 277282 A METHOD FOR EVALUATION OF THE CHAIN DRIVE EFFICIENCY Aleksey Egorov* Volga State University of Technology, YoshkarOla,
More information4. A Physical Model for an Electron with Angular Momentum. An Electron in a Bohr Orbit. The Quantum Magnet Resulting from Orbital Motion.
4. A Physical Model for an Electron with Angular Momentum. An Electron in a Bohr Orbit. The Quantum Magnet Resulting from Orbital Motion. We now hae deeloped a ector model that allows the ready isualization
More informationAP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems
AP Physics C: Rotation II (Torque and Rotational Dynamics, Rolling Motion) Problems 1980M3. A billiard ball has mass M, radius R, and moment of inertia about the center of mass I c = 2 MR²/5 The ball is
More informationThe single track model
The single track model Dr. M. Gerdts Uniersität Bayreuth, SS 2003 Contents 1 Single track model 1 1.1 Geometry.................................... 1 1.2 Computation of slip angles...........................
More information1301W.600 Lecture 16. November 6, 2017
1301W.600 Lecture 16 November 6, 2017 You are Cordially Invited to the Physics Open House Friday, November 17 th, 2017 4:308:00 PM Tate Hall, Room B20 Time to apply for a major? Consider Physics!! Program
More informationLinear Momentum and Collisions Conservation of linear momentum
Unit 4 Linear omentum and Collisions 4.. Conseration of linear momentum 4. Collisions 4.3 Impulse 4.4 Coefficient of restitution (e) 4.. Conseration of linear momentum m m u u m = u = u m Before Collision
More informationProblem Set 1: Solutions
Uniersity of Alabama Department of Physics and Astronomy PH 253 / LeClair Fall 2010 Problem Set 1: Solutions 1. A classic paradox inoling length contraction and the relatiity of simultaneity is as follows:
More informationA possible mechanism to explain waveparticle duality L D HOWE No current affiliation PACS Numbers: r, w, k
A possible mechanism to explain waeparticle duality L D HOWE No current affiliation PACS Numbers: 0.50.r, 03.65.w, 05.60.k Abstract The relationship between light speed energy and the kinetic energy
More informationFrames of Reference, Energy and Momentum, with
Frames of Reference, Energy and Momentum, with Interactie Physics Purpose: In this lab we will use the Interactie Physics program to simulate elastic collisions in one and two dimensions, and with a ballistic
More informationDescription: Using conservation of energy, find the final velocity of a "yo yo" as it unwinds under the influence of gravity.
Chapter 10 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 10 Due: 11:59pm on Sunday, November 6, 2016 To understand how points are awarded, read the Grading Policy for
More informationConcept Question: Normal Force
Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical
More informationTuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE
1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & FreeBody Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for
More informationGeneral Physics I. Lecture 17: Moving Clocks and Sticks. Prof. WAN, Xin ( 万歆 )
General Physics I Lecture 17: Moing Clocks and Sticks Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ With Respect to What? The answer seems to be with respect to any inertial frame
More informationERAD THE SEVENTH EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY
Multibeam raindrop size distribution retrieals on the oppler spectra Christine Unal Geoscience and Remote Sensing, TUelft Climate Institute, Steinweg 1, 68 CN elft, Netherlands, c.m.h.unal@tudelft.nl
More informationAP Physics Chapter 9 QUIZ
AP Physics Chapter 9 QUIZ Name:. The graph at the right shows the force on an object of mass M as a function of time. For the time interal 0 to 4 seconds, the total change in the momentum of the object
More informationContents. Dynamics and control of mechanical systems. Focus on
Dynamics and control of mechanical systems Date Day 1 (01/08) Day 2 (03/08) Day 3 (05/08) Day 4 (07/08) Day 5 (09/08) Day 6 (11/08) Content Review of the basics of mechanics. Kinematics of rigid bodies
More informationSummer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required.
