Introduction. Quantum Mechanical Computation. By Sasha Payne N. Diaz. CHEMISTRY 475-L03 1 January 2035

Size: px
Start display at page:

Download "Introduction. Quantum Mechanical Computation. By Sasha Payne N. Diaz. CHEMISTRY 475-L03 1 January 2035"

Transcription

1 Quantum Mechanical Computation By Sasha Payne N. Diaz CHEMISTRY 47-L 1 January Introduction Backgrounds for computational chemistry Understanding the behavior of materials at the atomic scale is fundamental to modern science and technology. As many properties and phenomena are ultimately controlled by the details of the atomic interactions, simulations of atomic systems provide useful information. A wide variety of models have been developed to describe atomic interactions. Quantum Mechanics ultimately provides the best description of matter. In quantum mechanics, a particle is distributed through space like a wave. This wave function contains information about all the properties of the system. By solving the Schrödinger equationh Ψ= EΨ (where H is the Hamiltonian operator and E is the value of energy) We can find the wave function of any given system. If we let the Hamiltonian operator operate on this wave function, we can get the expectation value of the sum energy of a given system. The same can apply to the diatomic system which will be investigated in depth in this lab report. However, often the time, these wave functions and expectation values of energy are not easily accessible by experiments or by analytical method. Therefore, the solution of the Schrödinger equation apart from a few very simple examples has to be performed numerically using computers. In this experiment, the program Gaussian will be used to calculate out the potential energy. This program will generate a linear combination of a series of Gaussian functions as the solution to the Schrödinger equation.

2 Background information about vibrational motion An important feature of a diatomic system is the vibrational motion of the two atoms. Atoms in a diatomic molecules and solids vibrate around their mean positions as bonds stretch and compress. The detection and interpretation of vibrational frequencies is the basis of infrared spectroscopy. A particle undergoes harmonic motion if it experiences a restoring force proportional to its displacement: F = kx (the Hooke's law), where k is the force constant. Because force is related to potential energy by F = dv/d x, it corresponds to the particle having a potential energy: 1 V ( x) = kx The energy of a molecule with respect to bond length is often approximated using a harmonic oscillator potential and is a parabola when put into graph: E p = k( r re ) As can be seen from the equation, the potential energy of a diatomic molecule relates to the equilibrium bond distance r e and the distance between the two atoms. It can be predicted that the potential energy will reach its lowest value when distance between the two atoms equals to the equilibrium bond distance r e. Both compressed and stretched molecular bond result in the increase of the potential energy. However, in the real diatomic molecule, this curve is different from that of harmonic oscillator. In the region near the energy minimum, the PE vs. distance curve will fit to a third-order polynomial with an offset x - value : PE ( d) = a + a1( d dequilibrum ) + a ( d dequilibrum ) + a ( d dequilibrum ) Note that a is equivalent to the force constant k. a, the anharmonisity value, needs to be as small as possible to get accurate a. Fundamental vibrational frequency can be calculated by the following equation: ν = 1 π k where k is the force constant and µ is the reduced mass of the two µ atoms.

3 This fundamental frequency describes the energy needed to vibrate the molecular bond. Objectives: 1. Using Gaussian to compute potential energy curve of diatomic molecule H, LiF, LiCl and LiBr.. Fit the curve with a third order polynomial to obtain the force constant of diatomic bond.. Compare the literature value of fundamental vibrational frequency and bond length with the computational value and discuss the applicability of harmonic oscillator model and the computing ability of Gaussian. Experimental Experiment1. Computation of different potential energy of H molecules with ten different interatomic distances. Experiment 1 is carried out by creating an input file using a text editor first. This enables the Gaussian to know what it needs to calculate. Create hh.inp as shown below. Save the text as inp format to be ready for the Gaussian to read. In this file, RHF stands for Restricted Hartree-Fock method and 6-11G refers to the basis set Here means unpaired and 1 means multiplicity (.,.,.) is the position of hydrogen atom in a D coordinate system. Next step is to run Gaussian through terminal using hh.inp as input data. After a short while of calculation, Gaussian will emit a file called hh.log. Open this file and find for the calculation result begin with SCF Done. The energy is in the unit of hartress:

4 Record the energy and the distance. Repeat the process with different interatomic distances to obtain 1 energy data. Use Igor to visualize the general trend. Experiment. Computation of different potential energy of H molecule of 11 different interatomic distances starting from.å. Noticing that 1 data are far from enough to obtain any information accurately and this method require lots of time and energy, another input text is used instead. In this scan test, R starts from. and increase with a step size of.. It will calculate for 1 times and generate 1 energy values. The emitted log file is shown below. Copy these columns and create another text.

