Civil. Engineering INELASTIC BENDING CAPACITY IN COLD-FORMED STEEL MEMBERS Annual Stability Conference New Orleans, Louisiana

Size: px
Start display at page:

Download "Civil. Engineering INELASTIC BENDING CAPACITY IN COLD-FORMED STEEL MEMBERS Annual Stability Conference New Orleans, Louisiana"

Transcription

1 Civil Engineering at JOHNS HOPKINS UNIVERSITY at JOHNS HOPKINS UNIVERSITY INELASTIC BENDING CAPACITY IN COLD-FORMED STEEL MEMBERS 2007 Annual Stability Conference New Orleans, Louisiana April 2007 Y.Shifferaw 1, B.W.Schafer 2 (1),(2) Department of Civil Engineering- Johns Hopkins University

2 Acknowledgments National Science Foundation Cheng Yu American Iron and Steel Institute American Institute of Steel Construction

3 Overview Background and motivation on inelastic bending capacity in cold-formed steel (CFS) members Mechanisms for inelastic reserve Observed inelastic reserve in CFS tests Recent testing on CFS beams & summary of test results FE modeling Modeling assumptions Material models Parametric FE study Design Methods Strength as a function of strain Strain as a function of slenderness DSM style inelastic strength prediction: Strength as a function of slenderness Future work Conclusions

4 Inelastic reserve M y <M<M p hot-rolled cold-formed Limit b f /2t f (FLB) Limit h/t w (WLB) M M p C and Z sections M M y Hats (stiffened element compression flange) M can be >M y

5 Motivation Stub-column interaction diagram P n P y hot-rolled steel Cold-formed steel cold-formed steel (DSM for hot -rolled steel?) M n including local, distortional, and LTB via Direct Strength Method M y M p M n DSM including Inelastic reserve?

6 Elementary mechanics: mechanism 1 for inelastic reserve ε max =ε y, C y =1 ε max =2ε y, C y =2 ε max =3ε y, C y =3 ε max =, C y = ε max =ε y, C y =1 ε max =2ε y, C y =2 ε max =3ε y, C y =3 ε max =, C y = fy (a) (b) (c) (d) M=M y M y <M<M p M=M p (a) (b) (c) (d) M=M y M y <M<M p M=M p symmetric section

7 Elementary mechanics: mechanism 2 for inelastic reserve C y =1/3 C y <1 C y =1.2 C y = ε max =ε y, C y =1 ε max =2ε y, C y =2 ε max =3ε y, C y =3 ε max =, C y = fy (a) (b) (c) (d) M=M y M y <M<M p M=M p (a) (b) (c) (d) C y-tension =1 C y-tension =1.5 C y-tension =4 C y-tension = M=M y M y <M<M p first yield in tension M=M p

8 Observed inelastic reserve in CFS tests count M test >0.95M y max M test /M y Section and Researcher Hats and Deck Sections Acharya (1997) Desmond (1977) Hoglund (1980) Papazian (1994) Winter (1946) C and Z Sections Cohen (1987) LaBoube and Yu (1978) Rogers (1995) Shan (1994) Yu and Schafer (2003) Yu and Schafer (2006)

9 Observed inelastic reserve in CFS tests count M test >0.95M y max M test /M y min M p /M y max M p /M y Section and Researcher Hats and Deck Sections Acharya (1997) Desmond (1977) Hoglund (1980) Papazian (1994) Winter (1946) C and Z Sections Cohen (1987) LaBoube and Yu (1978) Rogers (1995) Shan (1994) Yu and Schafer (2003) Yu and Schafer (2006) shape factor

10 Back-calculated strain at failure 2.50 first yield in tension comp. C y-tension (εmax-tension/εy) tension yielding inelastic buckling 0.50 no inelastic reserve C y (ε max-compression /ε y )

11 Recent testing on CFS beams Cold-formed steel beams may buckle instead of exhibiting inelastic reserve Recent testing has investigated local and distortional buckling as separate limit states on typically used CFS beams, even in the inelastic regime Yu and Schafer (2003,2006,2007)

12 buckling modes in a thin-walled beam M cr L cr local buckling distortional buckling lateral-torsional buckling

13 Local buckling tests 25 C and Z beam pairs local mode shape Standard panel fastener configuration, test and FE showed distortional buckling failures even though panel stiffness should be enough to restrict DB Yu and Schafer (2003)

14 Local buckling tests Total 25 C and Z beams local mode shape Panel fastener configuration to insure panel is engaged and distortional buckling restricted Yu and Schafer (2003)

15 Distortional buckling tests Total 24 C and Z beams Distortional mode shape Yu and Schafer (2006)

16 Typical test results P Test 8.5Z092 P P crd P y local distortional Local buckling test 99% of NAS* Δ Distortional buckling test 83% of NAS* *North American Specification for the Design of Cold-Formed Steel Structural Shapes 2007 version adopted new rules to account for distortional buckling in beams

17 Summary test results inelastic reserve DSM-Local DSM-Distortional Local buckling tests Distortional buckling tests M test /M y (M y /M cr ) 0.5

18 Overview Background and motivation on inelastic bending capacity in cold-formed steel (CFS) members Mechanisms for inelastic reserve Observed inelastic reserve in CFS tests Recent testing on CFS beams & summary of test results FE modeling Modeling assumptions Material models Parametric FE study Design Methods Strength as a function of strain Strain as a function of slenderness DSM style inelastic strength prediction: Strength as a function of slenderness Future work Conclusions

19 Objective Finite element modeling To study inelastic reserve in typical (symmetric) CFS beams for local and distortional limit states. Method Parametric study motivated from testing of Yu and Schafer (2003,2006) Material and geometric nonlinear analysis in ABAQUS using S9R5 shell element models Models generated from purpose-built Matlab code (performs elementary mechanics, C y, FSM and FEM models)

20 Boundary conditions (distortional buckling) Warping restraint (a la FSM) ends are constrained to act rigidly about tie point rotation (moment) enforced at ends compression flange is unrestrained.

