University Micrdfilms International 300 N. Z e e b Road Ann Arbor, Ml INFORMATION TO USERS

Size: px
Start display at page:

Download "University Micrdfilms International 300 N. Z e e b Road Ann Arbor, Ml INFORMATION TO USERS"

Transcription

1 INFORMATION TO USERS This reproduction was made from a copy o f a docum ent sent to us for microfilming. While the m ost advanced technology has been used to photograph and reproduce this docum ent, the quality o f the reproduction is heavily dependent upon the quality o f the material submitted. The following explanation o f techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or target for pages apparently lacking from the document photographed is Missing Page(s). If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure com plete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication o f either blurred copy because of m ovem ent during exposure, duplicate copy, or copyrighted materials that should n o t have been filmed. For blurred pages, a good image o f the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part o f the material being photographed, a definite m ethod o f sectioning the material has been follow ed. It is customary to begin filming at the upper left hand com er of a large sheet and to continue from left to right in equal sections with small overlaps. I f necessary, sectioning is continued again beginning below the first row and continuing on until com plete. 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Custom er Services Department. 5. Some pages in any docum ent may have indistinct print. In all cases the best available copy has been film ed. University Micrdfilms International 300 N. Z e e b Road Ann Arbor, Ml 48106

2 Johnson, Sandra Lee THE KURATOWSKI COVERING OF GRAPHS IN THE PROJECTIVE PLANE The Ohio State University PH.D University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106

3 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this docum ent have been identified here with a check mark /. 1. Glossy photographs or p ag es 2. Colored illustrations, pap er or print 3. Photographs with dark background 4. Illustrations are poor co p y 5. P ag es with black marks, not original copy_ 6. Print shows through as there is text on both sides of pag e 7. Indistinct, broken or small print on several p a g e s 8. Print exceeds margin requ irem ents 9. Tightly bound copy with print lost in spine 10. C om puter printout pages with indistinct print 11. P ag e(s) lacking when material received, and not available from school or author. 12. P ag e(s) seem to be missing in numbering only as text follows. 13. Two pages num bered. Text follows. 14. Curling and wrinkled p a g e s 15. Other University Microfilms International

4 THE KURATOWSKI COVERING OF GRAPHS IN THE PROJECTIVE PLANE DISSERTATION P re se n te d in P a r t i a l F u lf illm e n t o f th e R equirem ents f o r th e D egree D octor o f P h ilo so p h y in th e G raduate School o f The Ohio S ta te U n iv e rs ity By Sandra Lee Johnson, A.B., M.S. * * * * * The Ohio S ta te U n iv e rs ity 1982 R eading Committee* Approved By Henry H. G lover John P. Huneke G. N e il R ohertson Thomas A. Dow ling A d m ser D epartm ent o r M athem atics

5 D ed icated w ith lo v e and a p p re c ia tio n to Cleon F. O chsner.

6 ACKNOWLEDGMENTS I w ish to th an k th e many p e o p le, who h e lp e d me i n t h i s p r o j e c t. The e n t i r e l i s t would he to o long t o in c lu d e h e re, h u t a few p eo p le need t o he i d e n t i f i e d. My a d v is o r, Henry G lover, was o f im m easurable h e lp h o th d u rin g th e w r itin g o f t h i s p a p e r and in th e y e a rs b e fo re when he in tro d u c e d me to many a re a s o f Topology. Manohar Maxi an, Dan Lew is, and B i l l Hare a re a few o f th e e x c e lle n t i n s t r u c t o r s who c o n tr ib u te d to my e d u c a tio n in M athem atics. I a ls o w ish to th an k my f r ie n d s and fa m ily members, whose su p p o rt h as been in s tru m e n ta l in th e com p letio n o f t h i s p a p e r. The h e lp o f B ev erly and P a u l Johnson, M arie L in d q u is t, P a t R ie p e r, Deb W ilcox, and K athryn Jak es i s a p p re c ia te d. My s p e c ia l th an k s go to Roger R ice and Cleon O chsner.

7 VITA December 27, ^ I97I+ -I976 Born - S c o tts b lu f f, N ebraska A.B., N ebraska W esleyan U n iv e rs ity L in c o ln, N ebraska G raduate T eaching A s s o c ia te, D epartm ent o f M athem atical S c ie n c e s, Clemson U n iv e r s i t y, Clemson, South C a ro lin a 1976 M.S., Clemson U n iv e rs ity, Clemson, South C a ro lin a G raduate T eaching A s s o c ia te, D epartm ent o f M athem atics, The Ohio S ta te U n iv e rs ity, Colum bus, Ohio FIELDS OF STUDY M ajor F ie ld : M athem atics S tu d ie s in Topology. P ro fe s s o rs Graham Toomer, Henry G lover, Dan B u rg h elea and W illiam H are. S tu d ie s in A lg eb ra. P ro fe s s o rs Manohar Madan, B ostw ick Wyman and Jo h n Luedoman. S tu d ie s in C o m b in ato ric s. P ro fe s s o rs D ijen R ay-c haudhuri, A lan Sprague and J o e l B raw ley. iv

8 TABLE OF CONTENTS Page DEDICATION ACKNOWLEDGMENTS VITA LIST OF TABLES LIST OF FIGURES ii iii iv vi vii Chapter APPENDIXES 0. INTRODUCTION 1 1. SOME BASIC DEFINITIONS AND THE KURATOWSKI COVERING Definitions Kuratowski Covering SUBPOSETS OF ( l ( P ), < ) Types I and Types III and IV ( I ( P ), < ) and IN (p) 1*3 2.1* I n te r s e c tio n P r o p e rtie s 1*7 3. ( I ( P ), < ) Multiple splittings between the same graphs Types V and VI E x c e p tio n s C o n clu sio n s 68 Appendix A K uratow ski C overings f o r ( l ( P ), < ) 69 Appendix B C ross R eferen ce f o r S p l ittin g s 166 A ppendix C D iagram s 173 BIBLIOGRAPHY 179 v

9 LIST OP TABLES T able Page 1. Changes in homotopy ty p e f o r components o f K fl H f o r Types I and I, s p l i t t i n g s Changes in homotopy ty p e f o r components o f K fl H f o r Type I, I s p l i t t i n g s. 51*- 3. K uratow ski C overings f o r ( l ( P ), < ) U. C ross R eferen ce f o r S p l ittin g s 166 v i

10 LIST OF FIGURES F ig u re i. k^ 3 = s3(1^ ) K 5\ {(1, U), (2, 5)) 2. k -g rap h s 3. A1 k. V Two Kc- s 5 5- B7 * Two K3,3,S 6. B7 s and K~ «3> Al + C1 = s9 ( l, 2, 3, k, 6, 8) A1 X C2 " D1 - S7 ( 1, 3 ) C2 X { ^ 9 )) B3 * F1 = Sl ( ^ 6, 7 )B3 X f(2 ' 3)> 3)> {S> 7)> ( 5 ' Bl " D3 " S7 ( l, k) B1 X U1 ^ (5^ 6)> (2, 3)}

11 F ig u re + S9 ( i, 2 ) C^ X { (2 ' 8 ) ' <k>7)1 B5 - S2 (5, 6, 8 ) B5 X{<5' 8 >' 7 ) 3 Cl " Cl l " S5 ( l, 2, 3, M Cl X { ( ^ )} E3 ^ F5 = 2 1. K 0 H and K fl H f o r 2 2. Embedding a t r i a n g l e o p p o s ite a v a le n c y B efore Type IV S p l ittin g 2b. K in a Type IV s p l i t t i n g * D2 = S2 ( l, l t ) C3 X C (1 1 )] ^ S9 ( 1,2, 5 A X ( ( 0 9 ) ) E3 8 ' * S11 (1, 8 ) E3 8 X '< 0 11>) B1 * B2 * D7 29. Homotopy ty p e s o f components o f K 0 H 30. P o s s i b i l i t i e s f o r p.

12 F ig u re B6 - E20 = Sl ( 2, 5, *0B6 X {(2^ 3 ) ' (3 ' k) 5 )) E1 2 ^ F10 : ^ < )-E12S «i ' 5» Page 62 6h 39- y e =! S7 (6, 11) V ((5 1 0 )) 65 ho. A2 D17 Sl ( 7, 2, 3 ) A2 X {(2' 6 ) ' {3 k)> (5 ' 7 )) 66 hi. C^ F6 67 h2. D. F h3. ( I ( P ), < K) 17U kk. ( I ( P ), < ) 175 h5. A s u b s e t o f g e n e ra to rs o f ( l ( P ), < c ) 176 h6. (ln (p ), < K ) 177 hi. (IN (P ), < c ) 178

13 CHAPTER 0 INTRODUCTION The p a r t i a l l y o rd ere d s e t o f irre d u c ib le g raphs on th e r e a l p r o je c tiv e p la n e s tu d ie d in t h i s p a p e r h a s i t s o r ig in i n th e f o u r- c o lo r c o n je c tu re. The f i r s t w r itte n re fe re n c e to t h i s c o n je c tu re ap p ears in a l e t t e r from A. DeMorgan to W. H am ilton in The q u e s tio n was l e f t u n t i l 1879 a s som ething t a c i t l y b e lie v e d to be t r u e. In t h a t y e a r A. C ayley p o in te d o u t why i t was n o t c le a r t h a t fo u r o r even a f i n i t e number o f c o lo rs s u f f i c e. In th e same y e a r A. Kempe p u b lish e d w hat was b e lie v e d to be a p ro o f o f th e f o u r - c o lo r c o n je c tu r e. In 1890 P. Heawood p o in te d o u t th e e r r o r in Kempe's argum ent and proved t h a t no more th a n f iv e c o lo rs a re needed to c o lo r any map on th e sp h e re. Heawood ex ten d ed th e s u b je c t when he looked a t map c o lo rin g problem s f o r o th e r s u rfa c e s. 'T hese a re sp h e re s w ith h a n d le s o r c ro s s -c a p s a tta c h e d. A sp h ere w ith p h a n d le s w i l l be denoted 3^, w h ile a sp h ere w ith q c ro s s -c a p s w i l l be den o ted. Heawood showed th a t x(s p ) < 7 + V l + W p f o r P > 1, 1

14 where x(s ) = n i f ev e ry map on S i s c o lo ra b le w ith n o r x ' Jr few er c o lo r s and th e r e i s a map which i s n o t n - 1 c o lo r a b le. E q u a lity was shown by G. R in g e l and J.W.T. Youngs in The c o rre sp o n d in g theorem f o r n o n -o rie n ta b le s u rfa c e s was proved in 195^ t>y G. R in g e l. X(Sq ) = 7 + ^ l g+ 2^q, q^2, q > 1 and x ( s 2 ) = 6. These r e s u l t s were o b ta in e d by f in d in g th e s u rfa c e w ith few est h a n d le s o r c ro s s -c a p s on which th e com plete g rap h,, can be embedded. T his number i s c a lle d th e genus o f K, and i s denoted n Y(K ) f o r th e o r ie n ta b le c a s e, S, and Y(K ) f o r th e non- ' n P n o r ie n ta b le c a se, Sq. The e q u a tio n s Y(Kn ) = -(.n- : -3] (n j # n > 3, V(Kn ) = ( n - 3.?5(n - ^ ). j, n / T, n > 3, and Y(K? ) = 3. w ere th e r e s u l t s needed to p ro v e "Heawood's C o n je c tu re ", ( c. f. R in g e l [R ]). Two obvious q u e s tio n s a r i s e from t h i s work. The f i r s t q u e s tio n i s ; g iv en a g raph G, w hat i s i t s genus? The second q u e s tio n i s :

15 g iv en a s u rfa c e M, can a l l g rap h s which embed in M he c h a r a c te r 3 ized? T his d i s s e r t a t i o n d e a ls w ith in fo rm a tio n needed t o lo o k a t th e l a t t e r q u e s tio n. S p e c if ic a lly th e s u rfa c e S.^, th e r e a l p ro j e c t i v e p la n e, i s c o n s id e re d. In 1930 K. K uratow ski answ ered t h i s q u e s tio n co m p letely f o r th e sp h e re. He found t h a t KR and K a re th e only fo rb id d e n to p o lo g ic a l subgraphs f o r a graph t o he p la n a r, i. e. G i s p la n a r i f and o n ly i f G c o n ta in s no subgraph homeomorphic to K^ or K. These graphs are thus characterized as 5 3,3 b e in g th e homeomorphy ty p e s o f graphs which do n o t embed in th e sp h e re, b u t such t h a t any p ro p e r subgraph w i l l embed in th e sp h e re, i. e. irre d u c ib le g ra p h s. I n 1980 D. A rchdeacon [A] showed t h a t th e s e t o f 103 graphs given by H. G lover, P. Huneke, and C.S. Wang [GH W^] i s a com plete l i s t o f th e irre d u c ib le graphs f o r th e r e a l p r o je c tiv e p la n e. T his s e t i s th e s u b je c t o f t h i s d i s s e r t a t i o n. We s h a ll fo cu s on two id e a s o f i n t e r e s t co n c ern in g th e s e t, l(m ), o f i r r e d u c ib le graphs f o r a s u rfa c e M. The f i r s t i s a n a tu r a l p a r t i a l l y o rd e re d s e t, (l(m ), < ), g e n e ra te d by a s p l i t t in g and d e le tin g o p e ra tio n ( c. f. [GHW^]). The second i s a conj e c tu r e about th e s tr u c tu r e o f th e s e ir r e d u c ib le g ra p h s. n G I(M ) l e t k(g) = min [ n : G = U H. and H. i s homeomorphic i = to Kr o r K, _ f o r each i }. The K uratow ski c o v e rin g c o n je c tu re P 3} j ( c. f. [A ]) i s : F or k(g) < 2p + l f o r G l(s p ) and k(g) < p + 1 f o r G l ( S ).

16 T his c o n je c tu re was known to he tr u e f o r, a s s ta te d by A rchdeacon [A] b u t i s e x h ib ite d f o r th e f i r s t tim e h e re. T his d i s s e r t a t i o n p r e s e n ts a co n n e ctio n betw een th e se two s tr u c tu r e s, th e p a r t i a l l y o rd ere d s e t f o r l ( S 1 ) and th e K uratow ski c o v e rin g s f o r th e s e g ra p h s. In p a r t i c u l a r we p ro v e th a t f o r ev ery graph X 1 ( 1 ^ ) \ {I>2, D^) th e r e i s a graph Z 1 ( 8 ^ ) \ {DD^} such t h a t Z < X and Z < where i s a p a r t i c u l a r m axim al graph 2 U K and such th a t a l l th e s p l i t t i n g and d e le tin g o p e ra tio n s K3 in v o lv e d a re o f two ty p e s which can be d e s c rib e d i n term s o f a K uratow ski co v e rin g f o r X in i(s ^ ). The f i r s t ty p e o f o p e ra tio n ex ten d s th e n o tio n o f changing K^ to 3 as ^ T^ e second su b d iv id e s a t l e a s t one edge in th e K uratow ski su bgraphs, (se e Theorem 2.1 ). T h is connects B^ w ith a l l b u t two o f th e o th e r ir r e d u c ib le graphs f o r th e r e a l p r o je c tiv e p lan e th ro u g h s p l i t t i n g s which a re n a tu r a l e x te n s io n s o f th e s p l i t t i n g f o r th e p la n e, K^ changing t o K, - as in F ig u re 1. 0, J A g e n e r a liz a tio n o f t h i s r e s u l t would prove th e K uratow ski co v e rin g c o n je c tu re w hich in tu r n m ight le a d to s e v e r a l o th e r r e s u l t s : l ) A new p ro o f o f Heawood1s c o n je c tu r e. 2) The comput a t i o n o f th e genus o f o th e r r e g u la r g rap h s and hence th e genus o f groups ( c. f. [Wh] ). 3) Computer g e n e ra tio n o f l( S ) and l ( S ) s s g + 1 ^ 2g + l knowing th e s in g le elem ent U K3 Kk l ( S ) 5 g and U K3 K,_ l( S ). 5 g

17 In c h a p te r 1, th e n e c e s s a ry background m a te r ia l i s fo llo w e d by a d e s c r ip tio n o f th e p o s s ib le K uratow ski c o v e rin g s f o r an ir r e d u c ib l e g ra p h. A fo u n d a tio n f o r th e c l a s s i f i c a t i o n o f th e s p l i t t i n g and d e le tin g o p e ra tio n s i s l a i d by exam ining th e e f f e c t s o f a s p l i t t i n g on a K uratow ski subgraph o f th e irre d u c ib le g rap h. C hapter 2 g iv e s a c l a s s i f i c a t i o n o f th e s p l i t t i n g s i n ( i( S ^ ), < w hich can be d e s c rib e d in term s o f a K uratow ski c o v e rin g. T h is c l a s s i f i c a t i o n i s u se d t o g e n e ra te s e v e r a l p a r t i a l l y o rd ere d s u b s e ts. The main r e s u l t s o f t h i s d i s s e r t a t i o n concern th e components and maximal elem en ts o f th e s e s u b p o s e ts. The su b p o set ( l ( S, ), <v ) 1 JV u s in g a l l o f th e "good" s p l i t t i n g s, h as i n t e r e s t b ecau se o f i t s two com ponents and s m a ll number o f m axim al elem en ts (se e Theorem 2.2 ). ( l ( S n ), < v ) c o n s id e rs th e ty p e s o f s p l i t t i n g s w hich can be de- 1 " K1 s c rib e d by to p o lo g ic a l m ethods (se e Theorem 2.1 ) and ( i( S ^ ), < ) c o n s id e rs a r e s t r i c t i o n o f th e K uratow ski c o v e rin g s allow ed (see Theorem 2.3 ). F in a lly in theorem s 2.h and 2.5 l ( S 1 ) i s r e s t r i c t e d to th e s e t o f i r r e d u c ib le graphs w hich do n o t c o n ta in d i s j o i n t k -g ra p h s. Some p r o p e r tie s o f th e i n te r s e c tio n o f th e K uratow ski c o v e rin g com plete th e c h a p te r. The l a s t c h a p te r d iv id e s th e s p l i t t in g s whose d e le tio n s can n o t be e x p la in e d in term s o f a K uratow ski c o v e rin g i n to two main c la s s e s. The m inim al number o f ty p e s in d i c a te s a c o n n e c tio n betw een th e K uratow ski c o v e rin g s and th e e n tir e p o s e t ( i ( S ^ ), < ), however th e la c k o f com plete knowledge about th e K uratow ski c o v e rin g o f th e r e s u l tin g graph makes th e s e c la s s e s l e s s u s e f u l f o r g e n e ra l th eo rem s. Appendix A g iv e s a com plete l i s t

18 o f a "good" K uratow ski c o v e rin g f o r each s p l i t t i n g in th e g e n e ra tin g s e t o f ( 1 ( 8 ^, < ). A ppendix B i s a c ro s s - re f e r e n c e f o r Appendix A and Appendix C h as th e r e le v a n t diagram s.

19 CHAPTER 1 SOME BASIC DEFINITIONS AND THE KURATOWSKI COVERING S e c tio n 1.1 D e f in itio n s I t i s assumed th a t th e re a d e r i s f a m ilia r w ith th e b a s ic d e f i n i tio n s o f graph th e o ry and to p o lo g y. I f n o t, see W hite [Wh]. The fo llo w in g a re th e d e f i n i tio n s needed in t h i s d i s s e r t a t i o n. D e f in itio n : A f i n i t e graph G i s s a id t o embed in a s u rfa c e M, G c M, i f some geo m etric r e a l i z a t i o n o f G i s homeomorphic to a subspace o f M. D e f in itio n : A graph G w ith o u t is o la te d v e r t i c e s i s c a lle d an irre d u c ib le g rap h f o r a s u rfa c e M i f G does n o t embed in M, b u t g\ e does embed in M f o r any edge e o f G. Given a s u rfa c e M, l(m ) w i l l denote th e s e t o f homeomorphy c la s s e s o f irre d u c ib le g rap h s f o r M. Theorem (K uratow ski) fk ]: I ( Sq) = 3 ), where d e n o te s th e sp h e re. The two g ra p h s, Kc and K-, w i l l be c a lle d th e K uratow ski g rap h s in th e rem ain d er o f t h i s p a p e r. For a com plete graph on f iv e v e r t i c e s, K ^, w ith v e rte x s e t { v ^ vg, v ^, v ^, v ^ ) th e

20 notation is used. If the three, three partition of the vertex set of a complete bipartite graph, L is (v, v0, Ji j X 2 v^) and (v^, v,_, }, then the notation is used. This notation is extended when needed for a subgraph of a given graph with valency two vertices. For example it is possible for G to contain a subgraph K which is homeomorphic to and has vertex set {v^, v^, v^, v^, v,., v^) with v^ of valency two in K, adjacent to v and v<_, the other edges as necessary for K to be homeomorphic to. The notation in this case is Definition: The real projective plane, denoted P or S1, 2 is the space obtained from the two-sphere, S, by identifying 2 each point X of S with its antipodal point - X. When the surface under consideration is the projective plane the following terms will be used. A graph which embeds in P is called projective, while a graph which does not embed in P is called non-projective. A graph which is non-projective and not irreducible will be called reducible. Theorem (Glover, Huneke, and Wang) [GHW^] : l(p) contains at least 103 graphs.

21 Theorem (A rchdeacon) TA] : l( P ) c o n ta in s e x a c tly 103 g ra p h s. T his d i s s e r t a t i o n i s a stu d y o f th e s e 103 g ra p h s. I n o rd e r to d is c u s s them, each h as been named, as in [GHW^] w ith a p o s itiv e in te g e r s u b s c r ip tin g a c a p i t a l l e t t e r. The graphs named w ith th e same l e t t e r have th e same B e t ti number, e - v + k, where th e graph h a s e edges, v v e r t i c e s and k com ponents. The numbers i n d i c a te a le x ic o g ra p h ic a l o rd e rin g o f th e v a le n c y sequence. Definition: Let v be a vertex of a graph G with v adjacent to the vertices x,,...x., x,... x. A new graph 1 ' j 0+1 n S / v G is given as follows: delete v and all edges xj / incident with v from G. S,» G is the remaining graph V\ X2_^ x j / plus the following additional elements, v' and v" are the new vertices, e is an edge between v' and v", f(v', x ^) 1 < i < j ) and {(v", x^) j + 1 < i < n ) a re th e new ed g es. Let S G denote one of the graphs S / v G for VCx^... x^.) some s e le c tio n x.,...x.. 1" 0 P ro p o s itio n 1.1 : I f v i s a v e rte x o f th e graph G a d ja c e n t to e x a c tly n v e r t i c e s, x,, x,...x, th e n S,»G and J V 2 n "nx^) S / \ G a re homeomorphic to G. n x j,., xn - 1 ; P ro o f: S / \ G and S, v G a re b o th s u b d iv is io n s v (x 1 ) v(xv... xn _1 ) o f G and h en ce homeomorphic t o G.