5 In the Igor window, select data load wave chose load general text. Skip the first column. Go to window new graph and select corresponding column for X axis and Y axis. Because the energy and distance units are non-si unit, adjustment must be made to convert Angstrom to nanometer and Hartree to kj/mol (1 Hartree=6. kj/mol). The energy corresponding to a distance where the atoms are non-bonded must be computed to zero so that the depth of the energy can be easily read from the diagram. After these adjustment, fit the curve with a third order polynomial. Select poly_xffset function with four polynomial terms. Adjust the range in the data options tab to best fit the curve so that the red fitting line come through the center of each circle, the standard deviation is less than 1% of the original value and k being as small as possible. After obtaining the k value, convert the unit of k (kj/molonm ) into the unit of force constant k(n/m). Calculate the Fundamental vibrational frequency using the equation ν = 1 π k. Obtain the equilibrium bond distance by finding the point with µ lowest potential energy. Experiment. Investigating LiF, LiCl and LiBr Repeat this process for three additional molecules LiF, LiCl and LiBr. Substitute H for Li and the halogen in the input file. Combine three curve into one graph for comparison. OResults, calculation and discussion Experiment 1 Table 1: Potential Energy of selected interatomic distance Distance (Å) Energy (hartree)

6 Data were taken directly from hh.log. As can be seen from the table, the energy experiences a decrease following by an increase as the distance change from. Å to 1. Å. Little changes as the distance goes bigger than 4. Å, which indicates a gentle slope of the curve. The energy reaches the lowest at.7 Å. It can be postulated that the equilibrium bond distance is somewhere near.7 Å. Experiment Figure 1: Potential energy curve of a H molecule. The red line indicates the curve fitting from the forth to the thirteenth data point. Coefficient values and standard deviation in the box are the outcome of

7 curve fitting using poly_xffset function. Table : Coefficient values and standard deviation for fig.1 Coefficient Coefficient values Standard deviation k ( kj / mol nm ) k ( kj / mol nm ) µ =1/m H 1/ g/mol k 1 k= 9 (1 ) N A =.98 N/m k literature =7 N/m ν = 1 π k = µ π k 1 N 1 1 A -9 NA 1 m H 1 =7.8 1 Hz According to Igor: E(minloc)= E(min)= kj/mol Equilibrium bond distance r e =.7 Å literature r e =74 pm As can be seen from the outcome, Gaussian successfully predicts the equilibrium bond distance. However using a harmonic oscillator to model the hydrogen atom is less satisfying. There is a quite large difference between the literature value of the force constant and the computation. This maybe partly due to the imprecise curve fit. Experiment -1 Potential Energy (kj/mol) Coefficient values ± one standard deviation K =-4.44 ±.98 K1 =-4. ± 81.1 K =1.486e+ ± 4.e+ K =-1.181e+6 ± 6.e+4 Constant: X = Interatomic Distance (nm) LiF.4.

8 Figure : Potential energy curve of a LiF molecule. Method used is the same as that of the H molecule. Potential Energy (kj/mol) 'energy LiF' 'energy LiCl' 'energy LiBr'.1. Figure : Potential energy curve of molecule LiF, LiCl and LiBr... Interatomic Distance (nm).4. An obvious trend of lower absolute potential energy and larger equilibrium bond distance can be observed from Fig. as the halogen increases in atomic mass and radius. Table : Coefficient values and standard deviation for Fig. Molecule k (kj/molonm ) k σ k (kj/molonm ) σ k LiF LiCl LiBr e Note that only the curve fitting of LiF suffices all the three curve fitting criteria. LiCl and LiBr, however, get the k value with a standard deviation that exceed 1% of the original value. If a smaller standard deviation of k is to get, the k (anharmonicity) value has to be larger than the one shown in the table. Therefore the harmonic oscillator model failed to work ideally for LiCl and LiBr.

9 Table 4: Atomic weight and reduced mass of LiF, LiCl and LiBr. Calculated value and literature value for force constant. Molecule m 1 (g/mol) m (g/mol) µ (g/mol) k (N/m) k literature (N/m) [4] LiF LiCl LiBr Table : Calculated fundamental vibrational frequency, wave number, wave length, energy difference and the literature value of wave number of LiF, LiCl and LiBr. Molecule ν (Hz) ν (m -1 ) λ (m) E(J ) ν (cm -1 ) literature LiF LiCl LiBr ν =9 [] ν =64.7(7) [6] ν =4 [7] The computation value and literature value of force constant and wave number match correspondingly with minor discrepancy. Overall, the harmonic oscillator model is applicable to diatomic molecules and makes good approximation. As the molecule change from LiF to LiBr, the force constant k and the fundamental frequency ν decreases. As ν describes the energy needed to vibrate the molecular bond, it also indicates that the molecular bond gets weaker. This trend is in accordance with the expectation that halogen with larger electronegativity forms ionic bond with Lithium at a higher force constant. Table 6: The equilibrium bond distance (re) of LiF, LiCl and LiBr read from the curve where potential energy (PE) reaches the lowest. Minimum location is the sequence number of data that corresponds to re and the lowest potential energy. Molecule r e (Å) Min location PEmin (kj/mol) r e literature (Å) [4] LiF LiCl

10 LiBr The computation value and literature value of equilibrium bond distance match correspondingly with minor discrepancy. We can conclude that Guassian is a qualified computation grogram to compute potential energy curve of diatomic molecules. References [1] Albert Bartók-Pártay, The Gaussian Approximation Potential, SpringerLink: Heidelberg; Springer-Verlag, 1; 1, [] Peter Atkins; Julio de Paula; Ron Friedman, Quanta, Matter, and Change, W. H. Freeman and Company, United States and Canada, 9 [] Bernhard Schrader, Infrared and Raman Spectroscopy; VCH Verlagsgesellschaft mbh, Germany, 199 [4] W.M. Haynes; David R. Lide, CRC Handbook of Chemistry and Physics, 91st edition; CRC Press, 1-11; Section 9 Molecular structure and Spectroscopy 8,. [] Guido L. Vidale, THE INFRARED SPECTRUM OF THE GASEOUS LITHIUM FLUORIDE (LiF) MOLECULE1; J. Phys. Chem., 196, 64 (), [6]Thompson, G. A.;Maki, A. G.; Olson, Wm. B.; Weber, A,High-resolution infrared spectrum of the fundamental band of LiCl at a temperature of 8 C; Journal of Molecular Spectroscopy, Volume 14, Issue 1, p [7] Bruce S. Ault, George C. Pimentel, Matrix isolation infrared studies of lithium bonding; J. Phys. Chem., 197, 79 (6), Acknowledgements The author thanks Prof. Joseph A. DiVerdi for helpful talk and revision of the lab report outline and provision of insightful lab roadmap.

