Newton's second law of motion

Size: px
Start display at page:

Download "Newton's second law of motion"

Transcription

1 OpenStax-CNX module: m Newton's second law of motion Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 Abstract Second law of motion is the centerpiece of classical dynamics, providing exact connection between force (cause) and acceleration (eect). The second law of motion determines the eect of net force on a body. The rst law only denes the natural state of the motion of a body, when net force on the body is zero. It does not provide us with any tool to quantitatively relate force and acceleration (rate of change in velocity). Second law of motion is the centerpiece of classical dynamics as it states the exact relation between force (cause) and acceleration (eect). This law has an explicit mathematical form and, therefore, has the advantage of quantitative measurement. As a matter of fact, the only available quantitative denition of force is given in terms of second law : Force is equal to acceleration produced in unit mass. It must be clearly understood that the three laws of motion could well have been replaced by this single law of motion. However, the three laws are presented as they are, because rst and third laws convey fundamental nature of "motion" and "force" which are needed to complete our understanding about them. The second law of motion is stated in terms of linear momentum. It would, therefore, be appropriate that we rst familiarize ourselves with this term. 1 Linear momentum Linear momentum of a particle is dened as a vector quantity, having both magnitude and direction. It is the product of mass (a scalar quantity) and velocity (a vector quantity) of a particle at a given instant. p = mv The dimensional formula of linear momentum is [ MLT 1] and its SI unit of measurement is " kg m/s ". Few important aspects of linear momentum need our attention : First, linear momentum is a product of positive scalar (mass) and a vector (velocity). It means that the linear momentum has the same direction as that of velocity. Second, we have earlier referred that motion of a body is represented completely by velocity. But, the velocity alone does not convey anything about the inherent relation that change in velocity has with force. The product of mass and velocity in linear momentum provides this missing information. In order to fully appreciate the connection between motion and force, we may consider two balls of dierent masses, moving at same velocity, which collide with a wall. It is our everyday common sense that tells us that the ball with greater mass exerts bigger force on the wall. We may, therefore, conclude that linear momentum i.e. the product of mass and velocity represents the quantum of motion, which can be connected to force. Version 1.15: Aug 23, :37 pm

2 OpenStax-CNX module: m It is this physical interpretation of linear momentum that explains why Newton's second of motion is stated in terms of linear momentum as this quantity (not the velocity alone) connects motion with force. 2 Newton's second law of motion The second law of motion is stated dierently. We have chosen to state the law as given here : Denition 1: Newton's second law of motion The time rate of change of momentum of a body is equal to the net (resultant) external force acting on the body. In mathematical terms, F = p t F = ( mv ) t (1) For invariant mass (the mass of the body under consideration does not change during application of force), we can take out mass "m" from the dierential sign : F = m v t F = ma (2) As mass m is a positive scalar quantity, directions of force and acceleration are same. The dimensional formula of force is [ MLT 2] and its SI unit of measurement is Newton, which is equal to " kg m/s 2 ". One Newton (denoted by symbol "N") is dened as the force, which when applied on a point mass of 1 kg produces an acceleration of 1 m/s 2. 3 Example Problem 1 : A ball, weighing 10 gm, hits a hard surface in normal direction with a speed of 10 m/s and rebounds with the same speed. The ball remains in contact with the hard surface for 0.1 s. Find the magnitude of average force on the ball, applied by the surface. Solution : We can nd average force as the product of mass and average acceleration during the contact. Average acceleration is : a avg = v t = v2 v1 t If the rebound direction is considered positive, then v 1 = -10 m/s and v 2 = 10 m/s. The average force is : a avg = 10 ( 10 ) 0.1 = 200 m / s 2 F avg = ma avg = 10 X 200 = 2000 N 4 Interpreting Newton's second law of motion Few important aspects of Newton's second law of motion are discussed in the following sections :

3 OpenStax-CNX module: m Deduction of rst law of motion Newton's rst law of motion 1 is a subset of second law in the sense that rst law is just a specic description of motion, when net external force on the body is zero. F = ma = 0 a = dv dt = 0 (3) This means that if there is no net external force on the body, then acceleration of the body is zero. Equivalently, we can state that if there is no net external force on the body, then velocity of the body can not change. Further, it is also easy to infer that if there is no net external force on the body, it will maintain its state of motion. These are exactly the statements in which rst law of motion are stated. 4.2 Forces on the body The body under investigation may be acted upon by a number of forces. We must use vector sum of all external forces, while applying second law of motion. A more general form of Second law of motion valid for a system of force is : F = ma (4) The vector addition of forces as required in the left hand side of the equation excludes the forces that the body applies on other bodies. We shall know from Third law of motion that force always exists in the pair of action and reaction. Hence, if there are n numbers of forces acting on the body, then there are n numbers of forces that the body exerts on other bodies. We must carefully exclude all such forces that body as a reaction applies on other bodies. Consider two blocks A and B lying on horizontal surface as shown in the gure. There are many forces in action here : 1 "Newton's rst law of motion" <