22 Definition; 10 An S-operation,called a splitting of a vertex in G, is the process of producing an S G, in which it is assumed that S G = S /» G, 2 < j < n - 2. v v ^,... Xj) ' In all the examples where the vertices of a graph G are labeled with positive integers, the vertices of S G will inherit the same labels, as corresponding vertices of G except 0 and the label of v will be used for v' and v", the two new vertices in the definition of Sv G. Notice that G can be obtained from S^G by contracting e the edge between v' and v" so that they become a single vertex. Proposition 1.2; If G <{: M, then G ^ M. For the proof see Lemma 1.1 of [GHW^]. As in [GHW^] this proposition implies; Corollary 1.1; If G l(m) then a subgraph of each G is homeomorphic to a graph in l(m). Definition; For X, Z l(m), X < gr) Z means there is a vertex, v V(z) and a set of edges Y c E(Sv Z) for some choice of Z such that X is homeomorphic to S^zX y. Definition; An SD - operation, called splitting and deleting for a graph Z, is the process of producing X ^ S^zX y in l(m), given Z l(m) and the S-operation which results in S^Z. Definition; (l(m), < ) is the reflexive transitive relation on l(m) generated by successive SD - operations, i.e. H < K if and

23 o nly i f th e re e x is t s a sequence (IL 0 < i < n, and IL l(m )} where H w, K» H and H. < H.,, f o r i from 0 to O n x - SD l + l n - 1. P ro p o s itio n 1.3 : (l(m ), < ) i s a p a r t i a l o r d e r. F or th e p ro o f see Lemma 1.2 [GHW^]. F or example ( l( S n ), < ) c o n s is ts o f ( (K- _, K,.), K < K, J y IP J) as in F ig u re 1. The g e n e ra tin g s e t, (l(p), <sp)> (*(P)> <) i s g iv en in th e a p p e n d ic e s. I t i s in ta b le form in A ppendices A and B and in a d iag ra m i n A ppendix C.!3(1, *0K5X ((1' k)> (2' 5)} The following definitions are fundamental to the study of the relationship between (l(p), < ) and the Kuratowski covering conjecture. Definition: A poset (S, ^ ) is connected if for every X, Y S there exists a sequence 0 < i < n, Z^ S} where X = ZQ, Y = Zn, and Z^ and + 8X6 comparable, i.e. Z. h Z.. or Z.. ^ Z., for i between 0 and n-1. X X + X X + X X

24 D e f in itio n : A component o f a p o s e t (S, ) i s a connected 12 su b p o set (K, ^ ) such t h a t i f (L, \* ) i s a co n n ected su b p o set o f (S, ^ ) which c o n ta in s (K, ) th e n (K, ^ ) = (L, ^» ). D e f in itio n : F or a p a r t i a l l y o rd ere d s e t (S, ^ th e s e t M ^ S i s th e s e t o f maximal elem en ts o f (S, 4 ), i.e. x M S i f and o n ly i f f o r e v ery z S such t h a t x ^ z we have x = z. D e f in itio n [GH^ : A subgraph A o f a g raph G i s c a lle d a k -g rap h i f th e r e e x i s t s a g raph B such t h a t A c B c G and e i t h e r ( i ) A i s homeomorphic t o K0 - and B i s homeomorphic to c.)5 K» _ w ith one o f th e cu b ic v e r t i c e s o f B n o t in A, J? 3 (ii) A i s homeomorphic t o and B i s homeomorphic to w ith one o f th e v a le n c y fo u r v e r t i c e s o f B n o t in A, o r (iii) A i s homeomorphic t o and B i s homeomorphic to S K,. w ith th e cu b ic v e r t i c e s o f B n o t in A. v 5 In F ig u re 2, th e k -g ra p h s have s o lid edges and th e subgraphs o f G w hich c o n ta in them in c lu d e a ls o th e dashed e d g es. Figure 2 k-graphs

25 13 D e f in itio n ; K, H i s a K uratow ski c o v e rin g o f th e graph G i f K and H a re subgraphs o f G, G = K U H, and K and H a re each homeomorphic to one o f o r ^. S e c tio n 1.2 K uratow ski C overing Each member o f l(p) h a s a K uratow ski c o v e rin g as was n o te d by A rchdeacon [A]. The diagram s in th e appendix o f h i s d i s s e r t a t i o n [A] em phasize two k -g ra p h s. The s ix g rap h s D^, D^Q, D ^, and have K^' s w hich a re c o n ta in e d in K^ and hence a re n o t u s e f u l in f in d in g a K uratow ski c o v e rin g. I n th e o th e r graphs a Kurato w sk i c o v e rin g can be re c o v e re d from A rchdeacon's appendix. There a re a few graphs which have a unique K uratow ski c o v e rin g, see F ig u re 3, however m ost o f th e g rap h s in l(p) have s e v e r a l c h o ic e s f o r c o v e rs. F ig u re 3 A.

26 Not o n ly a re th e r e c h o ic e s o f v e rte x s e t s, a r c s betw een v e r t i c e s, and c h o ic e s b ecau se o f symmetry b u t th e r e a re o c c a s io n a lly c h o ic e s o f w hich p a i r o f K uratow ski graphs to u s e. F o r example F ig u re s b, 5, and 6 g iv e B as a u n io n o f two Kc's, two K0, s and one * 7 5 3,3 o f each, r e s p e c tiv e ly. The e f f e c t o f an S -o p e ra tio n on any K uratow ski subgraph o f a graph G i s lim ite d to th re e p o s s i b i l i t i e s. P r o p o s itio n 1.4 ; L et K be a K uratow ski subgraph o f G l(p) and l e t v K. The e f f e c t o f an S -o p e ra tio n on K i s : (51) A ll edges in K th a t a re in c id e n t w ith v in G a re in c id e n t w ith one o f v ' o r v" in S^G, i.e. K i s unchanged, o r (52) E x a c tly one edge o f K t h a t i s in c id e n t w ith v in G i s in c id e n t w ith v ' (o r w ith v ") in S^G, i.e. An edge o f K i s su b d iv id e d, o r (53) v i s in c id e n t w ith fo u r edges o f K and v 1 and v" a re each in c id e n t w ith two o f th e s e in S^G.

27 P ro o f: Any v e rte x in K h a s v a le n c y 2, 3, o r U s in c e K i s homeomorphic t o ^ o r 15 i ) I f v h a s v a le n c y two, th e n th e p o s s ib le p a r t i t i o n s a re 0, 2 and 1, 1. These a re p o s s i b i l i t i e s SI and S2, r e s p e c tiv e ly. i i ) I f v h a s v a le n c y t h r e e, th e n th e p o s s ib le p a r t i t i o n s a re 0, 3 and 1, 2. These a re c a se s S I and S2, r e s p e c tiv e ly. iii) I f v h as v a le n c y f o u r, th e n th e p o s s ib le p a r t i t i o n s a re 0, k, 1, 3, and 2, 2. These a re c a se s S I, S2, and S3, r e s p e c t i v e l y. In c o n s id e rin g a K uratow ski subgraph K o f a graph G, an a rc from v to v ' can be used t o r e p re s e n t th e edge (v, v ' ) in K. The fo llo w in g d e f i n i tio n g iv e s a n o ta tio n f o r th e edges in th e s e a r c s. D e f in itio n : Given K a K uratow ski subgraph o f G, v, y, two v e r tic e s o f v a le n c y g r e a te r th an two in K and Kp th e arc v *y (v, xx ), (Xp, x )... (xn _1, xn ) in K where *n = y, th e x^'s a re d i s t i n c t, n > 1, and each x ^, i < n i s o f v a le n c y two in K. Let K P denote th e s e t o f edges in K ^ v,y Given K, a K uratow ski subgraph o f G, and an S -o p e ra tio n, th e n t h i s S -o p e ra tio n r e s t r i c t e d t o K r e s u l t s in a grap h, denoted S^K, w hich as im p lie d b y P r o p o s itio n l. 1* c o n ta in s a K uratow ski subgraph, c a l l i t S^K.

28 D e f in itio n : i ) S K = S K = K i f v ji K, o r > v v ' i i ) S^K = S^K in c a se s SI and S2 o f p r o p o s itio n 1.4, o r iii) S K = S k\(kp U KP ) in c a se S3 o f P ropo- V V X.^, X g X ^ J s i t i o n 1.4 where v ' i s in c id e n t w ith an edge o f K and v, x1 I t i s c l e a r th a t f o r G, th e S -o p e ra tio n w hich r e s u l t s in S^G and any K uratow ski c o v e rin g G = K U H we have S^G = S^K U S^H U (e), I n th e r e s t o f t h i s p a p e r we w i l l c o n s id e r th e c ases where th e r e s u l t o f an S D -o p e ra tio n i s th e u n ion o f two K uratow ski subgraphs w hich come from some K uratow ski c o v e rin g o f th e o r ig i n a l g rap h, i.e. for G = K U H we get S^gXy = S^K U S^H. I t i s im p o rta n t to n o te th a t S^gXy i s known and th e K uratow ski co v e rin g i s so u g h t.

29 CHAPTER 2 SUBPOSETS OF ( l ( P ), < ) T h is c h a p te r c l a s s i f i e s th e f o u r ty p es o f S D -o p e ra tio n s from G t o S g\ Y where th e r e i s a K uratow ski c o v e rin g o f G = K U H such t h a t S ^ g X y = S^K U S^H. The su b p o sets o f ( l ( P ), < ) w hich a re g e n e ra te d by th e s e "good" S D -o p e ra tio n s a re exam ined. The s e t l( P ) i s th e n r e s t r i c t e d to th e 52 graphs w hich do n o t 2 c o n ta in d i s j o i n t k -g ra p h s. Here th e s p e c ia l graph B.. = U K i s K3 5 n o t o n ly connected to e v e ry graph b u t th e r e i s a t m ost one r e v e r s a l o f o rd e r, i. e. f o r G in l ( p ) w hich does n o t have d i s j o i n t k -g ra p h s, th e r e i s a n o th e r such grap h H such t h a t H < B^ and H < G, where th e p a r t i a l o rd e r i s r e s t r i c t e d to c e r t a i n ty p e s o f SD- o p e ra tio n s. A d is c u s s io n o f th e changes in th e i n te r s e c tio n o f th e two K uratow ski subgraphs d u rin g an S D -o p e ra tio n com pletes th e c h a p te r. S e c tio n 2.1 Types I and The m o tiv a tio n f o r Type I s p l i t t i n g s i s th e n a tu r a l s p l i t t i n g s o f a K^ in to K^ ^ as in F ig u re 1. 17

30 D e f in itio n ; An S D -o p e ra tio n changing G t o S ^ gvy in th e 18 g e n e ra tin g s e t o f ( l ( P ), < ) i s c a lle d Type I i f th e r e i s a K urato w sk i c o v e rin g, K U H = G, which s a t i s f i e s th e fo llo w in g c o n d i t io n s ; i ) K h as v a le n c y fo u r v e r t i c e s v, x ^, X y x^. i i ) I f e. i s th e edge in K in c id e n t w ith v, th e n 1 v, x. 1 in S G e, and e a re in c id e n t w ith v ' and e 0 and e. a re v A in c id e n t w ith v". i i i ) v i s n o t a v e r te x in H, o r th e e f f e c t o f th e S -o p e ra tio n on H i s case S I o f P ro p o s itio n 1.^, i. e. S^H = H. iv ) Y = K P U KP \E(SH). Xl> 2 3 *» I f an S D -o p e ra tio n changing G to S ^ g X y i s o f Type I, where G = L U M i s a K uratow ski c o v e rin g w hich f i t s th e r e q u ir e m ents f o r a Type I s p l i t t i n g th en Type I X, X = L o r M, w i l l he u sed to in d ic a te which subgraph, X, s a t i s f i e s i ) and i i ) in th e d e f i n i tio n o f Type I. N ote t h i s says X i s homeomorphic to K^ i n G and S^X i s hom eom orphic t o K^ ^ D e f in itio n : The edges in K P U K P _ a re s a id to V 2 3 ^ be e lim in a te d from K. D e f in itio n ; An S D -o p e ra tio n changing G to S ^ g X y in th e g e n e ra tin g s e t o f ( l ( P ), < ) i s c a lle d Type I, I i f th e r e e x i s t s a K uratow ski c o v e rin g, G = K U H, w hich s a t i s f i e s th e fo llo w in g

31 c o n d itio n s ; 19 i ) K h as v a le n c y fo u r v e r t i c e s v, x ^, x x ^, x^. H has v a le n c y fo u r v e r t i c e s v, y ^ y^, y y y^ where i f y i {x1, x^, Xy x^} th en y,. = x±. i i ) I f e. i s th e.e d g e in K in c id e n t w ith v and v, x. e. i s th e edge in IL in c id e n t w ith v, th en in S G V' y i A A J 4. 4.U. J A A e^, e^, e y e^ a re in c id e n t w ith v 1 and e ^, e ^, a re in c id e n t w ith v". i i i ) Y = K P U KP U HP U HP \ 1* 2 3 ' ^ yl* y2 y3 yk E(S K U SMB). ' v v Examples o f Type I and Type I, I s p l i t t i n g s i l l u s t r a t e th e d e f i n i tio n s. The s im p le s t case i s A1 ->. Given th e la b e lin g in F ig u re 7, A ^ s K uratow ski c o v e rin g i s, H = ^ 7* ^ 9} and A1 -> i s a Type I H s p l i t t i n g, where 2 3 ^ 6 8) Al ^ ((5> 7 ), (6, 8 ) ). Since ( 5, 7) and ( 6, 8) a re e lim in a te d from H and a re n o t in S K, th e y a re d e le te d from th e graph S / _. y ^9 $9 ^9 6, 8)Ai *

32 20 \ / I \ X s \ I / I n W\ F ig u re 7 C1 s 9 ( l, 2, 3, U,6, 8 ) A1X «5 7 ), <6 8 >> -» i s an example where an edge i s e lim in a te d from th e b u t n o t d e le te d from th e g rap h. W ith th e fo llo w in g diagram and la b e l in g f o r C2, th e K uratow ski cover i s K =! g ^ r ) i l l :) and 3 ) ^ 2 ^ R e s tr ic ^ed to K s p l i t t i n g is S ^ ^ k \ {(8, 9 ), (3, 6 ), (6, l ) ), however ( 3, 6 ) and ( 6,1 ) a re b o th used in H=S^^ and hence a re n o t d e le te d from S /, C. As seen in F ig u re 8, D i s th e u nion o f 7 \ 1 * 5 ) S7(l, 3)K = \ / 803 S7(l, 3)H = ~ \6 (\ 63 h k5 20 /

33 21 F ig u re 8 C2 * D1 = S7 ( 1, 3 ) C2 M ( 8 9 )) An example o f a Type I, I s p l i t t i n g i s -*. The K ura- / 6 1>3\ / 2 1. \ tow ski c o v e rin g f o r F ig u re 9 i s K = g I, H = I ^ y The s p l i t t i n g F^ = ^ ^ B 3\ ( ( 2, 3 ), (*+, 5 ), ( 6, 7 ), (5, 8)} can he r e s t r i c t e d to K and H in th e obvious way. S ince none o f th e edges e lim in a te d from K and H w ere in E(S^K U S^H) th e y a re a l l in Y. 4 / F ig u re 9 B3 -v g B3V ( 2, 3 ), (k, 5), (6, l ), (5, 8)}

34 A f i n a l example o f a Type I, I s p l i t t i n g i s -* Eg. T h is i s 22 a Type I, 1 s p l i t t i n g where an edge o f th e i n te r s e c tio n, K H H, i s in Y. U sing th e s p l i t t i n g = S ^ {(1, 4 ), (5, 6 ), (2, 3 )) when r e s t r i c t e d to e i t h e r K o r H r e q u ir e s t h a t ( l, U) he e lim in a te d from h o th K and H, t h i s means t h a t ( l, 4) m ust be in Y. F ig u re 10 g iv e s th e la b e lin g as w e ll as a v is u a l r e p r e s e n ta tio n o f t h i s s p l i t t i n g. F ig u re 10 B - Eg = S7 (1 ^ ) B1 \ {(1, 10, (5, 6 ), (2, 3 )) D e f in itio n : An S D -o p e ra tio n changing G to g\ Y in th e g e n e ra tin g s e t o f ( l ( P ), < ) i s c a lle d Type i f th e r e i s a Kuratow ski c o v e rin g G = K U H which s a t i s f i e s th e fo llo w in g c o n d itio n s : i ) The e f f e c t o f th e S -o p e ra tio n on K i s case S2 o f Propos i t i o n l A, i. e. an edge o f K i s su b d iv id e d. i i ) v i s n o t a v e r te x o f H o r th e e f f e c t o f th e S -o p e ra tio n on H i s case S I o f P ro p o s itio n 1.^, i. e. H i s n o t changed. i i i ) Y = 0.

35 Given an S D -o p e ra tin g changing G to Sv G \ Y w hich i s o f 23 Type and a K uratow ski c o v e rin g G = L U M, which s a t i s f i e s th e req u irem e n ts f o r a Type s p l i t t i n g th e n Type X, X = L o r M, w i l l be u sed to in d ic a te which K uratow ski subgraph, X, s a t i s f i e s i ) in th e d e f i n i tio n o f Type s p l i t t i n g s. D e f in itio n : An S D -o p e ra tio n changing G to g\ Y, in th e g e n e ra tin g s e t o f ( l ( p ), < ) i s c a lle d Type, i f th e r e i s a K uratow ski c o v e rin g, G = H U K, such t h a t : i ) The e f f e c t o f th e S -o p e ra tio n on b o th K and H i s case S2 in P ro p o s itio n l A, i. e. each has an edge su b d iv id e d. i i ) Y = f. D e f in itio n : An S D -o p e ra tio n changing G to S ^ g X y in th e g e n e ra tin g s e t o f ( l ( p ), < ) i s c a lle d Type I, i f th e r e e x i s t s a K uratow ski c o v e rin g G = K U H, such t h a t ; i ) K s a t i s f i e s i ) and i i ) in th e d e f i n i tio n o f Type I. i i ) H s a t i s f i e s i ) in th e d e f i n i tio n o f Type. i i i ) Y = KP U KP \ E(S^H ). l* 2 3* k Given a Type I, S D -o p e ra tio n changing G to Sv G \ y where G = L U M i s a K uratow ski c o v e rin g th e n Type I X, Y, X = L and Y = M o r X = M and Y = L, w i l l be used to in d ic a te which subg rap h, X, s a t i s f i e s i ) o f th e d e f i n i t i o n f o r Type I, and which subgraph, Y, s a t i s f i e s i i ) in th e same d e f i n i tio n. In r e f e r i n g to th e s e c l a s s i f i c a t i o n s in g e n e ra l Type One w i l l be used to in d ic a te

36 Type I, Type I, I o r Type I, w h ile Type Two w i l l be used to i n d i c a te Type o r Type,. Examples o f Type, Type,, and Type I, s p l i t t i n g s can be seen in F ig u re s 11, 12, and 13. The f i r s t example i s E^ -> E^ and h e re th e edge (5, 7) in H i s re p la c e d by th e a rc (0, 5 ), f 8 2 5\ (5, 7) N o tice th a t 5 i s o f v a le n c y 3 in b o th K =\ 1 ^ ^ J and H = k 8\ j I, b u t in th e two r e s u l tin g K uratow ski g rap h s 5 i s o f v a le n c y 3 in ^ 7) K, w h ile 0 i s o f v a le n c y 3 in S5(l^. T h is i s a Type H s p l i t t i n g and F ig u re 11 shows th e r e s u l t. ^---- i Y & 1 2 F ig u re 11 f E, c * E9 S5 ( i, K 7) t D,_ = ^ g iven th e la b e lin g in F ig u re 12. T his example i s o f Type, and shows th a t b o th K uratow ski graphs may have an edge su b d iv id e d. K = ( 1 2^ \ 1^ 5 3 / has th e edge ^ 3) re p la c e d

37 2 3 6 by (1, 0) and. (0, 3 ), w h ile H =1 ^ ^ g I has ( l, 2) re p la c e d 25 b y (1, 0) and ( l, 2) F ig u re 12 D5 ' Sl(2, If, 5)D3 C2 -> Eg i s a Type I, s p l i t t i n g when th e K uratow ski c o v e rin g 3 5 1' K = (\ 7 \8 9 M ), H =1 6 ^ 2 1 and th e s p l i t t i n g Eg = g 1 / 2^) C gv C?, 9 )> (3, 8 ) ) a re u se d. F ig u re 13 r e p r e s e n ts t h i s s p l i t t i n g and in d ic a te s th e ^ w hich i s ^1(2 If 7 9) ^ F ig u re 13 E8 = Sl(7,9,2,M C2Xt(7 9) (3' 8))

38 From Appendix B i t can be seen t h a t Type One and Type Two s p l i t 26 tin g s acco u n t f o r 228 o f th e 1+7^ s p l i t t i n g s in ( l ( P ), < g D ) > th e g e n e ra tin g s e t o f ( l ( p ), < ). I t i s n a tu r a l t o lo o k a t th e su b p o set o f ( l ( P ), < ) which i s g e n e ra te d by th e s e 228 S D -o p e ra tio n s. D e f in itio n : ( l ( P ), < T, ) i s th e r e f le x iv e t r a n s i t i v e r e l a t i o n 1 on l ( p ) g e n e ra te d by S D -o p e ra tio n s which a re o f Type One o r Two. P ro p o s itio n 2.1 : ( l ( p ), ) i s a p a r t i a l l y o rd ere d s e t. P ro o f: ( i( P ) j < T, ) i s r e f le x iv e and t r a n s i t i v e by d e f i n i tio n. K1 Any r e l a t i o n in < v i s a r e l a tio n in < hence < v i s a n ti- K1 _K 1 sym m etric. Theorem 2.1 : a) ( l ( P ), < ir ) h as th re e com ponents (D^}, {D ) y and I ( P ) \ { D 2, D9 ). b ) M< l( P ) = {A^ Ag, By D, D, _K 1 ^22* ^2* A5^ ' P ro o f; a) F ig u re ^5 in Appendix C g iv e s enough o f th e Type One and Two S D -o p e ra tio n s t o show t h a t l ( P ) \ {DD^} i s a connected s u b se t o f l ( p ). N e ith e r D2 n o r D^ c o n ta in a subgraph homeomorphic to so can n o t be th e source o f a Type One s p l i t t i n g. F or a l l S D -o p e ra tio n o r ig in a tin g w ith Dg o r D^, Y ^ 0 so th e y can n o t be Type Two s p l i t t i n g s. DQ i s maximal in ( l ( P ), < ) hence y ~ we have th e component (D^). Dg i s th e r e s u l t o f an S D -o p e ra tio n

39 only from and h e re Y ^ 0, so Type One s p l i t t i n g s a re th e o n ly 27 p o s s i b i l i t y. A case by case check shows th e r e i s no K uratow ski co v e rin g w hich w i l l make t h i s a Type I, Type I, I, o r Type I, s p l i t t i n g, hence {Dg} i s a component. l ( p ) \ { ( D g, D^} b e in g conn e c te d and each o f {D2 ) and b e in g components im p lie s l ( p ) \ {Dg, D^} i s a component of ( l ( P ), < K ). b ) A^, Ag, B^, B^ and D^ a re maximal in ( l ( P ), < ) hence in ( l ( p ), < K ). {Dg} is a component o f ( l ( P ), < R ) so Dg i s m aximal in ( l ( p ), < K ). By checking a l l S D -o p e ra tio n w hich r e s u l t in 1 D17, ^22* ^2* ^5 Kura'*'ows^::'- co v e rin g s f o r th e s e S D -o p e ra tio n s i t can be shown th a t th e y a re a l l maximal in ( l ( p ), ). D I t sh o u ld be n o ted h e re th a t Types One and Two have th e h ig h e s t p r i o r i t y. I f i t i s p o s s ib le f o r a s p l i t t i n g to be Type One o r Two th en i t i s so l i s t e d in th e A ppendices. The p o s e t ( l ( P ), < ) has K1 th e advantage th a t th e s e s p l i t t i n g s can be u n d e rsto o d in term s o f o th e r to p o lo g ic a l m ethods. We w i l l r e tu r n to t h i s su b p o set in S e c tio n 2.3 when we r e s t r i c t o u rse lv e s to ir r e d u c ib le graphs t h a t do n o t have d i s j o i n t k -g ra p h s. In o rd e r to c l a s s i f y th e s p l i t t i n g s in th e g e n e ra tin g s e t ( l ( P ), < S I)) o f (f(p )> < ) acco rd in g to ty p e, one m ust f in d an a p p ro p ria te K uratow ski c o v e rin g. p o in t o f view by stu d y in g a graph I t i s i n te r e s t in g to re v e rs e th e G, w ith K uratow ski co v e rin g

40 G = H U K, a s p l i t t i n g Sy G and th e s e t Y = Sy G \(S v K U Sv H). In S D -o p e ra tio n s o f Types One o r Two we have exam ples where S ^ gx y i s ir r e d u c ib le, however i t can a ls o be p r o je c tiv e o r re d u c ib le as th e K uratow ski c o v e rin g changes. D e f in itio n : Given a graph G, an S -o p e ra tio n r e s u l tin g in S G and a K uratow ski c o v e rin g G = K U H, th e e f f e c t o f th e S -o p erat io n on K and H w i l l be c a lle d Case ( i, j ) where one o f K or H i s e f f e c te d as in case S i o f P r o p o s itio n 1.1+ and th e o th e r i s a f f e c te d a s in case Sj o f P ro p o s itio n l.u. P r o p o s itio n 2.2 : Given G l ( p ), th e S -o p e ra tio n which r e s u l t s in S G, and a K uratow ski c o v e rin g, G = K U H, i f th e e f f e c t o f th e S -o p e ra tio n on K and H i s Case (2, 2) o r ( l, 2) th en l ) S^K U S^H i s n o n -p ro j e c t iv e 2) i t i s p o s s ib le t h a t S^K U S^H i s re d u c ib le. P ro o f; l ) F o r Cases ( l, 2 ) and (2,2 ) S^K = S^K and S H = I T h and {e} S s K U S H hence Y = S g X ep k U 1T~H = f. v v v v v v v r P ro p o s itio n 1.1 com pletes th e p ro o f t h a t S^K U S^H i s non- p ro j e c t iv e. 2) F ig u re lu g iv e s a la b e lin g o f. F or t h a t la b e lin g S10(7, 11) E35 and th e K uratow ski c o v e rin g

41 S10(7, l l ) E35 Since F9 i s homeomorphic to s io ( 7, as e x h ib ite d by th e mapping in d ic a te d in th e v e rte x la b e lin g o f F ig u re 15, i t i s c le a r t h a t si q (7 l l ) E35 ^ no^ i r r e d u c ib le. Note t h a t t h i s i s th e c o v e rin g used in th e S D -o p e ra tio n F - = S, - /r_ 9 10(7, 11; 35 {(1,1)-)) in A ppendix A. O ther s p l i t t i n g s l i s t e d in th e Appendix as Type V I, w i l l g iv e th e same r e d u c i b i l i t y. S p l ittin g s l i s t e d in th e Appendix as Type VI show t h a t th e e f f e c t o f Case ( l, 2) can be r e d u c ib le. F ig u re l 1^ E, F ig u re 15 F S / A 9 10(7, H ) 35

42 When one o f th e su b g rap h s, K, in th e K uratow ski c o v e rin g, 30 G = K U H, i s homeomorphic t o and K i s homeomorphic to K no in fo rm a tio n about th e e m b e d a b ility o f S K U S H can be 3,3 v v d e term in ed. P ro p o s itio n 2.3 i Given G l ( p ), an S -o p e ra tio n which r e s u l t s in Sv G, and a K uratow ski c o v e rin g, G = H U K, th e n i f th e e f f e c t o f th e S -o p e ra tio n i s Case ( l, 3 ), (2, 3) o r (3, 3 ), S^K U S^H can b e i ) r e d u c ib le, i i ) ir r e d u c ib le, o r i i i ) p r o je c tiv e. P ro o f; i ) U sing B g, th e K uratow ski c o v e rin g Kg U = Bg from Appendix A (page 76), and S ^ 2 ^ ^ Bg th e n ' s ^ ' ^ 7)^K2 U ^ 7 )^ 2 con *:;a:ijls C3, w here th e e f f e c t o f th e S -o p e ra tio n i s (1, 3). U sing A^, th e K uratow ski c o v e rin g K^,, from Appendix A (page 7 0 ) and th e S -o p e ra tio n Ij ) A1 S iv es th e e f f e c t on Kx and a s Case ( 2, 3) b u t ^ ^ u ^ a T C 5r C 7 )"l = s9 (l, h, 5, 6, 7 ) *1 ^ ^ ^ 3) } which contains th e subgraph U sing th e same graph and K uratow ski c o v e rin g, th e e f f e c t o f S9 (2, k, 5, 7) Al is Case (3 ' 3) b u t ^9 ( 2X ^ 1 U S9 ( l, 5, 6, 7) (5, 7 ), (6, 8)} c o n ta in s a subgraph homeomorphic to Fg. (See A ppendix A page 7 1 ) These th r e e exam ples

43 prove p a r t i ). 31 i i ) Any S D -o p e ra tio n o f Type One i s an example t h a t th e s e can be i r r e d u c ib le. 1 3 < i i i ) For V < 4,,.. I,, l j, a K urato w sk i c o v e rin g, and th e s p l i t t i n g 3) 7 8ra ph 2 ( l 3 ) K ^ ^ 3 ) B ^ \ {(1, 3 ), (6, 7 ) ) T his i s a subgraph o f = ^ 2 ( l 3 ) ^ 7 ^ hence p r o je c tiv e. (See F ig u re 16 and Append ix A page 86). F ig u re 16 S2 ( l ^ 3 ) B7 \ ( ( l, 3 ), ( 6, 7)3 8 2 ""' 3 ^ 1 \ The K uratow ski c o v e rin g K H =1 ^J o f and th e s p l i t t i n g S ^ ^ 2 ) ch would r e s u l t i n S C, \ 9 (1, 2 ) ^ { (2, 8 ), (4, 7 ) ) w hich i s a subgraph o f D12 = S ^ 2 ) ^ ^ and hence p r o je c tiv e. (See F ig u re 17 and Appendix A page 9&).