The Harmonic Oscillator: Zero Point Energy and Tunneling

The Harmonic Oscillator: Zero Point Energy and Tunneling The Harmonic Oscillator: Zero Point Energy and Tunneling Lecture Objectives: 1. To introduce simple harmonic oscillator model using elementary classical mechanics.. To write down the Schrodinger equation

More information

IFM Chemistry Computational Chemistry 2010, 7.5 hp LAB2. Computer laboratory exercise 1 (LAB2): Quantum chemical calculations

IFM Chemistry Computational Chemistry 2010, 7.5 hp LAB2. Computer laboratory exercise 1 (LAB2): Quantum chemical calculations Computer laboratory exercise 1 (LAB2): Quantum chemical calculations Introduction: The objective of the second computer laboratory exercise is to get acquainted with a program for performing quantum chemical

More information

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them THEORY OF MOLECULE A molecule consists of two or more atoms with certain distances between them through interaction of outer electrons. Distances are determined by sum of all forces between the atoms.

More information

Vibrations of Carbon Dioxide and Carbon Disulfide

Vibrations of Carbon Dioxide and Carbon Disulfide Vibrations of Carbon Dioxide and Carbon Disulfide Purpose Vibration frequencies of CO 2 and CS 2 will be measured by Raman and Infrared spectroscopy. The spectra show effects of normal mode symmetries

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy The Interaction of Light with Matter Electric fields apply forces to charges, according to F = qe In an electric field, a positive charge will experience a force, but a negative charge

More information

QUANTUM CHEMISTRY PROJECT 3: PARTS B AND C

QUANTUM CHEMISTRY PROJECT 3: PARTS B AND C Chemistry 460 Fall 2017 Dr. Jean M. Standard November 6, 2017 QUANTUM CHEMISTRY PROJECT 3: PARTS B AND C PART B: POTENTIAL CURVE, SPECTROSCOPIC CONSTANTS, AND DISSOCIATION ENERGY OF DIATOMIC HYDROGEN (20

More information

Lecture 10 Diatomic Vibration Spectra Harmonic Model

Lecture 10 Diatomic Vibration Spectra Harmonic Model Chemistry II: Introduction to Molecular Spectroscopy Prof. Mangala Sunder Department of Chemistry and Biochemistry Indian Institute of Technology, Madras Lecture 10 Diatomic Vibration Spectra Harmonic

More information

A few principles of classical and quantum mechanics

A few principles of classical and quantum mechanics A few principles of classical and quantum mechanics The classical approach: In classical mechanics, we usually (but not exclusively) solve Newton s nd law of motion relating the acceleration a of the system

More information

Physical Chemistry Laboratory II (CHEM 337) EXPT 9 3: Vibronic Spectrum of Iodine (I2)

Physical Chemistry Laboratory II (CHEM 337) EXPT 9 3: Vibronic Spectrum of Iodine (I2) Physical Chemistry Laboratory II (CHEM 337) EXPT 9 3: Vibronic Spectrum of Iodine (I2) Obtaining fundamental information about the nature of molecular structure is one of the interesting aspects of molecular

More information

QUANTUM CHEMISTRY PROJECT 2: THE FRANCK CONDON PRINCIPLE

QUANTUM CHEMISTRY PROJECT 2: THE FRANCK CONDON PRINCIPLE Chemistry 460 Fall 2017 Dr. Jean M. Standard October 4, 2017 OUTLINE QUANTUM CHEMISTRY PROJECT 2: THE FRANCK CONDON PRINCIPLE This project deals with the Franck-Condon Principle, electronic transitions

More information

Chemistry 795T. NC State University. Lecture 4. Vibrational and Rotational Spectroscopy

Chemistry 795T. NC State University. Lecture 4. Vibrational and Rotational Spectroscopy Chemistry 795T Lecture 4 Vibrational and Rotational Spectroscopy NC State University The Dipole Moment Expansion The permanent dipole moment of a molecule oscillates about an equilibrium value as the molecule

More information

Physical Chemistry II Laboratory

Physical Chemistry II Laboratory Kuwata Spring 2003 Physical Chemistry II Laboratory The Rovibrational Spectra of H 35 Cl and H 37 Cl Using FTIR Write-Up Due Date: Thursday, April 17 (You may record spectra and write your reports in teams

More information

16.1 Molecular Vibrations

16.1 Molecular Vibrations 16.1 Molecular Vibrations molecular degrees of freedom are used to predict the number of vibrational modes vibrations occur as coordinated movement among many nuclei the harmonic oscillator approximation

More information

PHYSICAL CHEMISTRY CHEM330

PHYSICAL CHEMISTRY CHEM330 PHYSICAL CHEMISTRY CHEM330 Duration: 3 hours Total Marks: 100 Internal Examiner: External Examiner: Professor B S Martincigh Professor J C Swarts University of the Free State INSTRUCTIONS: 1. Answer five