21 Boundary conditions (local buckling) Warping restraint (a la FSM) ends are constrained to act rigidly about tie point rotation (moment) enforced at ends compression flange rot. Restrained at mid width of flange

22 Sections considered 3.62 in. to 6 in. SSMA sections thickness ( in) vary t MBMA member company section 8.5 in.

23 Geometric imperfections Shape = local or distortional buckling mode shape Magnitude = 50% probability of exceedance based on statistics gathered by Schafer and Peköz (1998) as summarized below d d Type 1 Type 2 Type 1 Type 2 (local) (distortional) Probability (X < x) Type 1 Type 2 P(X < x) d/t d/t μ σ CDF of Maximum Imperfection

24 Material models stress (ksi) fy=73.4ksi fy=62ksi fy=56ksi fy=44ksi fy=33ksi strain σ ε curves measured, Yu and Schafer (2007)

25 Strength as function of slenderness? LOCAL DISTORTIONAL Z C C C054 D85Z120-1 D362C Z C C C054 D85Z120-1 D362C054-4 M u l/m y 1.10 M ud /M y λ l = (M y /M crl ) λ d = (M y /M crd ) 0.5 Direct DSM-style relationship is difficult to justify with initial results Sensitivities to imperfection magnitude (direction) observed (Camotim et al. 2006)

26 Strain as function of slenderness? LOCAL DISTORTIONAL Z C C C054 D85Z120-1 D362C Z C C C054 D85Z120-1 D362C054-4 C y 6 C y λ l = (M y /M crl ) λ d = (M y /M crd ) 0.5 Strain demands greater in distortional buckling Slenderness where inelastic C y >1 occurs much lower for local

27 Strain as function of strength? LOCAL DISTORTIONAL M u l/m y 1.1 M ud /M y Z Z120 6C C C C C C054 D85Z120-1 D85Z120-1 D362C054-4 D362C C y C y Strain to strength similar for local and distortional buckling Elementary mechanics is driving inelastic reserve

28 Overview Background and motivation on inelastic bending capacity in cold-formed steel (CFS) members Mechanisms for inelastic reserve Observed inelastic reserve in CFS tests Recent testing on CFS beams & summary of test results FE modeling Modeling assumptions Material models Parametric FE study Design Methods Strength as a function of strain Strain as a function of slenderness DSM style inelastic strength prediction: Strength as a function of slenderness Future work Conclusions

29 Strain as function of reserve strength (M test or FE -M y )/(M p -M y ) Test FE - Dist. FE - local Test FE - Dist. FE - local M M n p M M y y = 1 1 C y M M M n p M y y = 1 1 C y C y

30 Strain as function of slenderness if if λ < λ, C l ly λ < λ, C dy yl yd λl = λly λd = λdy whereλ whereλ dy ly = = C y FE - Dist. FE - Local Test - Dist. controlled Test - Local controlled λ l = (M y /M crl ) 0.5 or λ d = (M y /M crd ) 0.5

31 Direct Strength Method for Beams

32 M = M + ( M M ) nd y p 1 2 λ d Inelastic y λ reserve strength prediction dy 1 (M test -M y )/(M p -M y ) C y =4 C y =3 C y =2 cutoff Test - Local controlled Test - Dist. controlled FE - Local FE - Distortional D M p /M y = slenderness: λ l =(M y /M crl ) 0.5 or λ d =(M y /M crd ) 0.5 L

33 M = M + ( M M ) nd y p 1 2 λ d Inelastic y λ reserve strength prediction dy if LOCAL DISTORTIONAL 0.9 λ ( ) λl l < λ y, M n = M y + M p M y 1 ( ) λd l l if λ <, = + λ 1 ly d λdy M nd M y M p M y λdy 2 Table 1 Prediction statistics for inelastic bending capacity Section and M test /M n * M test /M n for M n >M y Researcher ave. st.dev. n ave. st.dev. n Hats and Decks Acharya (1997) Desmond (1977) Hoglund (1980) Papazian (1994) C and Z s Cohen (1987) LaBoube and Yu (1978) Rogers (1995) Shan (1994) Yu and Schafer (2003) Yu and Schafer (2006) All test data FE Studies Local models Distortional models * these statistics are provided only when Eq. 14 and 15 are employed for prediction, i.e., when the predicted M n is greater than M y (or equivalently λ l <λ ly or λ d <λ dy )

34 Why cutoff strain? Local demands can be far in excess of average (elementary mechanics) strain demands Table 1 Strain demands summary table C ymax-membrane /C y C ymax-surface /C y ave. st.dev. max ave. st.dev. max Local models Distortional models * C y without any modifier is taken as the average of the flange membrane strain

35 Future work Impact of strain hardening Further study on sensitivity to inward vs. outward inelastic buckling collapse mechanisms Extent to which LTB, and unbraced length influence solution particularly in distortional buckling Comprehensive verification of FE model Further study on using elastic slenderness to correlate to inelastic strength

36 Conclusions Inelastic bending reserve exists in CFS beams developing from one of two distinct mechanisms. From FE models, average strain demands in inelastic distortional buckling were found to be much greater than in inelastic local buckling at equivalent slenderness. Peak strain demands exceed average member strains predicted via elementary mechanics. Simple expressions for strain demand in inelastic local and distortional buckling as function of elastic cross-section slenderness as well as inelastic bending reserve are established. Preliminary Direct Strength Method design expressions for inelastic bending reserve in local and distortional buckling as a function of elastic section slenderness are established.

37 ? Any Questions?

38 Observed inelastic reserve in CFS beams 1.5 transition in inelastic regime, where M n >M y has not been explored for cold-formed sections. M M test y DSM local buckling DSM distortional buckling Experiments failing in local mode Experiments failing in distortional mode Elastic buckling cross-section slenderness λ max = My Mcr

39 Finite Element Modeling by ABAQUS Shell element S4R for sections, panels and tubes, solid element C3D8 for load beam. Geometric imperfection and material nonlinearity are considered. Residual stress is not considered. The auto Stabilization method in ABAQUS were used for postbuckling analysis.