44 32 F ig u re 17 s 9 ( l, 2 ) C^ X {(2' 8 ) ' (U 7 ) ) / 2^ \ 3 \ ( 5*3 7 \ U sing, th e K uratow ski c o v e rin g K = l 1 g 3 y, H \ 2 6 \ J and th e s p l i t t i n g ^ ( 5 g 8 ) ^B, th e graph S2 (5 ; ^ g )K U g )H = S2 ( 5, 6, 8 ) 6), (**, 8 ), ( 1, 7 ) ) i s a subgraph o f, g^b j and hence p r o je c tiv e. (See F ig u re 19 and A ppendix A page 8l ). These a re exam ples where S^K U S^H i s p r o je c tiv e and com pletes th e p ro o f o f P ro p o s itio n 2.3. O F ig u re 18 s 2 ( 5, 6, 8) B5 X f(5, 6 ), (U, 8 ), ( 1, 7 )}

45 S e c tio n 2.2 Types I and IV 33 T his s e c tio n d e s c rib e s th e rem ain in g s p l i t t i n g s w hich can be d e s c rib e d in term s o f a K uratow ski c o v e rin g. D e f in itio n : An S D -o p e ra tio n changing G t o S ^ gx y in the g e n e ra tin g s e t o f ( l( P ), < ) i s c a lle d Type I i f th e r e i s a K uratow ski c o v e rin g G = K U H which s a t i s f i e s th e fo llo w in g : i ) A ll edges o f K t h a t a re in c id e n t w ith v in G a re in c id e n t w ith v ' in S ^ G, i. e. The e f f e c t o f th e S -o p e ra tio n on K i s S I o f P ro p o s itio n 1.4. i i ) A ll edges o f H t h a t a re in c id e n t w ith v in G sure i n c i d e n t w ith v" in S G, i. e. The e f f e c t o f th e S -o p e ra tio n on H i s S I o f P ro p o s itio n 1.4. i i i ) Y = ( ( v ', v " ) }, A Type I s p l i t t i n g o c c u rs when K fl H h as an is o la te d v e rte x. T h is o c c u rs most o f te n when a connected g rap h, i. e., s p l i t s in to a graph w ith two com ponents, i. e. (se e F ig u re 1 9 ).

46 S5 ( l, 2, 3, b) c i c F ig u re 19 However i t i s p o s s ib le th a t b o th g rap h s a re connected a s in E ^ + F^. As seen in F ig u re 20, h a s th e K uratow ski C overing K = w ith K H H th e fo llo w in g : 1) The v e rte x s e t o f K H H i s {1, 2, 3, 5, 6, 7, 8, 10, 11}. 2) The edge s e t o f K fl H i s { ( l, 1 1 ), ( l, 2), (2, 3), (2, 6), (3, b), (3, 1 1 ), (6, 7 ), (7, 8 ), (1 0, 11)}. As seen i f F ig u re 21 K H H is a v e rte x and a subgraph hom otopic t o a c y c le. S^K H S^H i s j u s t th e c y c le.

47 F ig u re 20 8 K n H f o r E ^ -* F5 K fl H f o r E F, F ig u re 21

48 A check o f Appendix B shows t h a t th e o n ly improvement t h a t can be made in ( l ( P ), < ) by adding th e Type I s p l i t t i n g s would be _ K 1 to have one l e s s maximal e lem en t, A,-. Since ( v ', v " ) can n o t be an edge e lim in a te d from a K uratow ski subgraph, Type I s p l i t t i n g s can n o t be Type One s p l i t t i n g s, Y ^ <f) im p lie s th e s e a re n o t Type Two s p l i t t i n g s e i t h e r. S ince Type I i s d i s j o i n t from Types One and Two th e y a l l have th e same p r i o r i t y. I f Types One, Two, o r I a re p o s s ib le, th e y a re l i s t e d in A ppendix A. A Type IV s p l i t t i n g i s th e m ost te c h n ic a l, in t h a t i t a r is e s from th e f a c t t h a t no i r r e d u c ib le graph can have a v a le n c y th re e v e rte x as one v e rte x o f a t r i a n g l e. For in s ta n c e in G i f v has n e ig h b o rs x ^ x ^, and x^ th e n c o n s id e r th e edge e = ( x ^ Xg). I f e E(G) and G - e embeds th e n th e r e m ust be a fa c e w ith (x ^, v) and (v, Xg) on i t s boundary, s in c e th e r e i s no way t o s e p a ra te x.^ and Xg w ith o n ly one o th e r edge. As i n F ig u re 22 e can be added to G - w ith o u t any i n t e r s e c t i o n, hence G embeds. 3 F ig u re 22 Embedding a t r i a n g l e o p p o s ite a v a le n c y 3 v e rte x P ro p o s itio n 2.^-: L e t G l ( P ), and l e t x^ and Xg be a d ja c e n t to v in G. I f x^^ and x a re a d ja c e n t a ls o, th en

49 f y x j, O f(*l' XS> } i s non p r o je c tiv e. 37 F o r a p ro o f see Lemma 3.^ [GWH^]. Type IV s p l i t t i n g s w i l l be th o se which s a t i s f y P r o p o s itio n 2.b and a re n o t Type One s p l i t t i n g s. T here a re o n ly fo u r such s p l i t t i n g s, C3 * V D2 * V D1 0 * E15' a e23 * P10 D e f in itio n : An S D -o p e ra tio n changing G to S, Ng \ X2 { (x ^ x 2 ) ) in th e g e n e ra tin g s e t o f ( l ( P ), < ) i s c a lle d Type IV i f i t i s n o t Type One and th e r e i s a K uratow ski c o v e rin g G = K U H which s a t i s f i e s th e fo llo w in g : i ) K u s e s v and x^ as v a le n c y th r e e v e r t i c e s, x g as a t l e a s t v a le n c y two and th e edges (v, x^) and (x^, a re in K. ( See F ig u re 2 3 ). F ig u re 23 K in a Type IV s p l i t t i n g i i ) The e f f e c t o f S, * G on H i s S2 o f P ro p o s itio n l.u. n x x, xg ; i i i ) (x _, x ) i s n o t i n H and H i s homeomorphic t o K. JL c. 3)3 The s tr e n g th o f th e Type IV s p l i t t i n g i s th a t S / \ g \ v ^, Xgj { (x ^ x 2 ) ) = Sv H U K where K i s (S^K U { (v 1, xg ) )) \ { ( x x, x g ) }.

50 T h is i s a ^ w ith th e changes as in F ig u re V* F ig u re 2^ K in a Type IV s p l i t t i n g F or example -* Dg i s shown in F ig u re 25. W ith th e g iv en h \ la b e lin g K = 9-^ g ^ ** = ^ 7 8 f ^ ^ l ^ sp l t t t i n g D2 S2 ( l ( l4. ) C3 >S' fc1# it ) ) r e s u l t s in K = 1 ^ lfg 3 J and N o tice t h a t h e re v = 2, v ' = 2, r" Oj x^ = 1 and = k. I F ig u re 25 3 *

51 39 These seven ty p e s o f s p l i t t i n g s have th e p ro p e rty t h a t g iv en th e s p l i t t i n g and th e K uratow ski c o v e rin g o f one o f th e graphs in v o lv ed th e K uratow ski c o v e rin g o f th e o th e r i s re c o v e ra b le. These 2bj s p l i t tin g s g e n e ra te a p a r t i a l l y o rd ere d s e t. D e f in itio n : ( l ( P ), < ) i s th e r e f le x iv e t r a n s i t i v e r e l a tio n ' K on l( P ) g e n e ra te d by S D -o p e ra tio n s o f Types One, Two, I and IV. P ro p o s itio n 2.9 ; (l(p )> ) as a P ^ 'k i ^ l y o rd ere d s e t. P ro o f: By d e f i n i tio n ( l ( P ), < ) i s r e f le x iv e and t r a n s i t i v e and < i s a s u b r e la tio n o f <, hence a n tisy m m e tric. K Theorem 2.2 : a ) The components o f ( l ( P ), < ) a re (D^} and is. y I ( P ) \ [D9 ). b ) M< I(P) = (A ^ Ag, Bx, B3, D, D, Egg}. K P ro o f: a) D^ c o n ta in s no t r i a n g le s and no K uratow ski co v erin g y o f Dn has an is o la te d v e rte x in th e in te r s e c tio n o f th e two K uray to w sk i su b g rap h s. These f a c t s and Theorem 2.1 im ply t h a t D^ i s n o t th e so u rce f o r any S D -o p e ra tio n o f Types One, Two, I o r IV. I t i s m aximal and hence an i s o l a te d g rap h. F ig u re hj o f Appendix C shows I ( P ) \ fdq} i s connected and hence a component o f ( l ( P ), < v ). y n b ) A^, Ag, B^, By and D^ a re m aximal in ( l ( P ), < ). A case b y case check o f a l l S D -o p e ra tio n s w hich produce D ^ and Egg shows t h a t th e y a re maximal in ( l ( P ), < ). T his p o s e t ( l ( P ), < t r ) i s en co u rag in g f o r g e n e ra l p ro o fs because K

52 Uo DQ, found by N. R o b ertso n, h a s v e ry s p e c ia l p r o p e r tie s. I t i s m axiy mal in ( l ( P ), < ), i t c o n ta in s no subgraphs homeomorphic t o K^, and i t c o n ta in s d i s j o i n t k -g ra p h s. I t i s c o n je c tu re d t h a t th e p ro j e c t iv e p la n e i s th e o n ly s u rfa c e w ith a graph t h a t s a t i s f i e s th e gener a l i z a t i o n o f th e s e p r o p e r t ie s. T h is s u g g e sts t h a t analogous s p l i t t in g ty p e s f o r o th e r s u rfa c e s could g iv e connected p o s e ts. Since g + 1 2g + 1 U K and U K, th e u n io n o f K 's w ith a common 3 -c y c le, *3 5 5 are known to be ir r e d u c ib le f o r S and S r e s p e c tiv e ly, th e con- 8 g n e c te d n e ss o f t h i s p o s e t im p lie s th e K uratow ski C overing C o n je c tu re. The edges to be d e le te d a re p re s c rib e d in th e s e ty p e s so i t i s p o s s ib le th a t a com puter program u s in g th e se ty p e s would f in d th e s e t I(M ), S f o r sm a ll g, in a re a s o n a b le le n g th o f tim e. The program could ta k e two fo rm s. I f some c h a r a c te r iz a tio n o f l(m ) could be found th e n - K s t a r t i n g w ith th e s e graphs o n ly S D -o p e ra tio n s would be g e n e ra te d. These g raphs would be o rd ere d by subgraph r e la tio n s h ip s and em bedabil i t y would be checked from th e bottom, s m a lle s t g rap h, up u n t i l a nonp ro j e c t i v e graph i s found. A ll su p erg rap h s a re th e n known to be re d u - n c ib le. The o th e r p o s s ib le p la n would be t o s t a r t w ith U and u se S D -o p e ra tio n s and t h e i r in v e r s e s. K3 5 S ince th e in v e rs e s a re n o t w e lld e fin e d t h i s m ight be l e s s f e a s i b l e. However we make th e s e c o n je c tu r e s. C o n je c tu re A; Given a su rfa c e M, th e r e e x i s t s an a lg o rith m f o r g e n e ra tin g l(m ) which u s e s th e K uratow ski c o v e rin g o f th e elem ents o f I(M ).

53 C o n je c tu re B: com puter g e n e ra te d. The irre d u c ib le graphs f o r th e to r u s can be Ul We w i l l end t h i s s e c tio n by a g a in re v e r s in g o u r p o in t o f view and s tu d y in g a graph G, a K uratow ski c o v e rin g G = K U H w hich has v as an is o la te d v e rte x in K H H, and th e S D -o p e ra tio n r e s u l tin g in Sv G \ ( ( v ', v " ) }. P ro p o s itio n 2.6 : Given G 6 l ( P ), a K uratow ski co v e rin g G = HUK, v an i s o l a te d v e rte x in K D H, an S -o p e ra tio n whose e f f e c t on H and K i s Case ( l, l ), and d i s j o i n t k -g ra p h s A, B which a re c o n ta in e d in H and K r e s p e c tiv e ly, th e n S^K U S^H = sv g\ { ( v, v " )} i s n o n - p ro je c tiv e. P ro o f; The K uratow ski subgraphs H and K a re unchanged in Sv G \ { ( v ', v " ) } and hence s t i l l c o n ta in d i s j o i n t k -g ra p h s. Any graph which c o n ta in s d i s j o i n t k -g ra p h s i s n o n -p ro je c tiv e (se e P ro p o s itio n 2.5 [GH2] ). P r o p o s itio n 2.1'. Given G l ( p ), a K uratow ski c o v e rin g G = H U K, v an i s o l a te d v e rte x in K fl H, an S -o p e ra tio n whose e f f e c t on H and K i s Case ( l, l ), th e n S H U S K = S g \ { (v 1, v ")} can be i ) r e d u c ib le, i i ) ir r e d u c ib le, o r i i i ) p ro j e c t i v e. P ro o f; i ) U sing C^, th e graph

54 c o n ta in s F^ = ^ ^ < \ \ ( ( 9, 0 ), (3, 6), ( l, 5)}, (se e F ig u re 26 h2 and Appendix A page 9 7 ). F ig u re 26 S9 ( l, 2, 5 ) l. N {t9' 0 )) i i ) Any Type I s p l i t t i n g in A ppendix A shows t h a t S^K U S^H can be ir r e d u c ib le. 5,4 9 i i i ) U sing E_o, K and H j38 " y / ---- \ J '1 0 ; th e graph 8) K ^ Sl l ( l, 8) H = Sl l ( l, 8 ) E3 8 ^ 11 ^ embeds as seen in F ig u re 27. O I F ig u re 27 "38

55 S e c tio n 2.3 ( l ( P ), < ) and IN (p ) I n A ppendix A a l i s t o f a l l S D -o p e ra tio n s i s g iv e n. The Kurato w sk i c o v e rin g s used change from s p l i t t i n g to s p l i t t i n g s in c e th e req u irem e n t i s t o f in d a l l th e s p l i t t i n g s f o r w hich th e r e e x i s t s a K uratow ski c o v e rin g w hich w i l l make th e s p l i t t i n g o f Types One, Two, I, o r IV. I t i s n a tu r a l t o ask w hat i s p o s s ib le i f a s in g le Kuratow ski c o v e rin g i s chosen f o r each irre d u c ib le grap h in l ( p ). Many irre d u c ib le graphs have 10 o r more K uratow ski c o v e rin g s and i t would be no problem to p ic k K uratow ski c o v e rin g s w ith few good s p l i t t i n g s. However i t i s a ls o p o s s ib le t o p ic k good c o v e rin g s. D e f in itio n : U sing Appendix A, a s sig n each ir r e d u c ib le g raph th e K uratow ski c o v e rin g in i t s l i s t t h a t g iv es th e m ost s p l i t t i n g s o f Type: One, Two, I, and IV, i. e. f o r D ^ use D ^ = K^ U Hg. I f th e re i s a t i e u se th e f i r s t K uratow ski co v e rin g in th e l i s t, i. e. in Ag use th e c o v e rin g f o r Ag. The s p l i t t i n g s which u se th e a ssig n e d K uratow ski c o v e rin g and a re o f Types One, Two, I, o r IV a re c a lle d c - s p l i t t i n g s. D e f in itio n : ( l ( P ), < c ) i s r e f le x iv e t r a n s i t i v e r e l a t i o n g e n e ra te d by a l l c - s p l i t t i n g s. P r o p o s itio n 2.8 : ( l ( P ), < c ) i s a p a r t i a l l y o rd ere d s e t. P ro o f: < c i s a s u b re la tio n o f < and so i s a n tisy m m e tric. < i s r e f le x iv e and t r a n s i t i v e by d e f i n i tio n. c U sing th e s e K uratow ski c o v e rin g s th e b e s t p o s s ib le case i s found, i. e. I ( P ) \{ D _ }, {Dq } a re th e com ponents. S ince a n o th e r c h o ic e o f y y

56 co v e rin g s would g iv e d i f f e r e n t maximal elem en ts even i f th e components rem ain th e same, i. e. u se * D^q in s te a d of D g, i t i s u n p ro d u ctiv e to lo o k a t m axim al e le m e n ts. Theorem 2.3 ; T here i s an assignm ent o f a u nique K uratow ski c o v erin g f o r each graph i n l ( P ) such t h a t ( l( P ), ) r e s t r i c t e d to s p l i t t i n g s which a re o f Type One, Two, I, o r IV w ith r e s p e c t to th e a ssig n e d c o v e rin g s h a s two com ponents, l ( P ) \ {DQ) and {Dn ). y y P ro o f; F ig u re in Appendix C i s a su b set o f th e c - s p l i t t i n g s and ex am ination o f t h i s f ig u r e shows t h a t ( l( P ), < c ) has th e re q u ire d p r o p e r ty. In A2 > th e K uratow ski c o v e rin g i s two K ^ 's one o f w hich becomes a K^ ^ > h u t in B^. -> th e K uratow ski c o v e rin g o f i s ag a in two K ^ 's. T his shows t h a t f o r c - s p l i t t i n g s th e re i s no r e l a tio n s h ip betw een th e K uratow ski c o v e rin g s. U sing B^ and i t s c a n o n i- 2 c a l c o v e rin g which a r i s e s from th e d e f i n i tio n B^ = U K^ i t is re a s o n a b le to c o n s id e r a p r e f e re d K uratow ski c o v e rin g, t h a t in h e r ite d from B^. F ig u re 28 shows B^, B^, and w ith t h e i r K uratow ski c o v e rin g s in h e r ite d from B.^. T here a re two such c o v e rin g s f o r, b u t n e ith e r can be used f o r th e S D -o p e ra tio n from t o which s p l i t s v and would e f f e c t th e K^ as in Case S3, b u t would n o t d e le te any edges from S^,.

57 F ig u re 28 B2 ^7

58 These two exam ples show t h a t w h ile K uratow ski co v e rin g s can be h6 found w hich g iv e th e e n t i r e s e t l ( P ) \ (D^J th e y have l i t t l e r e l a t i o n sh ip to each o th e r. In a sk in g q u e s tio n s about ir r e d u c ib le graphs th e answ ers a re u s u a lly e a s ie r in th e c a se s where th e graph c o n ta in s d i s j o i n t k -g ra p h s (a k -g ra p h d i s j o i n t from an example f o r th e n e x t low er genus su rfa c e f o r g e n e ra l s u r f a c e s ). So in same sense th e m ost i n te r e s t in g graphs a re th o se which do n o t have d i s j o i n t k -g ra p h s. T h is s e c tio n ends w ith an ex am ination o f our su b p o sets r e s t r i c t e d t o th e s e g ra p h s. D e f in itio n : I N(p) is th e s e t o f g rap h s in l( P ) which do n o t have d i s j o i n t k -g ra p h s. D e f in itio n : (IN(P), < ), (ln(p), < K ), (IN(P), < R ) and ( I lf(p ), < ) a re th e r e f le x iv e t r a n s i t i v e r e l a tio n s on IN(p) gener a te d by th e S D -o p e ra tio n s from IN(P) to IN(p) which s a t i s f y th e r e s t r i c t i o n s f o r th e g iv en r e l a t i o n on l(p). P ro p o s itio n (IN(P), < ), (IN(P), < R ), (IN(P), < R ) and (IN (p ), < c ) a re p a r t i a l l y o rd ered s e t s. P ro o f: Each i s a s u b r e la tio n o f < on l(p) and hence a n t i sym m etric. a re p o s e ts. Since th e y a re r e f le x iv e and t r a n s i t i v e by d e f i n i tio n th e y Theorem 2.b: (ln (p), < K) i s a connected p o s e t w ith maximal elem ents A a n d Eg2. P ro o f: F ig u re k6 in Appendix C i s th e s e t o f s p l i t t i n g s which

59 g e n e ra te (ln (p), <^) and shows t h a t t h i s p o s e t i s connected w ith 3 maximal e le m e n ts. Since th e Type I and IV s p l i t t i n g s a re marked in t h i s diagram, i t a ls o p ro v es th e fo llo w in g theorem. Theorem 2.5 : (ln (p), <v ) h as two com ponents, {D_) and "" ^ ^ IN(P)\{D2). M< IN(P) = (A2, E22, D2, E2 ). K1 As s ta te d b e fo r e, p la y s a c e n tr a l r o le in l(p). P ro p o s i tio n 2.1 0, which i s proven by checking F ig u re U6, shows t h a t a v e ry sm a ll number o f s p l i t t i n g s, s ix, w i l l g e n e ra te any graph from B^. P ro p o s itio n ; a) For X IN(P) th e r e i s a sequence B, = X, X,,... X = X where X. and X., a re th e so u rce and 1 0* 1* n x l + l r e s u l t o f an S D -o p e ra tio n i n IN(p) o f Type One, Two, I o r IV and n < 6. b ) For X IN(P)\{D2 ) th e r e i s Y IN(P)\{D2 ) such t h a t y < K X and y < ^ B T his com pletes th e stu d y o f th e p o s e ts g e n e ra te d by "good" K urato w sk i c o v e rin g s. S e c tio n 2.k d is c u s s e s some r e s u l t s about th e i n t e r s e c tio n o f th e two K uratow ski subgraphs. S e c tio n 2.b I n te r s e c tio n P r o p e rtie s The p a r t i a l l y o rd e re d s e t (l(p ), < K ) n o t o n ly p re s e rv e s in f o r m ation about what happens t o th e K uratow ski c o v e rin g o f each so u rce g rap h, i t a ls o p r e c is e ly d e fin e s w hat happens to th e i n te r s e c tio n o f

60 th e two K uratow ski g rap h s which cover th e o r ig i n a l g ra p h. In th e case U8 o f Type One s p l i t t i n g s th e r e i s a d if f e r e n c e betw een w hat i s p o s s ib le and w hat i s observ ed in (l(p), ) F o r t h i s reaso n Type One s p l i t tin g s a re d is c u s s e d l a s t. Each component o f K Cl H f o r any K uratow ski c o v e rin g used f o r th e s p l i t t i n g s in (l(p), < ) has th e homotopy ty p e o f one o f th e g raphs in F ig u re 29- O l b. F ig u re 29 Homotopy ty p e s o f components o f K H H. T his can be seem from o b se rv in g th e i n t e r s e c tio n s in Appendix A. Any component o f th e i n te r s e c tio n which i s a t r e e i s.homotopic to 1, w hile th e o th e r th r e e graphs a re s u f f i c i e n t to c l a s s i f y th e r e s t o f th e i n t e r s e c tio n which a r i s e from th e K uratow ski c o v e rin g s used in (l(p), < K ) - In Type Two s p l i t t i n g s th e homotopy ty p e o f th e i n te r s e c tio n i s unchanged. T here a re th r e e c a s e s. Case l ) v i s n o t in th e i n t e r s e c tio n o f K and H. Hence e i s n o t in th e in te r s e c tio n o f S^K and s'"*!!, so KflH = S K fls H. Case 2) v i s in th e i n t e r - v 7 v v s e c tio n o f K and H, b u t o n ly one o f v ' o r v" i s i n th e i n t e r s e c tio n o f SVK and S^H. As in c a se 1, e i s n o t in S^K fl S^H so K fl H = S^K fl Sv H. Case 3) v i s in th e in te r s e c tio n o f K and H and v ' and v" a re b o th in th e i n te r s e c tio n o f S^K and S^H.