More information

A Computer Study of Molecular Electronic Structure

A Computer Study of Molecular Electronic Structure A Computer Study of Molecular Electronic Structure The following exercises are designed to give you a brief introduction to some of the types of information that are now readily accessible from electronic

More information

Transition states and reaction paths

Transition states and reaction paths Transition states and reaction paths Lab 4 Theoretical background Transition state A transition structure is the molecular configuration that separates reactants and products. In a system with a single

More information

Harmonic Oscillator (9) use pib to think through 2012

Harmonic Oscillator (9) use pib to think through 2012 Harmonic Oscillator (9) use pib to think through 01 VI 9 Particle in box; Stubby box; Properties of going to finite potential w/f penetrate walls, w/f oscillate, # nodes increase with n, E n -levels less

More information

Chem 344 Final Exam Tuesday, Dec. 11, 2007, 3-?? PM

Chem 344 Final Exam Tuesday, Dec. 11, 2007, 3-?? PM Chem 344 Final Exam Tuesday, Dec. 11, 2007, 3-?? PM Closed book exam, only pencils and calculators permitted. You may bring and use one 8 1/2 x 11" paper with anything on it. No Computers. Put all of your

More information

Assignment #1 Chemistry 314 Summer 2008

Assignment #1 Chemistry 314 Summer 2008 Assignment #1 Due Thursday, July 17. Hand in for grading, including especially the graphs and tables of values for question 2. 1. This problem develops the classical treatment of the harmonic oscillator.

More information

Wavefunctions of the Morse Potential

Wavefunctions of the Morse Potential Wavefunctions of the Morse Potential The Schrödinger equation the Morse potential can be solved analytically. The derivation below is adapted from the original work of Philip Morse (Physical Review, 34,

More information

Chapter 6 Vibrational Spectroscopy

Chapter 6 Vibrational Spectroscopy Chapter 6 Vibrational Spectroscopy As with other applications of symmetry and group theory, these techniques reach their greatest utility when applied to the analysis of relatively small molecules in either

More information

Introduction to Hartree-Fock calculations in Spartan

Introduction to Hartree-Fock calculations in Spartan EE5 in 2008 Hannes Jónsson Introduction to Hartree-Fock calculations in Spartan In this exercise, you will get to use state of the art software for carrying out calculations of wavefunctions for molecues,

More information

Numerical Solution of a Potential Final Project

Numerical Solution of a Potential Final Project Numerical Solution of a Potential Final Project 1 Introduction The purpose is to determine the lowest order wave functions of and energies a potential which describes the vibrations of molecules fairly

More information

CHEM N-3 November 2014

CHEM N-3 November 2014 CHEM1101 2014-N-3 November 2014 Electron affinity is the enthalpy change for the reaction A(g) + e A (g). The graph below shows the trend in electron affinities for a sequence of elements in the third

More information

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 3.091 Introduction to Solid State Chemistry Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 1. INTRODUCTION Crystals are held together by interatomic or intermolecular bonds. The bonds can be covalent,

More information

U N I T T E S T P R A C T I C E

U N I T T E S T P R A C T I C E South Pasadena AP Chemistry Name 8 Atomic Theory Period Date U N I T T E S T P R A C T I C E Part 1 Multiple Choice You should allocate 25 minutes to finish this portion of the test. No calculator should

More information

Quantum Harmonic Oscillator

Quantum Harmonic Oscillator Quantum Harmonic Oscillator Chapter 13 P. J. Grandinetti Chem. 4300 Oct 20, 2017 P. J. Grandinetti (Chem. 4300) Quantum Harmonic Oscillator Oct 20, 2017 1 / 26 Kinetic and Potential Energy Operators Harmonic

More information

Literature values: ΔH f, gas = % error Source: ΔH f, solid = % error. For comparison, your experimental value was ΔH f = phase:

Literature values: ΔH f, gas = % error Source: ΔH f, solid = % error. For comparison, your experimental value was ΔH f = phase: 1 Molecular Calculations Lab: Some guideline given at the bottom of page 3. 1. Use the semi-empirical AM1 method to calculate ΔH f for the compound you used in the heat of combustion experiment. Be sure

More information

1.3 Harmonic Oscillator

1.3 Harmonic Oscillator 1.3 Harmonic Oscillator 1. For the case of the harmonic oscillator, the potential energy is quadratic and hence the total Hamiltonian looks like: H = h2 d 2 2mdx + 1 2 2 kx2 (1.3.1) where k is the force

More information

Physical Chemistry II Exam 2 Solutions

Physical Chemistry II Exam 2 Solutions Chemistry 362 Spring 2017 Dr Jean M Standard March 10, 2017 Name KEY Physical Chemistry II Exam 2 Solutions 1) (14 points) Use the potential energy and momentum operators for the harmonic oscillator to

More information

Introduction to Vibrational Spectroscopy

Introduction to Vibrational Spectroscopy Introduction to Vibrational Spectroscopy Harmonic oscillators The classical harmonic oscillator The uantum mechanical harmonic oscillator Harmonic approximations in molecular vibrations Vibrational spectroscopy

More information

1. For the case of the harmonic oscillator, the potential energy is quadratic and hence the total Hamiltonian looks like: d 2 H = h2

1. For the case of the harmonic oscillator, the potential energy is quadratic and hence the total Hamiltonian looks like: d 2 H = h2 15 Harmonic Oscillator 1. For the case of the harmonic oscillator, the potential energy is quadratic and hence the total Hamiltonian looks like: d 2 H = h2 2mdx + 1 2 2 kx2 (15.1) where k is the force