40 Finite Element Modeling - geometric imperfections Geometric imperfection is obtained by the superposing two eigenmodes which are calculated by finite strip method (software CUFSM). + = Local buckling shape Distortional buckling shape Input geometric imperfection

41 Basic test setup

42 Formulas for strain at failure y' h σ dxdy + 0 y' σdxdy = 0 σ = f(ε) and ε = (y/y lim )ε max M = A f ( ε)yda = A f ( ( y y ) lim ε max )yda ε max-compression = C y ε y and ε max-tesion = C y-tension ε y

INELASTIC BENDING CAPACITY IN COLD-FORMED STEEL MEMBERS

INELASTIC BENDING CAPACITY IN COLD-FORMED STEEL MEMBERS INELASTIC BENDING CAPACITY IN COLD-FORMED STEEL MEMBERS report to: American Iron and Steel Institute Committee on Specifications Subcomittee 10 Element Behaviors and Direct Strength Method Subcomittee

More information

Reports RESEARCH REPORT RP00-3 RESEARCH REPORT RP01-1 OCTOBER REVISION 2006 REVISION

Reports RESEARCH REPORT RP00-3 RESEARCH REPORT RP01-1 OCTOBER REVISION 2006 REVISION research report A AISI Design Sponsored Approach Resear for ch Complex Reports AISI Sponsored Stiffeners Research Reports RESEARCH REPORT RP00-3 RP01-1 RESEARCH REPORT RP01-1 OCTOBER 2001 2000 REVISION

More information

Direct Strength Design for Cold-Formed Steel Members with Perforations. Progress Report 5 C. Moen and B.W. Schafer AISI-COS Meeting February 2008

Direct Strength Design for Cold-Formed Steel Members with Perforations. Progress Report 5 C. Moen and B.W. Schafer AISI-COS Meeting February 2008 Direct Strength Design for Cold-Formed Steel Members with Perforations Progress Report 5 C. Moen and B.W. Schafer AISI-COS Meeting February 28 outline Objective Summary of past progress Simplified methods

More information

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1.

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1. C3 Flexural Members C3.1 Bending The nominal flexural strength [moment resistance], Mn, shall be the smallest of the values calculated for the limit states of yielding, lateral-torsional buckling and distortional

More information

Stability of Cold-formed Steel Simple and Lipped Angles under Compression

Stability of Cold-formed Steel Simple and Lipped Angles under Compression Missouri University of Science and Technology Scholars' Mine International Specialty Conference on Cold- Formed Steel Structures (2008) - 19th International Specialty Conference on Cold-Formed Steel Structures

More information

BUCKLING MODE CLASSIFICATION OF MEMBERS WITH OPEN THIN-WALLED CROSS-SECTIONS

BUCKLING MODE CLASSIFICATION OF MEMBERS WITH OPEN THIN-WALLED CROSS-SECTIONS CIMS 4 Fourth International Conference on Coupled Instabilities in Metal Structures Rome, Italy, 27-29 September, 24 BUCKLING MODE CLASSIFICATION OF MEMBERS WITH OPEN THIN-WALLED CROSS-SECTIONS S. ÁDÁNY,

More information

Civil. Engineering. Cross-section stability of structural steel. AISC Faculty Fellowship Progress Report AISC Committee on Research April 2008

Civil. Engineering. Cross-section stability of structural steel. AISC Faculty Fellowship Progress Report AISC Committee on Research April 2008 Civil Engineering at JOHNS HOPKINS UNIVERSITY Cross-section stability o structural steel AISC Faculty Fellowship Progress Report AISC Committee on Research April 2008 Schaer, BW Objective: Investigate

More information

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas MORGAN STATE UNIVERSITY SCHOOL OF ARCHITECTURE AND PLANNING LECTURE VIII Dr. Jason E. Charalambides Failure in Flexure!

More information

Chapter 12 Elastic Stability of Columns

Chapter 12 Elastic Stability of Columns Chapter 12 Elastic Stability of Columns Axial compressive loads can cause a sudden lateral deflection (Buckling) For columns made of elastic-perfectly plastic materials, P cr Depends primarily on E and

More information

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes October 2014 Influence of residual stresses in the structural behavior of Abstract tubular columns and arches Nuno Rocha Cima Gomes Instituto Superior Técnico, Universidade de Lisboa, Portugal Contact:

More information

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER International Journal of Civil Structural 6 Environmental And Infrastructure Engineering Research Vol.1, Issue.1 (2011) 1-15 TJPRC Pvt. Ltd.,. INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE

More information

Sheathing Braced Design of Wall Studs July 2011 Update. for

Sheathing Braced Design of Wall Studs July 2011 Update.  for Civil Engineering at JOHNS HOPKINS UNIVERSITY Sheathing Braced Design of Wall Studs July 2011 Update www.ce.jhu.edu/bschafer/sheathedwalls for AISI Committee on Framing Standards Design Methods Subcommittee

More information

An Increase in Elastic Buckling Strength of Plate Girder by the Influence of Transverse Stiffeners

An Increase in Elastic Buckling Strength of Plate Girder by the Influence of Transverse Stiffeners GRD Journals- Global Research and Development Journal for Engineering Volume 2 Issue 6 May 2017 ISSN: 2455-5703 An Increase in Elastic Buckling Strength of Plate Girder by the Influence of Transverse Stiffeners

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar 5.4 Beams As stated previousl, the effect of local buckling should invariabl be taken into account in thin walled members, using methods described alread. Laterall stable beams are beams, which do not

More information

Direct Strength Method (DSM) Design Guide

Direct Strength Method (DSM) Design Guide Direct Strength Method (DSM) Design Guide DESIGN GUIDE CFXX-X January, 6 Committee on Specifications for the Design of Cold-Formed Steel Structural Members American Iron and Steel Institute Preface The

More information

research report Design Example for Analytical Modeling of a Curtainwall and Considering the Effects of Bridging (All-Steel Design Approach)

research report Design Example for Analytical Modeling of a Curtainwall and Considering the Effects of Bridging (All-Steel Design Approach) research report Design Example for Analytical Modeling of a Curtainwall and Considering the Effects of Bridging (All-Steel Design Approach) RESEARCH REPORT RP18- August 018 Committee on Specifications