Summer Physics 41 Pretest Name: Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. 1. An object hangs in equilibrium suspended by two identical ropes. Which rope
More informationThreedimensional Guidance Law for Formation Flight of UAV
ICCAS25 Threedimensional Guidance aw for Formation Flight of UAV ByoungMun Min * and MinJea Tahk ** * Department of Aerospace Engineering KAIST Daejeon Korea (Tel : 82428693789; Email: bmmin@fdcl.kaist.ac.kr)
More information第 1 頁, 共 7 頁 Chap10 1. Test Bank, Question 3 One revolution per minute is about: 0.0524 rad/s 0.105 rad/s 0.95 rad/s 1.57 rad/s 6.28 rad/s 2. *Chapter 10, Problem 8 The angular acceleration of a wheel
More informationReduction of friction by normal oscillations. I. Influence of contact stiffness.
Reduction of friction by normal oscillations. I. Influence of contact stiffness. M. Popo,,3, V. L. Popo,,3, N. V. Popo Berlin Uniersity of Technology, 63 Berlin, Germany Tomsk Polytechnic Uniersity, 6345
More informationLecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli
Lecture PowerPoints Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is
More informationAngular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion
Angular velocity and angular acceleration CHAPTER 9 ROTATION! r i ds i dθ θ i Angular velocity and angular acceleration! equations of rotational motion Torque and Moment of Inertia! Newton s nd Law for
More informationPractice Problems from Chapters 1113, for Midterm 2. Physics 11a Fall 2010
Practice Problems from Chapters 1113, for Midterm 2. Physics 11a Fall 2010 Chapter 11 1. The Ferris wheel shown below is turning at constant speed. Draw and label freebody diagrams showing the forces
More informationThe basic principle to be used in mechanical systems to derive a mathematical model is Newton s law,
Chapter. DYNAMIC MODELING Understanding the nature of the process to be controlled is a central issue for a control engineer. Thus the engineer must construct a model of the process with whatever information
More informationDesign and analysis of a recoiltype vibrotactile transducer
Design and analysis of a recoiltype ibrotactile transducer HsinYun Yao Tactile Labs, SaintBruno, Québec, Canada Vincent Hayward a Institut des Systèmes Intelligents et de Robotique, UPMC, Uniersité
More informationInitial Stress Calculations
Initial Stress Calculations The following are the initial hand stress calculations conducted during the early stages of the design process. Therefore, some of the material properties as well as dimensions
More informationF = q v B. F = q E + q v B. = q v B F B. F = q vbsinφ. Right Hand Rule. Lorentz. The Magnetic Force. More on Magnetic Force DEMO: 6B02.
Lorentz = q E + q Right Hand Rule Direction of is perpendicular to plane containing &. If q is positie, has the same sign as x. If q is negatie, has the opposite sign of x. = q = q sinφ is neer parallel
More informationRotational Motion. 1 Purpose. 2 Theory 2.1 Equation of Motion for a Rotating Rigid Body
Rotational Motion Equipment: Capstone, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME9472), string with loop at one end and small white bead at the other end (125 cm bead
More informationESCI 485 Air/sea Interaction Lesson 3 The Surface Layer
ESCI 485 Air/sea Interaction Lesson 3 he Surface Layer References: Airsea Interaction: Laws and Mechanisms, Csanady Structure of the Atmospheric Boundary Layer, Sorbjan HE PLANEARY BOUNDARY LAYER he atmospheric
More informationAnalysis of cylindrical heat pipes incorporating the e ects of liquid±vapor coupling and nondarcian transportða closed form solution
International Journal of Heat and Mass Transfer 42 (1999) 3405±341 Analysis of cylindrical heat pipes incorporating the e ects of liquid±apor coupling and nondarcian transportða closed form solution N.