4 OpenStax-CNX module: m Forces acting on two blocks and Earth Figure 1: There are many forces acting on dierent bodies. 1. Earth pulls down A (force of gravitation) 2. A pulls up Earth (force of gravitation) 3. B pushes up A (normal force) 4. A pushes down B (weight of A : normal force) 5. Earth pulls down B (force of gravitation) 6. B pulls up Earth (force of gravitation) 7. Earth pushes up B (normal force) and 8. B pushes down the Earth (weight of B and "A" : normal force) Let us now consider that we want to apply law of motion to block B. There are total of six forces related to B : 3, 4, 5, 6, 7 and 8. Of these, three forces 4, 5 and 7 act on B, while the remaining equal numbers of forces are applied by B on other bodies.

5 OpenStax-CNX module: m External forces acting on block B Figure 2: There are three external forces on B as shown with red arrow. From the point of view of the law of motion, there are, thus, only three forces as shown with red arrow in the gure, which are external force. These are the forces that the surrounding applies on the block "B". Also as pointed out before in the course, we must not include internal forces like intermolecular forces in the consideration. In order to understand the role and implication of internal forces, we consider interaction of two blocks together with Earth's surface. In this case, the forces 3 (B pushes up A) and 4 (A pushes down B) are pair of normal forces acting at the interface between blocks A and B. They are internal to the combined system of two bodies and as such are not taken into account for using law of motion. Here, external forces are 1 (Earth pulls down A), 5(Earth pulls down B) and 7(Earth pushes up B).

6 OpenStax-CNX module: m External and internal forces acting on blocks A and B Figure 3: External and internal forces acting on blocks A and B In nutshell, we must exclude (i) forces applied by the body and (ii) internal forces. Clearly, we must only consider external forces applied on the body while using equation of motion as given by Newton's second law. 4.3 Equation of motion in component directions As the force and acceleration are vector quantities, we can represent them with three components in mutually perpendicular directions. The consideration of dimension is decided by the force system as applied to the body. If forces are collinear i.e. acting along a particular direction, then we use equation of motion in one direction. In such situation, it is possible to represent vector quantities with equivalent signed scalar quantities, in which sign indicates the direction. This is the simplest case. If forces are coplanar i.e. acting in a plane, then we use component equations of motion in two directions. In such situation, we use component equations of motion in two directions. Fx = ma x Fy = ma y (5) Since each coordinate direction is bi-directional, we treat component vectors by equivalent scalar representation whose sign indicates direction. The important aspect of component equation of motion is that acceleration in a particular component direction is caused by net of force components in that direction and is independent of other net of component force in perpendicular direction.

7 OpenStax-CNX module: m In case forces are distributed in three dimensional volume, then we must consider component equation of motion in third perpendicular direction also : Fz = ma z (6) 4.4 Application of force We implicitly consider that forces are applied at a single point object. The forces that act on a point object are concurrent by virtue of the fact that a point is dimensionless entity. This may appear to be confusing as we have actually used the word body not point in the denition of second law. Here, we need to appreciate the intended meaning clearly. Actually second law is dened in the context of translational motion, in which a three dimensional real body behaves like a point. We shall subsequently learn that application of a force system (forces) on a body in translation is equivalent to a point, where all mass of the body can be considered to be concentrated. In that case, the acceleration of the body is associated with that point, which is termed as center of mass (C). The Newton's second law is suitably modied as : F = mac (7) where a c is the acceleration of the center of mass (we shall elaborate about the concept of center of mass in separate module). In general, application of a force system on a real body can involve both translational and rotational motion. In such situation, the concurrency of the system of forces with respect to points of application on the body assumes signicance. If the forces are concurrent (meeting at a common point), then the force system can be equivalently represented by a single force, applied at the common point. Further, if the common point coincides with center of mass (C), then body undergoes pure translation. Otherwise, there is a turning eect (angular/rotational eect) also involved. Concurrent force system (a) (b) Figure 4: (a) Common point coincides with center of mass (b) Common point does not coincide with center of mass