More information

APPLICATIONS OF PURE AND COMBINED BUCKLING MODE CALCULATION OF THIN-WALLED MEMBERS USING THE FINITE ELEMENT METHOD

APPLICATIONS OF PURE AND COMBINED BUCKLING MODE CALCULATION OF THIN-WALLED MEMBERS USING THE FINITE ELEMENT METHOD SDSS Rio 2010 STABILITY AND DUCTILITY OF STEEL STRUCTURES E. Batista, P. Vellasco, L. de Lima (Eds.) Rio de Janeiro, Brazil, September 8-10, 2010 APPLICATIONS OF PURE AND COMBINED BUCKLING MODE CALCULATION

More information

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder 16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

More information

SECTION 7 DESIGN OF COMPRESSION MEMBERS

SECTION 7 DESIGN OF COMPRESSION MEMBERS SECTION 7 DESIGN OF COMPRESSION MEMBERS 1 INTRODUCTION TO COLUMN BUCKLING Introduction Elastic buckling of an ideal column Strength curve for an ideal column Strength of practical column Concepts of effective

More information

NUMERICAL EVALUATION OF THE ROTATIONAL CAPACITY OF STEEL BEAMS AT ELEVATED TEMPERATURES

NUMERICAL EVALUATION OF THE ROTATIONAL CAPACITY OF STEEL BEAMS AT ELEVATED TEMPERATURES 8 th GRACM International Congress on Computational Mechanics Volos, 12 July 15 July 2015 NUMERICAL EVALUATION OF THE ROTATIONAL CAPACITY OF STEEL BEAMS AT ELEVATED TEMPERATURES Savvas Akritidis, Daphne

More information

ENCE 455 Design of Steel Structures. III. Compression Members

ENCE 455 Design of Steel Structures. III. Compression Members ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:

More information

Design of Beams (Unit - 8)

Design of Beams (Unit - 8) Design of Beams (Unit - 8) Contents Introduction Beam types Lateral stability of beams Factors affecting lateral stability Behaviour of simple and built - up beams in bending (Without vertical stiffeners)

More information

APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES

APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES 163 APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES A1.1 DESIGN AS PER NORTH AMERICAN SPECIFICATION OF COLD FORMED STEEL (AISI S100: 2007) 1. Based on Initiation of Yielding: Effective yield moment, M n

More information

FINITE ELEMENT ANALYSIS OF TAPERED COMPOSITE PLATE GIRDER WITH A NON-LINEAR VARYING WEB DEPTH

FINITE ELEMENT ANALYSIS OF TAPERED COMPOSITE PLATE GIRDER WITH A NON-LINEAR VARYING WEB DEPTH Journal of Engineering Science and Technology Vol. 12, No. 11 (2017) 2839-2854 School of Engineering, Taylor s University FINITE ELEMENT ANALYSIS OF TAPERED COMPOSITE PLATE GIRDER WITH A NON-LINEAR VARYING

More information

Experimental Study and Numerical Simulation on Steel Plate Girders With Deep Section

Experimental Study and Numerical Simulation on Steel Plate Girders With Deep Section 6 th International Conference on Advances in Experimental Structural Engineering 11 th International Workshop on Advanced Smart Materials and Smart Structures Technology August 1-2, 2015, University of

More information

COLUMNS: BUCKLING (DIFFERENT ENDS)

COLUMNS: BUCKLING (DIFFERENT ENDS) COLUMNS: BUCKLING (DIFFERENT ENDS) Buckling of Long Straight Columns Example 4 Slide No. 1 A simple pin-connected truss is loaded and supported as shown in Fig. 1. All members of the truss are WT10 43

More information

Direct Strength Method for Steel Deck

Direct Strength Method for Steel Deck issouri University of Science and Technology Scholars ine AISI-Specifications for the Design of Cold-Formed Steel Structural embers Wei-Wen Yu Center for Cold-Formed Steel Structures 1-1-2015 Direct Strength

More information

Research Collection. Numerical analysis on the fire behaviour of steel plate girders. Conference Paper. ETH Library

Research Collection. Numerical analysis on the fire behaviour of steel plate girders. Conference Paper. ETH Library Research Collection Conference Paper Numerical analysis on the fire behaviour of steel plate girders Author(s): Scandella, Claudio; Knobloch, Markus; Fontana, Mario Publication Date: 14 Permanent Link:

More information

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi Chapter 05 Structural Steel Design According to the AISC Manual 13 th Edition Analysis and Design of Beams By Dr. Jawad Talib Al-Nasrawi University of Karbala Department of Civil Engineering 71 Introduction

More information

RESEARCH REPORT RP02-2 MARCH 2002 REVISION Committee on Specifications for the Design of Cold-Formed Steel Structural Members

RESEARCH REPORT RP02-2 MARCH 2002 REVISION Committee on Specifications for the Design of Cold-Formed Steel Structural Members research report Web Crippling and Bending Interaction of Cold-Formed Steel Members RESEARCH REPORT RP02-2 MARCH 2002 REVISION 2006 Committee on Specifications for the Design of Cold-Formed Steel Structural

More information

PLASTIC COLLAPSE MECHANISMS IN COMPRESSED ELLIPTICAL HOLLOW SECTIONS

PLASTIC COLLAPSE MECHANISMS IN COMPRESSED ELLIPTICAL HOLLOW SECTIONS SDSS Rio 010 STABILITY AND DUCTILITY OF STEEL STRUCTURES E. Batista, P. Vellasco, L. de Lima (Eds.) Rio de Janeiro, Brazil, September 8-10, 010 PLASTIC COLLAPSE MECHANISMS IN COMPRESSED ELLIPTICAL HOLLOW

More information

Compression Members. ENCE 455 Design of Steel Structures. III. Compression Members. Introduction. Compression Members (cont.)