More information

CHEM Atomic and Molecular Spectroscopy

CHEM Atomic and Molecular Spectroscopy CHEM 21112 Atomic and Molecular Spectroscopy References: 1. Fundamentals of Molecular Spectroscopy by C.N. Banwell 2. Physical Chemistry by P.W. Atkins Dr. Sujeewa De Silva Sub topics Light and matter

More information

V( x) = V( 0) + dv. V( x) = 1 2

V( x) = V( 0) + dv. V( x) = 1 2 Spectroscopy 1: rotational and vibrational spectra The vibrations of diatomic molecules Molecular vibrations Consider a typical potential energy curve for a diatomic molecule. In regions close to R e (at

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules CHEM3006P or similar background knowledge is required for this course. This course has two parts: Part 1: Quantum Chemistry techniques for simulations of molecular

More information

SIMPLE QUANTUM SYSTEMS

SIMPLE QUANTUM SYSTEMS SIMPLE QUANTUM SYSTEMS Chapters 14, 18 "ceiiinosssttuu" (anagram in Latin which Hooke published in 1676 in his "Description of Helioscopes") and deciphered as "ut tensio sic vis" (elongation of any spring

More information

Calculating Bond Enthalpies of the Hydrides

Calculating Bond Enthalpies of the Hydrides Proposed Exercise for the General Chemistry Section of the Teaching with Cache Workbook: Calculating Bond Enthalpies of the Hydrides Contributed by James Foresman, Rachel Fogle, and Jeremy Beck, York College

More information

Dissociation energy of the C-H bond in chloroform

Dissociation energy of the C-H bond in chloroform Dissociation energy of the C-H bond in chloroform Purpose This experiment is to determine the dissociation energy of the carbonhydrogen bond in chloroform. Dissociation energy will be calculated from fundamental

More information

Chapter 11 Vibrations and Waves

Chapter 11 Vibrations and Waves Chapter 11 Vibrations and Waves If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Chemistry 3502/4502 Final Exam Part I May 14, 2005 1. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle (e) The

More information

Fourier transforms of molecular vibrations

Fourier transforms of molecular vibrations Fourier transforms of molecular vibrations Part I: An Introduction to the Harmonic Oscillator and Fourier Transforms W. Tandy Grubbs, Department of Chemistry, Unit 827, Stetson University, DeLand, FL 32720

More information

Fourier transforms of molecular vibrations

Fourier transforms of molecular vibrations Fourier transforms of molecular vibrations Part II: The Frequency Spectrum of an Anharmonic 'Morse' Oscillator W. Tandy Grubbs, Department of Chemistry, Unit 8271, Stetson University, DeLand, FL 3272 (william.grubbs@stetson.edu)

More information

(2 pts) a. What is the time-dependent Schrödinger Equation for a one-dimensional particle in the potential, V (x)?

(2 pts) a. What is the time-dependent Schrödinger Equation for a one-dimensional particle in the potential, V (x)? Part I: Quantum Mechanics: Principles & Models 1. General Concepts: (2 pts) a. What is the time-dependent Schrödinger Equation for a one-dimensional particle in the potential, V (x)? (4 pts) b. How does

More information

2. Infrared spectroscopy

2. Infrared spectroscopy 2. Infrared spectroscopy 2-1Theoretical principles An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer.

More information

Chemistry 881 Lecture Topics Fall 2001

Chemistry 881 Lecture Topics Fall 2001 Chemistry 881 Lecture Topics Fall 2001 Texts PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon MATHEMATICS for PHYSICAL CHEMISTRY, Mortimer i. Mathematics Review (M, Chapters 1,2,3 & 4; M&S,

More information

Computational Inorganic Chemistry

Computational Inorganic Chemistry Computational Inorganic Chemistry Dr. P. Hunt p.hunt@imperial.ac.uk Rm 67 P. Hunt, Handout Introduction Course Description: This course will explore the use of computational methods to gain insight into

More information

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle:

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle: EXAM INFORMATION Radial Distribution Function: P() r RDF() r Br R() r B is the normalization constant., p Operator: p ^ d dx Heisenberg Uncertainty Principle: n ax n! Integrals: xe dx n1 a x p Particle

More information

NMR and IR spectra & vibrational analysis

NMR and IR spectra & vibrational analysis Lab 5: NMR and IR spectra & vibrational analysis A brief theoretical background 1 Some of the available chemical quantum methods for calculating NMR chemical shifts are based on the Hartree-Fock self-consistent

More information

Physical Chemistry Lab II CHEM 4644 Spring 2011 Final Exam 5 questions at 3 points each equals 15 total points possible.

Physical Chemistry Lab II CHEM 4644 Spring 2011 Final Exam 5 questions at 3 points each equals 15 total points possible. Physical Chemistry Lab II Name: KEY CHEM 4644 Spring 2011 Final Exam 5 questions at 3 points each equals 15 total points possible. Constants: c = 3.00 10 8 m/s h = 6.63 10-34 J s 1 Hartree = 4.36 10-18

More information

Experiment 5. Simple Harmonic Motion

Experiment 5. Simple Harmonic Motion Reading and Problems: Chapters 7,8 Problems 7., 8. Experiment 5 Simple Harmonic Motion Goals. To understand the properties of an oscillating system governed by Hooke s Law.. To study the effects of friction

More information

5.1 Classical Harmonic Oscillator

5.1 Classical Harmonic Oscillator Chapter 5 Harmonic Oscillator 5.1 Classical Harmonic Oscillator m l o l Hooke s Law give the force exerting on the mass as: f = k(l l o ) where l o is the equilibrium length of the spring and k is the

More information

( ) + ( ) + ( ) = 0.00

( ) + ( ) + ( ) = 0.00 Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer Lecture 32, April 14, 2006 (Some material in this lecture has been adapted from Cramer, C.