More informationTransient Analysis of Disk Brake By using Ansys Software
Transient Analysis of Disk Brake By using Ansys Software G. Babukanth & M. Vimal Teja Department of Mechanical Engineering, Nimra College of Engineering & Technology, Ibrahimpatnam, Vijayawada Email :
More informationStatic Equilibrium and Torque
10.3 Static Equilibrium and Torque SECTION OUTCOMES Use vector analysis in two dimensions for systems involving static equilibrium and torques. Apply static torques to structures such as seesaws and bridges.
More informationFRICTION. Friction: FRICARE = to rub (Latin)
FRICTION 1 Friction: FRICARE = to rub (Latin) Resisting force (F) tangential to the interface between two bodies when, under the action of an external force, one body moves or tends to move relative to
More informationChapter 30. Faraday's Law FARADAY'S LAW
Chapter 30 Faraday's Law FARADAY'S LAW In this chapter we will discuss one of the more remarkable, and in terms of practical impact, important laws of physics Faraday s law. This law explains the operation
More informationDynamic Mechanical Analysis of Solid Polymers and Polymer Melts
Polymer Physics 2015 Matilda Larsson Dynamic Mechanical Analysis of Solid Polymers and Polymer Melts Polymer & Materials Chemistry Introduction Two common instruments for dynamic mechanical thermal analysis
More informationA novel fluidstructure interaction model for lubricating gaps of piston machines
Fluid Structure Interaction V 13 A novel fluidstructure interaction model for lubricating gaps of piston machines M. Pelosi & M. Ivantysynova Department of Agricultural and Biological Engineering and
More informationAP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).
AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). 1981M1. A block of mass m, acted on by a force of magnitude F directed horizontally to the
More informationFast Seek Control for Flexible Disk Drive Systems
Fast Seek Control for Flexible Disk Drive Systems with Back EMF and Inductance Chanat Laorpacharapan and Lucy Y. Pao Department of Electrical and Computer Engineering niversity of Colorado, Boulder, CO
More informationTranslational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work
Translational vs Rotational / / 1/ Δ m x v dx dt a dv dt F ma p mv KE mv Work Fd / / 1/ θ ω θ α ω τ α ω ω τθ Δ I d dt d dt I L I KE I Work / θ ω α τ Δ Δ c t s r v r a v r a r Fr L pr Connection Translational
More informationINVESTIGATION OF FRICTION HYSTERESIS USING A LABORATORY SCALE TRIBOMETER
INVESTIGATION OF FRICTION HYSTERESIS USING A LABORATORY SCALE TRIBOMETER P. D. Neis 1,2, P. De Baets 2, Y. Perez Delgado 2 and N. F. Ferreira 1 1 Federal University of Rio Grande do Sul, Brazil 2 Ghent
More informationCourse Material Engineering Mechanics. Topic: Friction
Course Material Engineering Mechanics Topic: Friction by Dr.M.Madhavi, Professor, Department of Mechanical Engineering, M.V.S.R.Engineering College, Hyderabad. Contents PART I : Introduction to Friction
More informationHuman Arm. 1 Purpose. 2 Theory. 2.1 Equation of Motion for a Rotating Rigid Body
Human Arm Equipment: Capstone, Human Arm Model, 45 cm rod, sensor mounting clamp, sensor mounting studs, 2 cord locks, non elastic cord, elastic cord, two blue pasport force sensors, large table clamps,
More informationE X P E R I M E N T 6
E X P E R I M E N T 6 Static & Kinetic Friction Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 6: Static and Kinetic
More information[1.] This problem has five multiple choice questions. Circle the best answer in each case.
[1.] This problem has five multiple choice questions. Circle the best answer in each case. [1A.] A force given by 1 2 3, acts on a particle positioned at 2 6. What is its torque about the origin? [a] 18
More informationASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS. SEMESTER 2 May 2013
ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER 2 May 2013 COURSE NAME: CODE: Mechanical Engineering Science [8 CHARACTER COURSE CODE] GROUP: ADENG 1 DATE: TIME: DURATION: "[EXAM DATE]" "[TIME OF
More informationPLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work.
PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work. InClass Activities: 2. Apply the principle of work
More informationModelling Slip and Creepmode Shift Speed Characteristics of a Pushbelt Type Continuously Variable Transmission
4CVT3 Modelling Slip and Creepmode Shift Speed Characteristics of a Pushbelt Type Continuously Variable Transmission B.Bonsen, T.W.G.L. Klaassen, K.G.O. van de Meerakker P.A. Veenhuizen, M. Steinbuch
More informationEngineering Mechanics
Engineering Mechanics Continued (5) Mohammed Ameen, Ph.D Professor of Civil Engineering B Section Forces in Beams Beams are thin prismatic members that are loaded transversely. Shear Force, Aial Force
More informationModeling Hydraulic Accumulators for use in Wind Turbines
The 13th Scandinaian International Conference on Fluid Power, SICFP213, une 35, 213, Linköping, Sweden Modeling Hydraulic Accumulators for use in Wind Turbines Henrik Brun Hansen and Peter Windfeld Rasmussen
More informationTHE FIFTH DIMENSION EQUATIONS
JP Journal of Mathematical Sciences Volume 7 Issues 1 & 013 Pages 4146 013 Ishaan Publishing House This paper is aailable online at http://www.iphsci.com THE FIFTH DIMENSION EQUATIONS Niittytie 1B16 03100
More informationPLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION
PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION I. Moment of Inertia: Since a body has a definite size and shape, an applied nonconcurrent force system may cause the body to both translate and rotate.
More informationThe dispersion of a light solid particle in highreynolds number homogeneous stationary turbulence: LES approach with stochastic subgrid model
Computational Methods in Multiphase Flow III 65 The dispersion of a light solid particle in highreynolds number homogeneous stationary turbulence: ES approach with stochastic subgrid model M. Gorokhoski
More information30th International Physics Olympiad. Padua, Italy. Experimental competition
30th International Physics Olympiad Padua, Italy Experimental competition Tuesday, July 20th, 1999 Before attempting to assemble your equipment, read the problem text completely! Please read this first:
More informationPROCESS DUTY EFFECT ON THE VIBRATION GYRATORYCONE CRUSHER DYNAMICS
Jr. of Industrial Pollution Control 33(1)(017) pp 909913 www.icontrolpollution.com Reiew PROCESS DUTY EFFECT O THE VIBRATIO GYRATORYCOE CRUSHER DYAMICS EVGEIY VITALIEVICH SHISHKI * AD PAVEL VITALIEVICH
More informationUNIT 2 FRICTION 2.1 INTRODUCTION. Structure. 2.1 Introduction
UNIT FICTION Structure.1 Introduction Objectives. Types of.3 Laws of Dry.4 Static and Kinetic.5 Coefficient of.6 Angle of epose.7 Least Force equired to Drag a Body on a ough Horizontal Plane.8 Horizontal
More informationMagnetism has been observed since roughly 800 B.C. Certain rocks on the Greek peninsula of Magnesia were noticed to attract and repel one another.