8 OpenStax-CNX module: m What if the forces are not concurrent? In this case, there are both translational and rotational eects to be considered. The translational motion is measured in terms of center of mass as in pure translation, whereas the turning eect is studied in terms of moment of force or torque. This is dened as : Non-concurrent force system Figure 5: Forces as extended do not meet at a common point. τ = r F = r F (8) where r is perpendicular distance from the point of rotation. Most importantly, same force or force system is responsible for both translational eect (force acting as "force" as dened by the second law) and angular/rotational eect (force manifesting as "torque" as dened by the angular form of Newton's second law in the module titled Second law of motion in angular form 2 ). We leave the details of these aspects of application of force as we will study it separately. But the point is made. Linear acceleration is not the only eect of the application of force (cause). Also, force causes eect not necessarily as cause of acceleration but can manifest in many ways : as torque to cause rotation; as pressure to change volume, as stress to deform a body etc. We should, therefore, always keep in mind that the study of translational eect of force is specic and not inclusive of other possible eects of force(s). In the following listing, we intend to clarify the context of the study of the motional eect of force : 1: The body is negligibly small to approximate a point. We apply Newton's second law for translation as dened without any consideration of turning eect. 2 "Second law of motion in angular form" <

9 OpenStax-CNX module: m : The body is a real three dimensional entity. The force system is concurrent at a common point. This common point coincides with the center of mass. We apply Newton's second law for translation as dened without any consideration of turning eect. Here, we implicitly refer the concurrent point as the center of mass. 3: The body is a real three dimensional entity. The force system is concurrent at a common point. But this common point does not coincide with the center of mass. The context of study in this case is also same as that for the case in which force system is not concurrent. We apply Newton's second law for translation as dened for the center of mass and Newton's second law for angular motion (we shall dene this law at a later stage) for angular or rotational eect. The discussion so far assumes that the body under consideration is free to translate and rotate. There are, however, real time situations in which rotational eect due to external force is counter-balanced by restoring torque. For example, consider the case of a sliding block on an incline. Application of an external force on the body along a line, not passing through center of mass, may not cause the body to overturn (rotate as it moves). The moment of external force i.e. applied torque may not be sucient enough to overcome restoring torque due to gravity. As such, if it is stated that body is only translating under the given force system, then we assume that the body is a point mass and we apply Newton's second law straight way as if the body were a point mass. Unless otherwise stated or specied, we shall assume that the body is a point mass and forces are concurrent. We shall, therefore, apply Newton's second law, considering forces to be concurrent, even if they are not. Similarly, we will consider that the body is a point mass, even if it is not. For example, we may consider a block, which is sliding on an incline. Here, friction force is along the interface, whereas the normal force and weight of the block act through center of mass (C). Obviously these forces are not concurrent. We, however, apply Newton's second law for translation, as if forces were concurrent. 5 Exercises Exercise 1 (Solution on p. 11.) A ball of mass 0.1 kg is thrown vertically. In which of the following case(s) the net force on the ball is zero? (ignore air resistance) (a) Just after the ball leaves the hand (b) During upward motion (c) At the highest point (d) None of above cases Exercise 2 (Solution on p. 11.) A pebble of 0.1 kg is subjected to dierent sets of forces in dierent conditions on a train which can move on a horizontal linear direction. Determine the case when magnitude of net force on the pebble is greatest. Consider g = 10 m/s 2. (a) The pebble is stationary on the oor of the train, which is accelerating at 10 m/s 2. (b) The pebble is dropped from the window of train, which is moving with uniform velocity of 10 m/s. (c) The pebble is dropped from the window of train, which is accelerating at 10 m/s 2. (d) Magnitude of force is equal in all the above cases. Exercise 3 (Solution on p. 11.) A rocket weighing kg is blasted upwards with an initial acceleration 10 m/s 2. The thrust of the blast is : (a) 1X10 2 (b) 2X10 5 (c) 3X10 4 (d) 4X10 3 Exercise 4 (Solution on p. 11.) The motion of an object of mass 1 kg along x-axis is given by equation,

10 OpenStax-CNX module: m x = 0.1t + 5t 2 where x is in meters and t is in seconds. The force on the object is : (a) 0.1 N (b) 0.5 N (c) 2.5 N (d) 10 N Exercise 5 (Solution on p. 12.) A bullet of mass 0.01 kg enters a wooden plank with a velocity 100 m/s. The bullet is stopped at a distance of 50 cm. The average resistance by the plank to the bullet is : (a) 10 N (b) 100 N (c) 1000 N (d) N