61 U9 Here we have e E(Sv K H Is^H). I f H S^H i s c o n tra c te d alo n g th e edge e th e n th e in te r s e c tio n i s i d e n t ic a l to K l~l H. S ince t h i s c o n tr a c tio n i s a homotopy e q u iv a le n c e, th e a s s e r tio n t h a t f o r Type Two s p l i t t i n g s th e homotopy ty p e o f th e i n te r s e c tio n i s unchanged i s shown in a l l c a s e s. By d e f i n i tio n Type I s p l i t t i n g s have a c o v erin g K, H w ith an is o la te d v e r te x, v, in K H H. T h is v e rte x i s s p l i t and th e new edge i s rem oved, le a v in g th e r e s t o f K 0 H unchanged. T h is shows t h a t Type I s p l i t t i n g s d e le te a component o f homotopy ty p e 1 from th e i n te r s e c tio n, K H H. In Type IV s p l i t t i n g s th e v e rte x t h a t i s s p l i t i s e x a c tly l ik e a Type s p l i t t i n g so any change in th e homotopy ty p e comes from th e new edge t h a t i s used to make K. As s ta te d b e fo re Type IV s p l i t t i n g s o c cu r when a v e rte x v i s s p l i t so t h a t v ' i s a tta c h e d to x^ and Xg> th en th e edge (x ^, x^) i s d e le te d. The c o v e rin g i s chosen so t h a t (x ^, x ^ ) i s n o t in th e in te r s e c tio n, hence i t s d e le tio n does n o t e f f e c t K fl stjh. The edge (v, x^) i s n o t in E(K fl H), b u t by d e f i n i t i o n (vf, Xg) i s in b o th E(S^H ) and E(k). Since v and xg a re b o th in V(K H h ), th e new edge, (v ', x^), adds a new p a th betw een v ' and x^. I f v and x a re in two components o f K fl H, th e n th e s e two components a re now combined in to th e same comp onent in K fl S^H. I f v and x a re in th e same component o f K fl H th e n i f i t h a s homotopy ty p e i in Kfl i t h as homotopy ty p e i + 1 in K fl Sv where i = 1, 2, o r 3. The f o u r exam ples a re o f

62 ty p e 1 to ty p e 2 and two components changing in to one component. 50 In Type I, Type I, and Type I, I s p l i t t i n g s th e o bserved changes in th e homotopy ty p e o f th e i n te r s e c tio n a re much more r e s t r i c t e d th a n th e t h e o r e t i c a l p o s s i b i l i t i e s. These changes a re l i s t e d in T ab les 1 and 2. In a Type I o r Type I, s p l i t t i n g e x a c tly one i s changed to a K and no edge o f th e i n te r s e c tio n i s d e le te d from th e graph 3 j 3 G. The edges which a re e lim in a te d from th e K,_, b u t n o t d e le te d from Sy G, change th e i n te r s e c tio n a g r e a t d e a l and i t can be seen t h a t th e s e edges acco u n t f o r a l l o f th e changes. L e t K be the w hich s p l i t s to a ^ an(^ (x^ X2^ 311 e<^6e which i s d e le te d from S^G. T here a re th re e c a s e s. Case l ) d (x ^) = d (x ^) = 4 in K. Case 2) d (x 1 ) = 4 and d(x2) = 2 in K. Case 3) = d(x2) = 2 in K. In case 1 th e i n te r s e c tio n rem ains unchanged as d (x ^ ) = d(x2) = 3 in S^K and so x ^ and x2 rem ain in S^K. In c a se s 2 and 3 th e r e i s an x^ ^ V(K H H) and x^ f. V(Sv K fl S^H), however t h i s im p lie s th e r e i s an edge (x ^, y ) w hich i s e lim in a te d from S K and n o t d e le te d from S G. The changes in th e in te r s e c tio n v v w i l l be e x p la in e d in term s o f th e s e edges. L et p be a maximal p a th o f edges and v e r tic e s (x, x ^ ), (x ^, x2 ),..., (xn, y ) w hich a re e lim in a te d from K b u t n o t d e le te d from S G. T his p a th i s a l l o r p a r t o f K_ in K and can be Tl ' V2 one edge o r a s in g le v e r te x. Since th e edges o f p a re n o t d e le te d

63 from Sv G we know p c E(K D H) and f o r each edge in p, 51 e f E(Sy K I"). I t i s c le a r t h a t x and y a re in V(S^H). There a re th re e c a se s as d e p ic te d in F ig u re 30, where s o lid l in e s r e p r e s e n t edges o f K and d o tte d l i n e s edges o f H. Case l ) x, y V(sJk). Case 2) x V( pk) and y V(S^K). Case 3) v, y f v fs^ K ). Case 1 Case 2 Case 3 F ig u re 30 P o s s i b i l i t i e s f o r p In case 1 th e r e i s one p a th betw een x and y w hich no lo n g e r e x i s t s. I f th e component o f K fl H t h a t x and y were in was a t r e e i t i s now two com ponents, o th e rw is e, i f i t was o f type i i t i s now o f ty p e i - 1, where i = 2, 3, ^. F o r case 2 th e r e i s a sequence o f edges (y, y1 ), (y^, y )... (y, z) where z 6 V(K) and t h i s sequence h as a t l e a s t one edge in i t. The edge (y, y^) i s d e le te d from G because i t i s n o t in th e in te r s e c tio n o f K and H, s in c e i f i t was p would n o t be o f maximal le n g th. I f y^ ^ z th e n y^ V(H) and th e r e s t o f th e p a th c o n ta in s a n o th e r p w hich i s h an d led s e p a r a te ly. The p a th p from x to y in K (1 H i s a sequence o f edges which can be c o n tra c te d to th e v e rte x x. T his does n o t change th e homotopy ty p e o f K fl H

64 and c o n tr a c tin g th e s e edges in K H H i s th e same as d e le tin g them 52 from S^K n S^H. So in case 2 th e homotopy type o f th e i n te r s e c tio n does n o t change. Case 3 im p lie s t h a t p i s an is o la te d a rc o r v e rte x in K D H w hich i s d e le te d from S K H S H. Hence S K H S H h as one l e s s v v v v component o f homotopy type 1 than K D H h ad. In summary th e homotopy type changes by lo s in g one c o n n e ctio n f o r each p a th in K th a t r e p r e s e n ts an e n tir e edge o f and i s e lim in a te d from s''"lt b u t n o t d e le te d from S G. The i n te r s e c tio n v v lo s e s one is o la te d component o f ty p e 1 f o r each p a th o f H which i s a c e n te r p a r t o f an edge o f th e and i s n o t d e le te d from G. F in a lly i f a c e n te r p ie c e o r h a lf an edge from K i s d e le te d from th e g rap h, SVG, th e homotopy ty p e o f th e i n te r s e c tio n rem ains unchanged, j u s t as in th e case where an edge o f K i s a c a n o n ic a l edge in th e Kc and i s d e le te d from S G. 5 v R ev ersin g th e p o in t o f view by ask in g w hat can happen when Y = n g iv e s th e fo llo w in g. I f Y = f, th e n th e r e a re two a rc s l i k e case 1 in F ig u re 21 and e i t h e r two components each change from i t o i - 1 homotopy type o r one component changes from i t o i - 2, where 0 and -1 mean two and th r e e components r e s p e c tiv e ly. I f y = 1, th en th e r e i s one a rc l i k e case 1 and e i t h e r a c a n o n ic a l edge o f i s d e le te d o r one a rc i s l ik e c a se 2 in F ig u re 21. T his means one component changes from i to i - 1. I f y = 2 th en th e r e a re two p o s s i b i l i t i e s. E ith e r th e re i s a case 1 and a case 3

65 w hich changes one component from i to i - 1 and d e le te s a ty p e 1 component o r th e r e a re two c a se 2's o r two c a n o n ic a l ed g es, h e re th e homotopy ty p e rem ains unchanged. I f y > 3 th e n a t l e a s t one edge o f K i s l i k e case 3 in F ig u re 21 and th e homotopy ty p e changes. T h is im p lie s t h a t o n ly y = 2 w i l l a llo w th e homotopy ty p e to rem ain unchanged. T able 1 g iv e s th e o bserved r e s u l t s f o r a Type I and Type I, s p l i t t i n g s. T able 1 Changes in homotopy ty p e f o r components o f f o r Type I and I, S p l ittin g s K fl H Number o f edges d e le te d Changes observed , , 2 + 1, 3 + 2, U 3 2 None + None, 1+1, 2+2, no i n te r s e c tio n For Type I, I s p l i t t i n g s n o t o n ly i s e v e ry th in g u nder Types I and I, a p p lic a b le, b u t th e edges e = (x, y) w hich a re in th e in te r s e c tio n o f K and H and a re d e le te d from S^G m ust a ls o be c o n s id e re d. F i r s t n o te t h a t th e s e a re i s o l a te d edges sin c e i f y i s o f v a le n c y two in b o th K and H a s w e ll as in K 11 H th e n i t i s o f v a le n c y two in G w hich i s im p o s s ib le. I f b o th x and y a re n o t o f v a le n c y fo u r in b o th K and H th e n th e re i s a p a th from x o r y to a v e r te x in H S^H w hich i s e lim in a te d from K o r H b u t n o t d e le te d from S G. The edge (x, y ) p lu s t h i s p a th o r th e s e

66 5^ p a th s i s an a rc o f K H H w hich i s d e le te d. T his means th e component which in c lu d e d x and y goes from i to i - 1, where i i s 1 to U and 0 means e i t h e r one component becomes two o r one compon e n t d is a p p e a rs. The p o s s i b i l i t i e s f o r changes in th e i n te r s e c tio n a re v a r ie d. F o r exam ple, i f y = 1 th en i f th a t edge was in th e i n te r s e c tio n one component goes from i to i - 1, w h ile th e r e a re th re e a rc s l ik e case 1 o f F ig u re 21. These th re e a rc s can cause th re e i to i - 1 changes o r one i t o i -1 change and one i to i - 2 change, etc. On th e o th e r hand i f th e edge in Y i s n o t in th e i n te r s e c tio n o f K and H, th e r e i s one a rc l i k e case 2 and th re e as in c a se 1, see F ig u re 30. The p o s s i b i l i t i e s a re so much more numerous th a n th e r e a l i t i e s th a t no l i s t o f p o s s i b i l i t i e s w i l l be g iv e n. T able 2 g iv e s the observed r e s u l t s. T able 2 Changes in homotopy type f o r components o f K fl H in Type I, I S p l ittin g s Number o f edges d e le te d Changes observed > 1, 3 -> 2 k 1 1, 2 -* 2

67 CHAPTER 3 (I(P), <) S e c tio n 3.1 M u ltip le s p l i t t i n g s betw een th e same graphs In tr y in g t o u n d e rsta n d th e p o s e t (l(p), < ) in term s o f th e K uratow ski c o v e rin g s i t i s im p o rta n t to f ir s t c o n s id e r th e fact th a t in many c a ses th e r e a re v e r t i c e s v and v f and s u b s e ts o f th e edge s e ts o f S G and S. G, Y and Y', such t h a t S g \ y» S. g \y '. v v' v v' In s e v e r a l c a se s t h i s homeomorphism a r i s e s from sym m etries in th e o r i g in a l grap h, see F ig u re 31. In th e r e a re te n v e r t i c e s any o f which could be u sed in th e s p l i t t i n g - d e l e t i n g o p e ra tio n to y ie ld C11. These te n v e r t i c e s a re sym m etric in th e sen se t h a t g iven two v e r t i c e s, x and y, th e r e i s an isom orphism from o n to A^ which in te rc h a n g e s x and y. T h is kind o f m u ltip le d e te rm in a tio n o f a s p l i t t i n g does n o t cause d i f f i c u l t i e s sin c e th e same isom orphism which in te rc h a n g e s th e v e r t i c e s w i l l g iv e an isom orphism betw een p o s s ib le K uratow ski c o v e rin g s. 55

68 56 F ig u re Symmetry i s n o t in v o lv ed in e v e ry m u ltip le d e te rm in a tio n o f an im m ediate r e l a t i o n in l(p). In F ig u re 32 a la b e lin g i s shown f o r U sing t h i s la b e lin g Fy i s reach ed by b o th S2j _(3 5 6 ) E13^ {(6, 10)} and S10^g X {(11, 9)} U sing th e la b e lin g s o f F ig u re 33 th e e q u a lity o f th e s p l i t t i n g s can be observed by u s in g a v e rte x mapping from S1Q^ ^ E ^ X {(9, l l ) } to S1;L( 3^ ^ g) E1 3 \ ( ( 6, 10)} as fo llo w s : 3 ^ , Since th e v a le n c y o f 11 i s 5 and th e v a le n c y o f 10 i s U i t i s c le a r t h a t no symmetry w i l l e x p la in t h i s m u ltip le d e te rm in a tio n o f E ^ Ey L ik ew ise, th e r e i s no correspondence betw een p o s s ib le K uratow ski c o v e rin g s o f E 13 '

69 57 F ig u re 32 E, F ig u re 33 {(9, 11)} In se ek in g a c l a s s i f i c a t i o n by K uratow ski c o v e rin g s o f each s p l i t t i n g in (l(p), < ), m u ltip le d e f i n i tio n s a re ig n o re d. F o r e ach H < G, th e " b e s t" v and Y a re u se d. Here " b e s t" i s d e fin e d by a s p l i t t i n g which i s o f Type One, Two, I, IV, V, orvi e x i s t s. Type V and VI a re d e fin e d in s e c tio n 3.2. P r e f e r ence i s g iv en to th e f ir s t f o u r, b u t o f th e lj-7^ s p l i t t i n g s o n ly 2^7 a re o f th e s e ty p e s. E xcept f o r 2 s p l i t t i n g s which a re d isc u s s e d in s e c tio n 3. 3, th e rem ain in g 225 s p l i t t i n g s a r e d iv id e d in to two m ain c la s s e s. Those whose K uratow ski c o v e rin g s keep th e same v e r t i c e s and th o se where th e K uratow ski c o v e rin g o f th e r e s u l t i n g

70 graph u se s b o th new v e r t i c e s as v a le n c y th r e e in a new K, which does n o t a r i s e from a K,-. 5 S e c tio n 3.2 Types V and VI D e f in itio n ; An S D -o p e ra tio n changing G t o S^gXy i s a Type V s p l i t t i n g i f i t i s n o t a Type One, Two, I, o r IV s p l i t t i n g and th e r e e x i s t s K uratow ski c o v e rin g s G = K U H and S^gX y = K U H such t h a t ; i ) st k = K. i i ) V(H) = V(S^H). Type I, V I, Type, V, etc. w i l l be used t o in d ic a te what i s th e e f f e c t o f th e S D -o p e ra tio n on K. T his ty p e o f s p l i t t i n g o ccu rs n e a r th e m aximal ele m en ts where th e r e a re m u ltip le p a th s betw een two v e r t i c e s. I t i s f r e q u e n tly th e new ed g e, e, which i s d e le te d. In F ig u re 3^ th e s p l i t t i n g B^q = g^a^x {(0, 11)} i s shown. The ex p e cte d c o v e rin g K As seen h e re th e s e s p l i t t i n g s can r e s u l t i n a change in th e homo- topy ty p e o f th e i n te r s e c tio n u s u a lly to h ig h e r c o n n e c tiv ity.

71 sl l ( l, 6 ) \ F ig u re 3if- B10 Sl l ( l, 6 ) \^ ^C11* Bg -> G i s an example o f two K^'s changing to two s w ith th e edge ( 9, 0) b e in g re p la c e d by th e p a th s ( 9, 8 ), (8, 2), (2, 0) and (9, 7 ), (7, 5 ), (5, 0). T h is g iv e s 1 = ( g / 9 / 3^ 7 \. / J / 5 0 l \ in s te a d o f y o '! 6 5 / 3X1(1 B = V / in s te a d o f os:;) as shown in F igure 35.

72 6o "N Br f r S9(5,6,8)B8X <3-8) (5,6 ), (It, 7 ) ) G= S9(5, 6, 8) * 8 ^ * ). (3 8>< (5, 6), (4, 7 ), (0, 9 )) F ig u re 35 In Bg > th e new edge i s n o t d e le te d, h u t th e edge t h a t i s d e le te d c o u ld be re p la c e d by a t l e a s t 30 d i f f e r e n t p a th s. As shown in F ig u re 36 th e two K s a re s tr e tc h e d and th e n th e edge 5 (2, 3) i s re p la c e d by th e p a th s (2, 8 ), (8, 7)* (7, 3) and (2, 6 ), (6, 5 ), (5, 3).

73 S2(l, 3, 6, 8)B2 F ig u re 36 The p re v io u s exam ples have v o r v ' as one e n d p o in t o f th e e x tr a d e le te d edge, b u t in ^ 5) B6B A {(2, 3 ), (3, U) (1+, 5 )) th e edges (3, and (2+, 5) a re d e le te d le a v in g th e p a th (1, 5 ), (5, 3) in s te a d o f th e p a th ( l, 5 ), (5, *0, 3). The o r i g in a l p a th i s n e c e s s a ry to in s u re t h a t K U H = Bg. F ig u re 37 shows t h a t in t h i s example th e homotopy ty p e o f th e i n te r s e c tio n rem ains th e same.

74 62 3, Sl ( 2, 5, U) b6^ ^ 2* 3 ^ F ig u re 37 E20 Sl(2, 5, U) (3,M, (*, 5)) 3^j Type VI s p l i t t i n g s, w h ile b e in g th e m ost num erous, a re th e l e a s t d e s ir a b le, sin c e one g f r ia th e o r i g i n a l graph d is a p p e a rs and th e m ost t h a t can be s a id o f th e Kg g w hich r e p la c e s i t in th e new graph i s t h a t b o th v 1 and v" a re v a le n c y th r e e v e r t i c e s. T h is ty p e can n o t in any way b e u se d t o d eterm in e th e s p l i t t i n g. A com bination o f th e b e s t v and Y w ith th e b e s t K uratow ski c o v e rin g to g iv e one o f th e s ix ty p e s i s u se d and th e c h o ic e s a re made so t h a t

75 Type VI i s used o n ly when i t i s f o rc e d. T h is o ccu rs m ost fre q u e n tly n e a r th e m inim al elem en ts when th e so u rce graph has o n ly a few p a th s betw een two v e r t i c e s and i s th e u n io n o f two K,, s. Jj J D e f in itio n : An S D -o p e ra tio n changing G to S ^ g Xy i s c a lle d Type VI i f i t i s n o t Types One, Two, I, o r IV and th e re e x is t K uratow ski c o v e rin g s G = K U H and g\ Y = K U H such t h a t : 1. K = /S~K v 2. IT i s homeomorphic to K and h as v 1 and v" as 3 ) -J v a le n c y th re e v e r t i c e s. Type I, V I, and Type, VI w i l l be u se d to in d ic a te w hat th e e f f e c t o f th e S D -o p e ra tio n i s on K. Two t y p ic a l exam ples o f Type VI s p l i t t i n g s a re shown in F ig u re s 38 and 39. In -* F^q > S^K i s i d e n t i c a l to K, w hile in Fq -> G, one edge o f K i s su b d iv id ed in S K. These two y * b a s ic k in d s o f Type VI s p l i t t i n g s make up o v e r a t h i r d o f a l l o f th e s p l i t t i n g s.

76 s i ( 2, 9, 10) E15 p10 = ^(2, 9, 10) 6)1 F ig u re 38

77 F, F ig u re 39 G 37<6, u ) F9 X t(5 10)) W hile m ost Type VI s p l i t t i n g s in v o lv e o n ly ^ ' s some use a K,- and a K0 _. F ig u re lj-0 shows -> Dnr7. H ere th e K-., 5 3, ^ ^, changes t o a 3, "Cg Q 3{ 2 ) > 111 ^he norm al way, how ever H = ^ 3 6^ o 4 ^2 h a s no r e l a tio n s h ip t o th e o r i g i n a l h-g b 5 >6) These subgraphs a re chosen p r e c i s e l y b ecau se

78 K U H = Ag and K U H =. Where p o s s ib le edges w hich a re e lim in a te d from a and n o t d e le te d from th e g rap h, i.e. (U, 5), a re in th e i n te r s e c tio n o f K and H, b u t edges o f Y t h a t do n o t a r i s e from a K,- changing t o a K- Q a re in t h i s i n t e r s e c t i o n. A, Sl ( 7, 2, 3) A2^ 2' F ig u re i+0 D17 Sl ( 7, 2, 3) A2^ (3, U ), (5, 7 ) ) 2' 6 ^j S e c tio n 3.3 E x c e p tio n s. Of th e hfk s p l i t t i n g s, a l l b u t two have v e r t i c e s, edge s e ts and K uratow ski c o v e rin g s w hich a llo w th e s p l i t t i n g to b e c l a s s i f i e d in to one o f th e p r e v io u s ly d e s c rib e d s ix c a te g o r ie s. The two

79 e x c e p tio n s a re -> Fg and ->. 67 F ig u re i+l CY > W ith th e, la b e lin g i n F ig u re h i, Fg = 2 g) ci,. \ f ( l, *0# (3, 6 ), (0, 9)}. I n th e r e s u l t i n g grap h, Fg, i t i s im p o ssib le t o f in d a K-, - w hich u s e s b o th 0 and 9 as v a le n c y th r e e v e r t i c e s..j ;.j I t i s a ls o im p o ssib le t o cover w ith two g '3 where one o f them does n o t u se ( l, h ) o r (3, 6 ) o r would need to u se (0, 9) These two f a c t s can be v e r i f i e d b y a case by case a n a ly s is. The b e s t d e s c r ip tio n, u s in g th e K uratow ski c o v e rin g s K = ( 4 < i I 6) H and i)> 5 = C t VLs) ' i s t h a t b o th K3 3' s move and e ach new K3 3 u s e s one o f th e new v e r t i c e s as v a le n c y 3. I n a se n se th e se two v e r t i c e s a re c o m p letely s e p a ra te d from each o th e r. The o th e r e x c e p tio n, F1 = ^ ^ is th e

80 o p p o s ite problem. I n s te a d o f r e s t r i c t i o n s on th e K uratow ski c o v e rin g o f th e r e s u l tin g g rap h, th e r e i s a unique c o v e rin g f o r, (8 9 7 \ (2 b 6 \ K =l1 g 10/ > H \ 1 3 5/ * T h is spl i t t i n 6> w hich i s th e o n ly p o s s ib le way to g e t to d e s tro y s b o th o f th e e x p e cte d S^K and S^H. U sing K = ^ i and ** = ( 7 ^1 2 6 ) a d e s c r ip tio n would be t h a t b o th new K_ 's u se th e two new v e r t i c e s as c a n o n ic a l v e r t i c e s o r t h a t th e s e two need to be u se d to g e th e r. JO F ig u re k2 D. S e c tio n 3.^ C onclusions In c o n s id e rin g th e n a tu r a l p a r t i a l l y o rd ere d s e t (l(p), < ) and th e K uratow ski c o v e rin g s f o r each ir r e d u c ib le grap h, i t seems c l e a r t h a t th e s e two id e a s a re r e l a te d. W hile many s p l i t t i n g s in (l(p), < ) can n o t be p h rase d in term s o f a K uratow ski c o v e rin g enough can be to j u s t i f y t h i s s ta te m e n t. The v a rio u s su b p o sets o f (l(p), < ) have s e v e r a l u se s and Appendix A can be used t o t e s t g e n e ra l h y p o th eses f o r th e s p e c if ic case o f th e r e a l p r o je c tiv e p la n e.