More information

Experiment 3: The Rovibrational Spectrum of HCl (was Experiment 4 in the syllabus, but the original Experiment 3 was canceled)

Experiment 3: The Rovibrational Spectrum of HCl (was Experiment 4 in the syllabus, but the original Experiment 3 was canceled) Varberg and Kuwata Chemistry 312 Spring 28 Experiment 3: The Rovibrational Spectrum of HCl (was Experiment 4 in the syllabus, but the original Experiment 3 was canceled) Meet for lab on Thursday, April

More information

SHM Simple Harmonic Motion revised May 23, 2017

SHM Simple Harmonic Motion revised May 23, 2017 SHM Simple Harmonic Motion revised May 3, 017 Learning Objectives: During this lab, you will 1. communicate scientific results in writing.. estimate the uncertainty in a quantity that is calculated from

More information

Atomic Structure. 1. For a hydrogen atom which electron transition requires the largest amount of energy?

Atomic Structure. 1. For a hydrogen atom which electron transition requires the largest amount of energy? Atomic Structure 1. For a hydrogen atom which electron transition requires the largest amount of energy? A. n = 4 to n = 10 B. n = 3 to n = 2 C. n = 3 to n = 4 D. n = 1 to n = 3 E. n = 2 to n = 4 2. Which

More information

The Iodine Spectrum. and

The Iodine Spectrum. and The Iodine Spectrum George Long Department of Chemistry Indiana University of Pennsylvania Indiana, PA 15705 grlong@grove.iup.edu and Department of Chemistry, Medical Technology, and Physics Monmouth University

More information

Advanced Spectroscopy. Dr. P. Hunt Rm 167 (Chemistry) web-site:

Advanced Spectroscopy. Dr. P. Hunt Rm 167 (Chemistry) web-site: Advanced Spectroscopy Dr. P. Hunt p.hunt@imperial.ac.uk Rm 167 (Chemistry) web-site: http://www.ch.ic.ac.uk/hunt Maths! Coordinate transformations rotations! example 18.1 p501 whole chapter on Matrices

More information

Vibrational Motion. Chapter 5. P. J. Grandinetti. Sep. 13, Chem P. J. Grandinetti (Chem. 4300) Vibrational Motion Sep.

Vibrational Motion. Chapter 5. P. J. Grandinetti. Sep. 13, Chem P. J. Grandinetti (Chem. 4300) Vibrational Motion Sep. Vibrational Motion Chapter 5 P. J. Grandinetti Chem. 4300 Sep. 13, 2017 P. J. Grandinetti (Chem. 4300) Vibrational Motion Sep. 13, 2017 1 / 20 Simple Harmonic Oscillator Simplest model for harmonic oscillator

More information

POGIL 6 Key Periodic Table Trends (Part 2)

POGIL 6 Key Periodic Table Trends (Part 2) Honors Chem Block Name POGIL 6 Key Periodic Table Trends (Part 2) is a measure of the ability of an atom s nucleus to attract electrons from a different atom within a covalent bond. A higher electronegativity

More information

Physics lab Hooke s Law and Pendulums

Physics lab Hooke s Law and Pendulums Name: Date: Physics lab Hooke s Law and Pendulums Part A: Hooke s Law Introduction Hooke s Law explains the relationship between the force exerted on a spring, the stretch of the string, and the spring

More information

2m dx 2. The particle in a one dimensional box (of size L) energy levels are

2m dx 2. The particle in a one dimensional box (of size L) energy levels are Name: Chem 3322 test #1 solutions, out of 40 marks I want complete, detailed answers to the questions. Show all your work to get full credit. indefinite integral : sin 2 (ax)dx = x 2 sin(2ax) 4a (1) with

More information

PHYS 172: Modern Mechanics Fall 2009

PHYS 172: Modern Mechanics Fall 2009 PHYS 172: Modern Mechanics Fall 2009 Lecture 14 Energy Quantization Read 7.1 7.9 Reading Question: Ch. 7, Secs 1-5 A simple model for the hydrogen atom treats the electron as a particle in circular orbit

More information

Chemistry 471 Final exam 12/18/06 Page 1 of 6 Name:

Chemistry 471 Final exam 12/18/06 Page 1 of 6 Name: Chemistry 47 Final exam /8/6 Page of 6 Please leave the exam pages stapled together. The formulas are on a separate sheet. This exam has 5 questions. You must answer at least 4 of the questions. You may

More information

Lecture 6 Quantum Mechanical Systems and Measurements

Lecture 6 Quantum Mechanical Systems and Measurements Lecture 6 Quantum Mechanical Systems and Measurements Today s Program: 1. Simple Harmonic Oscillator (SHO). Principle of spectral decomposition. 3. Predicting the results of measurements, fourth postulate

More information

Molecular Constants of CO by Infrared Spectroscopy

Molecular Constants of CO by Infrared Spectroscopy Molecular Constants of CO by Infrared Spectroscopy Purpose This experiment uses infrared spectroscopy to determine the bond length, vibration frequency, anharmonicity, and other properties of the carbon