11 OpenStax-CNX module: m Solutions to Exercises in this Module Solution to Exercise (p. 9) The only force acting on the ball is gravity (gravitational force due to Earth). It remains constant as acceleration due to gravity is constant in the vicinity of Earth. Thus, net force on the ball during its ight remains constant, which is equal to the weight of the ball i.e. F = mg = 0.1X10 = 1 N Hence, option (d) is correct. Solution to Exercise (p. 9) In the case (a), the pebble is moving with horizontal acceleration of 10 m/s 2 as seen from the ground reference (inertial frame of reference). The net external force in horizontal direction is : F net = ma = 0.01X10 = 1 N (acting horizontally) There is no vertical acceleration. As such, there is no net external force in the vertical direction. The magnitude of net force on the pebble is, therefore, 1 N in horizontal direction. In the case (b), the pebble is moving with uniform velocity of 10 m/s in horizontal direction as seen from the ground reference (inertial frame of reference). There is no net force in horizontal direction. When dropped, only force acting on it is due to gravity. The magnitude of net force is, thus, equal to its weight : F net = mg = 0.01X10 = 1 N (acting downward) In the case (c), the pebble is moving with acceleration of 10 m/s 2 as seen from the ground reference (inertial frame of reference). When the pebble is dropped, the pebble is disconnected with the accelerating train. As force has no past or future, there is no net horizontal force on the pebble. Only force acting on pebble is its weight. The magnitude of force on the pebble is : F net = mg = 0.01X10 = 1 N (acting downward) Hence, option (d) correct. Solution to Exercise (p. 9) The net force on the rocket is dierence of the thrust and weight of the rocket (thrust being greater). Let thrust be F, then applying Newton's second law of motion : F net = F mg = ma F = m (g + a) = 10000X ( ) = = 2X10 5 N Hence, option (b) is correct. Solution to Exercise (p. 9) The given equation of displacement is a quadratic equation in time. This means that the object is moving with a constant acceleration. Comparing given equation with the standard equation of motion along a straight line : x = ut at2 We have acceleration of the object as : a = 5X2 = 10 m/t 2 Applying Newton's second law of motion :

12 OpenStax-CNX module: m F = ma = 1X10 = 10 N Hence, option (d) is correct. Solution to Exercise (p. 10) The plank applies resistance as force. This force decelerates the bullet and is in opposite direction to the motion of bullet. Since we seek to know average acceleration, we shall consider this force as constant force assuming that wooden has uniform constitution. Let the corresponding deceleration be a. Then, according to equation of motion, v 2 = u 2 + 2as Putting values, a = v2 u 2 2s a = X0.5 = 104 m/t 2 Applying Newton's second law of motion : Hence, option (b) is correct. F = ma = 0.01X10 4 = 100 N

Work - kinetic energy theorem for rotational motion *

Work - kinetic energy theorem for rotational motion * OpenStax-CNX module: m14307 1 Work - kinetic energy theorem for rotational motion * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0

More information

Vertical motion under gravity *

Vertical motion under gravity * OpenStax-CNX module: m13833 1 Vertical motion under gravity * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 Vertical motion under

More information

Vertical motion under gravity (application) *

Vertical motion under gravity (application) * OpenStax-CNX module: m14550 1 Vertical motion under gravity (application) * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License.0 Questions

More information

Gravitational potential energy *

Gravitational potential energy * OpenStax-CNX module: m15090 1 Gravitational potential energy * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 The concept of potential

More information

Absolute potential energy *

Absolute potential energy * OpenStax-CNX module: m15089 1 Absolute potential energy * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 Abstract Absolute potential

More information

Conservation of linear momentum

Conservation of linear momentum Connexions module: m14132 1 Conservation of linear momentum Sunil Kumar Singh This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License Abstract The linear

More information

Uniform circular motion *

Uniform circular motion * OpenStax-CNX module: m13871 1 * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 Abstract (UCM) is the basic unit of rotational kinematics

More information

Further Applications of Newton's. Laws of Motion

Further Applications of Newton's. Laws of Motion OpenStax-CNX module: m42132 1 Further Applications of Newton's * Laws of Motion OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Apply

More information

Conservation of mechanical energy *

Conservation of mechanical energy * OpenStax-CNX module: m15102 1 Conservation of mechanical energy * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 Abstract When only

More information

Newton s Laws of Motion and Gravitation

Newton s Laws of Motion and Gravitation Newton s Laws of Motion and Gravitation Introduction: In Newton s first law we have discussed the equilibrium condition for a particle and seen that when the resultant force acting on the particle is zero,

More information

Potential energy. Sunil Kumar Singh

Potential energy. Sunil Kumar Singh Connexions module: m14105 1 Potential energy Sunil Kumar Singh This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License Abstract Potential energy is associated

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

Nonconservative Forces (RCTC) *

Nonconservative Forces (RCTC) * OpenStax-CNX module: m50831 1 Nonconservative Forces (RCTC) * Rod Milbrandt Based on Nonconservative Forces by OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

More information

Dynamics. Dynamics of mechanical particle and particle systems (many body systems)

Dynamics. Dynamics of mechanical particle and particle systems (many body systems) Dynamics Dynamics of mechanical particle and particle systems (many body systems) Newton`s first law: If no net force acts on a body, it will move on a straight line at constant velocity or will stay at

More information

Applications of Statics, Including Problem-Solving Strategies

Applications of Statics, Including Problem-Solving Strategies OpenStax-CNX module: m42173 1 Applications of Statics, Including Problem-Solving Strategies OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