1.1 Magnetic ields Magnetism has been obsered since roughly 800.C. Certain rocks on the Greek peninsula of Magnesia were noticed to attract and repel one another. Hence the word: Magnetism. o just like
More informationFREEWAY WEAVING. Highway Capacity Manual 2000 CHAPTER 24 CONTENTS EXHIBITS
CHAPTER 24 FREEWAY WEAVING CONTENTS I. INTRODUCTION... 241 Scope of the Methodology...241 Limitations of the Methodology...241 II. METHODOLOGY...241 LOS...242 Weaing Segment Parameters...243 Determining
More informationRotational Motion. Rotational Motion. Rotational Motion
I. Rotational Kinematics II. Rotational Dynamics (Netwton s Law for Rotation) III. Angular Momentum Conservation 1. Remember how Newton s Laws for translational motion were studied: 1. Kinematics (x =
More informationExamples of magnetic fields... (indicated by compass needles or iron filings) CHAPTER 26 THE MAGNETIC FIELD
Examples of magnetic fields... (indicated by compass needles or iron filings) CHAPTER 26 THE MAGNETC FELD N S N S Force exerted on a charge by a magnetic field Motion of a charge in a magnetic field Cyclotron
More informationPractice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Date: _ Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20
More informationBoundary Layer (Reorganization of the Lecture Notes from Professor Anthony Jacobi and Professor Nenad Miljkoic) Consider a steady flow of a Newtonian, FourierBiot fluid oer a flat surface with constant
More informationExperiment AM Angular Momentum
Experiment AM Angular Momentum Introduction If an object, e.g., a heavy ball, comes straight at you and you catch it, you may stagger back while exerting the impulse  some force for some time  needed
More informationWhat Causes Friction?
What Causes Friction? Friction is the force that opposes the motion between two surfaces that touch (parallel to the surface). The surface of any object is rough. Even an object that feels smooth is covered
More informationUNIVERSITY OF TRENTO ITERATIVE MULTI SCALINGENHANCED INEXACT NEWTON METHOD FOR MICROWAVE IMAGING. G. Oliveri, G. Bozza, A. Massa, and M.
UNIVERSITY OF TRENTO DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL INFORMAZIONE 3823 Poo Trento (Italy), Via Sommarie 4 http://www.disi.unitn.it ITERATIVE MULTI SCALINGENHANCED INEXACT NEWTON METHOD FOR
More informationThe Production of Interactive Software for Supporting the Kinematics Study on Linear Motion and Swing Pendulum
The Production of Interactie Software for Supporting the Kinematics Study on Linear Motion and Swing Pendulum Liliana, Kartika Gunadi, Yonathan Rindayanto Ongko Informatics Engineering, Petra Christian
More information4~ ~ri. Compensation of Friction in the Flight Simulator Stick using an Adaptive Friction Compensator. University of Twente
4~ ~ri University of Twente Compensation of Friction in the Flight Simulator Stick using an Adaptive Friction Compensator Nathan van Seters M.Sc. Thesis Author: Supervisors: N. van Seters Prof. dr. if.
More informationFind the value of λ. (Total 9 marks)
1. A particle of mass 0.5 kg is attached to one end of a light elastic spring of natural length 0.9 m and modulus of elasticity λ newtons. The other end of the spring is attached to a fixed point O 3 on
More informationROTATIONAL MOTION FROM TRANSLATIONAL MOTION
ROTATIONAL MOTION FROM TRANSLATIONAL MOTION Velocity Acceleration 1D otion 3D otion Linear oentu TO We have shown that, the translational otion of a acroscopic object is equivalent to the translational
More informationUse the following to answer question 1:
Use the following to answer question 1: On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are uniformly accelerated for 21 seconds to
More informationAPPLICATIONS OF VIBRATION TRANSDUCERS
APPLICATIONS OF VIBRATION TRANSDUCERS 1) Measurements on Structures or Machinery Casings: Accelerometers and Velocity Sensors Used in gas turbines, axial compressors, small and midsize pumps. These sensors
More informationMechatronic System Case Study: Rotary Inverted Pendulum Dynamic System Investigation
Mechatronic System Case Study: Rotary Inverted Pendulum Dynamic System Investigation Dr. Kevin Craig Greenheck Chair in Engineering Design & Professor of Mechanical Engineering Marquette University K.