Compression Members. ENCE 455 Design of Steel Structures. III. Compression Members. Introduction. Compression Members (cont.) ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:

More information

Aim of the study Experimental determination of mechanical parameters Local buckling (wrinkling) Failure maps Optimization of sandwich panels

Aim of the study Experimental determination of mechanical parameters Local buckling (wrinkling) Failure maps Optimization of sandwich panels METNET Workshop October 11-12, 2009, Poznań, Poland Experimental and numerical analysis of sandwich metal panels Zbigniew Pozorski, Monika Chuda-Kowalska, Robert Studziński, Andrzej Garstecki Poznan University

More information

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2013 lecture

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2013 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS Cor-Ten Steel Sculpture By Richard Serra Museum of Modern Art Fort Worth, TX (AISC - Steel Structures of the Everyday) FALL 2013 lecture

More information

5 Compression Members

5 Compression Members 5 Compression Members 5.1 GENERAL REMARKS Similar to the heavy hot-rolled steel sections, thin-walled cold-formed steel compression members can be used to carry a compressive load applied through the centroid

More information

SUMMARY FOR COMPRESSION MEMBERS. Determine the factored design loads (AISC/LRFD Specification A4).

SUMMARY FOR COMPRESSION MEMBERS. Determine the factored design loads (AISC/LRFD Specification A4). SUMMARY FOR COMPRESSION MEMBERS Columns with Pinned Supports Step 1: Step : Determine the factored design loads (AISC/LRFD Specification A4). From the column tables, determine the effective length KL using

More information

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES)

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Page1 TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Restrained warping for the torsion of thin-wall open sections is not included in most commonly used frame analysis programs. Almost

More information

Direct Strength Method of Design for Shear of Cold-formed Channels Based on a Shear Signature Curve

Direct Strength Method of Design for Shear of Cold-formed Channels Based on a Shear Signature Curve Missouri University of Science and Technology Scholars' Mine International Specialty Conference on Cold- Formed Steel Structures (2012) - 21st International Specialty Conference on Cold-Formed Steel Structures

More information

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi Chapter 04 Structural Steel Design According to the AISC Manual 13 th Edition Analysis and Design of Compression Members By Dr. Jawad Talib Al-Nasrawi University of Karbala Department of Civil Engineering

More information

LOCAL / DISTORTIONAL / GLOBAL MODE COUPLING IN FIXED LIPPED CHANNEL COLUMNS: BEHAVIOUR AND STRENGTH

LOCAL / DISTORTIONAL / GLOBAL MODE COUPLING IN FIXED LIPPED CHANNEL COLUMNS: BEHAVIOUR AND STRENGTH Advanced Steel Construction Vol. 7, No. 1, pp. 113-13 (211) 113 LOCAL / DISTORTIONAL / GLOBAL MODE COUPLING IN FIXED LIPPED CHANNEL COLUMNS: BEHAVIOUR AND STRENGTH Pedro B. Dinis 1, Dinar Camotim 1,*,

More information

Flange Curling in Cold Formed Profiles

Flange Curling in Cold Formed Profiles Downloaded from orbit.dtu.dk on: Sep 4, 28 Flange Curling in Cold Formed Profiles Jönsson, Jeppe; Ramonas, Gediminas Published in: Proceedings of Nordic Steel Construction Conference 22 Publication date:

More information

Flexural-Torsional Buckling of General Cold-Formed Steel Columns with Unequal Unbraced Lengths

Flexural-Torsional Buckling of General Cold-Formed Steel Columns with Unequal Unbraced Lengths Proceedings of the Annual Stability Conference Structural Stability Research Council San Antonio, Texas, March 21-24, 2017 Flexural-Torsional Buckling of General Cold-Formed Steel Columns with Unequal

More information

FASTENER SPACING STUDY OF COLD-FORMED STEEL WALL STUDS USING FINITE STRIP AND FINITE ELEMENT METHODS

FASTENER SPACING STUDY OF COLD-FORMED STEEL WALL STUDS USING FINITE STRIP AND FINITE ELEMENT METHODS FASTENER SPACING STUDY OF COLD-FORMED STEEL WALL STUDS USING FINITE STRIP AND FINITE ELEMENT METHODS RESEARCH REPORT Brian Post Dept. of Civil Engineering Johns Hopins University December 202 .0 INTRODUCTION

More information

Tutorial 2. SSMA Cee in Compression: 600S F y = 50ksi Objective. A the end of the tutorial you should be able to

Tutorial 2. SSMA Cee in Compression: 600S F y = 50ksi Objective. A the end of the tutorial you should be able to CUFSM 2.5 Tutorial 2 SSMA Cee in Compression: 600S200-33 F y = 50ksi Objective To model a typical Cee stud in compression and determine the elastic critical local buckling load (P crl )and elastic critical

More information

Optimization of Thin-Walled Beams Subjected to Bending in Respect of Local Stability and Strenght

Optimization of Thin-Walled Beams Subjected to Bending in Respect of Local Stability and Strenght Mechanics and Mechanical Engineering Vol. 11, No 1 (2007) 37 48 c Technical University of Lodz Optimization of Thin-Walled Beams Subjected to Bending in Respect of Local Stability and Strenght Tadeusz

More information

General Comparison between AISC LRFD and ASD

General Comparison between AISC LRFD and ASD General Comparison between AISC LRFD and ASD 1 General Comparison between AISC LRFD and ASD 2 AISC ASD and LRFD AISC ASD = American Institute of Steel Construction = Allowable Stress Design AISC Ninth

More information

PREDICTION OF COLLAPSED LOAD OF STEEL COLUMNS USING FINITE STRIP METHOD

PREDICTION OF COLLAPSED LOAD OF STEEL COLUMNS USING FINITE STRIP METHOD International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 8, August 2018, pp. 347 357, Article ID: IJCIET_09_08_035 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=8

More information

Unit 18 Other Issues In Buckling/Structural Instability

Unit 18 Other Issues In Buckling/Structural Instability Unit 18 Other Issues In Buckling/Structural Instability Readings: Rivello Timoshenko Jones 14.3, 14.5, 14.6, 14.7 (read these at least, others at your leisure ) Ch. 15, Ch. 16 Theory of Elastic Stability

More information

A numerical investigation of local web buckling strength and behaviour of coped beams with slender web

A numerical investigation of local web buckling strength and behaviour of coped beams with slender web A numerical investigation of local web buckling strength and behaviour of coped beams with slender web *Michael C. H. Yam 1), Ke Ke 2), Angus C. C. Lam 3), Cheng Fang 4), and K. F. Chung 5) 1), 2) Department