Physics 111 Lecture 4 Newton`s Laws

Physics 111 Lecture 4 Newton`s Laws Physics 111 Lecture 4 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com he Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law q Examples Isaac

More information

Physics Chapter 4 Newton s Laws of Motion

Physics Chapter 4 Newton s Laws of Motion Physics Chapter 4 Newton s Classical Mechanics Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical

More information

Chapter 4. The Laws of Motion

Chapter 4. The Laws of Motion Chapter 4 The Laws of Motion Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical Mechanics does not

More information

AH Mechanics Checklist (Unit 1) AH Mechanics Checklist (Unit 1) Rectilinear Motion

AH Mechanics Checklist (Unit 1) AH Mechanics Checklist (Unit 1) Rectilinear Motion Rectilinear Motion No. kill Done 1 Know that rectilinear motion means motion in 1D (i.e. along a straight line) Know that a body is a physical object 3 Know that a particle is an idealised body that has

More information

Newton's Second Law of Motion: Concept of a System

Newton's Second Law of Motion: Concept of a System Connexions module: m42073 1 Newton's Second Law of Motion: Concept of a System OpenStax College This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License

More information

Newton s First Law and IRFs

Newton s First Law and IRFs Goals: Physics 207, Lecture 6, Sept. 22 Recognize different types of forces and know how they act on an object in a particle representation Identify forces and draw a Free Body Diagram Solve 1D and 2D

More information

Problem-Solving Strategies

Problem-Solving Strategies Connexions module: m42076 1 Problem-Solving Strategies OpenStax College This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License Abstract Understand and

More information

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples The Laws of Motion Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples Gravitational Force Gravitational force is a vector Expressed by Newton s Law of Universal

More information

Go on to the next page.

Go on to the next page. Chapter 10: The Nature of Force Force a push or a pull Force is a vector (it has direction) just like velocity and acceleration Newton the SI unit for force = kg m/s 2 Net force the combination of all

More information

Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Chapter 5 Newton s Laws of Motion Newtonian Mechanics Mass Mass is an intrinsic characteristic of a body The mass of a body is the characteristic that relates a force on the body to the resulting acceleration.

More information

The Laws of Motion. Newton s first law Force Mass Newton s second law Newton s third law Examples

The Laws of Motion. Newton s first law Force Mass Newton s second law Newton s third law Examples The Laws of Motion Newton s first law Force Mass Newton s second law Newton s third law Examples Isaac Newton s work represents one of the greatest contributions to science ever made by an individual.

More information

Dynamics: Newton s Laws of Motion

Dynamics: Newton s Laws of Motion Lecture 6 Chapter 4 Physics I 02.10.2013 Dynamics: Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1spring.html

More information

Chapter 9. Linear Momentum and Collisions

Chapter 9. Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions Momentum Analysis Models Force and acceleration are related by Newton s second law. When force and acceleration vary by time, the situation can be very complicated.

More information

Practice Test for Midterm Exam

Practice Test for Midterm Exam A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it

More information

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true? Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which

More information

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time.

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time. Mechanics Symbols: Equations: Kinematics The Study of Motion s = distance or displacement v = final speed or velocity u = initial speed or velocity a = average acceleration s u+ v v v u v= also v= a =

More information

Normal, Tension, and Other Examples of Forces *

Normal, Tension, and Other Examples of Forces * OpenStax-CNX module: m42075 1 Normal, Tension, and Other Examples of Forces * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract Dene

More information

Lecture 5. (sections )

Lecture 5. (sections ) Lecture 5 PHYSICS 201 (sections 521-525) Instructor: Hans Schuessler Temporary: Alexandre e Kolomenski o http://sibor.physics.tamu.edu/teaching/phys201/ Projectile Motion The horizontal and vertical parts

More information

Motion in two dimensions: vertical projectile motion *

Motion in two dimensions: vertical projectile motion * OpenStax-CNX module: m39546 1 Motion in two dimensions: vertical projectile motion * Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons

More information

Prof. Dr. I. Nasser T171 Chapter5_I 12/10/2017

Prof. Dr. I. Nasser T171 Chapter5_I 12/10/2017 Prof. Dr. I. Nasser T171 Chapter5_I 1/10/017 Chapter 5 Force and Motion I 5-1 NEWTON S FIRST AND SECOND LAWS Newton s Three Laws Newton s 3 laws define some of the most fundamental things in physics including:

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications

More information

Elastic and plastic collisions (application) *

Elastic and plastic collisions (application) * OpenStax-CNX module: m14854 1 Elastic and plastic collisions (application) * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 Questions

More information

Dynamics: Newton s Laws of Motion

Dynamics: Newton s Laws of Motion Lecture 6 Chapter 4 Physics I 02.10.2013 Dynamics: Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1spring.html