More informationUSE OF MECHANICAL RESONANCE IN MACHINES DRIVE SYSTEMS
USE OF MECHANICAL RESONANCE IN MACHINES DRIVE SYSTEMS Wieslaw Fiebig, Jakub Wrobel Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Lukasiewicza 7/9, 51370 Wroclaw, Poland
More informationResearch on Air density Measurement for measuring weights
POSTER SESSIO Research on Air density Measurement for measuring weights WAG Xiaolei, WAG Jian, ZHOG Ruilin, ZHAG ue, CAI Changqing, AO Hong, DIG Jingan (ational Institute of Metrology, Beijing 100013,
More informationDeflections and Strains in Cracked Shafts Due to Rotating Loads: A Numerical and Experimental Analysis
International Journal of Rotating Machinery, 9: 303 311, 2003 Copyright c Taylor & Francis Inc. ISSN: 1023621X DOI: 10.1080/10236210390147416 Deflections and Strains in Cracked Shafts Due to Rotating
More informationEquilibrium & Elasticity
PHYS 101 Previous Exam Problems CHAPTER 12 Equilibrium & Elasticity Static equilibrium Elasticity 1. A uniform steel bar of length 3.0 m and weight 20 N rests on two supports (A and B) at its ends. A block
More informationDeflections and Strains in Cracked Shafts due to Rotating Loads: A Numerical and Experimental Analysis
Rotating Machinery, 10(4): 283 291, 2004 Copyright c Taylor & Francis Inc. ISSN: 1023621X print / 15423034 online DOI: 10.1080/10236210490447728 Deflections and Strains in Cracked Shafts due to Rotating
More informationFALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003
FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 14 pages. Make sure none are missing 2. There is
More informationVersion A (01) Question. Points
Question Version A (01) Version B (02) 1 a a 3 2 a a 3 3 b a 3 4 a a 3 5 b b 3 6 b b 3 7 b b 3 8 a b 3 9 a a 3 10 b b 3 11 b b 8 12 e e 8 13 a a 4 14 c c 8 15 c c 8 16 a a 4 17 d d 8 18 d d 8 19 a a 4
More informationActive Circuits: Life gets interesting
Actie Circuits: Life gets interesting Actie cct elements operational amplifiers (P AMPS) and transistors Deices which can inject power into the cct External power supply normally comes from connection
More informationSUPPLEMENTARY MATERIAL. Authors: Alan A. Stocker (1) and Eero P. Simoncelli (2)
SUPPLEMENTARY MATERIAL Authors: Alan A. Stocker () and Eero P. Simoncelli () Affiliations: () Dept. of Psychology, Uniersity of Pennsylania 34 Walnut Street 33C Philadelphia, PA 9468 U.S.A. () Howard
More informationLecture T2 The PendulumBased Start Gate (US 8,016,639 B2)
1 Lecture T2 The PendulumBased Start Gate (US 8,016,639 B2) INTRODUCTION Literally millions of Pinewood Derby races have been run since the inception of the race in 1953, mostly by Cub Scouts and their
More informationPhysics 53 Exam 3 November 3, 2010 Dr. Alward
1. When the speed of a reardrive car (a car that's driven forward by the rear wheels alone) is increasing on a horizontal road the direction of the frictional force on the tires is: A) forward for all
More informationChapter 10: Friction A gem cannot be polished without friction, nor an individual perfected without
Chapter 10: Friction 101 Chapter 10 Friction A gem cannot be polished without friction, nor an individual perfected without trials. Lucius Annaeus Seneca (4 BC  65 AD) 10.1 Overview When two bodies are
More informationPhysics 23 Exam 3 April 2, 2009
1. A string is tied to a doorknob 0.79 m from the hinge as shown in the figure. At the instant shown, the force applied to the string is 5.0 N. What is the torque on the door? A) 3.3 N m B) 2.2 N m C)
More informationMECTROL CORPORATION 9 NORTHWESTERN DRIVE, SALEM, NH PHONE FAX TIMING BELT THEORY
MECTRO CORPORATION 9 NORTHWESTERN DRIVE, SAEM, NH 03079 PHONE 60389055 FAX 60389066 TIMING BET THEORY Copyright 997, 999, 00 Mectrol Corporation. All rights reserved. April 00 Timing Belt Theory Introduction
More information