More information

Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes

Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes There are several important atomic characteristics that show predictable that you should know. Atomic Radius The first and

More information

Chemistry 2. Lecture 1 Quantum Mechanics in Chemistry

Chemistry 2. Lecture 1 Quantum Mechanics in Chemistry Chemistry 2 Lecture 1 Quantum Mechanics in Chemistry Your lecturers 8am Assoc. Prof Timothy Schmidt Room 315 timothy.schmidt@sydney.edu.au 93512781 12pm Assoc. Prof. Adam J Bridgeman Room 222 adam.bridgeman@sydney.edu.au

More information

Name CHM 4610/5620 Fall 2016 November 15 EXAMINATION TWO SOLUTIONS

Name CHM 4610/5620 Fall 2016 November 15 EXAMINATION TWO SOLUTIONS Name CHM 4610/5620 Fall 2016 November 15 EXAMINATION TWO SOLUTIONS I II III IV V Total This exam consists of several problems. Rough point values are given to help you judge the value of problems. The

More information

What happens if one pulls on the spring? The spring exerts a restoring force which is proportional to the distance it is stretched, F = - k x (1)

What happens if one pulls on the spring? The spring exerts a restoring force which is proportional to the distance it is stretched, F = - k x (1) Physics 244 Harmonic Motion Introduction In this lab you will observe simple harmonic motion qualitatively in the laboratory and use a program run in Excel to find the mathematical description of the motion

More information

Theoretical UV/VIS Spectroscopy

Theoretical UV/VIS Spectroscopy Theoretical UV/VIS Spectroscopy Why is a Ruby Red When Chromium Oxide is Green? How Does a Ruby Laser Work? Goals of this Exercise: - Calculation of the energy of electronically excited states - Understanding

More information

CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS

CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS 7.1 Period and Frequency Anything that vibrates or repeats its motion regularly is said to have oscillatory motion (sometimes called harmonic

More information

Theoretical Chemistry - Level II - Practical Class Molecular Orbitals in Diatomics

Theoretical Chemistry - Level II - Practical Class Molecular Orbitals in Diatomics Theoretical Chemistry - Level II - Practical Class Molecular Orbitals in Diatomics Problem 1 Draw molecular orbital diagrams for O 2 and O 2 +. E / ev dioxygen molecule, O 2 dioxygenyl cation, O 2 + 25

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Advocacy chit Chemistry 350/450 Final Exam Part I May 4, 005. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle

More information

Topic 3 Periodicity 3.2 Physical Properties. IB Chemistry T03D02

Topic 3 Periodicity 3.2 Physical Properties. IB Chemistry T03D02 Topic 3 Periodicity 3.2 Physical Properties IB Chemistry T03D02 3.1 Physical Properties hrs 3.2.1 Define the terms first ionization energy and electronegativity. (1) 3.2.2 Describe and explain the trends

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Chemistry 483 Lecture Topics Fall 2009

Chemistry 483 Lecture Topics Fall 2009 Chemistry 483 Lecture Topics Fall 2009 Text PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon A. Background (M&S,Chapter 1) Blackbody Radiation Photoelectric effect DeBroglie Wavelength Atomic

More information

Chapter 14: Periodic motion

Chapter 14: Periodic motion Chapter 14: Periodic motion Describing oscillations Simple harmonic motion Energy of simple harmonic motion Applications of simple harmonic motion Simple pendulum & physical pendulum Damped oscillations

More information

Infrared Spectroscopy. Provides information about the vibraions of functional groups in a molecule

Infrared Spectroscopy. Provides information about the vibraions of functional groups in a molecule Infrared Spectroscopy Provides information about the vibraions of functional groups in a molecule Therefore, the functional groups present in a molecule can be deduced from an IR spectrum Two important

More information

Algebraic Study of Stretching and Bending Modes in Linear Tetra-atomic Molecules: HCCCl

Algebraic Study of Stretching and Bending Modes in Linear Tetra-atomic Molecules: HCCCl The African Review of Physics (2013) 8:0016 99 Algebraic Study of Stretching and Bending Modes in Linear Tetra-atomic Molecules: HCCCl Kamal Ziadi * Department of Chemistry, Faculty of Science, University

More information

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor It turns out that the boundary condition of the wavefunction going to zero at infinity is sufficient to quantize the value of energy that

More information

Light. Light (con t.) 2/28/11. Examples

Light. Light (con t.) 2/28/11. Examples Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Chem 1A Dr. White Fall 2015 Exam 3 Practice Problems

Chem 1A Dr. White Fall 2015 Exam 3 Practice Problems Exam 3 Practice Problems 1. The face centered cubic cell of copper has an edge length of 0.362 nm. Calculate the density of copper (g/cm 3 ). 2. Consider the following ionic substances and arrange them

More information

Simple Harmonic Motion Investigating a Mass Oscillating on a Spring

Simple Harmonic Motion Investigating a Mass Oscillating on a Spring 17 Investigating a Mass Oscillating on a Spring A spring that is hanging vertically from a support with no mass at the end of the spring has a length L (called its rest length). When a mass is added to

More information

Vibrational Spectroscopy

Vibrational Spectroscopy Vibrational Spectroscopy In this part of the course we will look at the kind of spectroscopy which uses light to excite the motion of atoms. The forces required to move atoms are smaller than those required

More information

A. 24 B. 27 C. 30 D. 32 E. 33. A. It is impossible to tell from the information given. B. 294 mm C. 122 mm D. 10 mm E. 60 mm A. 1 H B. C. D. 19 F " E.