More information

Chapter 5. Force and Motion I

Chapter 5. Force and Motion I Chapter 5 Force and Motion I 5 Force and Motion I 25 October 2018 PHY101 Physics I Dr.Cem Özdoğan 2 3 5-2 Newtonian Mechanics A force is a push or pull acting on a object and causes acceleration. Mechanics

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass: Section 5.1

More information

CHAPTER 2 TEST REVIEW

CHAPTER 2 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 69 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 2 TEST REVIEW 1. Samantha walks along a horizontal path in the direction shown. The curved

More information

Gravitational Potential Energy

Gravitational Potential Energy OpenStax-CNX module: m42148 1 Gravitational Potential Energy OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Explain gravitational

More information

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object.

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Force The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Forces do not always give rise to motion. Forces can be equal and opposite. Force is a vector

More information

10-6 Angular Momentum and Its Conservation [with Concept Coach]

10-6 Angular Momentum and Its Conservation [with Concept Coach] OpenStax-CNX module: m50810 1 10-6 Angular Momentum and Its Conservation [with Concept Coach] OpenStax Tutor Based on Angular Momentum and Its Conservation by OpenStax College This work is produced by

More information

Chapter 4. The Laws of Motion. Dr. Armen Kocharian

Chapter 4. The Laws of Motion. Dr. Armen Kocharian Chapter 4 The Laws of Motion Dr. Armen Kocharian Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical

More information

Simple Harmonic Motion *

Simple Harmonic Motion * OpenStax-CNX module: m54154 1 Simple Harmonic Motion * OpenStax HS Physics This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 1 : By the end of this section,

More information

Average and Instantaneous Acceleration

Average and Instantaneous Acceleration OpenStax-CNX module: m58284 1 Average and Instantaneous Acceleration OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this section,

More information

POGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow.

POGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow. POGIL: Newton s First Law of Motion and Statics Name Purpose: To become familiar with the forces acting on an object at rest Part 1: Net Force Model: Read the following carefully and study the diagrams

More information

Chapter 4. The Laws of Motion

Chapter 4. The Laws of Motion Chapter 4 The Laws of Motion 1 Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical Mechanics does

More information

Coulomb's Law * OpenStax. This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0

Coulomb's Law * OpenStax. This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 OpenStax-CNX module: m42308 1 Coulomb's Law * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract State Coulomb's law in terms of how

More information

Lecture III. Introduction to Mechanics, Heat, and Sound /FIC 318

Lecture III. Introduction to Mechanics, Heat, and Sound /FIC 318 Introduction to Mechanics, Heat, and Sound /FIC 318 Lecture III Motion in two dimensions projectile motion The Laws of Motion Forces, Newton s first law Inertia, Newton s second law Newton s third law

More information

Free-Body Diagrams: Introduction

Free-Body Diagrams: Introduction Free-Body Diagrams: Introduction Learning Goal: To learn to draw free-body diagrams for various real-life situations. Imagine that you are given a description of a real-life situation and are asked to

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION NEWTON S LAWS OF MOTION Force Force: push or pull Force is a vector it has magnitude and direction The SI unit of force is the newton. The SI symbol for the newton is N. What is Newton s first law of motion?

More information

Chapter 4 Newton s Laws

Chapter 4 Newton s Laws Chapter 4 Newton s Laws Isaac Newton 1642-1727 Some inventions and discoveries: 3 laws of motion Universal law of gravity Calculus Ideas on: Sound Light Thermodynamics Reflecting telescope In this chapter,

More information

Course Name : Physics I Course # PHY 107. Lecture-5 : Newton s laws - Part Two

Course Name : Physics I Course # PHY 107. Lecture-5 : Newton s laws - Part Two Course Name : Physics I Course # PHY 107 Lecture-5 : Newton s laws - Part Two Abu Mohammad Khan Department of Mathematics and Physics North South University https://abukhan.weebly.com Copyright: It is

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Force F Chapter 5 Force and Motion is the interaction between objects is a vector causes acceleration Net force: vector sum of all the forces on an object. v v N v v v v v Ftotal Fnet = Fi = F1 + F2 +

More information

Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14

Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14 Agenda Today: Homework Quiz, Chapter 4 (Newton s Laws) Thursday: Applying Newton s Laws Start reading Chapter 5 Chapter 3, Problem 28 A ball with a horizontal speed of 1.25 m/s rolls off a bench 1.00 m

More information

Physics-MC Page 1 of 29 Inertia, Force and Motion 1.