81 APPENDIX A T h is t a b le g iv e s th e K uratow ski c o v e rin g f o r each s p l i t t i n g in th e g e n e ra tin g s e t o f (l(p), < ). Each ir r e d u c ib le g raph in l(p) i s l i s t e d w ith a diagram and la b e lin g. F o llo w in g th e diagram, each s p l i t t i n g i s g iv en w ith th e K uratow ski c o v e rin g s o f G and g\ y. In a d d itio n th e ty p e o f th e s p l i t t i n g and r e p r e s e n ta tio n s o f th e two in te r s e c tio n s, K H H and K fl H, a re g iv e n. F o r ty p e s I, n, rsj and I, K and H a re s e lf - e x p la n a to r y g iv e n th e s p l i t t i n g and hence a re n o t e x p l i c i t l y w r itte n down. I f a K uratow ski graph i s u sed more th a n once as a subgraph o f a given ir r e d u c ib le g rap h, i t i s la b e le d th e f ir s t tim e and r e f e r r e d to by i t s l a b e l from th e n on. F or convenience th e same l a b e l s a re u sed from irre d u c ib le g rap h to irre d u c ib le graph b u t th ey have no r e l a tio n s h ip to each o th e r, i.e. K^ u n d er A^ i s d i s t i n c t from K.^ under A^. 0 u nder th e type means t h a t th e r e i s no change in t h a t K uratow ski g rap h. Most o f th e s p l i t t i n g s i n th e s e ta b le s w ere f ir s t found by C.S. Wang [Wa] in h is w orking p a p e rs. TABLE 3 KURATOWSKI COVERINGS FOR (l(p), < ) 69

82 70 New ^ ^ Type K D H / Graph S p l i t K /H K /H K /H k H h A3 9(2, 3,b ) 1 2 K, = 3 b ^ = A5 9 (1, 2, 3, *0 K± I * \((9, 0)} H1 B8 9 (1, 3, b, 6, 7, 8) Kx l 2c V \((9, 0)J 3 ^ 9 6 H1 8 V. O ^ V B10 9(1, 3, b, 8) K± l 2o7 \((9, 0)} 3^9 H1 5 ^ ^ 9 (1, 2, 3, b, 6, 8 ) Kx 0 V(5,7), (6, 8)} Hl 1 D13 9(1, b, 5, 6, 7) ^ U 0 8 \ { ( 1, b)f (2, 3), (0, 9)} 2 3 9V v =L 5 %* V 7 6 8

83 New Graph S p l i t K / H K / H Type K / H 71 Kl"lH/ KflH f 6 9 (2, k, 5, 7) \ { ( 1, 3 ), ( 2, 4 ), ( 5, 7 ), (6, 8), (9, 0)} K, H 1 3 9, i B? 2( 1, 3, 7) \{(1+, 6)} 1 2, 1+ 6 v^5 7 >3 1 5 ' >6 3 l+'-w' 2 II c? 1(1+, 5, 6) M (2, l+), (5, 7)) 7 ^ 2 I n- 6 5 II , VI D3 1 ( 3, 1+, 5, 6) 5 l \ { ( 2, l+), (2, 7 ), (5, 7)} 1+ 6*^3 II 7 6 U, > VI

84 72 New Graph S p l it k / h Type kdh/ k / h k / h frnir D 1 (2, 3, 7) \((2, 6), (3, *0, (5, 7)} k \ 7 2 ' - * ' : / 7 2 VI // E3 1 (2, 3, 5, 6) \{(2, 3), (2,6), (3, 5), (5,6)} 1 7. >3 2T O r5 ^ 7 ^ 3 Tl U o I VI V* El8 1(2, 4, 7) 7 2^3 Y 4 \ { ( 2, U), (2, 7), (3, 5), (5,6)} 1 7, 1 >2 10(6, 8, 9) 2 \ K± = U Hx = 9 8 7

85 New _ ^ Type KHh / Graph Split K /H K /H K /H SfHff 73 A5 10(6, 7, 8, 9) ^ III V(0, 10)} H1 B10 10(5, 6, 8, 9) Kx 2 1^79 V \ { ( 0, 10)} 3 I). ^10 8 7, V Q *5 C6 2(1, 3) Kx I V (l, 3), (*, 5)} H 0 Cg 10(1, 5, 6, 9) Kx 0 \{ (6, 9), (7, 8)} Hl 1 C1]L 2(1, 5) Kx \{(1, 10), (5, 10), (3, U)} Dl8 10(1,7,8) Kx 2 1 V \C(6,9), (7, 8), (0, 10)} 3 b 5 V j V O

86 7^ New Graph Split k / h Type k H h / k / h k / h S nff a5 11(1, k) \((o, 11)} 2 1 > 11 ^ III 7 6 Hii = B10 11(1,6) \((0, 11)} K, 2 3*6a 5 3 ^ ,1 \ V 0 C10 8(6, 9) \(6, 9), (7, 10)} K, C1;L 8(6, 10) \{(6, 11), (11, 10), (7, 9 )} K

87 New Graph Split K /H K/H Type K/H k Dh / n r 75 cu 10(6, 9) V(6, 9), (7, 8)} ^ B, B2 7(1, 2, k, 6) 2 7 K1 = l 3 ^ 7 6 ^ = ^ 1 5 II II 0 6 Bu 7(1, K 6 ) 2 7 k2 = 3 l v II o H II o b5 7(1, 2, 6 ) 2 7 >5 II o H2 = 1 5 V 3 II o

88 New ^ ^ Type K H H / Graph Split k / h k /H K /H K H h 76 7(1, 2, 3) K,. 7 1,6 2 3 r II H V' D3 7(1, 2, 3, 6 ) K, II o \ { ( l, 6 ), (b, 5)) o E3 7(1, *0 \f(l, b), (5, 6 ), (2, 3 )) K. o B6 3(1, 2, 7) II 6 K1 = ,4 11 H = df C3 3(2, 5, 7) & \f(2, 3)) Kp = ^ 3 2«** i 5 i\fi H2 = 7 3 ^ x 6

89 New, ~ TyPe KOh/ Graph Split K /H K /H K /H STDS' 77 2 (1, 3, 6, 8 ) 5 3. ^ 5-3-2, ^ 2, \{(2, 3)) K 3 = ?-3 6^-3, 8 ^ 3 ^ 5 V $ 1 >6 1 7-^2 o D3 2(3, 5, 6, 8 ) k3 II \ ( ( 1, 7), (*, 8)) 6 D, >7 2(1, 3, 5, 6 ) l i - 3 ^ 0 & \ ( ( l, 3, (7, 8 )) k, = H1 6 Dg 2(3, 5,6, 7) K3 i i 6 - V(3, 7), (1,8)) H1 6 Eu 2(5, 6, 7, 8 ) K3 i \ ( ( l, 3 ), (5,6 ), (7, 8 )) H1 E (1, 6, 7 ) V (3, 5 ), (1, 6 ), (l, 7 )) Kc.H V V- 1 5 H3 = 2 3 7^ I &

90 New Type k Hh / Graph Split K /H K /H K /H K 0 H E22 2(1, 5, 7) K V 6 V(0, 3), (1, 1), (1, 5) H1 6Y ' 8 2 V P1 2(5, 7)V(1, 3), (7, 8), (5, 6), (l, 0)} b 2 1 Kg = // Hn B B8 1(2, 3, h) 7 1 II o K1 = 'O C2 3(1, 5 )\((2, 4)} K± 0 O 1(2, 3)\{(2, 3), (U, 5)} Kx II o I o

91 New Graph Split K /H Type K fl H / K /H K /H KflH D5. l( 4,6 ) \{ ( 2,3 ), (4,5)} K, II i o o F1 1(4, 6, 7)\((2, 3), K, I o ( ^ 5), (6, 7), (5, 8)} H I 0 B6 4(6, 8 ) 2 Kx = 5 6 l o 3<*-8 Hi = 7 2n x II / B9 1(2, 3, 6) K, M i II ft 3-^8 H2 = lt lft 2 II D6. 1(7,8)\((2, 3), (7, 8)} 5 6 K- = l-r-4-^ II o

92 New ^ ^ Type K H H / Graph Split K/H K/H K/H k Dh D? 1(5, 8)\{(2, 6), (Ifr, 5)) Kg I O H3 I! o Dq 1(2, 5)\{(2, 5), (b, 6 )} I 0 O h3 II ^ D12 1(2, 3, 7) 5 1>,7 I \((2, 8), (5,6)} Kr 6 2 ^ + >3 8 ^ 1 2. II E, 1(2, 8)\((2, 8), (3, 7), K I O (5,6)) V'* H3 e5 1(2, 7)\{(2, 7), (^, 8), I O (5,6)) / H3 e19 1(3, 7, 8)\f(l, 7), k 3 ii T (2, 8 ), (2,3 )) H5 = 2 H l ' e21 1(3, 5, 8)\{(2, 6) 5 2 I O (2, 7), (^, 5)) K6 = 6 l-jt.

93 81 New Graph Split K/H T>?e s s / k / h k / h k n h 1(2, 3, 8)\{(l, 2), (2, 7), (2, 8), (5, 6)}. i l 3 8 VI Bc B9 2(5, 6, 8) 1 6): K1 = 5 2T ^ i i o % II Hx = 7 l T 3 C3 U(l, 3)\{(2, 3)} 1 6*3 k2 = 2 5V 8 n i i 3 5 E2 = b o" l VI C. 2(1, 3,6, 7 )\{ (2, 3)} 1 % K3 = 5 6T U H3 = 2 * VI <J

94 Split k / h / v f /S» K /H Type K / H KflH/ k Hh 2(1, 3, 7, 8) \{ ( l, 10, (5,6)} K, I 0 o O 2(5, 6, 7, 8) \{ ( i, U), (5,6 ), (7, 8)} 6 l o 056 v Kk = 2 5w V, ^ 2 1 VI H^ = * & 2(6, 7, 8)\((l, 5), (1, 8), (7, 8)} II * 8 W H5 = 1 7 b 7 >2 5 VI 2(3, 5, 6) \f ( l, 5), (1, 10, (2, 6)} 2 W * k6 = ,c V > 5 7}^ V 8 H/- = 6 7 Ij- 1 2!< VI es' 1(2, 6, 7) \( ( 2, 6), (2, 7), (0, 4)} I

95 New Graph Split K/H Ty?8 K /H K /H k Hh / k n h 83 F-L 2(3, 5, 7)V(1, 5), (1, 8 ), (0, 6 ), (3, 7)) 2- H 6f *3 K = l 2 Ik 6 VI 6* 4 avi = (J B, d? 1(3, u, 6, 7) K = 3 5-»*2 > II * cr H1 = Dq 1(2, k, 6, 7)\{(3, 5) K, I & (S 9)) II <$ Du 3(1, t, 5, 7) \{(1, 7), (2, 6 )} K2 = n 11

96 New ^ ^ Type K A H / Graph Split K/H K /H K /H {cdh 8h D15 1(5, 6 )\f(0, 2), (3, 6)} 2 ^ 7 V 2^9 V ^ K3 = 6 1V >28 11 H_ = 3 5 J 9 & E5 6(2, 7)\{(1, 3), 5 2 lk 0 5), (7, 9)} KU= y 6^5,4 I ' 9 = E? 2(1, 3 )\((1, 3), 5), (6, 7)) K5 = 1 2'+-54 // A t 9 = II E20 1(2, 5, M V (2, 3), K V 6 (3, M, (U,5)J ?V2 ^5 h6 = S21 1(2, U, 7)\{(3, 5), (3,6), (U, 9)} 6 K, = VI

97 New Type khh/ Graph Split K /H K/H K/H k Hh 85 e23 1(2, 6, 7)V(l, 6), 9>^ 1 II Jt (3, 7), (3, 2)} K = P \? m Hg = U 7 «V 5 VI E28 1(2, U, 6)\((2, 6), (3, 7), K6 II (3, 5)) 5 \ a ^ 0 1 ^ 8 * VI F1 1(3, k, 5, 6)\{(1, 3), (2, 8), (3, 6), (If, 5)} K V O H. if 5 o F3 1(2, 3, 7)\{(1, 3), (2,3 ), (3, 6), (if, 5)) K, H F5 1(2, 3, if, 7 )\((2, 3), (3, 6), (if, 5), (1,3)} K, 1 v 7 0 2*8 / / l J v 5 6 VI & 7 2 0

98 B 86 New _ ^ Type KfiH/ Graph Split k / h K /H K /H KflH C3 2(1, 3)\((1, 3)) 1 2 ^ I 6 * 7 3 ^ 5 5 3*2 0 * >1 7 H 6 5(1, 3)\ {(1, 3)) l 6^ 7T 5 32 y t. 7 n / / D? 1(2, 3, 5)\{(1, 3), (7, 6 )) 1 6J V > ; ^ 7 V & i i E20 7(2, b, 6)\{(l, 2, ) i - * - 7 II +1 (3,^), (5, 6)) 3 2 ^ ~ VI 3s >! '4 h

99 New _ ^ Type KflH/ Graph Split K/H K /H K /H Kflff 87 E21 1(2, 5 )\{ (3, 7), 7 1 J I YL < >, 5), (6, 7) r 1* 1 7 5, VI / (2, U, 6)\f(l, 3), (3, «0, (1, 6), (5, 0)} 2,6 4 8 II 8V l VI O 6f Be B10 9(1, 2, 8) 5 \3_ II O Kx = l 3 4 O 37 = C5 8(3, 9)\{(1, 2)) Kx 0 0 ^ I Y ' 8(1, 9 )\{ (2, 3), (l, 9)} Kx II O I O

100 New Graph Split K /H K/H Type K/H KHh/ k n h \ 9 9(1, 5, 6, 8) \ { ( 1, 8), (2, 3), (0, 9)3 K1 s 5 1*f T 8 6 7$f9 V O H1 W V G 9(5, 6, 8)\{(1, 2), (3, 8), 5 \ a (5, 6), (1*, 1), (9, 0)} u, 1 V i _ \ ro^o CO H V 0 B1X 9(1, 3,4) 1 -^ 3 II = 8 9-J-2 0 9j ^ 7 Hi. k 5T ( 3, M \ ( ( 3, ^ ), (5,6 )} Kx 0 O

101 New ^ ^ Type k Hh / Graph Split K/H K /H K /H KHh 89 D15 9(1, 5)V(5, 6), 2 V -\a9 11 ^ (1, 2)} 8 ^ 3 ^ 5 1? a 5 5? ^ E10 7(9,3>\t(3,9), 7 II (1,8 ), (It, 5)) «: J U ) W A " 4 ' ' " E12 9(^, 8) \ { ( 2, 8),,2 6 9 <. (3, 7), (^, 5)) , h VI ^ 6 C V ^5 ) 2 *6 7 ' e21 9 (1,3,8 )\{(1,8), y ; II V,. (E, 5), (5, 6)) K2 = 6 g 3 w 9V\> ^ H2 = E h 9(1, 5, 7)\((1, 2), 6 A 8 i i A. (3,0 ), ( ^ 5)) 2 A 1 8^ 7 ^ 5 8? 2^ s A l A - V VI

102 New ^ Type KHh/ Graph Split K /H K /H K /H k Hh E27 9(3, 7)\((1, 8), K2 II (3, 9), (*, 5)) h2,$. A «9 vi!< K 9(^, 8) \{ ( l, 2), (0, 9), 9 6 8, 0 -V (3, 7), (*+, 6)} 7 l it 0 1 t 'S? > 6 7 >1 8 X it VI 0 F3 9(S 7, 8)\{(l, 8), " M s 5 (2, 3), (^, 5), (7, 9)) 6 ^ i VI 2< W 5 7 8* 51 8 ^ it 7 7 o it- F5 9(^, 7, 8)\{(l, 8), 6i 3 it 8 II ^ (2, 3), 6), (7, 9)3 7-^2 9

103 New Graph Split K / H ( V. / v K / H Type K H H /, (V - ( V ' K / H K H h c9 10(9, 6) \ f (7, 8)) > K1 = 3 ^ 5 8 9i3 Hx = ^5 0 0 Dl8 10(9, 8)\ ((9, 8), (6, 7)} K, II 0 I o 'i i D M3, 10)\{(3, 10), 10 1 ^ 9. 9 (5,6)) 8 % 0 O b 6 s-* o F3 M3, 5)\f(l, 10), 1JL3 (2, 5), (2, 8), (7, 9)} k, = 10 II

104 92 New Graph Split K/H rs/. f v K/H Type K/H k Hh / k n h f9 1(2, 10)\{(lf, 6), (7, 8), (5, 9), (3, 10)} Ki i 9 > v VI ic-f1? / 5.o < y } s c :6 5(1, 2, 3, 8) 2 1 Kx = 3 ^ 5 II CQ 5(2, 6, 8, 10) K. II 0 cu 5 (1, 2, 3, ^M (0, 5 )} K, III H D13 5(1, 3, h, 6, 10) \{(0,5 )} K, o

105 New Graph Split K /H ~ ^ k H h / K/H K/H KflH 93 di8 5(1, 3, 10) \ [(0, 5)} K, 1 v 3 4 5* V o 3(1, 2) \ ((1,2 ), (4, 5)) K, I 0 5(8, 10, l, 3 )\C (1, 3), (2, U), (0, 5)} K, lo / 2 7Sb 1 V 7 9 % * V O c5 1(7, 8, 9) >< II / ^ = 6 ^ 2 D, 7(1, 3 )\{ (8, 9)} K, I 0

106 9^ New Graph Split K /H rw K/H /-v» Type K/H k Hh / k Hh 1(2, 7, 8, 9)V(2, 3)} K, II VI 0 l b 6 D_ l(u,6,7,8)\{(2,3)} K, f0 U 6 II vi ^ G e6 1(2, k, 6, 9) \((7, 8), (3, 9)) I 0 Eg 1(2, k, 7, 9) \((7, 9), (8, 3)} K, I II F1 i(k, 6, 9)\((2, 3), (3, 9), (7, 8)} t? I VI

107 95 New Type K fl H / Graph Split K/H K/H K /H fc H fif D2 ) f J / 9 IV <{ 2 5 ^ 9^ ^ X 7 { \ 9 \ Qr Din 10 6(3, 5)V(3, 5)5 5 ^ -l2 I ^ Kx = 3 b S Hl = 3 7 V II _ * E 3(1, 2, 5, 6)\{(1, 2), 2Byi?v56 0 (5,6)} K2 = T n 9 3a VI 4* y+6 8t H0 = 8 r ^ E23 3(1, U, 5, 6 ) \{ ( l, 3), K2 2J 39^87 VI ^ U.M ) 5o 5^ 7 H2 II < E25 1^(2, 3, 6 )\{(2, 3), (3, 6)} 8 3 6s 2 v, v 3 y * lr l 5

108 New Graph Split K/H / v. <v K /H Type K/H k ^ h / KHh E2q 3(1, k, 8)\{(1, If), (5, 6)} K, I ki- 9 M 3 V T II k 3(2, 6, 8)\C(6, 14-), (1,*), (0, 5)3 2 y? r < 6 a7^ h ^ 3 VI % ^. V II & d12 9(1, 2)\{(U, 7)} K1 = 9 A 3. 2-y-i V!?>< 6 9 II / d15 9 (i,^ )\f(l,m ) I 1C H 0 * E25 l(^, 5 ) \ ( ( 2, 9), (3, 9)} K, * k.k *5 # k 5 <5'- 9 1 ^ * 7 67 l 9

109 New ^ ^ Type KHh/ Graph Split K/H K/H K/H k Hh 97 F 9(1, 6)\((2,»f), ^ (3, 5), (0,9)) 9 " 6 8 t i i W F 9(1, 2, 5)\((0, 9), 4,8 9 4,8 9 V (3, 6), (1,5)) K2 =7K 67K 4,96, 4 Jo 5 VI mss V n H2 = 2 3 V 'o'z7 9 d F6 9(1, 2, 3)\{(1, 4), (9, 0), k * (6,3)} H2 0 M G 9(1, 2,4)\{(0, 3), 9 3 II ^ (9, 4), (l, 5), (2, 6)} k < 9 b i # k 9 71 e *Exception

110 New Type K H H / Graph Split K /H K/H K /H k Hh 98 Cg 10(7, 8, 9) 7 6^3 / ^ = ^ 10 0 / ^ = D13 10(5, 7, 8, 9) 7 6^3 II \f(3, 5)) K2 = H1 o it 3,6 vi C5 JB 5 l 10 \ 8(7, 9 )\((3, 6), (7, 9)) ^ I H 0 E13 10(1, 2, 5, 7) Kx I \{ (6, 7), (8, 9)) Hl e (1,2,8,9 ) k2 6 - ^ V ^ \ f (3, l), (0, 10)) ' Hl 3 10 k VI & 7/ F2 10(1, 2, 8, 9) ^ 8 9yj5: V(6, 7), (8, 9), (0, 10)} d 3 ^ 109 VI

111 99 New Graph Split K/H / v, / v K / H Type K /H KDh / / v _ <v KHh G 10(2, 5, 7 ) \{(0/10), (8, 9), (1,3), (6,7)) K, 9 V U VI C10 11(1, 6, 8 ) 8 7 Kx = Hx = Cu 11(7, 8, 9, 10) \{ ( 0, 11)) Kn III di8 11(1, 7, 9, 10)\{(0, 11)} K, V 9 10 l l n 2 b I 11 o El6 1 1 (1, 6, 7, 8 ) \{(7, 8 ), (9, 10)) K, I 0 Fu 11(1, 7, 8)\{(7, 8), (9, 10), (0, 11)) K, j 4 V 7 8 o v

112 New Graph Split K /H K/H Type k / h KOh / ^ 6 ^ 10 V o 3 5 ill7 D5 6(2, 5)\((7, 8)} 1 ^~5 6 o 3 ^ 2 6 ^ i 3 i O Hx = 7 8 $ D12 5(U, 7, 8)\{(7, 8)} 1-^*5 7 n Q Kx = 3 U 2 6 ^ i O ' e19 5(3, ^,7)\((l, 7), (6, 8)J Kx ii H1 I E20 5(^,6, 7) 1 ^ 5 II & \ ( ( l, 8 ), (6, 7)} 3 it- 2 H1 <S> Fx 5(3, k, 6) \{ (l, 2), (3, 10, (7, 8)} I <S> i d>

113 101 New Graph S p lit K /H / v. r v K /H Type K /H k Hh / irnsr C10 6(3, 7, 9) 8 9 Kx = ^ = k 6 II c 6(1, 3, 5)V(0, 6)} Kx I H1 Dl8 6(1, 5, 7 ) \{ ( o,6 ) } ^ 8 9^2 V l l k 6 7 >11 V l o El6 10(7, 8 ) \{ ( 7, 8), (9, l l ) ) Kx I 0 e^2 10(7, 9)\((7, 6), (6, 9), (8, 11)} K, H I 0

114 102 New Graph S p lit K / H r*j,rw> K / H Type K / H KflH/ Dl8 6(7, 11) \ {(8, 9)) II / Oj VI O H = * E36 2(1, 5)V (l, 5), (3,M) K, Ek2 2(1, 3)\((1*, 5), (3, 8), (1,6)) K, I 0 Cl i 6(1, J*)\f(o, 6)) 2 i 6 h i Kj_ = 3 5 ^ 12 9 V H1 =

115 New Graph Split K /H Type k Hh / K /H K/H Kfl H 103 Dl8 6(1, 8)\{(0,6)} K, 2 1 $ t v ,i v o *4 \ o 3(1, 5)V (1,5), (2,4)} K. I 0 \ 2 3d, 4 )\((i, 6 ), (6, 4), (2, 5)} K, I 0 11 \ 2 11(8, 9)\((8, 9), (7, 10) n D,

116 New Graph Split K/H / v, / v K /H 1C* Type K 0 H / K /H K H H 1 (7, 8, 9 ) \f ( l, 0)} kl = l ^ = I E, 1(2, U, 6, 7)V(3, 7)} VI 0 E,8 1(2, *, 7, 8)\{(3, 9)3 K, 8? VI F1 i(u, 7, 8)\{(3, M, (3, 9)3 Kx D, H 5 0V o E2 2 ( 3, W ) \( ( 3,I O ) } ^ IV *Exception Oj0 ^ ""

117 New Type K 0 H / Graph Split K /H K / h K /H KflH E u 1(3, 7)V(2, 10)) M ta i 0 V K l = w <L * h A % 6 4 *? 0 71 d ^ = E23 1(2, 3, 10)\{(0, 7)} Kx * ^ Qs 3 J2. VI 10" 9 81 E32 1(2, 3, 5 )\{ (2, 3)} ^ 9? ^ 2 71 *<* 8>6 l 10 Vi Hx. Fu 1(2, 9 ) \ ( ( 3, o), (3, 10)) Kx Hi v. v 5 71 * 6* 9 ^ 0 F5 1(2, 3, 9 ) \ f ( l, 9), Kx 3A j ^ V 71 ' d ( 2,3 ) ) 2 0 \ i i 6 F1q 1(2, 3, 9 )\{ (l, 3), (2, 10)) Kx II $

118 106 New Graph S p lit K /H K /H Type k Hh / k / h k H h D5 1(2, k, 5) 1 2 y K± = b 5 3 o O ^ = K, O o D- 3(1, 5, 7) K, o 0 d8 1(2, 3, 5 ) K, o 6 E. 1(U, 5,6)\((U, 5 )} K, H. I o Vs E_ 1 (2, 3, 6)\{(U, 5)} K, I 0 0 /