A. 24 B. 27 C. 30 D. 32 E. 33. A. It is impossible to tell from the information given. B. 294 mm C. 122 mm D. 10 mm E. 60 mm A. 1 H B. C. D. 19 F  E. CHEMISTRY 110 EXAM 1 Sept. 24, 2012 FORM A 1. A microwave oven uses 2.45! 10 9 Hz electromagnetic waves to heat food. What is the wavelength of this radiation in mm? A. It is impossible to tell from the

More information

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy Spectroscopy in Inorganic Chemistry Vibrational energy levels in a diatomic molecule f = k r r V = ½kX 2 Force constant r Displacement from equilibrium point 2 X= r=r-r eq V = ½kX 2 Fundamental Vibrational

More information

Assignment: Read Atkins, Chapter 27 sections 7 and 8 or McQuarrie and Simon, Chapter 30 sections 7 and 10, before coming to lab on Monday

Assignment: Read Atkins, Chapter 27 sections 7 and 8 or McQuarrie and Simon, Chapter 30 sections 7 and 10, before coming to lab on Monday Classical Trajectory 1 Classical Trajectory Calculations H + H-F H-H + F Assignment: Read Atkins, Chapter 27 sections 7 and 8 or McQuarrie and Simon, Chapter 30 sections 7 and 10, before coming to lab

More information

Chapter 13. Simple Harmonic Motion

Chapter 13. Simple Harmonic Motion Chapter 13 Simple Harmonic Motion Hooke s Law F s = - k x F s is the spring force k is the spring constant It is a measure of the stiffness of the spring A large k indicates a stiff spring and a small

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations 14-1 Oscillations of a Spring If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The

More information

Vibrational and Rotational Analysis of Hydrogen Halides

Vibrational and Rotational Analysis of Hydrogen Halides Vibrational and Rotational Analysis of Hydrogen Halides Goals Quantitative assessments of HBr molecular characteristics such as bond length, bond energy, etc CHEM 164A Huma n eyes Near-Infrared Infrared

More information

Section 1 Simple Harmonic Motion. Chapter 11. Preview. Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum

Section 1 Simple Harmonic Motion. Chapter 11. Preview. Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum Section 1 Simple Harmonic Motion Preview Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum Section 1 Simple Harmonic Motion Objectives Identify the conditions of simple harmonic

More information

Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring

Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring Print Your Name Print Your Partners' Names Instructions April 20, 2016 Before lab,

More information

Exercises 16.3a, 16.5a, 16.13a, 16.14a, 16.21a, 16.25a.

Exercises 16.3a, 16.5a, 16.13a, 16.14a, 16.21a, 16.25a. SPECTROSCOPY Readings in Atkins: Justification 13.1, Figure 16.1, Chapter 16: Sections 16.4 (diatomics only), 16.5 (omit a, b, d, e), 16.6, 16.9, 16.10, 16.11 (omit b), 16.14 (omit c). Exercises 16.3a,

More information

Asymmetry of Peaks in the XPS of Polymers

Asymmetry of Peaks in the XPS of Polymers Asymmetry of Peaks in the XPS of Polymers When a photon is absorbed by a material, the energy transferred may cause the excitation of both the electronic and atomic structure of the compounds on the surface.

More information

with the larger dimerization energy also exhibits the larger structural changes.

with the larger dimerization energy also exhibits the larger structural changes. A7. Looking at the image and table provided below, it is apparent that the monomer and dimer are structurally almost identical. Although angular and dihedral data were not included, these data are also

More information

The one and three-dimensional particle in a box are prototypes of bound systems. As we

The one and three-dimensional particle in a box are prototypes of bound systems. As we 6 Lecture 10 The one and three-dimensional particle in a box are prototypes of bound systems. As we move on in our study of quantum chemistry, we'll be considering bound systems that are more and more

More information

Dye molecule spectrum experiment (Experiment 34 Absorption Spectrum of a Conjugated Dye) Figure 1. Structure of dye molecules.

Dye molecule spectrum experiment (Experiment 34 Absorption Spectrum of a Conjugated Dye) Figure 1. Structure of dye molecules. Lab Reports Second Three Experiments Dye molecule spectrum experiment (Experiment 34 Absorption Spectrum of a Conjugated Dye) Some of the analysis you will do for this experiment is based on material in

More information

Project 3: Molecular Orbital Calculations of Diatomic Molecules. This project is worth 30 points and is due on Wednesday, May 2, 2018.

Project 3: Molecular Orbital Calculations of Diatomic Molecules. This project is worth 30 points and is due on Wednesday, May 2, 2018. Chemistry 362 Spring 2018 Dr. Jean M. Standard April 20, 2018 Project 3: Molecular Orbital Calculations of Diatomic Molecules In this project, you will investigate the molecular orbitals and molecular

More information

General Physics I Spring Oscillations

General Physics I Spring Oscillations General Physics I Spring 2011 Oscillations 1 Oscillations A quantity is said to exhibit oscillations if it varies with time about an equilibrium or reference value in a repetitive fashion. Oscillations

More information

Pre-Class. List everything you remember about circular motion...

Pre-Class. List everything you remember about circular motion... Pre-Class List everything you remember about circular motion... Quote of the Day I'm addicted to brake fluid......but I can stop anytime I want. Table of Contents Click on the topic to go to that section

More information