Physics-MC Page 1 of 29 Inertia, Force and Motion 1. Physics-MC 2006-7 Page 1 of 29 Inertia, Force and Motion 1. 3. 2. Three blocks of equal mass are placed on a smooth horizontal surface as shown in the figure above. A constant force F is applied to block

More information

Physics 12 Unit 2: Vector Dynamics

Physics 12 Unit 2: Vector Dynamics 1 Physics 12 Unit 2: Vector Dynamics In this unit you will extend your study of forces. In particular, we will examine force as a vector quantity; this will involve solving problems where forces must be

More information

Chapter 5. Force and Motion-I

Chapter 5. Force and Motion-I Chapter 5 Force and Motion-I 5.3 Newton s First Law Newton s First Law: If no force acts on a body, the body s velocity cannot change The purpose of Newton s First Law is to introduce the special frames

More information

18.4 Coulomb's Law *

18.4 Coulomb's Law * OpenStax-CNX module: m52384 1 18.4 Coulomb's Law * Bobby Bailey Based on Coulomb's Law by OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0

More information

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life.

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life. Forces and Newton s Laws Reading Notes Name: Section 4-1: Force What is force? Give an example of a force you have experienced continuously all your life. Give an example of a situation where an object

More information

Test Wed, Feb 8 th 7pm, G20 MING HSIEH Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from:

Test Wed, Feb 8 th 7pm, G20 MING HSIEH Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Test Wed, Feb 8 th 7pm, G20 MING HSIEH Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Chapter 1 (except section 1.2 and 1.7): Unit conversions, estimating, trigonometry,

More information

Gravitational Potential Energy and Total Energy *

Gravitational Potential Energy and Total Energy * OpenStax-CNX module: m58347 Gravitational Potential Energy and Total Energy * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of

More information

Name & Surname:... No:... Class: 11 /...

Name & Surname:... No:... Class: 11 /... METU D. F. HIGH SCHOOL 2017-2018 ACADEMIC YEAR, 1 st SEMESTER GRADE 11 / PHYSICS REVIEW FOR GENERAL EXAM-3 UNIFORMLY ACCELERATED MOTION IN TWO DIMENSIONS, ENERGY, IMPULSE & MOMENTUM & TORQUE DECEMBER 2017

More information

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart Rotational Motion & Angular Momentum Rotational Motion Every quantity that we have studied with translational motion has a rotational counterpart TRANSLATIONAL ROTATIONAL Displacement x Angular Displacement

More information

Chapter 4. Table of Contents. Section 1 Changes in Motion. Section 2 Newton's First Law. Section 3 Newton's Second and Third Laws

Chapter 4. Table of Contents. Section 1 Changes in Motion. Section 2 Newton's First Law. Section 3 Newton's Second and Third Laws Forces and the Laws of Motion Table of Contents Section 1 Changes in Motion Section 2 Newton's First Law Section 3 Newton's Second and Third Laws Section 4 Everyday Forces Section 1 Changes in Motion Objectives

More information

Gravitation fundamentals. By: Sunil Kumar Singh

Gravitation fundamentals. By: Sunil Kumar Singh Gravitation fundamentals By: Sunil Kumar Singh Gravitation fundamentals By: Sunil Kumar Singh Online: < http://cnx.org/content/col10459/1.2/ > C O N N E X I O N S Rice University, Houston, Texas This

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Physics I Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass:

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications

More information

Acceleration. OpenStax College

Acceleration. OpenStax College OpenStax-CNX module: m42100 1 Acceleration OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Dene and distinguish between instantaneous

More information

for any object. Note that we use letter, m g, meaning gravitational

for any object. Note that we use letter, m g, meaning gravitational Lecture 4. orces, Newton's Second Law Last time we have started our discussion of Newtonian Mechanics and formulated Newton s laws. Today we shall closely look at the statement of the second law and consider

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity

More information

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²)

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²) Practice A car starts from rest and travels upwards along a straight road inclined at an angle of 5 from the horizontal. The length of the road is 450 m and the mass of the car is 800 kg. The speed of

More information

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J AP Physics-B Energy And Its Conservation Introduction: Energy is a term that most of us take for granted and use quite freely. We assume we know what we are talking about when speaking of energy. In truth,

More information

AP Physics I Summer Work

AP Physics I Summer Work AP Physics I Summer Work 2018 (20 points) Please complete the following set of questions and word problems. Answers will be reviewed in depth during the first week of class followed by an assessment based

More information

Version PREVIEW Semester 1 Review Slade (22222) 1

Version PREVIEW Semester 1 Review Slade (22222) 1 Version PREVIEW Semester 1 Review Slade () 1 This print-out should have 48 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Holt SF 0Rev 10A

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

Fictitious Forces and Non-inertial Frames: The Coriolis Force *

Fictitious Forces and Non-inertial Frames: The Coriolis Force * OpenStax-CNX module: m42142 1 Fictitious Forces and Non-inertial Frames: The Coriolis Force * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License