119 Split K /H Type khh/ k / h k / h k Dh 3(1,1*, 5)\((1, 2)) 2 - ^ - 3 ^. U 5 l o l 5 3(1, 7, 8)\{(1, 2), (U, 5)} Kx i O 4 / o i t e r 3(2, U, 5) ) 2 Hj_ = c 2(1, 3 ) \ ( ( ^ 5)} K, I o 0 3(2, k, 8) \{ ( 2, K), (1, 5 )} ^ I O o 3(5, 6, 8)\{ (2, U), (1, 5 )} II O

120 D5 108 A «I Tv. New _ ^ Type k Hh / Graph S p lit K /H K /H K /H KflH Eg 6(U, 5)\{(U, 5)) 1"S~V i6 H = Eu 1(6, 2) \ {(If, 5)} Kx Hj^ Eig 1(2, 9)V(3, 7)) lj ^3^ K2 = U H VI 1 6*v E20 3(2, If, 7)\{(1, 9)} Kx II O H ,. 7 VI ^ 1 ^ 4 V F1 i(lf, 5 )\{(1f, 5), (3, 7)) Kx I o II O 7t /5 H = 6 9 2

121 109 New Graph Split K/H, / v k / h Type K /H "! / k nh F_ 1(5, 6)\{(3,»0, (5, 6)} K1 F3 3(7, 5)\((1, (5, 6)} K, I II O o Fu 1(2, 5)\C(3, 5), (^, 6)} K^ I n O O Bu 3(5,6) 7 1' -3. >6 Kx = h 5 2 H /fc. DlU 2(1, 5, 6) K, o H2 = E1q i (U,5,8)\{(U,5)J K, I 0 H. /

122 New Graph Split K/H Type K n H / <v. rs*l k / h k / h k H h En l(u, 5, 7 ) \ { ( ^ 5)) 6 2 * 3 o H n / Eig 1(2, U, 5 ) \( (2, 6)} i 6 A 9 5 u '2 i o II / Fx 1(2, 7, 8)\((2, 6), (K 5)) 1 y \ o r3 1(U, 7, 8) \{ ( 2, 5), (3,^)} Kx I 0. II o?5 1(2, k, 8 )\{ (2, fc), (3, 5)} ^ o

123 New ^ Type K (1H/ Graph Split K /H K /H K /H KflH I l l S10 xu 5 ( ^ 9) 3 - S i 9 i d K1 = 1 ^ 2 ^ = 1 7 = 3,6 8, 0 ^ h s d1]l 5(k, 6) k± i & Hx Dlk 2(3, K, 9) Kx a. H-L d D15 2(1, 3, 7) Kx i d Hx d E10 1(3,U,8)\((3,M) Kx i d H2 = l 9 7 T6 E12 1(2, 5, 8 )\{ (3,u )} Kx i (5 H2 y e 20 1(2, 3, ^)\{(2, 7)} K± II CL H1 3*M 5 8 ^

124 New Type K fl H / Graph Split K /H K /H K/H KHh 112 E23 2(1, 3, U)\C(1, 5)) 1 '2^ 2>9 1 ^ h E ^ 2(1, ^ 7 )\{(1, *0) K1 I ^ i i >1 >5 H3 = E25 2(1, U, 9)\{(1, U)} 3 ^ 5 ^ 8 I ^ h i? H3 X E2q 1(2, 3, 5 )\((2, 3)) >6 VI ^ l ^ F-L 2(3, 7, 9)V(l,»0, (3, 6)} K1 I H2 0 F2 1(2, h, 8 )\((2, U), <1 4?'>r (2, 3 )) K2 = ? ^? 3 = 9 6 l o

125 113 New Graph Split K /H K/H Type K/H KDh/ KflH F3 1 ( ^,5, 8 )\{ (2, 3 ), (**, 5)) Kx I 6 H 6?k 1(3, h, 5)\((2, 3), (l, Kr (X. M 87 3 U 6 1 VI 6 F5 2(1, 7, 9)V(l, 5), (3, 10) Kx I C 0 d Dlif 5(1, 6, 7) 3 - ^ 6 t f K1 = 7 V U Hx = E5 7(^, 5 ) \ ( ( 6, 9)J K, I 6 0 y E? 6(5, M \{ ( 3, 7)} K, I 0

126 New Type K,fiH/ Graph Split K /H K/H K /H K H H llu E2q 5(2, 3, 6)\((M 7)) Kx I 4. < ^ Hg = 9 J 1 2 Fx M l, 2, 7)\((5, 7)5 Kx I Hx O F Ml, 2,7)V (3, 5), A ^ 5 8 r (5,7 )} 39 ^ * 1 2.?,? 0 97 l 7 ' ^ 6 F3 k(6, 7 ) \ f ( 3, 5), (6, 7)) ^ i d h 8 V 5 0 d 1 2 * 3 G M l, 2 ) \ ( ( 3, 5), ^ 37,5 8 ^ ( 0,7 ), (5, 6)} 69 " " l 2 \79,. 5 8< 5,7 71 ^ ^ 0 6 D9

127 New Graph Split K /H ~ TyPe KHh/ k / h k / h k Hh Eu 6(5, 7 ) \ ( ( 1, 8)) K, = 6 U l 2 U , H1 = 1 3 v VI! E26 1(2, 8, 10)\((^, 7)} K, VI / II E27 1(7, 8, 9)M(^, 9)3 K, II 1 y2 10 VI F2 1 (2, 9, 10)\{ (^, 5 ), (6, 5), (5, 3)} K. 0 l)-v > f VI II 10 3 ElU 2(3, 9, 10)\f(9, 10)} 3 1 ^ -7 Kx = 5 ^ 0 2 II

128 New Graph Split K/H Type ns / k / h k / h k Dh E15 2(1, 3, 6)\{(9, 10) 8 0 ^ : 2 IV M 7 0- ^ M 7 e 23 2 ( 1, 9, i o ) \ { ( i, 1 )} Kx k: e32 2(1, 6, 9)\((i, 9)) K, VI E 1(2, 1, 10)\{(2, 10)} Kx II us- 1^ y6 VI ls5 8 l F 1(1, 8, 9 )\{(2, 10), 8 ~ (7,9)) 6 5 " ^ 3 1 f ' «^ s F 1(2, 1, 9)\{(2, 9), II a (l,*)) V f e

129 New Graph Split K /H Type K fl H / K /H K /H KfiH 117 F9 1(8, 9, 10)\{(1, 9), (2, 10)} II b VI 1 V 7 6^ 0 G 2(1, 3, 9 ) \ ( ( l, 9), (2, 9), (l, 10)} l o V 5 II d 3 5 ^ 2 0^ 1 11 Dl6 1(2, b, 10) K l = ^ = 8 1 6,9 i 3 n 'X 1 1 X e 23 2 (1, 9, 10) \ ( ( 1, *0) K, X. 9,o 8 VI 6y*s ti X e 32 1(2, b, 9 ) \ ( (2, 9 )} K, 0, 'l6,b vi

130 New ^ Type khh / Graph Split K /H K /H K /H k Hh F l(u,8, 9)\((6, 9), ^ d 5 6* ic>x (2,1 0 )} 5""^ 5 ^ VI 7 34 o ^ ^ 10 8* bj/ 8 6-^ O F,. u l(b, 9, 10)\{(2, 9), Kx * ^ (9, 10)} H 1 «i>1 0 1, n ^ F5 1(2, 4, 8)\((9, 10), 01, 6 V 53 I (2,7)} 2 ^ 8 > V W * *10 1 F10 1 (2, 8, 1 0 )\((1, 1 0 ), 7 * 1 9 v 3 <2 (2,9)} 2^5 - ^ VI ( i s ^ " G 1(2, 8, 1 0 )\((2, 10), (2, 9), (1, 0)} 7 i J o S' ^2

131 New ^ ^ Type K H H / Graph Split K /H K / h K /H k Hh E;li M 2, 3 ) \{ ( 2, 3)) I 6 Ki = o Y \ = e 19 1(2, 3,^ ) \ ( ( 5, 8)) 2 ^, 3 6 l-* -6 7 ^ HT - 6 ^v8 0 v i 1 *>< E26 1(2, 3, 9 )\((2, 3 )) Ki I 6 E27 i(u, 7, 9)\{(2, 3)} Kx I ( f H 0 / Px 1(3, 7, 9 )\((2, ^ ), (5, 6)} Kx I cr H VI ( f 7 9S S & 3 4

132 120 New Graph Split K /H K /H Type K /H KHh / khh F2 1(3, 7, 9)V(2,10, (3,6)} Kx I 6 0 F3 8 (7, 9 ) \ { ( l, 3), (2, b)} Kx i 6 H. i i 6 F4 1(3, M ) \ ( ( 2, 8), (3,M) 3 < * i 6 XX ^ 'i?ij K Dl8 6(3, 5) Kx = 7 10 T s 3 5 H1 = 2 k 6 e13 7(9, 10) \ ((9, 10)} I O F 7(9, 8 ) \( ( 9, 8), (6, 10)} ^ I O ^ II O

133 New Graph Split Type KHh/ K/H K/H K/H KHh 121 G 6(3, 7, 9)V(7, 9), (8, 10),'(0, 6 )} K 10 V b 8 * \l e lb Dl6 3(^, 10) I - 2-3y, Kx = 10 9 ^ i 6 l 3 76c r^4 J10 Hx = >6* D19 1(2, 5, 10) K, i i d 1 ^ 3 ^ ) 6»4 H2 = i i a : E12 10(1, 3)\((5, 6)) K, H_ 5(1, M \( ( 9, 10)) K, i a 0

134 New Type KHh/ Graph Split K /H K /H K /H Kl"lH E20 1(2, 9, 10)\{(2, 7)) Kx II H2 3 } / 6 VI E3q 1 (2, 9, 10) \{ ( 9, 1 0 )} l5 r^ 3 I & 10 9-g I ^ H3 = E31 1 (8, 9, 10) \ {(9, 1 0 )} K± I 0 1 5> 7 / h4 = 6 ^ 2 8 E32 3(2, 1 0 ) \( ( 1, 10)} K± I 0 Ttk / F 1(2, 5, 9 )\{ (7, 8), 1 6 3V, m *7 >10 (9, 10)} K2 = J^nS?*6 3- ^ 10 VI 3{ X *9 2<»( H = VC o F2 1(2, 8, 10)\((3, 9), - (3,1 0 )} VI 9 l*8 5

135 Type K 0 H / Split K /H K /H K /H KHh 9(1, 3 ) \ ( ( 1, 2), (5, 10)} Kx < r 6 1(5, 8, 9 )\((6, 9), Kx I (3, 1 0 )} H3 ct ct 1(5, 8, 1 0 ) \( ( l, 5), 11 (9, 10)) ^, 1 o 2 10l 6 VI 74x * 3 2-r >? ^ (5, 9, 1 0 )\((3, 9), 9 l ^ 3 ^ 7 H (1,1 0 ), 0^5)} 6 ^ V ^ -1 0 VI O+NjS + b 5 ^ 3 V 9 ^ 2 0 ^ 9 5 &

136 New Type K H H / Graph Split K /H K /H K/H 12b E ^ 10(2, 6)\f(l, 9)) Kx I & H2 = E 5(U, 9)\{(l, 10)) Kx I ^2. 1(2, 8, 9 )\{(6, 10), {(3, 9)) Kx I Cl h 2 II 0 F2 1(2, 8, 9)\{(2, 10), 9 ^ 8 23 II <Z (3, 9)} * b VI» w a 9 o 0 F 1(2, 5} 9 )\((1, 0 ), /? 4-f )10 (5,9)) 3 l X V9-10 VI OE ^10*3 4 f / i r 7 X 1, F9 1(5, 8, 9 )\((5, 9), (2, 10)} I cr 0 cr

137 125 New Graph Split K/H Type K H H / K /H K /H Knff 1(5, 9, 10)\{(1, 9), (2, 10), (b, 5 )) l VI 16 j f = i f 2 1(5, 9, 10) \{ (6, 11), (7, 10)) «2>»10. ^8 K = s VI 6? 10 9 A i'l l o F3 1(5, 9, 10)\{(3, 11), (7, 10)) K2 = c & 5 9 ^ 3 3 A0 10 VI = a 34< J 2 \ f 5 1(2, 9, u ) \ ( ( 3, n ), K <T (7, 10)} H_ 1 10 VI o 3 2 ^ f 9 1 (9, 10, n )\f(i, 0 ), (10, 11)) <L * 1, 7 10I VVf'VJltZ ,, 3 1 VI <Zi 5o ^ 9 2 o

138 New Graph Split K /H Type KHH/ K/H K/H itnh 126 F1q 1(2, 9, 10)\{(2, 10), (10, 11)) K. A f ^ 3 IV ( G 1(5, 9, 1 0 )\((2, 8), (6, 11), (1, 10)} K 2 5 \ 9 11 J 4 * IV Q D. IT E20 1(2, 5 ) \ ( ( 7, 6)} B 2 -*-7 I ' V i 2, 3 8 ^ 18 e36 10(9, 8)\C(9, 8)3 10 ^ 2 Kx = V O 3 5 l j i * ^ = /

139 127 New Graph Split K/H k/h Type K/H khh/ khh Pu 10(9,. 11) \ {(9, 11), (7, 8 )) K, I 0 O D 19 F3 11(1, 3)\((2, 3), (5,6)) 3T^ V K, = 11 '5-t-lo 8 ii 10,1 4+ / < 6/ 2 ^ = f 9 1(2, l l ) \ { ( 6, 10), K, I * (3, 11)) c r Fll+ 11(3, 10) \ {(3, 10), I $ (1, 5)) o ' 1 E, II Kx = 7 9 H = 11 2 U

140 New Graph Split k / h Type K /H K /H KHh/ khh EU2 11(1, 3,5 ) \f ( 0, 11)} k. I F? 11(1, 3,6, 1 0 )\{ (0, 11)} Kl a5! V ' n 7 9 % V 2 U l l 10 O Fi ;l 11(1, 3,6 ) \{ ( 0, ll) } K, n i / 2fo 9 7 V f t 0 2 ^ life V o ^" E1? 1(8, 10, 11) 1 I6 3P2 Kx = 11 if5 8 9 o 1 V % E± = s o E 3 q 1 ( 2, 6, 1 0 ) l ji 6 8 1? '< J

141 129 New Graph Split ~ ~ Type K /H K /H K /H K flh / itnff P10 1 (2, h, 1 1 )\{ (0, 8 )} K l0 0 b 11 VI o E, 8(1, k, 7) E,, ^ V. E? 8(7, 9) K± = H1 = 3 6 7' >8 E9 5(1, ^ 7 ) K, V*-

142 Split k / h /v i, rw/ K /H Type K/H KHh / A, A /V ' k Hh 2(1, 3, 7) k. V*r 2(3, ^,6 ) \ { ( 5,^ ) } K, 8 5> VI c r 2(1, 5) ^ = ) / Hx = ^ 2(1, 9) K, 1(2, b, 7) K 5(2,» 0 \ { ( 1, 6 )} K, ( * 8 2 b 0 VI

143 New Graph Split K /H Type K H H / K /H K /H KflH F2 5(2, 7, 8)\{(1, 2)} K, 9 1, VI h A 5'29 U 6 o d~v m T \ E 1(2, 7, 5) = l ^ 1 H = / F2 1(2, 5, 1 0 )\((3, 7)} Kx VI ^ o F6 1(7, 8, 10)\{(3, 7)3 Kx 3, 0 6 VI / l 8 2 5

144 New Graph Split K/H K /H Type K /H 132 khh/ ns? ElU 5(1, 1, 6) 2 5 1?< V ' F0 5(1, 7 ) \( (2, 7)} *5 6 VI CT F- 5(1, 7) \ ( ( 2, U)} VI <f J2 ^ 0 9 j \ F2 1(2, 7, 10)\{(3, 8)} 5 ^ 5 U VI / K1 = / 3 1 n O ^ = F3 1(2, b, 5 )\{ (2, 3)} Kx VI O *7 i 7 ** H2 =

145 133 New Graph Split K / H Tyj>e s j s / K /H K /H k Oh l(2f, 7, 10)\{(3, 5)) K, n O E29 2(1, 3, 7) ^ = 1 U 7 V > Hl = -,2 3 K K, VI l b o9 G 2(1, U, 7 )\((2, 7), (5, 7), (8, 7)} K, 8 s.5 2 VI b E. 10

146 Split K /H K /H Type K /H KH h / KflH 2 (3, 7) v K1 = 1 7 ^ 5 9 2, >8 Y>0 Hx = (1, U, 7) K, H 5(1, h, 3) K, V ' 5(3, 6 ) \ C(3, 9)) )2 6 h 7 Y >9 H2 = VI (1, 7 )\C (3, 5)3 Y',8 Q VI <S 5(U, 6, 7 ) \{ ( 7, 8 )) ; * 8 *2 ^ V 3 6

147 135 l l New Graph S p lit K /H Type K D H / K /H K /H k Dh E29 1(2, 5, 7) *2 Kx = H1 = E30 1(7, 8, 9) K, H. 1(5, 7, 9)V(3, 4)} K, >"<,4 l 8-t/l V o2 7 5 VI i i (5 F3 4(5, 7)\{(1, 8) K, VI 6 \ M3, 5)\((1, 7)} K, VI 6

148 136 New _ ^ Type k Dh / Graph S p lit K /H K /H K /H k Hh ElU 5(6, 10) 1 _ bn 10 ^ = Y3 H1 = E H i, 8) H E 1(5, 7, 8) K± / E3k 1(2, 5, 9) Kx ^ / F1 1(2, 7, 9 )\((3, 9)) K n 1 Y F3 1(2, 7, 8 )\{(U, 8 )) K± A \ 4 10 ^ / II 0 H1

149 S p lit k / h 137 Type KHh/ k/ h k/ h icnsf 5(k, 10) \ { ( 1, 9)} K. VI II < s 1(5, 7, 9 )\{ (1, 9)) K, \ 2 IV?t ^ II 0 K 5, 9, 8 )\{ (4, 5)} 0 J13 H (6, 7, 9) 5 3 i, o K± = 2 b 11 II / (3, 5, 6 ) \{ ( 6, 10)}

150 New Graph Split K /H K/H Type K /H 138 K flh / k Oh G 11(5, 6, 7 ) \ {(11, 12), (9, 1 0 )) V 1 V 2 If- 11 5J VI 4 3 ^ 7 6 E lb E1? 9(1, M K, = 7. 1! 9 6#\8 1 b 2 = V" e 37 11( 1, 2, U) K, 0 F3 11(1, 2, ^ ) \ { ( 5, 8)) K, 10,6 11 VI b " 0 3 F5 11(3, b, 5)\t(b, 8 )) K, 1 1 / 1 2 VI II (5

151 S p lit k / h Type KHH/ k/ h k/ h Knff 9(1, 10) \ ((5, 11)) K, i i 2o 6 K 10 vi (1, 2, 3 )\{(2, 9 )) K,,<f VI \ < l o ' b 0 i i CL J15 3[ 2(1, 6) 3 K1 = 8 U 2 11 H1 = H '* 21 1( 2, 10) K, l ( ^ 8, 9)M (7, 9)) K, / 1 ^ VI (2, U, 9 )\{ (5, 10)) Ka h. 11 8o^ 2 9 vi O /

152 i4 o New Graph S p lit K /H Type K 0 H / K /H K /H {CHS F9 1(2, 4, 9)V(2, 11)} K, II F10 1(2, 9, 1 0 )\t(2, 6)} K, t VI 0 1(2, 1, 9 ) \ ( ( l, 2)} II VI (5 G 2(1, 11)\((1, 8), (1, 4)} K, VI / II 16 E^0 12(3, 6, 9) = > II H1 =

153 lu i New Graph S p lit K /H Type KOH/ k/ h k/ h khh E^2 12(7, 9,1 1 ) K, I Fu 12(3, 7, 11) K, ^ 2 6 j 8 V 5 l 3^ V # J17.9 V F U ( l, 2, 5 ) \ [ ( >., 8 ) ) 1 ^ 3 27 * K ^ W 01 ^ = F1q 11(1, 2, 3 ) \( ( 2, 12)} Kx ^ H1 6, o ^ U Fllt 11(2, 3,1 0 M ( *,1 1 ) ) ^ - H i *

154 New Graph S p lit K /H Type khh/ k / h k / h k n h e 21 1(2, 8) c f 11 I f E 19 \ 8 ] 3 i E23 3(2, 8) 6 ^ 3 4 K1 = G 1 \ 6 F2 6(7, 8)\{(7, 8)} K, I 0 o G ' 3(2, U)\{(6, 9), (7, 8)} K, I <S> G

155 J20 1^3 *^7 8^ New Graph Split K / H ^. rw K / H Type k Hh / k / h k Hh E23 1(8, 9) i <S> Kl = i i s i/ K, I 8 f * / M3, 5)V(1, 9), (3, 5)) K. 8, 2 6 I 0 E 21 32V 1 ( 2,5 ) 5 fa 7 K1 = l / /

156 Ikk New Graph S p lit K /H k / h Type K /H K H H / g w E2q 7(^, 6) K. K VI 2 * ^ o P5 5(6, 8) \ { ( 1, 7)) K, VI )4 2 /+ o 6 8 o E25 9(1, h) ^ = e ^ = k E26 K 7, 9) K, II

157 S p lit K /H Type KflH/ k/ h k/ h koh 3(b, 10)\{(U, 10)} b 10 3d y ^ >? ^ 2 U IV u H V 4 f (5, 1 0 )\{ (5, 10), (*, 8)} p * : i i i 73.? 1; 5 9 VI e 2b 1(3, 6) i * 3 6 K, = 25 ^ i i**a> t (^, 7) K, H1 = ^ 4 Y 8(1;, 9 ) \ ( ( l, 2)} K, VI < f

158 1U6 New Graph Split K/H K /H K /H k ^ h / KHh l ( 6, 8 ) \ ( ( *, 8 ) ) K, V 1 ^ 6 8 X o F5 3(7, 1 0 ) \ { ( ^ 8)} < VI 1 10fv F9 3(7, 1 0 ) \( ( 1, 6)} Kn 3»*J+ 1 7 t 1 0 \t VI t E 25 E30 6(1, 5) 1 9 5, K = s 8 / 3 E1 = E33 9 (2, U) Kx H-L E35 1(2, 6) II ^

159 Split K/H K /H Type k / h k Hh / {cnff 6(5, 9)V(2, 9)) K 1, VI <S 9(2, 1 0 ) \ [ ( l, 10)} K, 9 ^, 6, VI V? t / 6 j26 5(9, 10) l 6 c 3 K1 = 2 V<k ^ = 7 5 ^ ^ 5 (^,1 0 )\{(3, 10)} Kn \

160 New Graph Split K/H k / h Type K/H 148 k Hh / Knsf E30 6(2, 5) K, F2 5(6, 9 ) \ ( ( 3, 10)} K, V ' 5, 1 8 VI 0 e y i 9 Fj 5(6, 9 ) V ( 3, *»)) K, VI 41 b i X (7, 9) \ ( ( 6, 7)) K, VI V- Hn (L G 6(2, 7)V(4, l), (4, 5 ), ( ^ 3 ) ) 6 3 o l 9 VI 2 7 ^ 5 08 VC j28 e32 1(2, 5) Kx = ^ >4 H = II

161 New Type khh/ Graph Split K / H K /H K /H KriH 2(1, 10) \ ((3, 9)) K± ^ Hi.9 1 «; 10b VI s5 9 2 h 7 cc P5 6(7, 9 ) \( ( 3, 9)) Kx ^ Hi 0 U F9 2(6, 10) \ [ ( l, 9)) Kx & Hn VI G 8 3 ^ 2 pio 1(2^ 9 ) \( ( 6, 9)) h n V 1U M 2-< 9y 5 10^ 7 G 6(2, 9 ) \{ ( 1, 9 ), (1, 2)) Kx

162 150 New Graph Split K /H / v. / *-' K / H Type K /H KHh / r n s f E37, % 3 > 2 11 ^ Kx = II V " h1 = V 56 3 > 2 r 8(1, 7)\((i*, 1 1 )) ^ ^ 8* x*5 V I V ' O 8 5 VI i F3 8(1, 7)V(3, 10)} K, II V> VI F1q 8(1, 10\{(2, 7)) Kx 8, VI V > 1 ^ 9o G 2(1, 7)\{(k, 8), (4, 11), Kx II ^ VI ^10 0 E30

163 New Graph Split K/H TJ? e j / K / H K / H KflH e 37 1( 9, 10) b,8 6 3 K = II \A- 3 V / f»2 H = U 11 1 II ^ F^ 5(b, 8 ) \ ( ( 2, 6 )) K, 5 3 ii7 VI t ' ^ o II ks: F9 5(6, 8 ) \ ( ( 7, 9)J 1 0 It V * II vi 67 ^ > ^ l F1q 1(8, 9) \ ((7, 9)) K, ^ 3 10 VI 6 J31 F3 5(1, U )\{ (6, 11)} 5 9? 2,0 11 ^ K1 = 1 3 V