More information

A Design Procedure for Lipped Channel Flexural Members

A Design Procedure for Lipped Channel Flexural Members Missouri University of Science and Technology Scholars' Mine International Specialty Conference on Cold- Formed Steel Structures (1994) - 12th International Specialty Conference on Cold-Formed Steel Structures

More information

Finite Element Modelling with Plastic Hinges

Finite Element Modelling with Plastic Hinges 01/02/2016 Marco Donà Finite Element Modelling with Plastic Hinges 1 Plastic hinge approach A plastic hinge represents a concentrated post-yield behaviour in one or more degrees of freedom. Hinges only

More information

Comparison of AISI Specification Methods for Members with Single Intermediate Longitudinal Stiffeners

Comparison of AISI Specification Methods for Members with Single Intermediate Longitudinal Stiffeners Missouri University of Science and Technology Scholars' Mine AISI-Specifications for the Design of Cold-Formed Steel Structural Members Wei-Wen Yu Center for Cold-Formed Steel Structures 7-1-006 Comparison

More information

The Lateral Torsional Buckling Strength of Steel I- Girders with Corrugated Webs

The Lateral Torsional Buckling Strength of Steel I- Girders with Corrugated Webs Lehigh University Lehigh Preserve ATLSS Reports Civil and Environmental Engineering 5-1-6 The Lateral Torsional Buckling Strength of Steel I- Girders with Corrugated Webs Daming Yu Richard Sause Follow

More information

Improved Flexural Design Provisions for I-Shaped Members and Channels

Improved Flexural Design Provisions for I-Shaped Members and Channels Improved Flexural Design Provisions for I-Shaped Members and Channels DONALD W. WHITE Donald W. White is Associate Professor, Structural Engineering, Mechanics and Materials, Georgia Institute of Technology,

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar 6. BEAMS 6.1 Introduction One of the frequently used structural members is a beam whose main function is to transfer load principally by means of flexural or bending action. In a structural framework,

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Local buckling is an extremely important facet of cold formed steel

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Local buckling is an extremely important facet of cold formed steel 5.3 Local buckling Local buckling is an extremely important facet of cold formed steel sections on account of the fact that the very thin elements used will invariably buckle before yielding. Thinner the

More information

MODULE C: COMPRESSION MEMBERS

MODULE C: COMPRESSION MEMBERS MODULE C: COMPRESSION MEMBERS This module of CIE 428 covers the following subjects Column theory Column design per AISC Effective length Torsional and flexural-torsional buckling Built-up members READING:

More information

CHAPTER 5 PROPOSED WARPING CONSTANT

CHAPTER 5 PROPOSED WARPING CONSTANT 122 CHAPTER 5 PROPOSED WARPING CONSTANT 5.1 INTRODUCTION Generally, lateral torsional buckling is a major design aspect of flexure members composed of thin-walled sections. When a thin walled section is

More information

UNIT- I Thin plate theory, Structural Instability:

UNIT- I Thin plate theory, Structural Instability: UNIT- I Thin plate theory, Structural Instability: Analysis of thin rectangular plates subject to bending, twisting, distributed transverse load, combined bending and in-plane loading Thin plates having

More information

Equivalent Uniform Moment Factor for Lateral Torsional Buckling of Steel Beams

Equivalent Uniform Moment Factor for Lateral Torsional Buckling of Steel Beams University of Alberta Department of Civil & Environmental Engineering Master of Engineering Report in Structural Engineering Equivalent Uniform Moment Factor for Lateral Torsional Buckling of Steel Beams

More information

Sensitivity and Reliability Analysis of Nonlinear Frame Structures

Sensitivity and Reliability Analysis of Nonlinear Frame Structures Sensitivity and Reliability Analysis of Nonlinear Frame Structures Michael H. Scott Associate Professor School of Civil and Construction Engineering Applied Mathematics and Computation Seminar April 8,

More information

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams STEEL BUILDINGS IN EUROPE Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite

More information

A New Design Method for Stainless Steel Column Subjected to Flexural Buckling

A New Design Method for Stainless Steel Column Subjected to Flexural Buckling Stainless Steel in Structures: Fourth International xperts Seminar A New Design Method for Stainless Steel Column Subjected to Flexural Buckling Shu Ganping Zheng Baofeng School of Civil ngineering, Southeast

More information

Interactive Buckling of Cold-Formed Steel Sections Applied in Pallet Rack Upright Members

Interactive Buckling of Cold-Formed Steel Sections Applied in Pallet Rack Upright Members Interactive Buckling of Cold-Formed Steel Sections Applied in Pallet Rack Upright Members D. Dubina, V. Ungureanu, A. Crisan Politehnica University of Timişoara Peculiarities of cold-formed thin-walled

More information

Use Hooke s Law (as it applies in the uniaxial direction),

Use Hooke s Law (as it applies in the uniaxial direction), 0.6 STRSS-STRAIN RLATIONSHIP Use the principle of superposition Use Poisson s ratio, v lateral longitudinal Use Hooke s Law (as it applies in the uniaxial direction), x x v y z, y y vx z, z z vx y Copyright

More information

3. Stability of built-up members in compression

3. Stability of built-up members in compression 3. Stability of built-up members in compression 3.1 Definitions Build-up members, made out by coupling two or more simple profiles for obtaining stronger and stiffer section are very common in steel structures,

More information

Fundamentals of Structural Design Part of Steel Structures

Fundamentals of Structural Design Part of Steel Structures Fundamentals of Structural Design Part of Steel Structures Civil Engineering for Bachelors 133FSTD Teacher: Zdeněk Sokol Office number: B619 1 Syllabus of lectures 1. Introduction, history of steel structures,

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode 3 Module 7 : Worked Examples Lecture 20 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic

More information

Advanced Analysis of Steel Structures

Advanced Analysis of Steel Structures Advanced Analysis of Steel Structures Master Thesis Written by: Maria Gulbrandsen & Rasmus Petersen Appendix Report Group B-204d M.Sc.Structural and Civil Engineering Aalborg University 4 th Semester Spring

More information

EXTERIOR FRAMING EXTERIOR FRAMING

EXTERIOR FRAMING EXTERIOR FRAMING 1 EXTERIOR FRAMING BUILDSTRONG www.buildstrong.com 2 TABLE OF CONTENTS Product Identification...........................5 General Product Information....................... 4-5 Compliance Guaranteed...............................