More information

Normal, Tension, and Other Examples of Force *

Normal, Tension, and Other Examples of Force * OpenStax-CNX module: m54857 1 Normal, Tension, and Other Examples of Force * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 1 Learning Objectives

More information

Main Ideas in Class Today

Main Ideas in Class Today 2/4/17 Test Wed, Feb 8th 7pm, G24 Eiesland Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Chapter 1 (except section 1.2 and 1.7): Unit conversions, estimating,

More information

MOMENTUM, IMPULSE & MOMENTS

MOMENTUM, IMPULSE & MOMENTS the Further Mathematics network www.fmnetwork.org.uk V 07 1 3 REVISION SHEET MECHANICS 1 MOMENTUM, IMPULSE & MOMENTS The main ideas are AQA Momentum If an object of mass m has velocity v, then the momentum

More information

Newton s Laws Pre-Test

Newton s Laws Pre-Test Newton s Laws Pre-Test 1.) Consider the following two statements and then select the option below that is correct. (i) It is possible for an object move in the absence of forces acting on the object. (ii)

More information

In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion.

In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion. 1 PHYS:100 LECTURE 9 MECHANICS (8) In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion. 9 1. Conservation of Energy. Energy is one of the most fundamental

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

Summary of Chapters 1-3. Equations of motion for a uniformly accelerating object. Quiz to follow

Summary of Chapters 1-3. Equations of motion for a uniformly accelerating object. Quiz to follow Summary of Chapters 1-3 Equations of motion for a uniformly accelerating object Quiz to follow An unbalanced force acting on an object results in its acceleration Accelerated motion in time, t, described

More information

Force - a push or a pull A force described by its strength and by the direction in which it acts The SI unit for force is the newton (N)

Force - a push or a pull A force described by its strength and by the direction in which it acts The SI unit for force is the newton (N) Forces Force - a push or a pull A force described by its strength and by the direction in which it acts The SI unit for force is the newton (N) The direction and strength of forces can be represented by

More information

Chapter 5 Gravitation Chapter 6 Work and Energy

Chapter 5 Gravitation Chapter 6 Work and Energy Chapter 5 Gravitation Chapter 6 Work and Energy Chapter 5 (5.6) Newton s Law of Universal Gravitation (5.7) Gravity Near the Earth s Surface Chapter 6 (today) Work Done by a Constant Force Kinetic Energy,

More information

The magnitude of this force is a scalar quantity called weight.

The magnitude of this force is a scalar quantity called weight. Everyday Forces has direction The gravitational force (F g ) exerted on the ball by Earth is a vector directed toward the center of the earth. The magnitude of this force is a scalar quantity called weight.

More information

A-level Physics (7407/7408)

A-level Physics (7407/7408) A-level Physics (7407/7408) Mechanics II progress test Name: Class: Author: Date: Time: 55 minutes Marks: 45 Comments: Page Q.A car exerts a driving force of 500 N when travelling at a constant speed of72

More information

Physics General Physics. Lecture 3 Newtonian Mechanics. Fall 2016 Semester. Prof. Matthew Jones

Physics General Physics. Lecture 3 Newtonian Mechanics. Fall 2016 Semester. Prof. Matthew Jones Physics 22000 General Physics Lecture 3 Newtonian Mechanics Fall 2016 Semester Prof. Matthew Jones 1 Review of Lectures 1 and 2 In the previous lectures we learned how to describe some special types of

More information

Laws of Motion. A fighter aircraft is looping in a vertical plane. The minimum velocity at the highest point is (Given r = radius of the loop) a) gr b) gr c) gr d) 3gr. In non-inertial frame, the second

More information

Module 17: Systems, Conservation of Momentum and Center of Mass

Module 17: Systems, Conservation of Momentum and Center of Mass Module 17: Systems, Conservation of Momentum and Center of Mass 17.1 External and Internal Forces and the Change in Momentum of a System So far we have restricted ourselves to considering how the momentum

More information

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron.

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron. Lecture 3 The Laws of Motion OUTLINE 5.1 The Concept of Force 5.2 Newton s First Law and Inertial Frames 5.3 Mass 5.4 Newton s Second Law 5.5 The Gravitational Force and Weight 5.6 Newton s Third Law 5.8

More information

OpenStax-CNX module: m Falling Objects. TERP Admin. Based on Falling Objects by OpenStax College

OpenStax-CNX module: m Falling Objects. TERP Admin. Based on Falling Objects by OpenStax College OpenStax-CNX module: m50566 1 2.8 Falling Objects TERP Admin Based on Falling Objects by OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License

More information

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Module No. - 01 Basics of Statics Lecture No. - 01 Fundamental of Engineering Mechanics

More information

When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other.

When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other. When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other. Newton s Third Law What is Newton s third law of motion? According to Newton

More information