164 152 New Graph Split K /H K /H Type K/H KHh/ khh F9 8(1, 9 ) \ ( ( 2, 7)) K, 0 6 VI 4 t/i 4s t v ^ <x J32 ^ 4 3^2!b8 11 ^ 6-^,1! <11 8 II Nf O 5 ^ 3 \ f 1 ^ = F^ 5(5, 10) \ ((3, 6)} K± \ H1 4, 7 10 VI d F 10(5, l l ) \ ( ( 3, 6 )) \ h n v i (f L 2-\/% F % b, 1 0 ) \ f ( l, 2)} K VI ^ 9 1, V r 10 0 ^ 11 0

165 New Graph S p lit K/H K /H Type K/H k n h / k H h F1q 5(6, 10)\{(2, 10)) K1 8 l n5 VI H1 II 6 G 10(2, 5 ) \ ( ( 1, 2), (1, 5)) K1 5,v0 t3 10 VI II e J33 E3t 6(1, 5) II / K± = / l 11 II V s =39 K 2,6 ) K, II / II / Fk 6 (5, 11) \ ((2, 9 )) K, II /

166 S p lit K /H Type khh/ K/H K/H K0 H 5(6, 1 0 )\{ (2, 9)3 K, ^S VI 6 E 3b 1( 2, 11) / 8,vio b n % h i H = / " 5(1, )+ ) \( ( 0, 5)) b 11 ^ 2 s i s 1 6*5 47 S i *J I. < & b(3, 9 ) \ { ( l, 2)) K, b 78, 5 VI 3t \ 9 1, 6 Nio o 5(fc, 1 0 ) \ { ( 1, 11), (*,7)3 K, 0, 8 2 VI /

167 J New Graph S p lit K /H Type KDh/ / ^ 7 / v ^ t k / h k / h khh e39 10(7, 9) 67., ^ >9 K = b ^ (1, 6 )\((2, 0) f t 5 6 M 11 I ' i V I ** F5 10(7, 1 1 )\{ (5, 11)} K. / VI (5 8-f ^ f 9 10(7, 1 1 )\{ (1, it-)} K, o, 7 / H VI / G 2(1, 10)\{(1, 10, (7, 10)} H K, H. ii *11 VI x 6 3W

168 S p lit K /H Type K H H / K /H K /H K0 H 7(11, 12) \ ((8, 9 )) 5 3 1*9 2 U V I V E. 37 \ 9 9(1, 1 0 )\{ (5, 12)) 7 _ U 9 K = l H 2 V ' 10, * Xl 11*^ *8 i l H = VI 9(2, 1 0 )\{ (2, 7)) K, 0, 8 c 11 VI i > f 5\ '38 1

169 S p lit k / h Type K fl H / K /H K /H Kfi H 1 (10, n ) \ { ( 3, *0) p l VI K l = i o ' W V i < T a. 2*1 ap I s H = 3? j ijk * * (10, n ) \ f ( i i, 12)} K. f i i 1(2, 11) \ {(2, 9), (8, 11)} K± h n i # 61 J39 ^ 7 J b 9 : ^ 4 3 p K 1(2, 9) K l. ^ r i i H l. s i s ^ 1 (2, 12) \ {(7, 10)} K - ^ 2 71 '

170 158 New Graph S p lit K /H K /H Type K /H K D h / k H h F1D 2(3, H)\{(2, 0)) 3f>Jo b v li2 III & V 7 ^ c G 2(1,11)\{(7,10), (1, U)} Kx \? i ^ VI II & ^ 0 12 I >0?, EU2 13(1, 5) K, III J > 3 = « = U 2 5 Fu 1 3 ( 1, 1 1 )\{ (1 3, 0 )) Ki i l l 7 10 V 1 a $ H1 3 6 V V E i+l

171 New Graph S p lit K /H /v K /H Type K /H K flh / k H h 159 1(2, 1 3 )\C (1, 0 )) ^,3\ * 2. ''V 4 " 8 7 ^ I 9 x 6 H* 10^ 5n 7* (9, 1 3 )\ ((7, 8 ), (3, 1 0 )) f t 9 13 ( 4f X t V ( 5 v? «2 2 v VI s F2 9 (3, 7) ^ 7 8 K = < r F3 9 (4, 7) K, 0 6 i i 6 F5 ' 8 ( 2,4 ) K, i i 6 n <r

172 l6o New Graph S p lit K /H /v. K /H Type K /H k D h / /v _ KDH G 8 (1, 2 ) \ { ( 7, 9 )J K. c r 2 VI 6 F8 7 ( 9,6 ) 9^ 7 8 =,05 ^ 2 1 K± =,M5 \ U e kx x = 39 5 ^ F10 8(1, 5) K, < r c c G 8 (1, 2 ) \ { ( 7, 9 )) K, O 1 k 5 VI 72k : 6 A 10 0

173 l6l New Graph S p lit K /H C V, ( V K /H Type K /H k H h /»v ' KflH F9 8 (2, *0 3 8 II K, 2 II G 8 (1, 2 ) \ { ( 7, 9 )) K, II < r i i * k 5 6 ^ 1 0 o VI e ^ > 7-4 s r F10 1 (5, 8) 8» /V K1 = U 2 10 E± = 4 " l 9 II II G 1 (2, 8 ) \ { ( 4, 1 0 )) K, II 0 8 w 2, VI & i d

174 162 New Graph S p lit K /H K /H Type K /H KHh / k Hh F9 9 (3, 5) io f Y 1 Kx = II o k 5 '? / < H1 = II ^ F10 9 (3, 7) K, O O ^ > 8 1 ^ 7 6 [ 1 (2, 9) 5 7 l j 9 K, = 8 6 V 10 II 3 10 V H1 = 2 9 U Fg 1(2, 6) K, II II II o < r F \ 5 _ n h o 9 6 K

175 163 New Graph S p lit K /H K /H Type K /H K H H / k H h 11(8, 10) 5 3 l f 9 = 2 k l l *1 *3* H = G 11(3, 1 0 ) \{ ( 0, 1 1 )) K, 5 3, 1 * V * 78 ^ 8 10 V e f 12 8 ( 1, U) 11 8 n K± =10f 6< ^ l k 5 ^ = 1 8 ^ G 8(1, 2 ) \ ( ( 7, 9 )} Kx H1 5 ^ VI n6^lo o

176 New Graph S p lit K /H Type K /H K /H K j H / k n h F13 7 (2, 11) K, 10 II <r 7 5 " 4 r 7 9 ^ = 10 " 6 11 II <2T Flk 7 (1, 11) K, II II c r G 7 (6, l l ) \ { ( 5, 10)} X t II CT 11 10, t < 5 ^ 7! 6 * VI (9 F 10 F12 7(1, 2) 9 10 II < 1 K?. < II <T G 7(1, 9) \ ( ( 2, 8 )) 11, i ' S i ^ II (r» a< o9 1 n VI e

177 These s ix graphs have a l l c u b ic v e r t i c e s a re so a re m inim al in 165 (I(P), <) Ei % 'lk ~ r

178 a p p e n d i x b This is a cross reference of the splittings by Type. TABLE k CROSS REFERENCE FOR SPLITTINGS Type I Al + Cl B6 - E5 C6 * El6 \ - e6 B13 A3 * C6 B7 " C3 V D5 D5 " E8 Dl ^ E A3 " C8 B9 * Dl^ C8 * El6 D6 " Fl Dl* + A3 ^ CU B10 ^ C9 C8 * eu2 D7 * D10» * + Ak + C10 Bn - d19 C9 * E36 D7 * E5 D15" \ * C11 Cl + El C9 * E42 D8 - E5 D1 5" 3 E_. P9 A5 " C11 c2 * Di cio - Ei,o D8 ->e7 D17 E2< b2 ->d? C2 + e6 C10 * EJ+2 d8 - f3 Dl8 E3f b3 * C2 CU * d15 cn - Eh2 D12 E11 D1 9" B5 " D7 C5 " E1 D3 E5 D12 "E27 E20" F 3 G b6 Dn C5 - E13 166

179 167 Type 1 A2 - El8 B2 ^ Bu \ \ - E21 B! E3 B3 " F1 B^ E5 C7 " F1 Type I, II A2 " B7 B, D7 * E12 Dl 4 - E3 l Bl ^ C7 B8 - C5 D5 ^ E11 D7 E23 DlU - E32 Bi " D3 B8 * D13 D * P 5 l D7 - ES* DlU * F5 B2 " D3 bio di 8 D7 " E25 D15 " Dl6 B2 * D8 C2 E8 D7 " Fl D15 * E35 C3 - D10 V F* D7 " F3 D15 - F1 B3 " D5 C3 " E28 D6 * D11 D8 " E28 D18 - F11 \ - b6 cb D12 d6 - Eio B8 F1 D19 * F9 \ - d6 C7 * D12 B6 * El l D12 - E26 '*19 * Fl^ b^ D7 C7 E19 D6 * El 9 D F 12 2 *19 * Ea Bl, * d8 7 * E 0 D6 * I 3 D > F 12 3 E -> F 19 2 BU D12 D3 D6 - F5 D12 ^ F^ e i 9 " G b6 " d 7 D3 * E19 D7 * DH D13 ^ F7 E20 _v E23 b6 * d8 d3. f i D7 * D15 \ b + d i6 S20 * PU b6 - e7 d^ F2 D7 - E10 Dl4 E30

180 Type 168 A1 -* A3 c5 - c9 E13 " E36 E27 * E29 A3 -* c6 * c10 \ - e 9 E1U E37 E3^ E39 C1 -V c6 C8 + C10 E6 * E13 E3 - E1m> P l -. P 3 C1 C8 Ei * E16 eio * E29 E2U E3 i f2 ->f8 C2 -V C5 Type, II B1 -V B2 D7 * D1U E10 * E31 E2^ " E32 Fl " F5 B1 b4 D8 "* DlU E11 * E29 E25 " E30 F F 2 10 B1 -V B5 Dl l - Dl6 E11 * E30 E25 " E33 F3 * F9 B2 -V B6 D13 * Dl8 E12 - \ b E25 " E35 *k * F10 B3 B8 di U Di9 E12 - E15 E26 E30 F -> F 5 9 \ B9 E2 * E17 E12 E33 E27 " E30 F5 * F10 B5 -V B9 E2 - E38 E12 E3U E28 " E32 F6 * F7 B8 -V Bio e3 * e4 El4 * E17 E29 " E37 F6 * F8 B9 Bn EU - Eio E15 * E17 E30 > E 37 F7 * F11 D3 -> D5 E5 " E7 E15 * E39 E32 * E38 D3 B6 E5 " E8 El8 + E21 E33 E37 F8 + F12 D3 D7 E5 * E12 E21 - E2L E33 + E39 F9 * F13 D3 -* D8 e 7 - El* E21 E28 E35 E39 F9 * % -V D13 E9 " E29 E2 2 " E25 E39 *' EUi F10 F12 b6 h k E10 - ElU E22 - E26 E! E2

181 Type I 169 A i - A5 \ - a 5 C6 cn cio cn E1 * EU2 A3 * A5 C1 * C11 C8 * CU Dl + El El6 \ 2 E, E35 " *k E39 * F10 E^ 0 - E^2 Ek l + F12 Type IV V D2 D 10 * El5 D2 + E2 E23 * F10 Type V B2 * C3 B2 - > Fi E12 - F10 Type V, B6 " B15 b6 - E20 B7 " D7 Type V, V A1 B8 A3 " Dl 8 B8 * G C6 - Fi l E1 - F11 A1 B10 Ah Bio Cl + D13 C8 + Dl8 ei 6 * Fn A1 - D13 B2 + C^ C1 * Dl 8 C10 Dl8 EUo + F11 Al " F6 B2 + E22 Cl " F7 D1 3 " G F? G A3 + B10 B8 * ei 9 C6 * di 8 E! * F7

182 Type VI 170 V E12 C3 + E25 D8 " F2 D3A * P1 D16 * f 9 V Fi c^ Fl D9 " EH Dl U " V P2 V P3 di + e 6 D u - v G D15 - P5 E15 * F10 C3 " E7 D2 - \ h Type VI, II a2 - c7 B -> E 9 27 D2 " F5 D10 - E32 D1U * p9 A2 - D3 B9 * F5 D F 2 10 D10 ^ E35 Dl ^ *k * E19 B11 P3 D5 * E19 D10 * P3 D15 * P2 B5 + C3 C2 - \ D5 * E20 D10 * P5 D1 5 " G b5 - cu C2 " D5 D7 * E20 D10 " p9 Dl6 - P2 B5 ^ El8 C3 * E23 D7 ** E28 D1 0 " G 3l6 " p3 B6 * E23 C3 " P5 D7 " F2 Dn - e23 D16 + p 5 b6 + E28 - G V F* Dn * E32 Dl6 * Fio B7 ^ E20 C5 * D13 Dg + G D11 * P3 di6 * G b 7 F1 C9 * D18 B9 " E26 D11 * *V E -* F 2 10 B9 * D15 Dl " E8 D9 * E27 Dl l - P5 E^ F1 B9 - E10 D2 * E23 D9 " F2 D11 * F10 V F1 B9 - E21 D2 - E32 D10 * Ell^ D12 - e i 9 E6 - F2 b9 E2U B2 - f1, D10 E23 \k " E20 e6 * f6

183 Type VI, (continuation) 171 E7 * p2 h h * P3 * P5 E2 9 * G E35 * G e 7 - p 3 V * P5 * p 9 E30 * F1 E36 * F11 E8 * P2 EH * P9 E25 * Fu E30 * P9 E37 * F9 E8 * F3 E,i P 1^ 10 E25 * F5 E30 * P10 E37 * P10 e 8 * pfc E15 * P 3 E31 * P3 E38 " P9 V F 2 E15 * P5 E27 * P2 E31 * P9 E38 * Fll. e9 - G E15 * P9 E -> F 27 3 E32 * e38 + G E10 - F1 E -* F i 15 1^ E27 * plt E32 * P5 E39 - P9 E10 * p3 E1 5 * G E > F 32 9 E39 * G E10 * F5 E -* F 17 9 E28 F* E32 F10 h i " G E -* F 11 2 E17 * P 10 E28 * P5 E3 2 ~ G F» G E11 * P3 E17 * PlA E28 * P 9 E33 * 7k E11 * \ E21 * Plt E28 * P 10 E33 * P5 f3 * g E12 * P1 E21 * P5 E2 8 * G E34 * p9 E12 P3 E23 * G E29 ** p2 e 3^ ''' G Fg* G 12 PU E2lt * P3 E29 * P3 E35 * P5 F9 * G E12 * P5 E2>t * Plt E29 * P10 e 35 * r 9 pi o * G E13 * P7

184 Type I, VI 172 A2 - Dl? B5 * E22 C2 * F1 A2 " E3 b6 - E21 \ * E25 B2 * E21 B7 - E21 D12 + F1 Type V, VI B^ F 1 V F1 B6 " F5 C5 * E19 cc 5 G b6 * F1 Bl l * F9 c 5 -> F2 E1 3 * G B5 * E20 B6 * F3 S - F5

185 APPENDIX C These are graphic representation of the generating sets of the partially ordered sets a line between G and in this work. H. If H *** S g \ y then there is v 173

186 fu^re <+3. (I(P'), ) (

187 j r*li

188 i*re 44. ( %CP)i ")

189 y \

LSU Historical Dissertations and Theses

LSU Historical Dissertations and Theses Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1976 Infestation of Root Nodules of Soybean by Larvae of the Bean Leaf Beetle, Cerotoma Trifurcata

More information

Form and content. Iowa Research Online. University of Iowa. Ann A Rahim Khan University of Iowa. Theses and Dissertations

Form and content. Iowa Research Online. University of Iowa. Ann A Rahim Khan University of Iowa. Theses and Dissertations University of Iowa Iowa Research Online Theses and Dissertations 1979 Form and content Ann A Rahim Khan University of Iowa Posted with permission of the author. This thesis is available at Iowa Research

More information

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f Essential Skills Chapter f ( x + h) f ( x ). Simplifying the difference quotient Section. h f ( x + h) f ( x ) Example: For f ( x) = 4x 4 x, find and simplify completely. h Answer: 4 8x 4 h. Finding the

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Class Diagrams. CSC 440/540: Software Engineering Slide #1

Class Diagrams. CSC 440/540: Software Engineering Slide #1 Class Diagrams CSC 440/540: Software Engineering Slide # Topics. Design class diagrams (DCDs) 2. DCD development process 3. Associations and Attributes 4. Dependencies 5. Composition and Constraints 6.

More information

LU N C H IN C LU D E D

LU N C H IN C LU D E D Week 1 M o n d a y J a n u a ry 7 - C o lo u rs o f th e R a in b o w W e w ill b e k ic k in g o ff th e h o lid a y s w ith a d a y fu ll o f c o lo u r! J o in u s fo r a ra n g e o f a rt, s p o rt

More information

EKOLOGIE EN SYSTEMATIEK. T h is p a p e r n o t to be c i t e d w ith o u t p r i o r r e f e r e n c e to th e a u th o r. PRIMARY PRODUCTIVITY.

EKOLOGIE EN SYSTEMATIEK. T h is p a p e r n o t to be c i t e d w ith o u t p r i o r r e f e r e n c e to th e a u th o r. PRIMARY PRODUCTIVITY. EKOLOGIE EN SYSTEMATIEK Ç.I.P.S. MATHEMATICAL MODEL OF THE POLLUTION IN NORT H SEA. TECHNICAL REPORT 1971/O : B i o l. I T h is p a p e r n o t to be c i t e d w ith o u t p r i o r r e f e r e n c e to

More information

Feasibility Analysis, Dynamics, and Control of Distillation Columns With Vapor Recompression.

Feasibility Analysis, Dynamics, and Control of Distillation Columns With Vapor Recompression. Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1981 Feasibility Analysis, Dynamics, and Control of Distillation Columns With Vapor Recompression.

More information

STEEL PIPE NIPPLE BLACK AND GALVANIZED

STEEL PIPE NIPPLE BLACK AND GALVANIZED Price Sheet Effective August 09, 2018 Supersedes CWN-218 A Member of The Phoenix Forge Group CapProducts LTD. Phone: 519-482-5000 Fax: 519-482-7728 Toll Free: 800-265-5586 www.capproducts.com www.capitolcamco.com

More information

A Comparison of Two Methods of Teaching Computer Programming to Secondary Mathematics Students.

A Comparison of Two Methods of Teaching Computer Programming to Secondary Mathematics Students. Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1983 A Comparison of Two Methods of Teaching Computer Programming to Secondary Mathematics Students.

More information

University Microfilms

University Microfilms University Microfilms International * i---------------------------------------------------------- ----------------------- MICROCOPY RESOLUTION TEST CHART N ATIO NAL HI IH l A l l o t ST AN PAR P S II A

More information

A Study of Attitude Changes of Selected Student- Teachers During the Student-Teaching Experience.

A Study of Attitude Changes of Selected Student- Teachers During the Student-Teaching Experience. Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1973 A Study of Attitude Changes of Selected Student- Teachers During the Student-Teaching Experience.

More information

C o r p o r a t e l i f e i n A n c i e n t I n d i a e x p r e s s e d i t s e l f

C o r p o r a t e l i f e i n A n c i e n t I n d i a e x p r e s s e d i t s e l f C H A P T E R I G E N E S I S A N D GROWTH OF G U IL D S C o r p o r a t e l i f e i n A n c i e n t I n d i a e x p r e s s e d i t s e l f i n a v a r i e t y o f f o r m s - s o c i a l, r e l i g i

More information

Sodium-Initiated Polymerization of Alpha- Methylstyrene in the Vicinity of Its Reported Ceiling Temperature

Sodium-Initiated Polymerization of Alpha- Methylstyrene in the Vicinity of Its Reported Ceiling Temperature Western Michigan University ScholarWorks at WMU Dissertations Graduate College 8-1976 Sodium-Initiated Polymerization of Alpha- Methylstyrene in the Vicinity of Its Reported Ceiling Temperature Shuenn-long

More information

600 Billy Smith Road, Athens, VT

600 Billy Smith Road, Athens, VT 600 Billy Smith Road, Athens, VT Curtis Trousdale, Owner, Broker, Realtor Cell: 802-233-5589 curtis@preferredpropertiesvt.com 2004 Williston Road, South Burlington VT 05403 www.preferredpropertiesvt.com

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

B ooks Expans ion on S ciencedirect: 2007:

B ooks Expans ion on S ciencedirect: 2007: B ooks Expans ion on S ciencedirect: 2007: 1 INFORUM, 22-24 May, Prague Piotr Golkiewicz Account Manager Elsevier B.V. Email: p.golkiewicz@elsevier.com Mobile: +48 695 30 60 17 2 Pres entation Overview

More information

Functional pottery [slide]

Functional pottery [slide] Functional pottery [slide] by Frank Bevis Fabens A thesis submitted in partial fulfillment of the requirements for the degree of Master of Fine Arts Montana State University Copyright by Frank Bevis Fabens

More information

Grain Reserves, Volatility and the WTO

Grain Reserves, Volatility and the WTO Grain Reserves, Volatility and the WTO Sophia Murphy Institute for Agriculture and Trade Policy www.iatp.org Is v o la tility a b a d th in g? De pe n d s o n w h e re yo u s it (pro d uc e r, tra d e

More information

The Effects of Symbolic Modeling and Parent Training on Noncompliance in Hyperactive Children

The Effects of Symbolic Modeling and Parent Training on Noncompliance in Hyperactive Children Western Michigan University ScholarWorks at WMU Dissertations Graduate College 8-1985 The Effects of Symbolic Modeling and Parent Training on Noncompliance in Hyperactive Children George Kahle Henry Western

More information

gender mains treaming in Polis h practice

gender mains treaming in Polis h practice gender mains treaming in Polis h practice B E R L IN, 1 9-2 1 T H A P R IL, 2 O O 7 Gender mains treaming at national level Parliament 25 % of women in S ejm (Lower Chamber) 16 % of women in S enat (Upper

More information

Comparative Analyses of Teacher Verbal and Nonverbal Behavior in a Traditional and an Openspace

Comparative Analyses of Teacher Verbal and Nonverbal Behavior in a Traditional and an Openspace East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations June 1975 Comparative Analyses of Teacher Verbal and Nonverbal Behavior in a Traditional

More information

The Effects of Apprehension, Conviction and Incarceration on Crime in New York State

The Effects of Apprehension, Conviction and Incarceration on Crime in New York State City University of New York (CUNY) CUNY Academic Works Dissertations, Theses, and Capstone Projects Graduate Center 1978 The Effects of Apprehension, Conviction and Incarceration on Crime in New York State

More information

The Construction and Testing of a New Empathy Rating Scale

The Construction and Testing of a New Empathy Rating Scale Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 8-1980 The Construction and Testing of a New Empathy Rating Scale Gary D. Gray Western Michigan University Follow this and

More information

MOLINA HEALTHCARE, INC. (Exact name of registrant as specified in its charter)

MOLINA HEALTHCARE, INC. (Exact name of registrant as specified in its charter) UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 8-K Current Report Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934 Date of Report (Date of earliest event

More information

ANNUAL MONITORING REPORT 2000

ANNUAL MONITORING REPORT 2000 ANNUAL MONITORING REPORT 2000 NUCLEAR MANAGEMENT COMPANY, LLC POINT BEACH NUCLEAR PLANT January 1, 2000, through December 31, 2000 April 2001 TABLE OF CONTENTS Executive Summary 1 Part A: Effluent Monitoring

More information

Rule-Governed Behavior in Preschool Children

Rule-Governed Behavior in Preschool Children Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 12-1985 Rule-Governed Behavior in Preschool Children Cassandra Ann Braam Western Michigan University Follow this and additional

More information

The Ability C ongress held at the Shoreham Hotel Decem ber 29 to 31, was a reco rd breaker for winter C ongresses.

The Ability C ongress held at the Shoreham Hotel Decem ber 29 to 31, was a reco rd breaker for winter C ongresses. The Ability C ongress held at the Shoreham Hotel Decem ber 29 to 31, was a reco rd breaker for winter C ongresses. Attended by m ore than 3 00 people, all seem ed delighted, with the lectu res and sem

More information

Beechwood Music Department Staff

Beechwood Music Department Staff Beechwood Music Department Staff MRS SARAH KERSHAW - HEAD OF MUSIC S a ra h K e rs h a w t r a i n e d a t t h e R oy a l We ls h C o l le g e of M u s i c a n d D ra m a w h e re s h e ob t a i n e d

More information

Response Rate, Latency, and Resistance to Change

Response Rate, Latency, and Resistance to Change Western Michigan University ScholarWorks at WMU Dissertations Graduate College 4-1981 Response Rate, Latency, and Resistance to Change Stephen Joseph Fath Western Michigan University Follow this and additional

More information

UNITED STATES SECURITIES AND EXCHANGE COMMISSION FORM 8-K. Farmer Bros. Co.