More information

Local Buckling. Local Buckling in Columns. Buckling is not to be viewed only as failure of the entire member

Local Buckling. Local Buckling in Columns. Buckling is not to be viewed only as failure of the entire member Local Buckling MORGAN STATE UNIVERSITY SCHOOL OF ARCHITECTURE AND PLANNING LECTURE V Dr. Jason E. Charalamides Local Buckling in Columns Buckling is not to e viewed only as failure of the entire memer

More information

CHAPTER 4. Stresses in Beams

CHAPTER 4. Stresses in Beams CHAPTER 4 Stresses in Beams Problem 1. A rolled steel joint (RSJ) of -section has top and bottom flanges 150 mm 5 mm and web of size 00 mm 1 mm. t is used as a simply supported beam over a span of 4 m

More information

University of Sheffield The development of finite elements for 3D structural analysis in fire

University of Sheffield The development of finite elements for 3D structural analysis in fire The development of finite elements for 3D structural analysis in fire Chaoming Yu, I. W. Burgess, Z. Huang, R. J. Plank Department of Civil and Structural Engineering StiFF 05/09/2006 3D composite structures

More information

51st Annual Transmission & Substation Design & Operation Symposium DEVELOPMENT OF ANALYTICAL METHODS FOR SPLICED LEG MEMBERS

51st Annual Transmission & Substation Design & Operation Symposium DEVELOPMENT OF ANALYTICAL METHODS FOR SPLICED LEG MEMBERS 51st Annual Transmission & Substation Design & Operation Symposium DEVELOPMENT OF ANALYTICAL METHODS FOR SPLICED LEG MEMBERS Youngmin You, Ph.D., P.E. Engineer Lower Colorado River Authority (LCRA) September

More information

STEEL MEMBER DESIGN (EN :2005)

STEEL MEMBER DESIGN (EN :2005) GEODOMISI Ltd. - Dr. Costas Sachpazis Consulting Company for App'd by STEEL MEMBER DESIGN (EN1993-1-1:2005) In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April details type;

More information

Lecture Slides. Chapter 4. Deflection and Stiffness. The McGraw-Hill Companies 2012

Lecture Slides. Chapter 4. Deflection and Stiffness. The McGraw-Hill Companies 2012 Lecture Slides Chapter 4 Deflection and Stiffness The McGraw-Hill Companies 2012 Chapter Outline Force vs Deflection Elasticity property of a material that enables it to regain its original configuration

More information

7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment

7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment 7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment à It is more difficult to obtain an exact solution to this problem since the presence of the shear force means that

More information

The Local Web Buckling Strength of Coped Steel I-Beam. ABSTRACT : When a beam flange is coped to allow clearance at the

The Local Web Buckling Strength of Coped Steel I-Beam. ABSTRACT : When a beam flange is coped to allow clearance at the The Local Web Buckling Strength of Coped Steel I-Beam Michael C. H. Yam 1 Member, ASCE Angus C. C. Lam Associate Member, ASCE, V. P. IU and J. J. R. Cheng 3 Members, ASCE ABSTRACT : When a beam flange

More information

Eurocode 3 for Dummies The Opportunities and Traps

Eurocode 3 for Dummies The Opportunities and Traps Eurocode 3 for Dummies The Opportunities and Traps a brief guide on element design to EC3 Tim McCarthy Email tim.mccarthy@umist.ac.uk Slides available on the web http://www2.umist.ac.uk/construction/staff/

More information

ANALYSIS OF THE INTERACTIVE BUCKLING IN STIFFENED PLATES USING A SEMI-ANALYTICAL METHOD

ANALYSIS OF THE INTERACTIVE BUCKLING IN STIFFENED PLATES USING A SEMI-ANALYTICAL METHOD EUROSTEEL 2014, September 10-12, 2014, Naples, Italy ANALYSIS OF THE INTERACTIVE BUCKLING IN STIFFENED PLATES USING A SEMI-ANALYTICAL METHOD Pedro Salvado Ferreira a, Francisco Virtuoso b a Polytechnic

More information

Influence of residual stress on the carrying-capacity of steel framed structures. Numerical investigation

Influence of residual stress on the carrying-capacity of steel framed structures. Numerical investigation Stability and Ductility of Steel Structures (SDSS'99) D.Dubina & M. Ivany (editors) Elsevier Science Pub. Pages 317-324 Influence of residual stress on the carrying-capacity of steel framed structures.

More information

A Parametric Study on Lateral Torsional Buckling of European IPN and IPE Cantilevers H. Ozbasaran

A Parametric Study on Lateral Torsional Buckling of European IPN and IPE Cantilevers H. Ozbasaran Vol:8, No:7, 214 A Parametric Study on Lateral Torsional Buckling of European IPN and IPE Cantilevers H. Ozbasaran Abstract IPN and IPE sections, which are commonly used European I shapes, are widely used

More information

Ultimate shear strength of FPSO stiffened panels after supply vessel collision

Ultimate shear strength of FPSO stiffened panels after supply vessel collision Ultimate shear strength of FPSO stiffened panels after supply vessel collision Nicolau Antonio dos Santos Rizzo PETROBRAS Rio de Janeiro Brazil Marcelo Caire SINTEF do Brasil Rio de Janeiro Brazil Carlos

More information

POST-BUCKLING CAPACITY OF BI-AXIALLY LOADED RECTANGULAR STEEL PLATES

POST-BUCKLING CAPACITY OF BI-AXIALLY LOADED RECTANGULAR STEEL PLATES POST-BUCKLING CAPACITY OF BI-AXIALLY LOADED RECTANGULAR STEEL PLATES Jeppe Jönsson a and Tommi H. Bondum b a,b DTU Civil Engineering, Technical University of Denmark Abstract: Results from a detailed numerical