UNITED STATES SECURITIES AND EXCHANGE COMMISSION FORM 8-K. Farmer Bros. Co. UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 8-K CURRENT REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 Date of Report (Date of earliest event

More information

S ca le M o d e l o f th e S o la r Sy ste m

S ca le M o d e l o f th e S o la r Sy ste m N a m e ' D a t e ' S ca le M o d e l o f th e S o la r Sy ste m 6.1 I n t r o d u c t i o n T h e S olar System is large, at least w hen com pared to distances we are fam iliar w ith on a day-to-day basis.

More information

THE BANK OF NEW YORK MELLON CORPORATION (Exact name of registrant as specified in its charter)

THE BANK OF NEW YORK MELLON CORPORATION (Exact name of registrant as specified in its charter) UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 8-K CURRENT REPORT Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934 Date of Report (Date of earliest event

More information

REFUGEE AND FORCED MIGRATION STUDIES

REFUGEE AND FORCED MIGRATION STUDIES THE OXFORD HANDBOOK OF REFUGEE AND FORCED MIGRATION STUDIES Edited by ELENA FIDDIAN-QASMIYEH GIL LOESCHER KATY LONG NANDO SIGONA OXFORD UNIVERSITY PRESS C o n t e n t s List o f Abbreviations List o f

More information

INCOME TAXES IN ALONG-TERMMACROECONOMETRIC FORECASTING MODEL. Stephen H. Pollock

INCOME TAXES IN ALONG-TERMMACROECONOMETRIC FORECASTING MODEL. Stephen H. Pollock INCOME TAXES IN ALONG-TERMMACROECONOMETRIC FORECASTING MODEL. by Stephen H. Pollock Dissertation submitted to the Faculty of the Graduate School of the University of Maryland in partial fulfillment of

More information

I zm ir I nstiute of Technology CS Lecture Notes are based on the CS 101 notes at the University of I llinois at Urbana-Cham paign

I zm ir I nstiute of Technology CS Lecture Notes are based on the CS 101 notes at the University of I llinois at Urbana-Cham paign I zm ir I nstiute of Technology CS - 1 0 2 Lecture 1 Lecture Notes are based on the CS 101 notes at the University of I llinois at Urbana-Cham paign I zm ir I nstiute of Technology W hat w ill I learn

More information

AGRICULTURE SYLLABUS

AGRICULTURE SYLLABUS Agriculture Forms 1-4.qxp_Layout 1 26/10/2016 12:29 PM Page 1 ZIMBABWE MInISTRY OF PRIMARY AnD SECOnDARY EDUCATIOn AGRICULTURE SYLLABUS FORM 1-4 2015-2022 Curriculum Development and Technical Services,

More information

TTM TECHNOLOGIES, INC. (Exact Name of Registrant as Specified in Charter)

TTM TECHNOLOGIES, INC. (Exact Name of Registrant as Specified in Charter) Table of Contents UNITED STATES SECURITIES AND EXCHANGE COMMISSION WASHINGTON, DC 20549 FORM 8-K CURRENT REPORT Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934 November 15, 2006

More information

University Microfilms INFORMATION TO USERS

University Microfilms INFORMATION TO USERS INFORMATION TO USERS.his dissertation was p ro d u ced from a m icrofilm copy of the original d o cu m en t m ile the most advanced technological m eans to photograph and reproduce this urgent have been

More information

The Measurement of Investment Center Managerial Performance Within Selected Diversified Industrial Firms: an Inquiry.

The Measurement of Investment Center Managerial Performance Within Selected Diversified Industrial Firms: an Inquiry. Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1975 The Measurement of Investment Center Managerial Performance Within Selected Diversified Industrial

More information

A Study of Protein-A of Staphylococcus Aureus of Bovine Origin.

A Study of Protein-A of Staphylococcus Aureus of Bovine Origin. Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1973 A Study of Protein-A of Staphylococcus Aureus of Bovine Origin. Joseph Woodrow Pankey Jr Louisiana

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

Imitative Aggression as a Function of Race of Model, Race of Target and Socioeconomic Status of Observer.

Imitative Aggression as a Function of Race of Model, Race of Target and Socioeconomic Status of Observer. Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1976 Imitative Aggression as a Function of Race of Model, Race of Target and Socioeconomic Status

More information

UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C Form 8-K/A (Amendment No. 2)

UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C Form 8-K/A (Amendment No. 2) UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 Form 8-K/A (Amendment No. 2) Current Report Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934 Date of Report

More information

Table of C on t en t s Global Campus 21 in N umbe r s R e g ional Capac it y D e v e lopme nt in E-L e ar ning Structure a n d C o m p o n en ts R ea

Table of C on t en t s Global Campus 21 in N umbe r s R e g ional Capac it y D e v e lopme nt in E-L e ar ning Structure a n d C o m p o n en ts R ea G Blended L ea r ni ng P r o g r a m R eg i o na l C a p a c i t y D ev elo p m ent i n E -L ea r ni ng H R K C r o s s o r d e r u c a t i o n a n d v e l o p m e n t C o p e r a t i o n 3 0 6 0 7 0 5

More information

Lesson Ten. What role does energy play in chemical reactions? Grade 8. Science. 90 minutes ENGLISH LANGUAGE ARTS

Lesson Ten. What role does energy play in chemical reactions? Grade 8. Science. 90 minutes ENGLISH LANGUAGE ARTS Lesson Ten What role does energy play in chemical reactions? Science Asking Questions, Developing Models, Investigating, Analyzing Data and Obtaining, Evaluating, and Communicating Information ENGLISH

More information

Xerox University Microfilms 300 North Zeeb Road Ann Arbor, Michigan INFORMATION TO USERS

Xerox University Microfilms 300 North Zeeb Road Ann Arbor, Michigan INFORMATION TO USERS INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the

More information

INFORMATION TO USERS

INFORMATION TO USERS INFORMATION TO USERS This material was produced from a microfilm copy of the original docum ent. While the m ost advanced technological means to photograph and reproduce this docum ent have been used,

More information

Vlaamse Overheid Departement Mobiliteit en Openbare Werken

Vlaamse Overheid Departement Mobiliteit en Openbare Werken Vlaamse Overheid Departement Mobiliteit en Openbare Werken Waterbouwkundig Laboratorium Langdurige metingen Deurganckdok: Opvolging en analyse aanslibbing Bestek 16EB/05/04 Colofon Ph o to c o ve r s h

More information

A new ThermicSol product

A new ThermicSol product A new ThermicSol product Double-Faced Thermo-Electric Solar-Panel TD/PV & Solar Tracker & Rotation Device An EU-patent protected product TP4-referens.pdf D o y o u w a n t to c o n v e rt it i n to G re

More information

Let us know how access to this document benefits you. Follow this and additional works at:

Let us know how access to this document benefits you. Follow this and additional works at: University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1976 A comparison of the effects of command and guided discovery

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

H STO RY OF TH E SA NT

H STO RY OF TH E SA NT O RY OF E N G L R R VER ritten for the entennial of th e Foundin g of t lair oun t y on ay 8 82 Y EEL N E JEN K RP O N! R ENJ F ] jun E 3 1 92! Ph in t ed b y h e t l a i r R ep u b l i c a n O 4 1922

More information

Compulsory Continuing Education for Certified Public Accountants: a Model Program for the State of Louisiana.

Compulsory Continuing Education for Certified Public Accountants: a Model Program for the State of Louisiana. Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1975 Compulsory Continuing Education for Certified Public Accountants: a Model Program for the State

More information

Status of industrial arts teaching in Montana high schools with enrollments of from forty to one hundred fifty students in 1950

Status of industrial arts teaching in Montana high schools with enrollments of from forty to one hundred fifty students in 1950 University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1952 Status of industrial arts teaching in Montana high schools

More information

An Exploration of the Relationship among Rhetorical Sensitivity, Communication Apprehension, and Nonverbal Decoding Ability

An Exploration of the Relationship among Rhetorical Sensitivity, Communication Apprehension, and Nonverbal Decoding Ability Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 8-1982 An Exploration of the Relationship among Rhetorical Sensitivity, Communication Apprehension, and Nonverbal Decoding

More information

GAMMA RAIS FROM THE S i2 9 (p, lf)p 30 REACTION DISSERTATION

GAMMA RAIS FROM THE S i2 9 (p, lf)p 30 REACTION DISSERTATION GAMMA RAIS FROM THE S i2 9 (p, lf)p 30 REACTION DISSERTATION P re s e n te d in P a r t i a l F u lf illm e n t o f th e R equirem ents f o r th e D egree D octor o f P h ilo so p h y i n th e G raduate

More information

NORWEGIAN MARITIME DIRECTORATE

NORWEGIAN MARITIME DIRECTORATE PAME Snap shot Analysis NORWEGIAN MARITIME DIRECTORATE PAME Snap Shot Analysis of Maritime Activities in the Arctic Revision No. 01 REPORT NO. 2000-3220 Page 1 PAME Snap shot Analysis Table of Contents

More information

Joh n L a w r e n c e, w ho is on sta ff at S ain t H ill, w r ite s :

Joh n L a w r e n c e, w ho is on sta ff at S ain t H ill, w r ite s : Minor Issue 168 S C I E N T O L O G Y A N D C H I L D R E N T h e r e a r e at p r e s e n t no b o o k s a v a ila b le on th e su b je c t of te a c h in g S c ie n to lo g y to c h ild r e n. A s th

More information

Transverse curvature effects on turbulent boundary layers.

Transverse curvature effects on turbulent boundary layers. University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations 4-1-1969 Transverse curvature effects on turbulent boundary layers. M. C. Joseph University of Windsor Follow this and

More information

A Comparison of the Early Social Behavior of Twins and Singletons.

A Comparison of the Early Social Behavior of Twins and Singletons. Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1981 A Comparison of the Early Social Behavior of Twins and Singletons. Randall Louis Lemoine Louisiana

More information

S U E K E AY S S H A R O N T IM B E R W IN D M A R T Z -PA U L L IN. Carlisle Franklin Springboro. Clearcreek TWP. Middletown. Turtlecreek TWP.

S U E K E AY S S H A R O N T IM B E R W IN D M A R T Z -PA U L L IN. Carlisle Franklin Springboro. Clearcreek TWP. Middletown. Turtlecreek TWP. F R A N K L IN M A D IS O N S U E R O B E R T LE IC H T Y A LY C E C H A M B E R L A IN T W IN C R E E K M A R T Z -PA U L L IN C O R A O W E N M E A D O W L A R K W R E N N LA N T IS R E D R O B IN F

More information

Distributive Justice, Injustice and Beyond Justice: The Difference from Principle to Reality between Karl Marx and John Rawls

Distributive Justice, Injustice and Beyond Justice: The Difference from Principle to Reality between Karl Marx and John Rawls W CP 2 0 0 8 P ro c e e d in g s V o l.5 0 S o cia l a n d P o litic a l P h ilo s o p h y Distributive Justice, Injustice and Beyond Justice: The Difference from Principle to Reality between Karl Marx

More information

TECHNICAL MANUAL OPTIMA PT/ST/VS

TECHNICAL MANUAL OPTIMA PT/ST/VS TECHNICAL MANUAL OPTIMA PT/ST/VS Page 2 NT1789 Rév.A0 TABLE OF CHANGES The information contained in this document only concerns : OPTIMA PT/ST/VS type, MCM 440 PT/OT type, MCM550 ST type. Technical Manual

More information

heliozoan Zoo flagellated holotrichs peritrichs hypotrichs Euplots, Aspidisca Amoeba Thecamoeba Pleuromonas Bodo, Monosiga

heliozoan Zoo flagellated holotrichs peritrichs hypotrichs Euplots, Aspidisca Amoeba Thecamoeba Pleuromonas Bodo, Monosiga Figures 7 to 16 : brief phenetic classification of microfauna in activated sludge The considered taxonomic hierarchy is : Kingdom: animal Sub kingdom Branch Class Sub class Order Family Genus Sub kingdom

More information

Heider's Five Levels of Causality and Assignment of Responsibility by Actors and Observers.

Heider's Five Levels of Causality and Assignment of Responsibility by Actors and Observers. Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1977 Heider's Five Levels of Causality and Assignment of Responsibility by Actors and Observers. David

More information

A Quantitative and Qualitative Analysis of Racial Employment Discrimination in Louisiana:

A Quantitative and Qualitative Analysis of Racial Employment Discrimination in Louisiana: Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1973 A Quantitative and Qualitative Analysis of Racial Employment Discrimination in Louisiana: 1950-1971.

More information

NUMERICAL SIMULATION OF MHD-PROBLEMS ON THE BASIS OF VARIATIONAL APPROACH

NUMERICAL SIMULATION OF MHD-PROBLEMS ON THE BASIS OF VARIATIONAL APPROACH NUMERICAL SIMULATION OF MHD-PROBLEMS ON THE BASIS OF VARIATIONAL APPROACH V.M. G o lo v izn in, A.A. Sam arskii, A.P. Favor s k i i, T.K. K orshia In s t it u t e o f A p p lie d M athem atics,academy

More information

A Confusion Matrix Intelligibility Testing Procedure for Preschool Children

A Confusion Matrix Intelligibility Testing Procedure for Preschool Children Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 4-1981 A Confusion Matrix Intelligibility Testing Procedure for Preschool Children Jane C. Coe-Kruse Western Michigan University

More information

A Finite-Element Program for the Analysis of Embankments Over Soft, Saturated Soils Including Consolidation and Creep Effects.

A Finite-Element Program for the Analysis of Embankments Over Soft, Saturated Soils Including Consolidation and Creep Effects. Louisiana State University LSU Digital ommons LSU Historical Dissertations and Theses Graduate School 1973 A Finite-Element Program for the Analysis of Embankments Over Soft, Saturated Soils Including

More information

Use precise language and domain-specific vocabulary to inform about or explain the topic. CCSS.ELA-LITERACY.WHST D

Use precise language and domain-specific vocabulary to inform about or explain the topic. CCSS.ELA-LITERACY.WHST D Lesson seven What is a chemical reaction? Science Constructing Explanations, Engaging in Argument and Obtaining, Evaluating, and Communicating Information ENGLISH LANGUAGE ARTS Reading Informational Text,

More information

M a n a g e m e n t o f H y d ra u lic F ra c tu rin g D a ta

M a n a g e m e n t o f H y d ra u lic F ra c tu rin g D a ta M a n a g e m e n t o f H y d ra u lic F ra c tu rin g D a ta M a rc h 2 0 1 5, A n n a F ilip p o v a a n d J e re m y E a d e 1 W h a t is H y d ra u lic F ra c tu rin g? Im a g e : h ttp ://w w w.h

More information

Use precise language and domain-specific vocabulary to inform about or explain the topic. CCSS.ELA-LITERACY.WHST D

Use precise language and domain-specific vocabulary to inform about or explain the topic. CCSS.ELA-LITERACY.WHST D Lesson eight What are characteristics of chemical reactions? Science Constructing Explanations, Engaging in Argument and Obtaining, Evaluating, and Communicating Information ENGLISH LANGUAGE ARTS Reading

More information

The use and effectiveness of financial and physical reserves in Montana's dryland wheat area by Howard W Hjort

The use and effectiveness of financial and physical reserves in Montana's dryland wheat area by Howard W Hjort The use and effectiveness of financial and physical reserves in Montana's dryland wheat area by Howard W Hjort A THESIS Submitted, to the Graduate Faculty in partial fulfillment of the requirements for

More information

Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork and res u lts 2

Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork and res u lts 2 Internal Innovation @ C is c o 2 0 0 6 C i s c o S y s t e m s, I n c. A l l r i g h t s r e s e r v e d. C i s c o C o n f i d e n t i a l 1 Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork

More information

Dentists incomes, fees, practice costs, and the Economic Stabilization Act: to 1976

Dentists incomes, fees, practice costs, and the Economic Stabilization Act: to 1976 HE A S S O C IA T IO N Dentists incomes, fees, practice costs, and the Economic Stabilization Act: 19 52 to 1976 B u r e a u o f E c o n o m ic a n d B e h a v io r a l R e s e a r c h D a r i n g th e

More information

M I E A T? Y A H 0E 3TE S

M I E A T? Y A H 0E 3TE S M I E A T? Y A H 0E 3TE S Corrgimi c a tod to the- Councl 1 and 1,'ombors ox the League 3/36456712247 p 9 AP t * no 1 Q A L» * O i-» m i. i O JL /» X T T i ttt.' n *7 T-T * n i T n TTi U U jj!.» -! 1 Uj.']

More information

Results as of 30 September 2018

Results as of 30 September 2018 rt Results as of 30 September 2018 F r e e t r a n s l a t ion f r o m t h e o r ig ina l in S p a n is h. I n t h e e v e n t o f d i s c r e p a n c y, t h e Sp a n i s h - la n g u a g e v e r s ion

More information

UNITED STATES SECURITIES AND EXCHANGE COMMISSION WASHINGTON, D.C FORM 8-K

UNITED STATES SECURITIES AND EXCHANGE COMMISSION WASHINGTON, D.C FORM 8-K Table of Contents UNITED STATES SECURITIES AND EXCHANGE COMMISSION WASHINGTON, D.C. 20549 FORM 8-K CURRENT REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 DATE OF REPORT (DATE

More information

Structure and metabolism of cuticular lipids of the grasshopper melanoplus sanguinipes

Structure and metabolism of cuticular lipids of the grasshopper melanoplus sanguinipes Structure and metabolism of cuticular lipids of the grasshopper melanoplus sanguinipes by Gary James Blomquist A thesis submitted to the Graduate Faculty in partial Fulfillment of the requirements for

More information

The development of equipment capable of measuring the density and viscosity of liquids to 50,000 p.s.i. under controlled temperatures.

The development of equipment capable of measuring the density and viscosity of liquids to 50,000 p.s.i. under controlled temperatures. University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations 1-1-1969 The development of equipment capable of measuring the density and viscosity of liquids to 50,000 p.s.i. under

More information

Product Type: DC Stock: Stock Description: 1/3HP.1750RPM.MSS56C.TEFC.90V.CONT.40C.1.0SF.RIGID C.DC NEMA.C42D17FK4C.

Product Type: DC Stock: Stock Description: 1/3HP.1750RPM.MSS56C.TEFC.90V.CONT.40C.1.0SF.RIGID C.DC NEMA.C42D17FK4C. Catalog # : 098004.00 Model: C42D17FK4 Product Type: DC Stock: Stock Description: 1/3HP.1750RPM.MSS56C.TEFC.90V.CONT.40C.1.0SF.RIGID C.DC NEMA.C42D17FK4C Quote: Price: Date: 05/18/2016 Catalog # : 098004.00

More information

A study of intra-urban mobility in Omaha

A study of intra-urban mobility in Omaha University of Nebraska at Omaha DigitalCommons@UNO Student Work 1-1-1947 A study of intra-urban mobility in Omaha Magdalene Pickens University of Nebraska at Omaha Follow this and additional works at:

More information

F O R M T H R E E K enya C ertificate of Secondary E ducation

F O R M T H R E E K enya C ertificate of Secondary E ducation N a m e : A d m. N o...... D a t e : C la ss:.... 565/1 FO R M 3 B U S I N E S S S T U D I E S P A P E R 1 T I M E : 2 H O U R S T R I A L 6 2 0 1 8 FO R M 3 B U S I N E S S S T U D I E S P A P E R 1 T

More information

Th e E u r o p e a n M ig r a t io n N e t w o r k ( E M N )

Th e E u r o p e a n M ig r a t io n N e t w o r k ( E M N ) Th e E u r o p e a n M ig r a t io n N e t w o r k ( E M N ) H E.R E T h em at ic W o r k sh o p an d Fin al C o n fer en ce 1 0-1 2 Ju n e, R agu sa, It aly D avid R eisen zein IO M V ien n a Foto: Monika

More information

UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C FORM 8-K

UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C FORM 8-K UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 8-K CURRENT REPORT Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934 Date of Report (Date of earliest event

More information

i.ea IE !e e sv?f 'il i+x3p \r= v * 5,?: S i- co i, ==:= SOrq) Xgs'iY # oo .9 9 PE * v E=S s->'d =ar4lq 5,n =.9 '{nl a':1 t F #l *r C\ t-e

i.ea IE !e e sv?f 'il i+x3p \r= v * 5,?: S i- co i, ==:= SOrq) Xgs'iY # oo .9 9 PE * v E=S s->'d =ar4lq 5,n =.9 '{nl a':1 t F #l *r C\ t-e fl ) 2 ;;:i c.l l) ( # =S >' 5 ^'R 1? l.y i.i.9 9 P * v ,>f { e e v? 'il v * 5,?: S 'V i: :i (g Y 1,Y iv cg G J :< >,c Z^ /^ c..l Cl i l 1 3 11 5 (' \ h 9 J :'i g > _ ^ j, \= f{ '{l #l * C\? 0l = 5,

More information

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No xhibit 2-9/3/15 Invie Filing Pge 1841 f Pge 366 Dket. 44498 F u v 7? u ' 1 L ffi s xs L. s 91 S'.e q ; t w W yn S. s t = p '1 F? 5! 4 ` p V -', {} f6 3 j v > ; gl. li -. " F LL tfi = g us J 3 y 4 @" V)

More information

Visceral mass and reticulorumen volume of differing biological types of beef cattle by Eddie L Fredrickson

Visceral mass and reticulorumen volume of differing biological types of beef cattle by Eddie L Fredrickson Visceral mass and reticulorumen volume of differing biological types of beef cattle by Eddie L Fredrickson A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science

More information

UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, DC FORM 8-K. Current Report

UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, DC FORM 8-K. Current Report UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, DC 20549 FORM 8-K Current Report Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934 Date of Report (Date of earliest event

More information

Genetic Behavior of Resistance to Lodging in Sugarcane.

Genetic Behavior of Resistance to Lodging in Sugarcane. Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1976 Genetic Behavior of Resistance to Lodging in Sugarcane. Howard Preston Viator II Louisiana State

More information

Alles Taylor & Duke, LLC Bob Wright, PE RECORD DRAWINGS. CPOW Mini-Ed Conf er ence Mar ch 27, 2015

Alles Taylor & Duke, LLC Bob Wright, PE RECORD DRAWINGS. CPOW Mini-Ed Conf er ence Mar ch 27, 2015 RECORD DRAWINGS CPOW Mini-Ed Conf er ence Mar ch 27, 2015 NOMENCLATURE: Record Draw ings?????? What Hap p ened t o As- Built s?? PURPOSE: Fur n ish a Reco r d o f Co m p o n en t s Allo w Locat io n o

More information

1980 Annual Report / FEDERAL R ESER V E BA N K OF RICHMOND. Digitized for FRASER Federal Reserve Bank of St.

1980 Annual Report / FEDERAL R ESER V E BA N K OF RICHMOND. Digitized for FRASER   Federal Reserve Bank of St. 1980 Annual Report / FEDERAL R ESER V E BA N K OF RICHMOND IS S N 0164-0798 L IB R A R Y OK C O N G R E SS C A T A L O G C A R D N U M B E R : 16-72o4 Additional <

More information

Sex-Role Attitudes, Sex, and Logos of Control: A Study of their Interrelationships in Reference to Social Change

Sex-Role Attitudes, Sex, and Logos of Control: A Study of their Interrelationships in Reference to Social Change Western Michigan University ScholarWorks at WMU Dissertations Graduate College 4-1990 Sex-Role Attitudes, Sex, and Logos of Control: A Study of their Interrelationships in Reference to Social Change Virginia

More information

Information System Desig

Information System Desig n IT60105 Lecture 7 Unified Modeling Language Lecture #07 Unified Modeling Language Introduction to UML Applications of UML UML Definition Learning UML Things in UML Structural Things Behavioral Things

More information

Breakup of weakly bound nuclei and its influence on fusion. Paulo R. S. Gomes Univ. Fed. Fluminense (UFF), Niteroi, Brazil

Breakup of weakly bound nuclei and its influence on fusion. Paulo R. S. Gomes Univ. Fed. Fluminense (UFF), Niteroi, Brazil Breakup of weakly bound nuclei and its influence on fusion Paulo R. S. Gomes Univ. Fed. Fluminense (UFF), Niteroi, Brazil Forum Brasil-JINR Dubna, June, 2015 For a comprehensive review of this subject

More information

MySQL 5.1. Past, Present and Future. Jan Kneschke MySQL AB

MySQL 5.1. Past, Present and Future. Jan Kneschke MySQL AB MySQL 5.1 Past, Present and Future Jan Kneschke MySQL AB Agenda Past S Q L T re e s m e e ts D y n a m ic S Q L P re s e n t E v e n ts P a rtitio n in g F u tu re V e rtic a l P a rtitio n in g About

More information

Changes in peer conformity across age on normative and informational tasks

Changes in peer conformity across age on normative and informational tasks University of Nebraska at Omaha DigitalCommons@UNO Student Work 11-1972 Changes in peer conformity across age on normative and informational tasks Susan C. Wright University of Nebraska at Omaha Follow

More information

An Investigation of the Relationship Between Learning-style and Temperament of Senior Highschool Students in the Bahamas and Jamaica

An Investigation of the Relationship Between Learning-style and Temperament of Senior Highschool Students in the Bahamas and Jamaica Andrews University Digital Commons @ Andrews University Master's Theses Graduate Research 1984 An Investigation of the Relationship Between Learning-style and Temperament of Senior Highschool Students

More information