More information

Shear Strength of End Web Panels

Shear Strength of End Web Panels Paper 10 Shear Strength of End Web Panels Civil-Comp Press, 2012 Proceedings of the Eleventh International Conference on Computational Structures Technology, B.H.V. Topping, (Editor), Civil-Comp Press,

More information

FURTHER RESEARCH ON CHORD LENGTH AND BOUNDARY CONDITIONS OF CHS T- AND X-JOINTS

FURTHER RESEARCH ON CHORD LENGTH AND BOUNDARY CONDITIONS OF CHS T- AND X-JOINTS Advanced Steel Construction Vol. 6, No. 3, pp. 879-89 (1) 879 FURTHER RESEARCH ON CHORD LENGTH AND BOUNDARY CONDITIONS OF CHS T- AND X-JOINTS G.J. van der Vegte 1, * and Y. Makino 1 Delft University of

More information

WEB-CRIPPLING STRENGTH OF MULTI-WEB COLD-FORMED STEEL DECK SECTIONS SUBJECTED TO END ONE FLANGE (EOF) LOADING

WEB-CRIPPLING STRENGTH OF MULTI-WEB COLD-FORMED STEEL DECK SECTIONS SUBJECTED TO END ONE FLANGE (EOF) LOADING WEB-CRIPPLING STRENGTH OF MULTI-WEB COLD-FORMED STEEL DECK SECTIONS SUBJECTED TO END ONE FLANGE (EOF) LOADING By: Onur Avci Thesis Submitted to the faculty of the Virginia Polytechnic Institute and State

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 22 : Design of an unbraced sway frame with rigid joints Summary: NOTE This example

More information

Torsional and flexural buckling of composite FRP columns with cruciform sections considering local instabilities

Torsional and flexural buckling of composite FRP columns with cruciform sections considering local instabilities Torsional and flexural buckling of composite FRP columns with cruciform sections considering local instabilities H.R. Naderian a, H.R. Ronagh b,, M. Azhari c a Department of Civil Engineering, Yazd University,

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads

More information

Materials and Shape. Part 1: Materials for efficient structure. A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka. Learning Objectives

Materials and Shape. Part 1: Materials for efficient structure. A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka. Learning Objectives MME445: Lecture 27 Materials and Shape Part 1: Materials for efficient structure A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Learning Objectives Knowledge & Understanding Understand the

More information

Advanced stability analysis and design of a new Danube archbridge. DUNAI, László JOÓ, Attila László VIGH, László Gergely

Advanced stability analysis and design of a new Danube archbridge. DUNAI, László JOÓ, Attila László VIGH, László Gergely Advanced stability analysis and design of a new Danube archbridge DUNAI, László JOÓ, Attila László VIGH, László Gergely Subject of the lecture Buckling of steel tied arch Buckling of orthotropic steel

More information

IMPROVED CHARACTERIZATION OF THE FLEXURAL AND AXIAL COMPRESSIVE RESISTANCE OF WELDED STEEL BOX- SECTION MEMBERS

IMPROVED CHARACTERIZATION OF THE FLEXURAL AND AXIAL COMPRESSIVE RESISTANCE OF WELDED STEEL BOX- SECTION MEMBERS IMPROVED CHARACTERIZATION OF THE FLEXURAL AND AXIAL COMPRESSIVE RESISTANCE OF WELDED STEEL BOX- SECTION MEMBERS A Dissertation Presented to The Academic Faculty by Ajinkya Mahadeo Lokhande In Partial Fulfillment

More information

Moment redistribution of continuous composite I-girders with high strength steel

Moment redistribution of continuous composite I-girders with high strength steel Moment redistribution of continuous composite I-girders with high strength steel * Hyun Sung Joo, 1) Jiho Moon, 2) Ik-Hyun sung, 3) Hak-Eun Lee 4) 1), 2), 4) School of Civil, Environmental and Architectural

More information

Made by SMH Date Aug Checked by NRB Date Dec Revised by MEB Date April 2006

Made by SMH Date Aug Checked by NRB Date Dec Revised by MEB Date April 2006 Job No. OSM 4 Sheet 1 of 8 Rev B Telephone: (0144) 45 Fax: (0144) 944 Made b SMH Date Aug 001 Checked b NRB Date Dec 001 Revised b MEB Date April 00 DESIGN EXAMPLE 9 - BEAM WITH UNRESTRAINED COMPRESSION

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016 CONSULTING Engineering Calculation Sheet jxxx 1 Member Design - Steel Composite Beam XX Introduction Chd. 1 Grade 50 more common than Grade 43 because composite beam stiffness often 3 to 4 times non composite

More information

ARTICLE IN PRESS. Thin-Walled Structures

ARTICLE IN PRESS. Thin-Walled Structures Thin-Walled Structures 47 (29) 1498 156 Contents lists available at ScienceDirect Thin-Walled Structures journal homepage: www.elsevier.com/locate/tws Shear failure characteristics of steel plate girders

More information

BRACING MEMBERS SUMMARY. OBJECTIVES. REFERENCES.

BRACING MEMBERS SUMMARY. OBJECTIVES. REFERENCES. BRACING MEMBERS SUMMARY. Introduce the bracing member design concepts. Identify column bracing members requirements in terms of strength and stiffness. The assumptions and limitations of lateral bracing

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar 5.10 Examples 5.10.1 Analysis of effective section under compression To illustrate the evaluation of reduced section properties of a section under axial compression. Section: 00 x 80 x 5 x 4.0 mm Using

More information

LINEAR AND NONLINEAR BUCKLING ANALYSIS OF STIFFENED CYLINDRICAL SUBMARINE HULL

LINEAR AND NONLINEAR BUCKLING ANALYSIS OF STIFFENED CYLINDRICAL SUBMARINE HULL LINEAR AND NONLINEAR BUCKLING ANALYSIS OF STIFFENED CYLINDRICAL SUBMARINE HULL SREELATHA P.R * M.Tech. Student, Computer Aided Structural Engineering, M A College of Engineering, Kothamangalam 686 666,

More information